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Abstract

This paper is an extension of the research done in Wang et al. (2017).
For static linear panel models with heterogeneous coefficients across indi-
viduals, the predictive performance of pooling averaging methods is inves-
tigated. Latent group structure identification using Classifier-Lasso with
Partial Profile Likelihood, as proposed by Su et al. (2016), is used to ob-
tain pooling specifications to average over. In a Monte Carlo experiment,
it is shown that Mallows pooling averaging combined with latent group
structure identification using Classifier-Lasso has the best performance in
terms of MSPE when a moderate or large degree heterogeneity is present
across individuals. Especially when the amount of individuals in the panel
is large, the performance of the newly proposed way to obtain pooling
specification using Classifier-Lasso has clear advantages over the method
proposed by Wang et al. (2017). When a low degree of heterogeneity is
present, the Classifier-Lasso estimator as proposed by Su et al. (2016) has
the best performance. For this estimator, its finite sample performance
is also investigated. The newly proposed method is also used to predict
changes in sovereign credit default swap spread for a cross-country panel
as an illustration.
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1 Problem Description
As early as in 1970, panel models have been used to successfully capture the
effects of heterogeneity across individuals in a panel (Swamy, 1970). However,
care should be taken when choosing between a panel model with or without
heterogeneous coefficients across individuals, as the results of available methods
might vary greatly.

One can assume that each individual behaves differently and separately esti-
mate the parameters for each individual. In this case, the coefficients are allowed
to be heterogeneous across individuals. This approach takes full account of the
heterogeneity across individuals. Among others Durlauf, Kourtellos and Minkin
(2001) have used this approach to account for heterogeneity across countries.

In contrast, one can also completely ignore the effects of heterogeneity by
assuming all individuals in the panel behave in the same way. This corresponds
with imposing homogeneity across individuals and estimate one common coef-
ficient for each regressor for all individuals. In this case one ignores the hetero-
geneity that might be apparent across individuals. When coefficients actually
do vary across individuals, this generally results in biased coefficient estimates.
As was pointed out in Durlauf et al. (2001), pooling all individuals often leads
to invalid conclusions. However, the increase in efficiency by pooling often leads
to better predictions in terms of Mean Squared Error (MSE) or Mean Squared
Prediction Error (MSPE) (Baltagi and Griffin, 1997).

Wang, Paap and Zhang (2017) (hereafter WPZ) analyze this econometric
dilemma to choose whether to pool or not to pool in panel models. As they
point out, it is unclear beforehand which method would work best. In various
empirical applications both methods have been applied, with no found strict
dominance of the one method over the other. The decision whether to pool,
involves a bias-variance tradeoff. Individual estimates usually result in a con-
sistent, but not very efficient estimate, whereas pooling increase the efficiency
of the estimates, at the cost of introduced bias.

Many estimators exist which are between these two extremes. However,
few estimators make this explicit tradeoff between bias and efficiency. WPZ
use a new technique to explicitly make this bias-variance tradeoff to construct
estimations which are directly based on the MSE. This seems valuable as the
MSE is a popular criterion for evaluation and model comparison. In order
to make this tradeoff, WPZ propose pooling average methods, which combine
different pooling specifications with appropriate weights. These method do not
try to find one single heterogeneity structure to group the individuals in the
panel, but use different specifications to create the best estimator in terms
of MSE. They conclude that their Mallows pooling averaging (MPA) method
is preferred in non-extreme cases of static panel models with heterogeneous
parameters across individuals.

In order to reduce the amount of possible pooling specification to combine,
WPZ use a screening procedure that does not require the estimation of all can-
didate models. However, as all the pooling average estimators use these chosen
pooling specifications to average over, the method to find the pooling specifica-
tions might have large impact. Apart from this screening procedure proposed in
WPZ, other methods can be used to obtain pooling specifications. When using
a different methods to obtain the pooling specifications, the performance of the
screening procedure proposed by WPZ can be assessed.
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In this paper, the screening procedure applied in WPZ are compared to
the Classifier Lasso (C-Lasso) approach with Partial Profile Likelihood (PPL)
estimation from Su, Shi and Phillips (2016) (hereafter SSP). This method is
used to obtain the pooling specifications to average over, just like the screen-
ing procedure proposed by WPZ. While the research by WPZ was focused on
the MSE, this paper focuses on the MSPE for evaluation, which is frequently
used when evaluating predictions in practice. In a Monte Carlo experiment, all
pooling averaging methods used in WPZ are used in combination with the two
methods to obtain the pooling specifications. In addition, the infeasible Oracle
estimator is added which uses the given group structure in the data generating
processes. This allows for a more detailed analysis of the bias-variance tradeoff.
It is shown that the MPA methods sometimes outperform this infeasible esti-
mator in terms of MSPE, by making this explicit bias-variance tradeoff. Next,
The (finite sample) performance of the the C-Lasso estimator as proposed by
SSP is investigated. Finally, The newly proposed method to obtain pooling
specifications is used to make predictions for changes in sovereign credit risk in
a cross-country panel, which is also analyzed in WPZ.

Section 2 briefly reviews some of the methods that are available to estimate
parameters in heterogeneous panel data models. Section 3 introduces the model
setup used in this study. Section 4 describes the used existing estimators. Sec-
tion 5 elaborates on the newly proposed pooling averaging method. Section 6
describes the Monte Carlo experiment set-up and discusses the results. Section
7 contains an empirical application of the pooling average method. Finally,
Section 8 concludes and points out topics for further research.

2 Literature Review
In the literature on panel models, many possible approaches exist to estimate
heterogeneous parameters. One can make use of an average effect estimator,
which estimates common coefficients for all individuals. Swamy (1970) proposed
one of the first methods to adjust for varying parameters with his generalized
least squares (GLS) type estimator. A different average effect estimator is the
mean group estimator proposed by Pesaran and Smith (1995). One could also
use the FGLS estimator to incorporate the variation of coefficients (Hsiao, 2014).
These methods are similar in the sense that they use information from individual
regressions to construct an estimator for the average effect.

When it is of interest to obtain individual coefficients, one can use other
techniques. The easiest way to obtain individual estimates is to use the OLS
estimator for each individual separately, which is referred to as the individual
estimator. More sophisticated methods try to incorporate information from the
other individuals to improve the estimation of the individual parameters, such
as the shrinkage estimator proposed by Maddala, Trost, Li and Joutz (1997) or
the mixed estimator of Lee and Griffiths (1979).

More recent methods estimate coefficients for groups of individuals with
similar characteristics, which results in a grouped estimator. This has both the
favorable property of increasing the efficiency, while decreasing the introduced
bias compared to imposing homogeneity across all individuals.

When the grouping of the individuals is known to the researcher, one can
choose to ignore the estimation of group structures in the data. Among others,
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the grouped fixed effects estimator proposed by Bester and Hansen (2016) can
then be used.

However, if the group structure is not known to the researcher, the latent
group structure has to be estimated. Among others, Sun (2005), Lin and Ng
(2012), Bonhomme and Manresa (2015), Ando and Bai (2016) and SSP propose
methods to identify a latent group structure in the data, without requiring any a
priori knowledge about the grouping. SSP introduced a new variant of the lasso
estimator, which is applied in this paper. This method simultaneously retrieves
a latent group structure and the corresponding slope coefficients by using Lasso
technology, without having any a priori knowledge about the number of groups.

WPZ proposed to combine the estimators from different pooling specifica-
tions by using pooling averaging. They argue that this avoids certain problems
with pretest estimators, discussed in Danilov and Magnus (2004). In addition,
by using the Mallows criterion to estimate weights for the different pooling
specifications, one can asymptotically achieve the lowest possible error (Hansen,
2007).

As this is this an extension of WPZ, The goal remains to investigate which
methods lead to the most accurate estimator for different sample sizes and
heterogeneity structures. WPZ focussed on parameter accuracy, whereas this
paper focusses on predicition error. Specific to this paper is the comparison of
two methods that identify the heterogeneity structure: the screening procedure
as proposed in WPZ, and the latent group structures identification by using
the C-Lasso with PPL estimation as proposed by SSP. How these methods are
employed is described in section 5.3.

3 Model Specification
Following WPZ, the specification from (1) is used for the static linear panel
data model with heterogeneous slopes.

yi = Xiβi + ui i = 1, · · · , N. (1)

Here, yi = (yi1, · · · yiT )
′
and Xi = (X

′

i1, · · · , X
′

iT )
′
is a T × K matrix of ex-

planatory variables, including an intercept as the first explanatory variable.
Thus Xit,1 = 1 for t = 1, · · · , T . The series {yit, Xit} is assumed to be station-
ary. The coefficient βi = (βi1, · · · , βiK)

′
is assumed to be fixed over time, but is

allowed to vary across individuals to allow for heterogeneity. This means that
elements from βi can differ from βj when i 6= j. The error terms of each individ-
ual ui are assumed to be independently and identically distributed (IID) across
time. Next to this, u1, · · · , uN are assumed to be uncorrelated conditional on
Xi for all i. The error term is allowed to be heteroskedistic across individuals.
That is, ui has mean zero and variance σ2

i IT .
The Monte Carlo simulations is focused on cases where only exogenous re-

gressors are used. In this case, the model specification from (1) is correct.
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4 Existing methods
Heterogeneity across individuals can be accounted for in various ways. This
section elaborates on how some existing methods estimate coefficients in panel
models which are possibly heterogeneous. For each of the methods used in this
study, the way they can be estimated is described in the corresponding subsec-
tion. First, common estimators are described. Second, individual estimators
are described.

