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Abstract
The MIxed DAta Sampling (MIDAS) model has proven to be a valuable tool in the

modeling of data sampled at different frequencies. With this new possibility arises the

option to aggregate explanatory data into intermediate frequencies before regressing upon

them. As such the room for noise can be decreased. This paper studies the added value of

data piling in the use of MIDAS models. It finds that oftentimes there is an intermediate

frequency of data aggregation that produces better forecasts than either the raw data

or the fully aggregated data. Furthermore it appears that R2 and Akaike Information

Criteria are in some cases accurate predictors of model optimality. However, the number

of cases in which they are wrong remains too large. Still data piling should be regarded

as a valuable addition to today’s econometric Time Series toolbox.
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Chapter 1

Introduction

In recent years, much has been written about the MIxed DAta Sampling (MIDAS) models

that have been introduced by Ghysels et al. in 2004 (Ghysels et al., 2004). Following

the demonstrated use in financial applications in the context of volatility forecasting by

Ghysels et al. (2006) were many others, including Clements and Galvão (2008), who

show that the MIDAS model also has value in a macroeconomic context and add an

autoregressive component. MIDAS models were also recently used by Andreou et al.

(2010) and Monteforte and Moretti (2010) to forecast quarterly GDP using daily observed

financial variables. Franses (2016) analyses different specifications of the MIDAS model

and evaluates their performance in both simulated and empirical context. The ability to

model data sampled at a low frequency using data sampled at a higher frequency opens

doors to many new possibilities.

But besides the various areas of application and broad range of specifications there are

also some entirely new possibilities for the use of MIDAS models. This research will focus

on the researching optimal levels of data piling, which is possible due to the existence

and functionality of MIDAS models. For instance, if one analyses daily financial data in

order to forecast quarterly or yearly GDP, the case might be made that not every day has

its ‘own’ unique effect, and trying to forecast using all days might leave too much room

for unnecessary noise. It might make more sense to aggregate the daily observations into

weekly, monthly or even quarterly observations. This research will attempt to construct a

technique to find the optimal data aggregation level in order to achieve the best forecasts.
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Chapter 2

Experiment Description

This section describes the models and techniques used in order to investigate the efficiency

of different kinds of MIDAS models. It first discusses Unrestricted MIDAS (U-MIDAS)

models and then addresses the Almon lag and its use in MIDAS models.

2.1 Defining Optimal Forecasting Performance

Since a study is conducted on the optimal level of explanatory variable aggregation,

we need to define optimality. The optimal model will be defined as the model that

produces the best forecasts in terms of Root Mean Squared Prediction Error (RMSPE)

performance. The study of RMSPE performance is interesting as it includes punishments

for both bias and inefficiency. The goal of this analysis is to find a way to estimate the data

aggregation level that produces the best forecasts based on the parameter estimates of a

hold-out sample. That is, based on test values originating from the estimation sample we

need to be able to identify what level of data aggregation will deliver the best forecasting

performance.

Given that the MIDAS structures properly estimate the parameters, there arises a new

set of possibilities in constructing forecasts for the low-frequency dependent variable. For

example, say we take annual unemployment rates as our dependent variable, and weekly

observations of the number of employees of a staffing agency as our independent variables.

It is now possible to apply a MIDAS structure to these data and, as such, construct a

one-step-ahead forecast based on our weekly data. However, it would also be possible

to aggregate the weekly observations into monthly ones and, consequently, use those
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Chapter 2. Experiment Description 3

monthly observations to construct a (monthly-to-yearly) MIDAS model. Similarly, we

could construct quarterly or biannual observations and corresponding MIDAS structures.

2.2 Unrestricted MIDAS Models

The Unrestricted MIxed DAta Sampling (U-MIDAS) model was proposed by Koenig et

al. (2003) and was also considered by Clements and Galvao (2008) to forecast quarterly

GDP. It differs from the MIDAS model proposed by Ghysels (2004) because it does not

use Almon-distributed lag functions, and thus does not restrict its parameters. The

explanation on Almon-distributed lags will follow later.

The U-MIDAS model simply models the low-frequency variables by including (at least)

all the high-frequency explanatory variables corresponding to the low-frequency same

period. Throughout this paper we will assume, for simplicity, that there is only one

explanatory variable that is included with multiple lags. Franses (2016) denotes the

difference between two frequencies as S (i.e. months to quarters indicates S = 3, weeks

to years indicates S = 52). That allows for the definition in (2.1), in which YT is a

low-frequency independent variable and Xs,T is the sth explanatory observation from the

low-frequency period T , s ∈ S. In this definition k is the number of lags of the explanatory

variable, and κ is some period dependent on the value of k.