4.1 Common Estimators
First, the methods are described which use the same coefficients across all in-
dividuals. Although these estimators do not produce individual specific esti-
mators, they might still perform well due to their increased efficiency. If the
introduced bias is offset by the increase in efficiency, a better bias-variance
tradeoff is made.

The most simple common estimator is the pooled estimator as defined in
(2). Coefficients are assumed to be homogeneous across individuals when using
this estimator.

β̂pool =
(
b
′
, · · · , b

′
)′

, where b =

(
N∑
i=1

X
′

iXi

)−1 N∑
i=1

X
′

iyi (2)

This pooled estimator ignores all heterogeneity and thus can be severely bi-
ased. However, because all data is used for this one parameter estimate b, this
estimator is more efficient.

The second average effect estimator that is being used, is the FGLS estimator
of the average effect as defined in (3).

ˆ̄βFGLS =

(
N∑
i=1

X ′iΨ̂
−1
i Xi

)−1( N∑
i=1

X ′iΨ̂
−1
i yi

)
,with Ψ̂i = X ′i∆̂Xi + σ̂2

i IT

and ∆̂ =
1

N − 1

N∑
i=1

(
β̂i,ind −

1

N

N∑
i=1

β̂i,ind

)(
β̂i,ind −

1

N

N∑
i=1

β̂i,ind

)′
(3)

where the β̂i,ind denotes the individual estimator which is described in the next
section, and σ̂2

i = (yi−Xiβ̂i,ind)
′(yi−Xiβ̂i,ind)/(T −K). This FGLS estimator

incorporates variation in the coefficients to produce a common estimate for all
individuals (Hsiao, 2014, Section 6.2.2b).

More average effect estimators are available such as the the mean group
estimator of Pesaran and Smith (1995) or the average effect GLS type estimator
of Swamy (1970). However, these estimators are consistently outperformed by
other estimators in the Monte Carlo experiment. For the sake of brevity, the
description of these estimators has been omitted.

4.2 Individual Estimators
Instead of using a common estimate for all individuals, it is also possible to
estimate coefficients separately for each individual. When heterogeneous policy
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decisions need to be made, the use of individual estimators allows for differen-
tiation across countries or companies which make part of the panel.

The most simple way to create individual estimators is by using the ordinary
least square (OLS) estimator for each individual separately. This amounts to
using the estimator as defined in (4).

β̂i,ind = (X ′iXi)
−1X ′iyi, where i = 1, · · · , N and T > K (4)

This individual estimator β̂i,ind is consistent if the model from (1) is correctly
specified for this individual. This is the case in this study, as a static linear panel
model is used. However, because it only uses a low amount of observations, it
is not as efficient as the common estimators from the previous section.

The second individual estimator that is used in this study, is the shrinkage
estimator of Maddala et al. (1997) as denoted in (5).

β̂i,shrinkage =
(

1− v

F

)
β̂i,ind +

v

F
β̂pool (5)

where v = [(N − 1)K − 2]/[NT − NK + 2] and F the test statistic for the
null hypothesis H0 : β1 = · · · = βN , which relates to full homogeneity in the
parameters across individuals.

The third individual estimator is the mixed estimator from Lee and Griffiths
(1979) as denoted in (6). This estimator uses the estimate from the FGLS
average effect from the previous section for its individual parameter estimation.

β̂i,mix = ˆ̄βFGLS + ∆̂X ′i

(
Xi∆̂X

′
i + σ̂2

i IT

)−1
(yi −Xi

ˆ̄βFGLS) (6)

with ∆̂ as defined in (3) and σ̂2
i = (yi −Xiβ̂i,ind)

′(yi −Xiβ̂i,ind)/(T −K).

5 Pooling Averaging methods
Pooling averaging is a method newly proposed by WPZ. By using pooling av-
eraging, different pooling specifications can be combined and weighted. This
section elaborates on which steps need to be taken to make use of pooling aver-
aging methods. First, a method to impose restriction on coefficients in a panel
model is described. Second, the specification and advantages of pooling averag-
ing is described. Third, the methods to obtain candidate pooling specifications
is elaborated upon. Finally, the methods to weight the candidate pooling spec-
ifications are described.

5.1 Parameter Restrictions
For every a pooling specification, some coefficients are restricted to have equal
value. These equality restriction can be imposed by using a restriction matrix
such that Rmβ = 0, where β = (β′1, · · · , β′N )′ is a NK × 1 vector. When one
wants to impose the restriction βi = βj for j > i, then one can use the restriction
matrix as defined in (7).

Rm =
(
0K×(i−1)K , IK , 0K×(j−i−1)K ,−IK , 0K×(N−j)K

)
(7)
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This allows us to construct the projection matrix Pm as defined in (8).

Pm = INK − (X ′X)−1R′m(Rm(X ′X)−1R′m)−1Rm (8)

where X = diag(X1, · · · , XN ) is an NT ×NK matrix. In this case, all parame-
ters of an individual are imposed to be equal to those of another individual. It is
also possible to only impose specific coefficients to be equal such that βi,l = βj,l
but not necessarily βi,m = βj,m for l 6= m.

By using this projection matrix, one can construct the grouped OLS estima-

tor by β̂(m) = Pmβ̂ind with β̂ind =
(
β̂′1,ind, · · · , β̂′N,ind

)′
being the NK×1 vector

of individual OLS estimators. Here the m denotes under which pooling strategy
the estimators are grouped. A pooling strategy consist of a set of restrictions
on which coefficients are imposed to be equal. Typically, Some individuals are
imposed to have the same coefficients, while others are allowed to differ. Each
pooling strategy is characterized by a different Rm matrix, which results in a
grouped estimator, β̂(m), with a different degree of bias and variance.

5.2 Pooling Averaging
The newly proposed pooling averaging method combines different pooling spec-
ification to obtain parameter estimates. The pooling averaging estimator β̂(w)
is given in (9).

β̂(w) =

M∑
m=1

wmβ̂(m) =

M∑
m=1

wmPmβ̂ind = P (w)β̂ind (9)

whereM is the number of candidate pooling specifications, P (w) =
∑M
m=1 wmPm

is an NK × NK projection matrix which is used to generate the pooling av-
erage estimates for each individual, conditional on weighting w as in (8). Here
w = (w1, · · · , wM )′ belongs to the set W = {w ∈ [0, 1]M :

∑M
m=1 wm = 1}. Af-

ter combining the different estimators from the proposed pooling specifications,
individual specific parameters are obtained.

Pooling averaging has the advantage that a bias-variance tradeoff can be
made, as every pooling specifications has a different degree of bias and vari-
ance. By attributing weights based on the bias and variance properties of the
pooling specifications, this tradeoff can be made explicitly. Next to this, the
problems caused by pretesting are avoided, as this estimator is continuous and
has a bounded risk (Danilov and Magnus, 2004). However, conducting infer-
ence is challenging, as only a point estimate is provided. WPZ propose to
calculate confidence intervals by bootstrap, using cross-sectional resampling fol-
lowing Kapetanios (2008). In the empirical application, this method is used.

5.3 Candidate Pooling Specifications
The pooling strategies to construct the restriction matrix Rm as defined in (7)
are usually not known to the researcher. Except for when one wants to fix
the group structure to some clustering apparent from the data (for example SIC
codes or geographical location), Some method has to be used to select candidate
pooling specifications among all possible pooling strategies. The amount of
possible pooling strategies rises very fast as the amount of individuals (N) or the
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amount of regressors (K) increase. Therefore, checking all possible specifications
quickly becomes computationally difficult. Instead, econometric techniques have
to be used to retrieve the best pooling specifications.

In this study, two methods are used to retrieve grouping strategies. The
first method is the classifier-Lasso (C-Lasso) method by using penalized profile
likelihood (PPL) estimation for latent group structure identification (hereafter
LGSI), proposed by Su et al. (2016). The second method is the screening proce-
dure (hereafter SP) proposed by Wang et al. (2017). It is the goal of this paper
to investigate the relative performance when using the SP. By comparing this
method to the LGSI, the performance of the computationally efficient SP can
be assessed. In addition to these two methods, the infeasible Oracle estimator
which uses the true pooling specification is added.

5.3.1 Latent Group Structure Identification

In order to identify the latent group structures and estimate parameters in panel
data, the C-Lasso method can be used. In the case of (non-)linear panel models
without endogeneity and with or without dynamic structure, PPL estimation
can be used. (Su et al., 2016) The PPL estimation uses a profile log-likelihood
function in combination with a penalty term, which is described in two steps.

For a linear panel model with heterogeneity across individuals in both the
intercept and regressors, this would result in a profile log-likelihood function as
defined in (10).

QNT (β̂PPL) = min
β̂PPL

1

NT

N∑
i=1

T∑
t=1

1

2
(yit − β̂′i,PPLxit)2 (10)

Here, xit is a K×1 vector of exogenous variables, with xit,1 = 1 as the intercept
and yit as the corresponding outcome. β̂i,PPL is a K × 1 vector with time-
invariant, individual specific parameters and β̂PPL = (β̂′1,PPL, · · · , β̂′N,PPL)′ a
NK × 1 vector containing the parameters for all individuals.

In order to make sure that the β̂i,PPL parameters are restricted to be equal
when two individuals are in the same cluster, a mixed additive-multiplicative
penalty term is added to obtain the PPL criterion function as defined in (11).
minimizing this criterion function produces the C-Lasso estimates β̂PPL and
α̂PPL for a given amount of clusters, S.

Q
(S)
NT,λ(β̂PPL, α̂PPL) = QNT (β̂PPL) +

λ

N

N∑
i=1

S∏
s=1

||β̂i,PPL − α̂s|| (11)

Here, λ is a tuning parameter, α̂PPL = (α̂1, · · · , α̂S), with α̂s being the K × 1
vector with parameters for cluster s.

This method imposes the β̂i,PPL parameters to follow a group pattern such
that β̂i,PPL =

∑S
s=1 α̂s1{i ∈ Ĝs}, where α̂j 6= α̂k for j 6= k, ∪Ss=1Ĝs =

{1, 2, · · · , N} and Ĝk ∩ Ĝj = ∅ for any j 6= k. This ensures that all indi-
vidual belong to a certain cluster Ĝs,which have the same parameters α̂s, as
desired for a grouped estimator. By using this criterion function, the C-Lasso
achieves simultaneous classification and consistent estimation in a single step.
For more details see Su et al. (2016, Section 2).
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In order to obtain multiple pooling specifications to average over, we pick a
range of values for the amount clusters, S. For each amount of clusters, β̂PPL
and α̂PPL get estimated using PPL C-Lasso. Here, it is possible to limit the
maximum amount of clusters Smax to reduce the computation time, or limit
the amount of clusters in the panel. In total, M = Smax candidate pooling
specifications β̂(m) are formed as described in (9). Here, the β̂(m) corresponds
to the β̂PPL, which is obtained with the LGSI for one value of S.

5.3.2 Screening Procedure

WPZ propose a screening method to rule out the "poor" models that incorrectly
impose equality restrictions on parameters that should not be imposed to be
equal. This overcomes the difficulty of having to select or average over the full
model space, which is computationally difficult.

In this screening method, the estimated individual coefficients are normal-
ized and the Bhattacharyya distances between coefficients are being calculated
(Wang et al., 2017, equation (36)). Afterwards, agglomerative hierarchical clus-
tering (AHC) is employed to form a hierarchical tree which maps which co-
efficients that are close to each other. After the tree is formed, the tree can
be cut to produce the pooling specifications. The amount of clusters that are
created for each variable, denoted as C, can be selected by the researcher. For
C = 1, · · · , N , a clustering for each variable is formed. Here, C = 1 corresponds
to using the pooled estimator, while C = N corresponds to the individual esti-
mator.

Note that this method differs from clustering as is done in the LGSI. Figure
1 shows how the LGSI and SP methods differ for the case where S = C = 2.
For the LGSI, clustering is done per individual, as is visible in the left table.
For the SP, two clusters are created for each variable, which is visible in the
right table. This means that in this case, this could effectively result in four
different clusters of individuals if the clustering per variable does not coincide.
This more flexible specification of clusters allows to capture a larger extent of
heterogeneity. As a result, this might cause for the pooling specifications of the
SP to have a relatively low degree of bias, compared to the pooling specification
of the LGSI. As minimizing MSPE is the goal, it is not clear which of the two
methods is more suitable. In the Monte Carlo simulation, these techniques are
compared.

(LGSI) i (SP) i
1 2 3 4 1 2 3 4

k
1 1 1 2 2

k
1 1 2 2 2

2 1 1 2 2 2 1 1 2 2
3 1 1 2 2 3 1 1 1 2

Figure 1: Visualization of a possible clustering for N = 4, K = 3 with C = S = 2. Numbers
in cells indicate to which cluster the parameter k for individual i belongs. Left is the clustering
on individuals, which is applied in the LGSI. Right is the clustering on each parameter, which is
applied in the SP.

An advantage of the SP compared to the LGSI, is that it is possible to
create clustering specifications with amounts of clusters up to N , whereas this
is computationally difficult for the LGSI. A disadvantage of the SP is that is uses
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no objective function that is directly minimized and there might be some tradeoff
between efficiency loss and diversification gains from having many candidate
models.

5.3.3 Infeasible Oracle Estimator

As the true group structure is known in a Monte Carlo experiment where the
Data generating process (DGP) is defined by the researcher, one is able to
construct the infeasible Oracle estimator which uses the optimal pooling speci-
fication. The pooling specification is optimal in the sense that there is minimal
introduced bias from pooling individuals, because they get grouped according
to the given grouping in the DGP. The Oracle estimator as defined in (12) uses
the true groupingm0 which is given in the DGPs of the Monte Carlo simulation.

β̂oracle = β̂(m0) (12)

Of course, this true grouping is not known in practice, but adding this esti-
mator in the Monte Carlo simulation allows us to see the performance of the
estimator with the correct grouping structure. In terms of MSPE, this estimator
could still be outperformed if the gain in efficiency is larger than the introduced
heterogeneity bias when pooling. This can especially be the case when the het-
erogeneity across individuals is small. In this case, The increase in efficiency
by pooling might be larger than the introduced bias, which results in a better
prediction in terms of MSPE.

The same applies when the pooling structure needs to be estimated. Even
if the true grouping would be identified, this would still not guarantee optimal
predictions in terms of MSPE. Therefore, one would like to apply a different way
of choosing among the different pooling specifications, such as pooling averaging.

5.4 Pooling Averaging Weights
The last step before obtaining estimates with pooling averaging, is choosing a
method for the attribution of weights for the candidate pooling specifications.
This corresponds to choosing the weights wm from (9) to weight the candidate
pooling specifications β̂(m) into the final pooling averaging estimate β̂(w). When
LGSI is used,m ranges fromm = 1, · · · ,M = Smax. When SP is used,m ranges
from m = 1, · · · ,M = N . Four methods are considered to choose the pooling
averaging weights.

5.4.1 Simple Average

The first and most simple method is using equal weight for all candidate mod-
els. Thus, wm = 1

M for m = 1, · · · ,M . This method is favored in the forecast
combination literature. The effectiveness of this method is analyzed in the the-
oretical framework provided by Claeskens, Magnus, Vasnev and Wang (2016).
For pooling averaging, this simple average is also expected to have good finite
sample performance because of possible inaccuracy in estimating the weights
due to errors in coefficient estimates and strong correlation between the esti-
mates. Here, the simple average trades off a small bias for a larger gain in
efficiency. (Wang et al., 2017)
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5.4.2 Information Criterion

The second method that is applied, is using an information criterion (IC)
to either create weights, or select one candidate model. The two informa-
tion criteria that are used are the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC), where AIC = 2Km − 2 ln L̂m and
BIC = ln (NT )Km−2 ln L̂m, whereKm refers to the amount of different regres-
sors used in the pooling specification and L̂m being the maximized loglikelihood
candidate pooling specification m. Selecting the two model specifications with
the lowest values for these information criteria produces two pretest estimators.
In this case the weight for the selected pooling specification is set to one, while
the other weights are set to zero.

In addition to choosing one pooling specification with the information crite-
ria, one can also use them to create weights. Buckland, Burnham and Augustin
(1997) introduced the smoothed information criteria as defined in (13).

wAICm =
exp (−AICm/2)∑M
m=1 exp (−AICm/2)

and wBICm =
exp (−BICm/2)∑M
m=1 exp (−BICm/2)

(13)

Here AICm and BICm are adjusted by subtracting the minimum AIC and BIC
values over the different pooling specifications to avoid numerical problems.

5.4.3 C-Lasso Information Criterion

The third method to attribute weights to the candidate models is only applied
when LGSI is used. Here, one chooses the candidate model which minimizes
the IC as defined in (14), proposed by SSP. The use of this IC in combination
with LGSI results in the C-Lasso estimator, which is asymptotically equivalent
to the Oracle estimator as defined in (12).

IC(S, λ) ≡ ln

 1

NT

S∑
s=1

∑
i∈Ĝs(S,λ)

T∑
t=1

(
yit − β̂′i,PPLxit

)2+ ρNTKS (14)

Here the second summation sums up over the individuals that belong to cluster
s, and uses their corresponding parameter β̂i,PPL = α̂s. For linear models, SSP
propose to use the tuning parameter ρNT = 2

3 (NT )−1/2.
This IC is used to select the optimal amount of clusters, such that Ŝ =

argmin1≤S≤Smax
IC(S, λ). For this optimal amount of clusters, Ŝ, the β̂C-Lasso

is selected by using wŜ = 1 while all the other weights are being set to zero.

5.4.4 Mallows Pooling Averaging

The fourth and last method that is used to construct weights is by using the
Mallows criterion. Hansen (2007) proposed to use this criterion, which is asymp-
totically optimal, as it achieves the lowest possible squared error.

To derive the Mallows pooling averaging (MPA) criterion in estimating a
heterogeneous panel, the approach from WPZ is followed. This corresponds
to the case where one is interested in prediction and thus chooses A = X ′X in
equation (26) from WPZ. The Mallows Criterion is an unbiased estimator of the
squared risk, which makes it a good approximate for the MSPE (Wang et al.,
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2017, Theorem 5.1). In addition, WPZ derived the risk bounds of the MPA,
which tells us how the MPA performs in the worst situation.

The feasible variant of the Mallows criterion is described in (15).