YT = β0XS,T + β1XS−1,T + · · ·+ βk−1XS−k,κ (2.1)

The U-MIDAS model will be used in replication of work done by Franses (2016) in order

to assess the workings and accuracy of the U-MIDAS model. This is a necessary step in

order to be justify the use of different kinds of U-MIDAS models.

2.2.1 Yearly to Biannual

In order to properly test the functioning of the U-MIDAS models a simulation experiment

will be performed. This simulation uses the DGP specified in (2.2), with εt ∼ N(0, 1).

This DGP is then treated as if we only observe the sum of two consequent observations

half the time, making it a lower frequency variable. As such, a discrepancy between

explanatory and dependent variables arises in terms of rate of occurrence. The creation
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of the low-frequency variable is done using the HILO transformation proposed by Franses

(2016): the aggregate low-frequency variables (YT ) are defined as the sum (average) of the

corresponding high frequency flow (stock) variables (yt, also denoted Yi,T with i ∈ S)1.

The first step of Franses’ HILO transformation for biannual observations is given in (2.3).

After consequently multiplying both sides of (2.3) with the inverse of the utmost left

matrix and the vector [ 1 1 ] we arrive at the low frequency definition, given by (2.4).

This model, however, still includes an unobserved variable (Y2,T ). But, as (2.5) holds, the

model specified in (2.6) can be used to perform the U-MIDAS regression on the generated

YT values2. (2.5) is the U-MIDAS model proposed by Franses (2016). The true value of

the parameters in (2.6) can be found in Table 2.1.

yt = αyt−1 + β0xt + β1xt−1 + εt (2.2)(
1 0

−α 1

)(
Y1,T

Y2,T

)
=

(
0 α

0 0

)(
Y1,T−1

Y2,T−1

)
+

(
β0 0

β1 β0

)(
X1,T

X2,T

)
+(

0 β1

0 0

)(
X1,T−1

X2,T−1

)
+

(
ε1,T

ε2,T

) (2.3)

YT = Y2,T + Y1,T = (α + α2)Y2,T−1+

β0X2,T + (β0 + αβ0 + β1)X1,T + (β1 + αβ1)X2,T−1 + (α + 1)ε1,T + ε2,T
(2.4)

αY2,T−1 = α(αY1,T−1 + β0X2,T−1 + β1X1,T−1 + ε2,T−1) (2.5)

YT = µ+ ρYT−1 + δ0X2,T + δ1X1,T + δ2X2,T−1 + δ3X1,T−1 + ut (2.6)

Table 2.1: The true values of the parameters in the U-MIDAS regression for
biannual to annual data (2.6)

Parameter True value

ρ α2

δ0 β0
δ1 (1 + α)β0 + β1
δ2 αβ0 + (1 + α)β1
δ3 αβ1

1Note that flow variables are variables that concern a ‘flow’, and as such are to be summed in order
to aggregate, where a stock variable gives a snapshot of a situation and as such should be averaged in
order to aggregate different observations.

2The lagged MA term is omitted as Franses (2016) shows it has little added value in the model.
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2.2.2 Yearly to Quarterly

In order to further asses the quality of the U-MIDAS model proposed by Franses, a

simulation has been performed using the DGP specified in (2.7). This DGP can be

used to construct low frequency observations with S = 4, which resembles a yearly to

quarterly U-MIDAS model. After performing a HILO transformation we can define a

U-MIDAS regression in a similar way as in Section 2.2.1. The U-MIDAS regression for

this simulation is thus defined as in (2.8). The true values of the parameters in (2.8) can

be found in Table 2.2.

The assessment that the U-MIDAS definition produces accurate estimations for different

levels of data aggregation will validate the search for for the optimal aggregation level.

Therefore it is valuable to study the accuracy of U-MIDAS models with different levels

of aggregation of data.

yt = αyt−1 + β0xt + β1xt−1 + β2xt−2 + β3xt−3 + εt (2.7)

YT =Y4,T + Y3,T + Y2,T + Y1,T = µ+ ρYT−1+

β∗
0x4,T + β∗

1x3,T + β∗
2x2,T + β∗

3x1,T+

β∗
4x4,T−1 + β∗

5x3,T−1 + β∗
6x2,T−1 + β∗

7x1,T−1+

β∗
8x4,T−2 + β∗

9x3,T−2 + εT

(2.8)

Table 2.2: The true values of the parameters in the U-MIDAS regression for
quarterly to annual data, described in (2.8)