C∗X′X(w) = ||XP (w)β̂ind−Xβ̂ind||2 +2tr[P ′(w)X ′XV̂ ]−||Xβ̂ind−Xβ||2 (15)

where ||θ||2 = θ′θ, β̂ind = (β̂′1,ind, · · · , β̂′N,ind)′ is an NK × 1 vector with the
individual estimates, X = diag(X1, · · · , XN ) is an NT ×NK matrix with ob-
servations and β the NK × 1 vector which corresponds to the true parameters
in the DGP.

V̂ = diag(V̂1, · · · , V̂N ) correspond to the estimates of the variance of the
individual estimates β̂i,ind for i = 1, · · · , N . For the estimation of V̂ three
approaches are proposed by WPZ. Each of the approaches uses different as-
sumptions about the error structure.

1. Homoskedasticity: If one assumes equal variance for all individuals, such
that var(ui) = σ2IT for all i, V can be estimated by V̂homo = σ̃2(X ′X)−1

where σ̃2 = (y−Xβ̂ind)′(y−Xβ̂ind)/(NT−NK), where y = (y′1, · · · , y′N )′.

2. Between-individual heteroskedasticity: If one assumes that every individ-
ual is allowed to have a different variance, such that var(ui) = σ2

i IT for
all i, V can be estimated by V̂bh = diag(σ̂2

1(X ′1X1)−1, · · · , σ̂2
N (X ′NXN )−1)

where σ̂2
i = (yi −Xiβ̂i,ind)

′(yi −Xiβ̂i,ind)/(T −K).

3. Completely (conditional) heteroskedasticity: If we assume that ui is (con-
ditionally) heteroskedastic for each i = 1, · · · , N , one can use

V̂ch =
T

(T −K)
diag

(
(X ′1X1)−1

T∑
t=1

û21tX
′
1tX1t(X

′
1X1)−1, · · ·

, (X ′NXN )−1
T∑
t=1

û2NtX
′
NtXNt(X

′
NXN )−1

)
,

where û2it = (yit −Xitβ̂i,indiv)
2 for i = 1, · · · , N and t = 1, · · · , T .

As the third term in (15) is not affected by the choice of w, this function can
be rewritten into a quadratic function in w, which can be minimized to obtain
the weights that are used for the pooling averaging by ŵ∗ = (ŵ1, · · · , ŵM )′ =
argminw∈W C∗X′X(w), withW as defined in section 3.5. MPA is applied with all
three error structures, which results in three different weight vectors ŵ∗ for one
set of candidate pooling specifications β̂(m) where m = 1, · · ·M .

WPZ show that the MPA estimator β̂(ŵ∗) is asymptotically optimal, as the
squared loss is asymptotically identical to that by the infeasible best possible
model averaging estimator, conditional on a given set of estimators as in Hansen
(2007).

6 Monte Carlo Simulation
In order to evaluate the performance of the different pooling strategies. All
described methods are tested in a Monte Carlo experiment. The DGPS used in
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WPZ, and one additional DGP are used. In particular, this experiment com-
pares the performance of the two methods used to obtain pooling specifications.
The first method being the LGSI proposed by SSP and the second method being
the SP proposed by WPZ.

First, the DGPs are be described. Second, the chosen parameters for the
methods and evaluation are decribed. Finally, the results are presented.

6.1 Data Generation Process
Five different DGPs are used to evaluate the performance of the described meth-
ods.

The benchmark setup is the static panel data model with coefficients possibly
varying over individuals, but constant over time as defined in (16).

yit =

3∑
l=1

xit,lβi,l + εit, i = 1, · · · , N ; t = 1, · · · , T (16)

where xit,1 = 1 and the remaining regressors are independently generated from
the standard normal distributions. The idiosyncratic errors εit are indepen-
dently, normally distributed with mean zero and variance σ2

εi . The errors are
thus heteroskedastic across individuals, but homoskedastic over time for each
individual. The variances are defined as

σ2
εi =

∑3
l=1 β

2
i,l

R2
−

3∑
l=1

β2
i,l

such that a theoretical R2 can be picked, which is fixed at R2 = 0.9 in this
simulation. The slope coefficients βi,l have a different grouping pattern for
every DGP, which is described below.

DGP 1 (Homogeneous): βi,l = 1 for all i and l.

DGP 2 (Weakly heterogeneous):

βi,1, βi,2 =

{
q1, i = 1, · · · , [N/2]

q3, i = [N/2] + 1, · · · , N
βi,3 =

{
q1, i = 1, · · · , [N/3]

q3, i = [N/3] + 1, · · · , N

where qi is the i-th element of the q vector defined below and [N/2] denotes
the nearest integer to N/2, where .5 is rounded upwards.

DGP 3 (Strongly heterogeneous):

βi,1, βi,2 =


q1, i = 1, · · · , [N/4]

q2, i = [N/4] + 1, · · · , [2N/4]

q3, i = [2N/4] + 1, · · · , [3N/4]

q4, i = [3N/4] + 1, · · · , N

βi,3 =


q1, i = 1, · · · , [N/5]

q2, i = [N/5] + 1, · · · , [2N/5]

q3, i = [2N/5] + 1, · · · , [3N/5]

q4, i = [3N/5] + 1, · · · , N

DGP 4 (Completely heterogeneous): βi,l = 0.1× i× l for all i and l.
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DGP 5 (Varying over parameters):

βi,1 =

{
q1, i = 1, · · · , [N/4]

q3, i = [N/4] + 1, · · · , N

βi,2 =

{
q1, i = 1, · · · , [N/2]

q3, i = [N/2] + 1, · · · , N

βi,3 =

{
q1, i = 1, · · · , [3N/4]

q3, i = [3N/4] + 1, · · · , N

Two sets of coefficients q are considered: The set qB = [1.0, 1.5, 3.3, 3.0]′ and the
set qS = [1.0, 1.2, 2.3, 2.0]′ with coefficients which are less far from each other.
The choice of q only affects DGP 2,3 and 5, as the other DGPs do not use these
coefficients.

The amount of individuals vary from N ∈ {5, 10, 30} and the amount of
time periods per individual vary from T ∈ {15, 40}, which results in six different
combinations of N and T . Because of limitations on computational power, this
simulation is based on 100 replications.

6.2 Methods
All methods that are described in this paper are used in this Monte Carlo
simulation. Thus as common effect estimators, the pooled estimator and the
FGLS estimator are used. As individual estimators, the separate OLS estimator
for each individual, the shrinkage estimator from Maddala et al. (1997) and the
mixed estimator from Lee and Griffiths (1979) are used. For the pooling averag-
ing estimators, the simple average weighting, AIB and BIC selection, Smoothed
AIC and BIC weighting and Mallows pooling averaging with homoskedastic,
between-individual heteroskedastic and completely heteroskedastic error struc-
ture is included. All methods that require estimated pooling specifications, are
applied both on the pooling specifications estimated with the SP and the LGSI.
For the LGSI, the C-lasso estimator with the C-Lasso IC is also included. Fi-
nally, the infeasible Oracle estimator is included, as if the group membership
for each individual is known.

For the LGSI, a maximum amount of clusters Smax = 5 is used. Allow-
ing more clusters to be formed increases computational complexity. The true
amount of clusters of individuals in the DGPS are 1, 3, 7, N and 4 clusters for
DGP 1 to 5 respectively. (with the exception for the case N = 5 for DGP 3,
which has 5 true clusters). This means that for DGP 3 and 4, the real amount
of clusters in the DGP is not included in the amount of clusters which are used
to estimate the pooling specifications for LGSI. Thus, for these DGPs, the true
pooling specification can not be found at all. Therefore, the C-Lasso estimator
can not be equivalent to the infeasible Oracle estimator in these cases. Never-
theless, it is interesting to see how the performance varies when the real group
structure can not be estimated due to a cap on the maximum amount of clusters.

In order to guarantee convergence for the LGSI, the parameter λ = c s2yT
−1/3

has been fine-tuned for each DGP. The best results were obtained when using
the values 2−2, 2−4, 2−4, 2−6, 2−4 for c in DGP 1 to 5 respectively, where s2y
corresponds with the sample variance of y. Under this choice of tuning param-
eters, the correct number of groups is chosen with probability approaching one
by the C-Lasso IC criterion as N and T approach infinity (Su et al., 2016). This
simulation shows the finite sample properties of this estimator.
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The methods are evaluated on squared loss of predictions
L(w) = ||Xβ̂ − Xβ||2, where β̂ corresponds to the NK × 1 vector with the
coefficients estimates using one of the described methods. In the tables with
results, the relative MSPE is displayed. This relative MSPE is obtained by
dividing the MSPE by the MSPE when using the individual estimator.

6.3 Results
The results are discussed separately for each DGP. This allows for easy com-
parison of the results when T , N and q are varied. The simulations for one
combination of values for {N,T, q} are referred to as a case.

6.3.1 Homogeneous

The results for the simulation of DGP 1 are displayed in table A.1 in the ap-
pendix. As expected, the best results are obtained when a pooling estimator is
used. In this DGP, the pooling estimator is equivalent to the infeasible Oracle
estimator. The performance of the C-Lasso estimator is nearly equivalent to the
infeasible Oracle estimator, as one cluster is chosen by the C-Lasso in 98% of
the cases. When using MPA, there is a drop in performance. When inspecting
the chosen weights for MPA, the weights seem to be spread more equally across
cluster sizes when the N increases, while T does not affect the weighting. Espe-
cially the completely heteroskedastic error structure seems to pick the smaller
amounts of clusters, due to its larger increase in the second term of (15), which
causes for larger weights for a specification with a lower amount of clusters.

When comparing the results from the two methods to obtain a pooling spec-
ification, the LGSI outperforms the SP in every case. As the amount of indi-
viduals increase, the relative performance of the SP seems to worsen, whereas
the relative performance of the LGSI increases. One possible explanation for
the drop in performance, is the large amount of pooling specifications available
when using the SP. When inspecting the MPA weights for the different pooling
specifications when using the SP, a large amount of weight is attributed to pool-
ing specifications with multiple clusters. For the cases with N = 30, MPACH
attributes 58% of the weight to pooling specifications using three or more clus-
ters per variable, while this percentage is 85% for the MPAHomo and MPABH.
As this DGP has homogeneous parameters, it is unlikely that this results in
good performance.

6.3.2 Weakly Heterogeneous

The results for the simulation of DGP 2 are displayed in table A.2 in the ap-
pendix. The best results are obtained when MPA is used with the LGSI. For
the cases with N = 30, T = 40 the C-Lasso estimator seems to have results
nearly as good as the infeasible Oracle estimator. this is expected, as they are
asymptotically equivalent, given the Oracle property of the C-Lasso estimator
(Su et al., 2016). However, for the cases with a lower N , the MPA estimators
seem to outperform the C-Lasso estimator. When looking at the amount of
clusters chosen by the C-Lasso, it seems that the chosen amount of clusters is
lower when (N,T ) is lower. For N = 5 and N = 10 the amount of clusters is
chosen to be 3 in 24% of the cases with T = 15. When T = 40 this amount
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increases to 82%, which shows how much influence an increase in T has for the
C-Lasso estimator.

For the cases with N = 5 the difference between the MPA with SP or MPA
with LGSI is small. Just as in the previous DGP, the relative performance of
the methods with LGSI increase when N is increased. This shows that the LGSI
is preferred to the SP for larger N . Once again, a possible explanation is the
large weights for specifications with a large amount of clusters. In this DGP,
the SP could account for all heterogeneity in parameters by using just 2 clusters
per variable. However, for the cases with N = 30, an average of 87% of the
weight for MPACH is used for pooling specifications with 3 or more clusters per
variable. For the MPAHomo and MPABH, this is even 95%.

When inspecting the three different error structures used for MPA, the com-
pletely heteroskedastic variant gives best results when the number of individu-
als is large. For the cases with N = 5 the between-individual heteroskedastic
variant gives best results. This is expected, as the errors are chosen to be
between-individual heteroskedastic in the DGPs.

When looking at the difference between the cases with qB and qS , the simula-
tions with qS seem to have slightly lower relative performance, especially for the
cases with N = 30. A possible explanation for this, is that more observations
are required to estimate the parameters successfully, when the heterogeneity in
parameters is smaller.

6.3.3 Strongly Heterogeneous

The results for the simulation of DGP 3 are displayed in table A.3 in the ap-
pendix. The best results are obtained when MPA is used with the LGSI. The
mixed estimator also performs very well for this DGP, especially for the cases
N = 5 and N = 10. For the cases with N = 5 and N = 10, the MPA even
outperforms the Oracle estimator in 7 out of 8 cases. Here, the introduced bias
when picking a lower amount of groups is smaller than the increase in efficiency.
This shows that the correct identification of groups should not merely be the
goal when one want to decrease prediction error. It is possible to obtain lower
prediction errors when using MPA. As the number of individuals increase, the
oracle estimator increases in performance. This is expected, as the variance of
the Oracle estimator shrinks when the number of individuals per clusters grow.

One would expect that the C-Lasso estimator is equivalent to the the Oracle
estimator for cases with largerN and T , but this is not the case for this DGP. For
cases with N = 5 and N = 10, C-Lasso underestimates the amount of clusters
by picking 2.34 clusters on average. For N = 30, an average of 2.92 clusters are
chosen. In any case, it never chooses five clusters. This is unexpected, as one
might expect that the specification allowing the most heterogeneity would have
the best performance in this case, as the true grouping in the DGP uses seven
clusters.

The performance of the MPA once again seems to be better when the LGSI
is used, with the difference getting bigger when N increases. When inspecting
the differences in performance between the cases with qB and qS , it is clear that
the prediction errors are larger for qS , which shows that more observations are
required when the differences between parameters are smaller.

The three different error structures used for MPA have very similar results
for the cases where N = 10 and N = 30. This is expected, as the perfor-
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mance with the three structures are asymptotically equivalent (Wang et al.,
2017, Theorem 5.3). For the cases with N = 5 the completely heteroskedastic
variant clearly performs worse.

6.3.4 Completely Heterogeneous

The results for the simulation of DGP 4 are displayed in table A.4 in the ap-
pendix. The best results are obtained when using the mixed estimator, while
the MPA with LGSI also has comparable performance. In all cases, the mixed
estimator outperforms the Oracle estimator, which is equivalent to the individ-
ual estimator in this DGP. Especially for the cases with higher N , the individual
estimators are outperformed by a larger extent.

When inspecting the amount of clusters that have been selected with the
C-Lasso, the selected maximum amount of clusters has large impact. For the
cases with N = 5, the amount of clusters chosen is 4.96. However, this amount
is 3.54 and 2.23 for the cases N = 10 and N = 30 respectively. Again, a low
amount of clusters is chosen when the true amount of clusters is not available.
In the cases of N = 10, this even results in very bad performance.

For MPA, the cases with T = 15 have larger prediction errors than the
cases with T = 40. The mixed estimator does not seem to have this problem
as T increases, which makes it a more suitable estimator for this completely
heterogeneous DGP.

Just like with the previous DGP, the three error structures used for MPA
seem to have very similar results for higher N . Again, for the cases with N = 5
and N = 10 the completely heteroskedastic variant has lower performance.

6.3.5 Varying over Parameters

The results for the simulation of DGP 5 are displayed in table A.5 in the ap-
pendix. For the cases with N = 5 and N = 10, the best results are obtained
when using the MPA with the SP. This method outperforms the infeasible Ora-
cle estimator in all these cases. For the cases with N = 30, MPA with the LGSI
and the C-Lasso have the best performance.

This DGP differs only slightly from the weakly heterogeneous DGP. However,
there is a clear difference in performance between the two methods to obtain
pooling specifications. Due to the differences in constructing pooling specifica-
tions as explained in figure 1 in section 5.3.3, the SP is able to obtain the best
results. The LGSI needs four clusters to capture all heterogeneity, whereas the
SP is able to capture all heterogeneity with just two clusters and thus has more
efficient estimates. Although the SP clearly outperforms the LGSI in this DGP,
it remains unclear if this DGP is a better abstraction of reality.

The C-Lasso estimator is nearly equal to the performance of the Oracle
estimator as four clusters are chosen in 96% of all cases. For the cases with
N = 30 this leads to the lowest MSPE. The MPA methods give similar results
as the Classo estimator in this case.

When inspecting the difference across the error structures of the MPA, it is
clear that the completely heteroskedastic variant performs best for the SP, even
for the cases with N = 5. For the LGSI, the completely heteroskedastic error
structure only has decreased performance for the cases N = 5, T = 15.
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7 Explain Sovereign Credit Risk
In addition to the Monte Carlo simulation, the LGSI is also used in the empirical
application from WPZ. Here, the determinants of sovereign credit default swap
(CDS) are investigated for a cross country panel. A CDS contract is an insurance
which protects the buyer from a credit event. The spread, given in basis points,
is the insurance premium that buyers have to pay, which reflects the credit risk.
Among others, Longstaff, Pan, Pedersen and Singleton (2011) have associated
change in CDS spread with changes in macroeconomic variables. WPZ used
the pooling averaging method to investigate the CDS determinants of a cross-
country panel. This paper investigates the predictive performance for CDS
spreads, using different methods to account for heterogeneity in a panel model,
including pooling averaging.

A set of variables which is similar to the set used in Longstaff et al. (2011) is
used to predict CDS for a panel of 19 countries.1 The data set contains monthly
data of local and global financial indicators of macroeconomic fundamentals and
the five-year sovereign CDS. The local variables include local stock market re-
turns (lstock), changes in local exchange rates (fxrate) and changes in foreign
currency reserves (fxres). The global variables include the U.S. stock mar-
ket returns (gstock), treasury yields (trsy), investment-grade corporate bond
spreads (ig), equity premium (eqp), volatility risk premium (volp), equity flows
(ef) and bond flows (bf). In this analysis, the sample from July 2009 until
March 2016 is used.2 Preliminary unit root testing shows that the change in
CDS spread is generally stable for all countries.

7.1 Estimation Results
All methods investigated in the Monte Carlo simulation are used to make predic-
tions for the CDS. For evaluation both the in-sample MSPE and out-of-sample
MSPE is used. Because of computational limitations, a static forecast is used.
The in-sample period is July 2009 until July 2014 (61 observations for each
country). The out-of-sample period is chosen to be from August 2014 until
March 2016 (20 observations for each country).

Just as in the Monte Carlo simulation, a maximum amount of five clusters
has been used for the estimation of the candidate pooling specifications using
LGSI. For the tuning parameter λ a value of λ = 26 s2yT

−1/3 is used.
The relative MSPE of a selection of the methods is shown in table 1.3 The

relative MSPE is obtained by dividing the obtained MSPE by the MSPE ob-
tained when using the individual estimator.