Parameter True value

ρ α4

δ0 β0
δ1 β0(1 + α) + β1
δ2 β0(1 + α + α2) + β1(1 + α) + β2
δ3 β0(1 + α + α2 + α3) + β1(1 + α + α2) + β2(1 + α) + β3
δ4 β0(α + α2 + α3) + β1(1 + α + α2 + α3) + β2(1 + α + α2) + β3(1 + α)
δ5 β0(α

2 + α3) + β1(α + α2 + α3) + β2(1 + α + α2 + α3) + β3(1 + α + α2)
δ6 β0α

3 + β1(α
2 + α3) + β2(α + α2 + α3) + β3(1 + α + α2 + α3)

δ7 β1α
3 + β2(α

2 + α3) + β3(α + α2 + α3)
δ8 β2α

3 + β3(α
2 + α3)

δ9 β3α
3
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2.3 MIDAS Models

2.3.1 Almon Distributed Lag Model

In order to be able to use highly different frequencies of observations, we need to account

for the problem of having to estimate a lot of parameters. When using a model to fit

weekly data onto yearly observations, and assuming the ‘original’, high-frequency DGP

contains four significant xt lags, one would theoretically need to estimate 106 parameters.

We will denote this number of parameters to be estimated in a U-MIDAS specification

as m. As we usually do not have datasets spanning over 100 years, this poses a problem.

Ghysels (2004) proposed to use the lag structure proposed by Almon (1965) (Almon

lags) in order to account for this problem. As Ghysels was the inventor of the whole

MIDAS concept, this model will be denoted as the MIDAS model and the unrestricted

model will be referred to as the U-MIDAS model. Currently Almon lags are a widely

accepted technique to decrease the required number of parameters to estimate. Almon

used Weierstrass’s Approximation Theorem, which tells us that:

“Every continuous function defined on a closed interval [a, b] can be

uniformly approximated, arbitrarily closely, by a polynomial function of finite

degree, P .”

As such Ghysels suggests to restrict the parameters of the MIDAS model to force them to

lie on a polynomial of degree P , as in (2.9). This alleviates our number of parameters to

be estimated from k to P . Usually, P is assigned a (rather) small value, such as 2, 3, or 4,

and P < m. However, there does not exist a way to properly determine the best degree

and lag of the polynomial other than trial and error. Schmidt and Waud (1973) warn

their audience about the results of misspecification when using Almon lags and Frost

(1975) shows that using the maximization of corrected R-squared values results in biased

and non-normal estimators for the parameters. Pagano and Hartley (1981) suggest to

use a two-step approach for choosing the correct number of lags and degrees when using

the Almon lags, in which first the optimal number of lags is determined using the Akaike

Information Criterion (AIC), and then consequently using AIC to determine the optimal

degree of the polynomial.

βi =
α0 + α1i+ α2i

2 + · · ·+ αP i
P∑I

j=1 α0 + α1j + α2j2 + · · ·+ αP jP
(2.9)
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2.3.2 Simulation and Data Application

To test whether the optimal level of data aggregation can be determined in advance of

making forecasts, both simulation and real-life data will be used to construct forecasts

on different levels of data aggregation. Both experiments will consist of weekly data that

is aggregated to forecast yearly observations, either with a weekly, monthly, quarterly,

biannually or yearly frequency. These models are described in a comparable fashion

to those described in subsections 2.2.1 and 2.2.2. The number of lags included in all

different MIDAS models can be found in Table 2.3. Based on a 90% estimation sample,

the remaining 10% of the sample will be forecasted recursively through one-step-ahead

forecasts. In the simulation a DGP with four xt lags will be used to generate the data. In

order to evaluate their accuracy the models’ R2 values and Akaike Information Criteria

will be compared to find which teller best predicts forecasting accuracy. Then the models’

Root Mean Squared Prediction Error (RMSPE) performances will be compared to see

who performed the best with regards to forecasting.

Table 2.3: The number of x lags that should theoretically be included in various
MIDAS models using different levels of data aggregation. Theoretical number of x
lags included are based on an assumed unobserved DGP (as described by Franses,

2016) containing four lags.

Data aggregation level No. of lags included

Annual 2
Biannual 4
Quarterly 9
Monthly 26
Weekly 106



Chapter 3

Simulations

In this chapter I first describe simulations ran to confirm that the use of U-MIDAS models

is appropriate given the used definition. In this simulation, the U-MIDAS regression

definition as specified by Franses (2016) is used (see Chapter 2). First the simulation

that is performed by Franses is replicated which models annual data using biannual

explanatory variables. Consequently the functionality of the U-MIDAS definition is tested

on annual data that is explained by quarterly data. Finally forecasts are constructed

based on the simulated data and I attempt to find ways to determine the optimal data

aggregation level based on the estimation sample using MIDAS models with Almon lags.