For the in-sample predictions, the shrinkage estimator has the best perfor-
mance by a large margin. It seems that this estimator, which can be regarded
as a pooling average estimator using only the individual and pooled estimator,
outperforms the methods that use multiple candidate pooling specifications.

1The countries Brazil, Bulgaria, Chile, China, Columbia, Croatia, Hungary, Japan, Korea,
Malaysia, Mexico, Philippines, Poland, Romania, Russia, Slovak, South Africa, Thailand and
Turkey are included in the panel.

2Starting from the end of the great recession in the United States as reported by the
National Bureau of Economic Research.

3The omitted pooling averaging methods has similar performance and are omitted for the
sake of brevity.
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Table 1: Relative MSPE for change in CDS spread. In-sample period contains 61 periods per
country. Out-of-sample forecast contains 20 periods per country. The lowest MSPE for each test
subsample is boldfaced.

Pooling FGLS SHK Mixed
IS 0.827 0.942 0.799 0.924
OOS 0.936 0.983 0.954 0.976

(SP) Equal BIC SBIC MPABH MPACH
IS 0.893 0.827 0.827 0.841 0.827
OOS 0.970 0.936 0.936 0.950 0.936

(LGSI) Equal BIC SBIC MPABH MPACH CLasso
IS 0.829 0.827 0.827 0.845 0.827 0.827
OOS 0.933 0.936 0.936 0.933 0.936 0.936

For the out-of-sample predictions, LGSI combined with equal weights or
MPABH weights give the best results. The shrinkage estimator decreases in
performance compared to the in-sample prediction, as the individual estimates
might be biased due to instability. In contrast to the Monte Carlo simulation,
the MSPE of the different methods is quite similar. This makes it difficult to
draw any strong conclusions from this application.

The coefficient estimates and their confidence intervals when using MPABH
with the LGSI are displayed in table A.6 in the appendix. In order to construct
the 95% confidence intervals for the coefficient estimates, a bootstrap using
cross-sectional resampling as proposed by Kapetanios (2008) is used with 100
replications.

Compared to WPZ, a more recent subsample is used. Local stock market
returns, changes in local exchange rates and global stock market returns re-
main significant determinants for changes in CDS spread in this new subsample,
whereas volatility risk premium is no longer significant. Instead, investment-
grade corporate bond spreads, equity premiums and equity flows have a signif-
icant positive effect for the majority of the countries. Investigating why this
change occurred lies beyond the scope of this paper.

8 Conclusion
Wang et al. (2017) proposed a new, computationally efficient and optimal pool-
ing averaging method for potential heterogeneous static panel regressions. By
using the Mallows criterion, the MSE could be minimized by explicitly making
the bias-variance tradeoff for different pooling specifications.

This paper is an extension to the paper by Wang et al. (2017) in order to
investigate how the performance of the proposed pooling averaging methods
changes when a different method is used to obtain pooling specifications to av-
erage over. Where Wang et al. (2017) uses its own novel screening procedure to
overcome computational difficulties, this paper uses the C-Lasso technique with
Partial Profile Likelihood estimation proposed by Su et al. (2016). By limiting
the amount of possible clusters in the panel, this method is still computationally
feasible. Thus, a comparison of the two methods to obtain pooling specifica-
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tions can be made. This paper compares these two methods in a Monte Carlo
simulation and an empirical application.

The simulation included static linear panel models with between-individual
heteroskedastic errors with different degrees of heterogeneity in the parame-
ters. Just like Wang et al. (2017) concluded, MPA produces results with the
lowest MSPE in non-extreme cases. When comparing the two methods to ob-
tain pooling specifications, the latent group structure estimation using C-Lasso
outperforms the screening procedure proposed by Wang et al. (2017) when the
amount of individuals in the panel is large. In more detail, one should opt for
a variance structure with between-individual heterogeneity when the amount
of individuals is small, but for a completely heteroskedastic variance structure
when the amount of individuals is larger.

In the case of homogeneity or a low degree of heterogeneity, the C-Lasso
method combined with using the Information Criterion proposed by Su et al.
(2016) has the best performance. The true grouping structure is more likely
to be selected when the amount of individuals and amount of observations per
individual increase. This leads to achieving the lowest MSPE possible when
only a low degree of heterogeneity is present.

However, this is not true for the cases with strong or complete heterogene-
ity. In these cases the Mallows pooling averaging combined with C-Lasso la-
tent structure estimation or the mixed estimator proposed by Lee and Griffiths
(1979) should be used. In these cases where no clear grouping structure can be
identified, these methods often even outperform the infeasible oracle estimator
which uses the unobservable group structure.

In summary, the Mallows Pooling Averaging with C-Lasso latent structure
estimation has optimal performance in nearly all cases. Only when the degree
of heterogeneity is very low, one should opt for the C-Lasso paired with the
information criterion as proposed by Su et al. (2016).

These results are based on the analyses done in this paper. For a vari-
ety of DGPs, the difference in performance is studied. A valuable extension
would be to study the performance of the screening procedure of Wang et al.
(2017) when the amount of clusters is limited. This might be able to increase
the performance of this method when there are more individuals in the panel.
Alternatively, many additional topics for further research exist, such as the in-
vestigating the performance of pooling averaging methods for panel data models
when the regressors are not exogenous. In empirical research, the performance
of pooling averaging could be studied more elaborately by applying the pooling
averaging methods on different data sets.

The practical procedure for choosing a suitable estimator for a possibly het-
erogeneous static panel model given in Wang et al. (2017, Section 9) remains
valid. For the latent group structure identification using the C-Lasso, the ef-
fect of different data properties is not investigated, but the performance of the
estimators other than the pooling average estimators still hold. This paper in-
vestigated if the performance of the pooling averaging estimator as proposed by
Wang et al. (2017) could be increased. And indeed, it could be improved by
adding a new way to identify group structures that are used for the pooling av-
eraging methods. In addition good finite sample performance, the latent group
structure identification method using C-Lasso paired with pooling averaging also
has good performance when the amount of individuals and the observations per
individual increase.
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Table A.1: Results of the Monte Carlo simulation with DGP 1. Performed for all variation of N , T and q. numbers in cells corresponds to the relative MSPE performance
compared to individual estimators. The three best performing methods are shaded in gray, excluding the infeasible Oracle estimator. Results are based on 100 replications

LGSI common
N T MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC Classo FGLS Pool
5 15 0.38 0.38 0.19 0.55 0.51 0.23 0.61 0.23 0.19 0.21 0.18
5 40 0.39 0.39 0.21 0.56 0.50 0.21 0.56 0.21 0.20 0.20 0.20
10 15 0.38 0.38 0.15 0.38 0.52 0.19 0.61 0.21 0.12 0.11 0.10
10 40 0.37 0.37 0.13 0.38 0.51 0.12 0.58 0.12 0.10 0.10 0.10
30 15 0.31 0.31 0.16 0.20 0.40 0.25 0.45 0.29 0.03 0.04 0.03
30 40 0.35 0.35 0.18 0.22 0.43 0.24 0.49 0.28 0.03 0.03 0.03

SP individual infeasible
N T MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC mix Shrinkage Oracle
5 15 0.50 0.51 0.23 0.64 0.72 0.36 0.80 0.42 0.68 0.77 0.18
5 40 0.52 0.52 0.25 0.66 0.69 0.29 0.79 0.30 0.65 0.91 0.20
10 15 0.56 0.57 0.27 0.74 0.79 0.51 0.83 0.58 0.49 0.67 0.10
10 40 0.58 0.58 0.27 0.76 0.80 0.39 0.84 0.49 0.46 0.88 0.10
30 15 0.68 0.69 0.43 0.86 0.86 0.72 0.87 0.73 0.37 0.60 0.03
30 40 0.72 0.73 0.47 0.87 0.88 0.70 0.90 0.72 0.34 0.86 0.03
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Table A.2: Results of the Monte Carlo simulation with DGP 2. Performed for all variation of N , T and q. numbers in cells corresponds to the relative MSPE performance
compared to individual estimators. The three best performing methods are shaded in gray, excluding the infeasible Oracle estimator. Results are based on 100 replications

LGSI common
N T q MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC Classo FGLS Pool
5 15 B 0.78 0.67 0.98 0.73 0.85 0.94 0.93 1.03 1.18 3.70 3.52
5 15 S 0.79 0.70 1.01 0.83 0.86 0.91 0.89 1.03 1.16 5.12 4.82
5 40 B 0.80 0.69 0.85 1.24 0.86 0.77 0.92 0.83 0.98 8.96 8.79
5 40 S 0.74 0.64 0.71 1.47 0.82 0.61 0.85 0.63 0.63 12.17 11.93
10 15 B 0.44 0.38 0.39 0.45 0.49 0.57 0.52 0.64 0.74 2.72 2.65
10 15 S 0.53 0.45 0.42 0.55 0.63 0.56 0.68 0.61 0.71 3.76 3.64
10 40 B 0.43 0.37 0.32 0.83 0.49 0.37 0.53 0.37 0.55 7.19 7.09
10 40 S 0.51 0.39 0.24 1.07 0.64 0.30 0.70 0.32 0.22 9.71 9.62
30 15 B 0.19 0.17 0.17 0.32 0.22 0.24 0.23 0.24 0.32 2.75 2.72
30 15 S 0.36 0.33 0.24 0.42 0.45 0.40 0.46 0.43 0.29 3.66 3.62
30 40 B 0.16 0.14 0.09 0.66 0.19 0.13 0.20 0.13 0.09 7.53 7.51
30 40 S 0.40 0.35 0.16 0.87 0.51 0.34 0.52 0.37 0.08 9.40 9.37