3.1 Explanatory Power of U-MIDAS Models

3.1.1 Experiment Description

First a justification of the use of U-MIDAS models for explaining our data is required.

In order to assess the accuracy of the U-MIDAS model I have performed simulation

runs for different values of the first yt lag coefficient (α) and number of low-frequency

observations (N) and investigate the values of the bias and standard deviation of the

parameter estimators of the regression. If the bias and standard deviation of the regression

have acceptably low values one can conclude that it is appropriate to use a U-MIDAS

regression to explain annual data using biannual explanatory variables. Then, we might

expect that we can also use U-MIDAS models properly to produce forecasts of our low-

frequency data.

8



Chapter 3. Simulations of U-MIDAS Models 9

3.1.2 Biannual Data to Annual Observations

The results of the simulation using simulated biannual data to fit annual observations,

introduced in (2.2) to (2.6), can be found in Table 3.1. It is remarkable that the bias

of estimations does not necessarily appear to improve with an increase in the number of

observations (N). The standard deviation intuitively does decrease with an increase in

N . Overall the model appears to estimate the parameters very well and even with small

values for α and N the model provides reasonable estimates for most parameters.

Table 3.1: Simulation results based on a sample of N ‘yearly’ observations, when a
‘biannual’ DGP is the true process with xt ∼ N(1, 1), εt ∼ N(0, 1), and y0 ∼ N(0, 1)

and yt = αyt−1 + xt + 2xt−1 + εt, 1.000 replications. The U-MIDAS regression is:
YT = µ+ ρYT−1 + δ0X2,T + δ1X1,T + δ2X2,T−1 + δ3X1,T−1 + ut

ρ δ0 δ1 δ2 δ3

α N mean std mean std mean std mean std mean std

True 0.25 1 3.5 3.5 1
0.5 40 0.30 0.14 1.02 1.29 3.47 1.29 3.46 1.30 0.75 1.38

400 0.34 0.04 1.02 0.38 3.48 0.38 3.41 0.38 0.65 0.40

True 0.64 1 3.8 4.4 1.6
0.8 40 0.64 0.11 0.97 1.53 3.86 1.53 4.36 1.53 1.68 1.58

400 0.69 0.03 0.99 0.44 3.80 0.44 4.38 0.45 1.42 0.46

True 0.9025 1 3.95 4.85 1.9
0.95 40 0.88 0.05 0.99 1.66 3.92 1.65 4.83 1.66 1.94 1.65

400 0.91 0.01 1.02 0.48 3.97 0.48 4.83 0.48 1.87 0.48

3.1.3 Quarterly Data to Annual Observations

When looking at the results for the quarterly-to-yearly observations in Table 3.21 it

appears that again different values of N do not improve the parameter bias in any way.

The standard deviation however is still, as is intuitive, decreased with an increase in

the number of data points. It is very apparent that the parameters for x lags that are

directly included in the DGP (x4,T , · · · , x2,T−1) are estimated with smaller biases than

those that only influence YT observations indirectly through the U-MIDAS structure

(x1,T−1, · · · , x3,T−2). Again all observations are acceptably close which defends the use of

1Full version of Table 3.2 is available in Appendix A.1.
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U-MIDAS models at different frequencies and thus the comparison of the different models

could be interesting.

Table 3.2: Selection of simulation results based on a sample of N ‘yearly’ observations,
when a ‘quarterly’ DGP is the true process with xt ∼ N(1, 1), εt ∼ N(0, 1), y0 ∼
N(0, 1), DGP is yt = α+ xt + 1.2xt−1 + 0.8xt−2 + 0.7xt−3 + εt, 1.000 replications.

The U-MIDAS regression is: YT = µ + ρYT−1 + δ0x4,T + δ1x3,T + δ2x2,T + δ3x1,T +
δ4x4,T−1 + δ5x3,T−1 + δ6x2,T−1 + δ7x1,T−1 + δ8x4,T−2 + δ9x3,T−2 + εT

The full version of this Table can be found in Appendix A.1

α = 0.5 α = 0.8 α = 0.95

True N = 40 N = 400 True N = 40 N = 400 True N = 40 N = 400

ρ mean 0.0625 0.12 0.13 0.41 0.42 0.43 0.81 0.81 0.82
std 0.13 0.04 0.06 0.02 0.02 0.01

δ0 mean 1.00 1.00 1.00 1.00 1.07 1.01 1.00 1.03 1.01
std 0.62 0.17 0.94 0.25 1.18 0.31

δ1 mean 2.70 2.74 2.69 3.00 2.96 3.01 3.15 3.17 3.14
std 0.62 4.35 0.94 0.25 1.18 0.31

δ2 mean 4.35 4.34 4.35 5.40 5.41 5.40 5.99 6.01 5.99
std 0.62 0.17 0.94 0.25 1.18 0.31

...
...

...

δ8 mean 0.3625 0.067 -0.037 1.22 1.11 0.99 1.92 2.01 1.87
std 0.950 0.258 1.08 0.30 1.19 0.32

δ9 mean 0.0875 -0.130 -0.225 0.36 0.27 0.12 0.60 0.58 0.55
std 0.832 0.225 1.07 0.29 1.19 0.32

3.2 Forecasting Power of U-MIDAS Models

The results of the forecasts of different models are depicted in Tables 3.3 and 3.4. The

accuracy of the models is expressed in terms of Root Mean Squared Prediction Errors

(RMSPEs), which contain information on both the bias and the standard deviation of

the forecasts. It is immediately obvious that the U-MIDAS model always performs worse

than the true DGP, which makes sense. But, the smaller the value of α (the first yt lag
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coefficient) the better the performance of U-MIDAS. This makes sense as the higher the

value of α, the larger the advantage of the True DGP of including the yt−1 lags. When

the discrepancy between frequencies is small (biannual to yearly), the significance of the

lagged yt is small (α = 0.5) and there is a realistic sample size (N = 40), U-MIDAS’

performance even approaches the true DGP in terms of RMSPE.

Table 3.3: RMSPE values for different values of α and N , using the biannual DGP
specified in (2.2). Hold-out sample consists of d10%e of the observations.

N = 40 N = 400

U-MIDAS True DGP U-MIDAS True DGP

α = 0.5 6.555 6.163 6.503 4.167

α = 0.8 9.098 4.044 10.049 4.430

α = 0.95 15.579 4.431 9.789 4.504

Table 3.4: RMSPE values for different values of α and N , using the quarterly DGP
specified in (2.7). Hold-out sample consists of d10%e of the observations.

N = 40 N = 400

U-MIDAS True DGP U-MIDAS True DGP

α = 0.5 2.899 1.401 3.193 1.594

α = 0.8 5.128 1.333 5.486 1.703

α = 0.95 7.928 1.290 6.404 1.394

3.3 Optimal Level of Data Piling

In order to assess whether there is an added value to looking at different levels of data

aggregation, a simulation has been performed in which the high-frequency yt is sampled

at a weekly frequency. Through a HILO transformation, the low-frequency YT observa-

tions are generated that are then regressed on different levels of aggregated explanatory
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variables, x. A comparison is made in terms of RMSPE performance and as predictors

for RMSPE performance R2 and AIC are considered.

First off, the appropriate Almon degree for this simulation had to be selected. Table

3.5 displays how many times per level of data aggregation a certain degree was optimal

(degrees were considered between 2 and 6). It is apparent that an Almon degree of 2

most often is the best fit for this model. Therefore all other values in this section have

been generated using MIDAS models with Almon lags of degree 2.

Table 3.6 is a cross table comparing the occurrence of optimality in terms of RMSPE to

that of optimality in R2 for different levels of data aggregation. It immediately stands out

that the model using annual observations of the explanatory variables never produces the

optimal forecasts. This is probably due to the large loss in information that is incurred

by aggregating all (independent) explanatory variables. It is also remarkable that the

diagonal entries are all the largest in their respective rows. This shows that R2 optimality

coincides with forecasting optimality more often (on average 37% of the cases) than that

it occurs with any other frequency’s optimality.

Table 3.7 is a cross table comparing the occurence of optimality in terms of RMSPE

to that of optimality in AIC for different levels of data aggregation. The Table shows

similar results to those of Table 3.6 except the diagonal entry for the biannual level of

data aggregation is not the highest in its row. It appears to be the case that the AIC

overvalues the inclusion of (much) information.
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Table 3.5: Cross table showing the occurrence of (forecasting performance) optimality
for different frequencies and different Almon degrees. Results are based on a simulation

experiment with 1,000 replications. The DGP used is as in (2.7) with ε ∼ N(0, 1).
DGP: yt = 0.8yt−1 + xt + 1.2xt−1 + 0.8xt−2 + 0.7xt−3 + εt