SP individual infeasible
N T q MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC mix Shrinkage Oracle
5 15 B 0.82 0.80 0.98 0.75 0.86 0.95 0.92 1.01 0.82 0.96 0.57
5 15 S 0.75 0.75 0.83 0.76 0.81 0.79 0.88 0.81 0.85 0.96 0.55
5 40 B 0.74 0.73 0.80 1.01 0.77 0.74 0.80 0.76 0.88 1.00 0.56
5 40 S 0.62 0.62 0.57 1.03 0.68 0.57 0.71 0.61 0.88 1.00 0.56
10 15 B 0.63 0.62 0.54 0.62 0.74 0.66 0.79 0.71 0.63 0.92 0.22
10 15 S 0.63 0.64 0.53 0.66 0.74 0.60 0.79 0.62 0.69 0.93 0.24
10 40 B 0.57 0.59 0.42 0.66 0.70 0.46 0.77 0.46 0.68 0.99 0.21
10 40 S 0.52 0.55 0.34 0.68 0.69 0.33 0.75 0.35 0.72 0.99 0.21
30 15 B 0.60 0.62 0.46 0.72 0.78 0.53 0.80 0.55 0.51 0.90 0.07
30 15 S 0.61 0.64 0.43 0.74 0.80 0.54 0.83 0.56 0.55 0.92 0.08
30 40 B 0.60 0.62 0.37 0.74 0.78 0.41 0.81 0.43 0.58 0.98 0.07
30 40 S 0.60 0.63 0.35 0.76 0.81 0.42 0.83 0.46 0.62 0.99 0.08

25



Table A.3: Results of the Monte carlo simulation with DGP 3. Performed for all variation of N , T and q. numbers in cells corresponds to the relative MSPE performance
compared to individual estimators. The three best performing methods are shaded in gray, excluding the infeasible Oracle estimator. Results are based on 100 replications

LGSI common
N T q MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC Classo FGLS Pool
5 15 B 0.92 0.80 1.19 0.78 0.98 1.17 1.11 1.32 1.53 2.93 2.81
5 15 S 0.90 0.85 1.17 0.84 0.98 1.07 1.05 1.15 1.32 3.66 3.50
5 40 B 0.90 0.76 0.94 1.04 0.97 1.04 1.09 1.09 1.40 7.26 7.14
5 40 S 0.97 0.88 1.23 1.40 1.01 1.04 1.09 1.11 1.41 9.49 9.33
10 15 B 0.50 0.43 0.46 0.45 0.58 0.58 0.63 0.62 0.64 2.49 2.44
10 15 S 0.67 0.61 0.64 0.62 0.80 0.81 0.85 0.90 0.86 3.61 3.51
10 40 B 0.58 0.48 0.53 0.81 0.63 0.70 0.69 0.71 1.14 6.87 6.78
10 40 S 0.78 0.72 0.78 1.15 0.87 0.87 0.94 0.90 1.40 8.77 8.70
30 15 B 0.35 0.32 0.32 0.40 0.43 0.44 0.44 0.45 0.51 2.46 2.41
30 15 S 0.56 0.53 0.48 0.56 0.66 0.64 0.68 0.68 0.76 3.32 3.28
30 40 B 0.28 0.26 0.25 0.66 0.33 0.43 0.36 0.44 0.47 6.48 6.45
30 40 S 0.56 0.55 0.54 1.07 0.64 0.63 0.66 0.65 0.79 9.01 8.98

SP individual infeasible
N T q MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC mix Shrinkage Oracle
5 15 B 0.92 0.87 1.13 0.83 0.94 1.20 1.01 1.31 0.85 0.96 1.00
5 15 S 1.01 0.98 1.17 0.89 1.05 1.21 1.12 1.25 0.86 0.96 1.00
5 40 B 0.90 0.85 0.99 1.13 0.91 1.11 0.98 1.20 0.87 0.99 1.00
5 40 S 1.05 1.01 1.24 1.22 1.05 1.36 1.13 1.41 0.91 1.00 1.00
10 15 B 0.67 0.67 0.63 0.63 0.78 0.79 0.82 0.84 0.60 0.91 0.65
10 15 S 0.78 0.76 0.77 0.71 0.86 0.90 0.91 0.95 0.65 0.93 0.62
10 40 B 0.64 0.64 0.54 0.67 0.73 0.62 0.80 0.64 0.68 0.99 0.64
10 40 S 0.80 0.80 0.78 0.77 0.92 0.95 0.98 0.98 0.72 0.99 0.64
30 15 B 0.64 0.66 0.53 0.72 0.78 0.63 0.81 0.65 0.51 0.89 0.22
30 15 S 0.75 0.76 0.67 0.80 0.88 0.81 0.89 0.83 0.56 0.91 0.23
30 40 B 0.63 0.66 0.48 0.72 0.80 0.55 0.82 0.57 0.55 0.98 0.19
30 40 S 0.75 0.76 0.62 0.77 0.89 0.82 0.91 0.86 0.62 0.99 0.23
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Table A.4: Results of the Monte Carlo simulation with DGP 4. Performed for all variation of N , T and q. numbers in cells corresponds to the relative MSPE performance
compared to individual estimators. The three best performing methods are shaded in gray, excluding the infeasible Oracle estimator. Results are based on 100 replications

LGSI common
N T MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC Classo FGLS Pool
5 15 0.94 0.95 1.38 2.61 1.01 1.14 1.02 1.20 1.08 27.63 26.06
5 40 0.99 1.00 1.58 7.33 1.00 1.00 1.00 1.00 1.00 83.30 81.73
10 15 0.80 0.76 0.90 1.29 1.13 1.16 1.19 1.34 1.60 9.99 9.73
10 40 1.18 1.17 1.31 3.08 1.92 1.94 1.97 2.15 2.79 26.70 26.40
30 15 0.31 0.27 0.26 0.33 0.36 0.42 0.37 0.44 0.46 1.31 1.27
30 40 0.49 0.47 0.46 0.72 0.64 0.64 0.64 0.65 0.87 3.29 3.26

SP individual infeasible
N T MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC mix Shrinkage Oracle
5 15 1.09 1.19 1.83 4.12 1.05 1.24 1.07 1.28 0.77 0.99 1.00
5 40 1.04 1.09 1.72 12.58 1.00 1.03 1.00 1.02 0.76 1.00 1.00
10 15 0.98 0.96 1.16 1.26 1.03 1.20 1.07 1.25 0.63 0.97 1.00
10 40 1.14 1.19 1.56 2.99 1.11 1.54 1.16 1.58 0.62 1.00 1.00
30 15 0.57 0.58 0.47 0.56 0.77 0.77 0.80 0.82 0.43 0.82 1.00
30 40 0.69 0.69 0.62 0.61 0.83 0.81 0.85 0.84 0.47 0.97 1.00
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Table A.5: Results of the Monte Carlo simulation with DGP 5. Performed for all variation of N , T and q. numbers in cells corresponds to the relative MSPE performance
compared to individual estimators. The three best performing methods are shaded in gray, excluding the infeasible Oracle estimator. Results are based on 100 replications

LGSI common
N T q MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC Classo FGLS Pool
5 15 B 0.86 0.86 1.03 1.76 0.87 0.85 0.88 0.85 0.85 4.98 4.73
5 15 S 0.84 0.84 1.20 1.33 0.86 0.83 0.88 0.83 0.82 5.16 4.88
5 40 B 0.83 0.83 0.81 3.41 0.85 0.80 0.87 0.80 0.80 11.64 11.42
5 40 S 0.84 0.84 0.88 1.99 0.85 0.80 0.87 0.80 0.80 13.59 13.31
10 15 B 0.44 0.44 0.43 0.97 0.46 0.41 0.48 0.41 0.41 3.60 3.47
10 15 S 0.47 0.47 0.48 0.69 0.48 0.42 0.50 0.42 0.42 3.80 3.71
10 40 B 0.43 0.43 0.40 1.03 0.45 0.39 0.48 0.39 0.40 8.64 8.54
10 40 S 0.46 0.46 0.41 0.94 0.48 0.40 0.52 0.40 0.40 10.50 10.43
30 15 B 0.17 0.17 0.14 0.73 0.19 0.13 0.21 0.13 0.13 3.66 3.61
30 15 S 0.20 0.20 0.16 0.76 0.22 0.14 0.24 0.15 0.13 4.22 4.18
30 40 B 0.18 0.18 0.15 0.83 0.20 0.15 0.22 0.14 0.15 9.91 9.88
30 40 S 0.19 0.19 0.14 0.65 0.21 0.13 0.23 0.13 0.13 11.27 11.23