Almon degree
2 3 4 5 6

F
re

qu
en

cy

Annual 487 261 163 67 22

Biannual 653 346 1 0 0

Quarterly 431 165 133 124 147

Monthly 407 166 142 135 150

Weekly 396 181 152 135 136

..2,374 1,119 1,591 1,461 1,455

Table 3.6: Cross table showing the occurrence of (forecasting performance) optimality
for different frequencies versus R2 optimality for different frequencies. Results are based
on a simulation experiment with 1,000 replications. The DGP used is as in (2.7) with

ε ∼ N(0, 1).
DGP: yt = 0.8yt−1 + xt + 1.2xt−1 + 0.8xt−2 + 0.7xt−3 + εt

R2 Optimality
Annual Biannual Quarterly Monthly Weekly

F
or

ec
as

ti
n

g
O

pt
im

al
it

y Annual 0 0 0 0 0

Biannual 2 102 66 71 75

Quarterly 7 47 88 46 63

Monthly 4 49 40 70 52

Weekly 3 48 39 35 93

..16 246 233 222 283
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Table 3.7: Cross table showing the occurrence of (forecasting performance) optimality
for different frequencies versus AIC optimality for different frequencies. Results are
based on a simulation experiment with 1,000 replications. The DGP used is as in (2.7)

with ε ∼ N(0, 1).
DGP: yt = 0.8yt−1 + xt + 1.2xt−1 + 0.8xt−2 + 0.7xt−3 + εt

AIC Optimality
Annual Biannual Quarterly Monthly Weekly

F
or

ec
as

ti
n

g
O

pt
im

al
it

y Annual 0 0 0 0 0

Biannual 0 40 91 88 97

Quarterly 0 19 104 54 74

Monthly 0 15 53 81 66

Weekly 0 19 49 40 110

..0 . 93 297 263 347



Chapter 4

Application on Unemployment and

Staffing Data

This section describes the application of the aforementioned techniques on a real-life

dataset. By doig so I am able to assess whether the forecasting using different levels of

aggregated data also produces different results in empirical environments.

4.1 Data Description

The dependent data used is this research concerns the levels of unemployment in the

Netherlands originating from the Centraal Bureau voor Statistiek (CBS, Dutch Central

Bureau for Statistics) and independent data about the temporary workers under contract

with Randstad, the biggest Dutch staffing agency. The data was gathered between 1967

and 2004, since in 2005 the definition for Randstad’s data was altered, which caused

a break in the data. Furthermore, the first year of observations was lost in the data

transformation process, which leaves 37 yearly observations about unemployment and

1.924 weekly observations about Randstad employees. For visualization purposes, the

raw data regarding Randstad and unemployment are displayed in Figure 4.1.

4.1.1 Data Transformations

Obviously, different levels of data piling had to be constructed. For the aggregation from

weeks to months, 41
3

weeks had to be put into each month, which means some weeks

15
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(a) Yearly observations on the unemploy-
ment rate in the Netherlands

(b) Weekly observations on the number of
people under contract with Randstad B.V.

Figure 4.1: Raw data inputs for the application section

(a) Quarterly observations on the number of
people under contract with Randstad B.V.

(b) Yearly observations on the number of
people under contract with Randstad B.V.

Figure 4.2: Different frequencies of the number of people under contract with Rand-
stad constructed through data piling.

were put into one month for 1
3

th
and in the other month for 2

3

th
. Some results of data

piling can be found in Figures 4.2a and 4.2b. Furthermore, in order to account for the

non-stationarity embedded in the Randstad data, the data has been transformed to first

differences rather than absolute values, see Figure 4.3.

4.2 Application Results

Figure 4.4 shows the R2 values, AIC values, and RMSPEs for U-MIDAS models explaining

the annual unemployment data in the Netherlands using quarterly, biannual, and annual

aggregations of the weekly available number of Randstad payroll jobs. The optimal values

for each of the series are darkly outlined in all figures for graphical purposes. There are

no restrictions imposed on the shape of the parameter curve. It is remarkable that the

biannual data aggregation level outperforms both other models in terms of R2, AIC and
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(a) First differences of Dutch unemployment
data

(b) First difference of the number of peo-
ple under contract with Randstad B.V. at a

weekly frequency

(c) First difference of the number of peo-
ple under contract with Randstad B.V. at a

quarterly frequency

(d) First difference of the number of people
under contract with Randstad B.V. at an an-

nual frequency

Figure 4.3: First differences of the graphs in Figures (4.2) and (4.1)

RMSPE. This result is coherent with the hypothesis that there might be a correlation

between the models’ in-sample explanatory power and out-of-sample forecasting power.

Due to the limited number of years of data and the high number of parameters to be

estimated, though, it is not possible to apply weekly or monthly data aggregation levels on

this method. As such the model parameters are restricted by using an Almon Distributed

Lag (Almon) model.