SP individual infeasible
N T q MPAHomo MPABH MPACH equal weight SAIC SBIC AIC BIC mix Shrinkage Oracle
5 15 B 0.56 0.57 0.43 2.81 0.67 0.46 0.75 0.48 1.01 1.00 0.82
5 15 S 0.58 0.59 0.44 1.22 0.70 0.49 0.78 0.51 1.01 0.99 0.79
5 40 B 0.59 0.59 0.39 6.84 0.71 0.40 0.78 0.42 1.00 1.00 0.80
5 40 S 0.59 0.59 0.40 2.48 0.71 0.39 0.80 0.39 1.00 1.00 0.80
10 15 B 0.51 0.52 0.26 1.23 0.72 0.37 0.78 0.44 1.00 1.00 0.39
10 15 S 0.52 0.54 0.28 0.80 0.73 0.37 0.79 0.40 0.98 0.99 0.40
10 40 B 0.53 0.54 0.28 2.42 0.71 0.28 0.77 0.31 1.00 1.00 0.40
10 40 S 0.56 0.56 0.29 1.16 0.75 0.33 0.80 0.37 0.99 1.00 0.40
30 15 B 0.55 0.56 0.27 0.81 0.78 0.43 0.80 0.47 0.98 0.99 0.12
30 15 S 0.59 0.61 0.31 0.78 0.82 0.53 0.84 0.56 0.94 0.98 0.13
30 40 B 0.62 0.62 0.33 0.96 0.82 0.45 0.85 0.51 0.99 1.00 0.14
30 40 S 0.64 0.64 0.35 0.84 0.83 0.51 0.86 0.55 0.97 1.00 0.13
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Table A.6: Coefficient estimates of determinants of change in CDS spread by using MPA with between-individual heteroskedastic error structure using the LGSI.
Constructued 95% confidence interval by bootstrapping in parentheses. Boldfaced numbers are significantly different from zero using the constructed 95% confidence
interval.

variable Brazil Bulgaria Chile China Columbia Croatia
lstock −0.329 −0.127 −0.296 −0.336 −0.336 −0.127

(−0.368,−0.085) (−0.374,−0.055) (−0.377,−0.064) (−0.38,−0.109) (−0.369,−0.109) (−0.444,−0.043)
fxrates 0.184 0.284 0.165 0.155 0.155 0.284

(0.148, 0.317) (0.115, 0.335) (0.115, 0.343) (0.099, 0.306) (0.052, 0.306) (−0.011, 0.315)
fxres −0.039 −0.02 0.049 −0.019 −0.019 −0.02

(−0.067, 0.015) (−0.071, 0.04) (−0.08, 0.044) (−0.085, 0.046) (−0.085, 0.094) (−0.085, 0.155)
gstock −0.287 −0.335 −0.361 −0.267 −0.267 −0.335

(−0.378,−0.208) (−0.378,−0.162) (−0.426,−0.164) (−0.423,−0.162) (−0.488,−0.162) (−0.622,−0.018)
trsy 0.027 −0.072 −0.003 −0.045 −0.045 −0.072

(−0.08, 0.073) (−0.105, 0.073) (−0.105, 0.057) (−0.099, 0.034) (−0.099, 0.076) (−0.104, 0.152)
ig 0.075 0.063 0.048 0.093 0.093 0.063

(0.039, 0.098) (−0.02, 0.107) (−0.023, 0.106) (−0.023, 0.11) (−0.01, 0.11) (0.035, 0.11)
eqp 0.058 0.087 0.151 0.179 0.179 0.087

(0.046, 0.218) (0.046, 0.214) (0.052, 0.214) (0.067, 0.214) (0.066, 0.206) (0.066, 0.214)
volp 0.02 0.183 −0.01 −0.003 −0.003 0.183

(−0.042, 0.161) (−0.053, 0.271) (−0.053, 0.269) (−0.052, 0.121) (−0.043, 0.121) (−0.049, 0.136)
ef 0.093 0.111 0.155 0.076 0.076 0.111

(0.075, 0.123) (0.067, 0.137) (0.07, 0.124) (0.065, 0.125) (0.07, 0.13) (0.028, 0.161)
bf −0.03 −0.137 0.006 −0.096 −0.096 −0.137

(−0.148,−0.013) (−0.174, 0.009) (−0.174, 0.013) (−0.144, 0.017) (−0.144, 0.019) (−0.138, 0.058)
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Table A.6: Coefficient estimates of determinants of change in CDS spread by using MPA with between-individual heteroskedastic error structure using the LGSI.
Constructued 95% confidence interval by bootstrapping in parentheses. Boldfaced numbers are significantly different from zero using the constructed 95% confidence
interval. (Continued)

variable Hungary Japan Korea Malaysia Mexico Philippines
lstock −0.336 −0.336 −0.336 −0.329 −0.231 −0.296

(−0.41,−0.043) (−0.403,−0.043) (−0.41,−0.08) (−0.378,−0.139) (−0.378,−0.176) (−0.363,−0.109)
fxrates 0.155 0.155 0.155 0.184 0.234 0.165

(−0.011, 0.306) (−0.011, 0.381) (−0.011, 0.368) (0.159, 0.381) (0.163, 0.287) (0.123, 0.306)
fxres −0.019 −0.019 −0.019 −0.039 −0.081 0.049

(−0.091, 0.192) (−0.091, 0.155) (−0.075, 0.158) (−0.085, 0.049) (−0.085, 0.051) (−0.085, 0.059)
gstock −0.267 −0.267 −0.267 −0.287 −0.331 −0.361

(−0.664,−0.164) (−0.622,−0.164) (−0.605,−0.164) (−0.394,−0.18) (−0.402,−0.159) (−0.397,−0.093)
trsy −0.045 −0.045 −0.045 0.027 0.022 −0.003

(−0.099, 0.18) (−0.11, 0.152) (−0.11, 0.152) (−0.103, 0.044) (−0.093, 0.044) (−0.137, 0.041)
ig 0.093 0.093 0.093 0.075 0.092 0.048

(0.016, 0.117) (0.035, 0.117) (0.03, 0.117) (0.065, 0.108) (0.059, 0.11) (0.054, 0.115)
eqp 0.179 0.179 0.179 0.058 0.12 0.151

(0.066, 0.21) (0.066, 0.205) (0.083, 0.21) (0.074, 0.191) (0.043, 0.199) (0.058, 0.253)
volp −0.003 −0.003 −0.003 0.02 0.012 −0.01

(−0.06, 0.121) (−0.06, 0.121) (−0.06, 0.076) (−0.039, 0.121) (−0.023, 0.121) (−0.038, 0.121)
ef 0.076 0.076 0.076 0.093 0.122 0.155

(0.065, 0.168) (0.072, 0.161) (0.065, 0.191) (0.067, 0.172) (0.067, 0.187) (0.061, 0.181)
bf −0.096 −0.096 −0.096 −0.03 −0.047 0.006

(−0.138, 0.094) (−0.134, 0.063) (−0.114, 0.089) (−0.144, 0.042) (−0.144, 0.042) (−0.162, 0.04)
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Table A.6: Coefficient estimates of determinants of change in CDS spread by using MPA with between-individual heteroskedastic error structure using the LGSI.
Constructued 95% confidence interval by bootstrapping in parentheses. Boldfaced numbers are significantly different from zero using the constructed 95% confidence
interval. (Continued)

variable Poland Romania Russia Slovak S. Africa Thailand Turkey
lstock −0.336 −0.127 −0.329 −0.336 −0.329 −0.296 −0.231

(−0.41,−0.172) (−0.392,−0.109) (−0.397,−0.109) (−0.397,−0.236) (−0.395,−0.264) (−0.384,−0.217) (−0.364,−0.15)
fxrates 0.155 0.284 0.184 0.155 0.184 0.165 0.234

(0.084, 0.294) (0.133, 0.306) (0.133, 0.325) (0.134, 0.282) (0.124, 0.271) (0.129, 0.286) (0.138, 0.304)
fxres −0.019 −0.02 −0.039 −0.019 −0.039 0.049 −0.081

(−0.085, 0.044) (−0.081, 0.032) (−0.081, 0.044) (−0.055, 0.044) (−0.051, 0.053) (−0.052, 0.054) (−0.076, 0.038)
gstock −0.267 −0.335 −0.287 −0.267 −0.287 −0.361 −0.331

(−0.403,−0.093) (−0.387,−0.162) (−0.367,−0.093) (−0.365,−0.157) (−0.376,−0.182) (−0.414,−0.173) (−0.364,−0.185)
trsy −0.045 −0.072 0.027 −0.045 0.027 −0.003 0.022

(−0.137, 0.051) (−0.099, 0.029) (−0.137, 0.047) (−0.098, 0.047) (−0.092, 0.037) (−0.082, 0.037) (−0.082, 0.04)
ig 0.093 0.063 0.075 0.093 0.075 0.048 0.092

(0.062, 0.115) (0.069, 0.11) (0.06, 0.115) (0.059, 0.109) (0.059, 0.102) (0.056, 0.106) (0.067, 0.106)
eqp 0.179 0.087 0.058 0.179 0.058 0.151 0.12

(0.057, 0.253) (0.077, 0.214) (0.023, 0.253) (0.01, 0.211) (0.012, 0.211) (0.034, 0.208) (0.08, 0.208)
volp −0.003 0.183 0.02 −0.003 0.02 −0.01 0.012

(−0.038, 0.169) (−0.03, 0.181) (−0.037, 0.214) (−0.026, 0.21) (−0.017, 0.173) (−0.013, 0.071) (−0.02, 0.082)
ef 0.076 0.111 0.093 0.076 0.093 0.155 0.122

(0.061, 0.184) (0.065, 0.146) (0.061, 0.12) (0.064, 0.112) (0.066, 0.192) (0.07, 0.193) (0.07, 0.189)
bf −0.096 −0.137 −0.03 −0.096 −0.03 0.006 −0.047

(−0.162, 0.002) (−0.144,−0.014) (−0.162,−0.019) (−0.124,−0.019) (−0.134, 0.012) (−0.124, 0.029) (−0.129, 0.004)
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