However, Figures 4.5a and 4.5b show that for some of the most common Almon degrees

(P = 2, P = 4) the best R2 and AIC values do not coincide with the best RMSPE values.

Also the AIC values have been scaled. For P = 2 the best RMSPE even coincides with

the worst R2 value. These results appear to contradict our expected outcomes, however,

they can arise due to misspecification of the MIDAS model with Almon lags (Schmidt &

Waud, 1973). Actually, when looking at the AIC selection criterion specified by Pagano

and Hartley (1981), see also Figure 4.6, it becomes clear that the optimal Almon degree

for this dataset is P = 3.
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Figure 4.4: Results for the Dutch unemployment data forecasted using a MIDAS
model with beta polynomial. Given in the figure are the R2 values (LHS) of the esti-
mation sample and the RMSPEs (RHS) of the forecasting sample for annual, biannual,

and quarterly observations.

(a) MIDAS Model with Almon Distributed
Lag with P = 2

(b) MIDAS Model with Almon Distributed
Lag with P = 4

Figure 4.5: Results for the Dutch unemployment data forecasted using a MIDAS
model with Almon Distributed Lag polynomials. Given in the figure are the R2 val-
ues and scaled versions of the AIC (LHS) of the estimation sample and the RMSPEs
(RHS) of the forecasting sample for annual, biannual, quarterly, monthly, and weekly

observations. The estimation sample consists of 33 observations.

In the optimal model according to the AIC selection criterion (with P = 3) the lowest

RMSPE occurs with a biannual level of data aggregation. Furthermore, the R2 is at its

maximum and the AIC at its minimum for the biannual level of data aggregation. In this

case, model selection based on either R2 or AIC would thus have resulted in improved

forecasting power of the model. In comparison, the forecasts made by the biannual model

with P = 3 are 10% and 15% more accurate than weekly and annual models, respectively.
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Figure 4.6: Results for the Dutch unemployment data forecasted using a MIDAS
model with different degrees of Almon lags. Given in the figure are the AIC values of

the estimation sample annual, biannual, and quarterly observations.

Figure 4.7: Results for the Dutch unemployment data forecasted using a MIDAS
model with Almon Distributed Lag polynomial of degree 3. Given in the figure are
the R2 values and scaled versions of the AIC (LHS) of the estimation sample and the
RMSPEs (RHS) of the forecasting sample for annual, biannual, quarterly, monthly, and

weekly observations.



Chapter 5

Conclusion

This research is focused on studying the possible added value of data piling in the use of

MIDAS models. Results of models using intermediate levels of data aggregation (monthly,

quarterly and biannual aggregation in the Application chapter) are compared to the ‘tra-

ditional’ models that are currently used most commonly (annual and weekly aggregation

in the Application chapter). Simulation results show that more often than not the ag-

gregation of data can lead to an improvement in both in-sample explanatory power and

out-of-sample forecasting power. Furthermore, in some cases it appears that R2 and AIC

optimality in the in-sample regression are valid indicators of forecasting optimality in the

hold-out sample. However, there remain a notable amount of cases in which these tellers

do not correctly predict which level of data aggregation is optimal. As such, it would

prove valuable to further research the possible indicators of forecasting optimality with

regards to data aggregation level selection.

What can be concluded is that oftentimes data aggregation does improve explanatory and

forecasting power and, as such, there lies value in the evaluation of differences between

forecasts of different models (i.e. different levels of data aggregation). As is demonstrated

in the Application chapter, the aggregation of data can lead to worthy improvements of

the forecasting power of the MIDAS model, whose results show 15% more accurate fore-

casts than the traditional fully aggregated model (annual-to-annual modeling) and also

10% more accurate forecasts than the well-known MIDAS model that does not aggregate

data (weekly-to-annual modeling). In this particular example the optimality of forecast-

ing accuracy, R2 and AIC happen to coincide.

In conclusion, the data piling process appears to be a valuable addition to the MIDAS

method for modeling time series but the challenge will remain to find a way to properly

20
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predict the optimal data aggregation level. Further research can prove valuable if a proper

technique were to be found to make this prediction.



Appendix A

Tables
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Table A.1: Simulation results based on a sample of N ‘yearly’ observations, when a
‘quarterly’ DGP is the true process with xt ∼ N(1, 1), εt ∼ N(0, 1), y0 ∼ N(0, 1), DGP

is yt = α+ xt + 1.2xt−1 + 0.8xt−2 + 0.7xt−3 + εt (1000 replications)

α = 0.5 α = 0.8 α = 0.95

True N = 40 N = 400 True N = 40 N = 400 True N = 40 N = 400

γ mean 0.0625 0.12 0.13 0.41 0.42 0.43 0.81 0.81 0.82
std 0.13 0.04 0.06 0.02 0.02 0.01

δ0 mean 1.00 1.00 1.00 1.00 1.07 1.01 1.00 1.03 1.01
std 0.62 0.17 0.94 0.25 1.18 0.31

δ1 mean 2.70 2.74 2.69 3.00 2.96 3.01 3.15 3.17 3.14
std 0.62 4.35 0.94 0.25 1.18 0.31

δ2 mean 4.35 4.34 4.35 5.40 5.41 5.40 5.99 6.01 5.99
std 0.62 0.17 0.94 0.25 1.18 0.31

δ3 mean 5.875 5.86 5.87 8.02 8.03 8.02 9.39 9.43 9.38
std 0.63 0.17 0.94 0.25 1.19 0.31

δ4 mean 5.58 5.53 5.50 8.71 8.79 8.69 10.81 10.81 10.80
std 0.63 0.17 0.94 0.25 1.18 0.31

δ5 mean 4.53 3.98 3.97 7.85 7.49 7.50 10.07 10.01 9.96
std 0.72 0.19 0.95 0.26 1.18 0.31

δ6 mean 2.59 2.39 2.28 5.52 5.50 5.38 7.73 7.74 7.70
std 0.83 0.23 0.99 0.27 1.17 0.31

δ7 mean 1.06 0.74 0.64 2.90 2.87 2.70 4.33 4.38 4.30
std 0.979 0.265 1.04 0.29 1.19 0.32

δ8 mean 0.3625 0.067 -0.037 1.22 1.11 0.99 1.92 2.01 1.87
std 0.950 0.258 1.08 0.30 1.19 0.32

δ9 mean 0.0875 -0.130 -0.225 0.36 0.27 0.12 0.60 0.58 0.55
std 0.832 0.225 1.07 0.29 1.19 0.32



Bibliography

Almon, S. (1965). The distributed lag between capital appropriations and expenditures.

Econometrica, 33(1):178–176.

Andreou, E., Ghysels, E., and Kourtellos, A. (2010). Regression models with mixed

sampling frequencies. Journal of Econometrics, 158(2):246–261.

Clements, M. and ao, A. G. (2008). Macroeconomic forecasting with mixed-frequency

data: Forecasting output growth in the united states. Journal of Business & Economic

Statistics, 26(4):546–554.

Foroni, C., Marcellino, M., and Schumacher, C. (2015). Unrestricted mixed data sampling

(MIDAS): MIDAS regressions with unrestricted lag polynomials. Journal of the Royal

Statistical Society: Series A (Statistics in Society), 178(1):57–82.

Franses, P. H. B. F. (2016). Yet another look at MIDAS regression. (No. EI2016-32).

Econometric Institute Research Papers.

Frost, P. (1975). Some properties of the almon lag technique when one searches for degree

of polynomial and lag. Journal of the American Statistical Association, 70(351):606–

612.

Ghysels, E., Santa-Clara, P., and Valkanov, R. (2004). The MIDAS touch: Mixed data

sampling regression models. CIRANO Working paper 2004s-20.

Ghysels, E., Santa-Clara, P., and Valkanov, R. (2006). Predicting volatility: getting the

most out of return data sampled at different frequencies. Journal of Econometrics,

131(1):59–95.

Koenig, E., Dolmas, D., and Piger, J. (2003). The use and abuse of real-time data in

economic forecasting. Review of Economics and Statistics, 85(3):618–628.

Monteforte, L. and Moretti, G. (2013). Real-time forecasts of inflation: The role of

financial variables. Journal of Forecasting, 32(1):51–61.

24



Bibliography 25

Pagano, M. and Hartley, M. J. (1981). On fitting distributed lag models subject to

polynomial restrictions. Journal of the Econometrics, 2(16):171–198.

Schmidt, P. and Waud, R. N. (1973). The almon lag technique and the monetary versus

policy debate. Journal of the American Statistical Association, 68(341):11–19.


	Abstract
	Contents
	1 Introduction
	2 Experiment Description
	2.1 Defining Optimal Forecasting Performance
	2.2 Unrestricted MIDAS Models
	2.3 MIDAS Models

	3 Simulations
	3.1 Explanatory Power of U-MIDAS Models
	3.2 Forecasting Power of U-MIDAS Models
	3.3 Optimal Level of Data Piling

	4 Application on Unemployment and Staffing Data
	4.1 Data Description
	4.2 Application Results

	5 Conclusion
	A Tables
	Bibliography

