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Abstract

In this thesis we consider a multi-period fixed-charge facility location problem under uncertainty
in demand to which we apply a robust optimization approach. We use a two-stage approach
where in the first stage the locations and the capacities of the facilities to be opened are deter-
mined. These decisions are then tested in the second stage where the production and allocation
of products are determined. We make use of sample paths, where the customers’ demand is
sampled over an uncertainty set. We consider this uncertain demand to be bounded within
a multidimensional box. We show that the robust approach can provide improvements in the
objective when partially immunizing against the uncertainty.
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1 Introduction

Facilities, along with factories and distribution centers, have to function for many years. During
this time, many circumstances like customer demand, travel times and distinct costs may be
highly volatile. Optimal decisions regarding the locations of facilities, while being very costly
and thus of big importance, are therefore difficult to optimally. This caused an interest in the de-
velopment of models for facility location problems under uncertainty in the logistics fields. Many
different techniques that have been developed to approach optimization under uncertainty have
been applied to facility location problems.

Facility location problems deal with the decision making of placing potential facilities to fulfill
customer demand. A standard formulation of the facility location problem consists of a set of
customers to be serviced and a set of potential facility locations that can be opened. The aim is
to minimize the sum of both the opening costs of the facilities and the cost of delivering units
from facilities to customers, while satisfying the customers’ demand. Since the determination
of the locations and the sizes of facilities to be opened are long-term decisions, these decisions
usually can not be reconsidered later on. This causes facility location problems to often be
solved using a two-stage approach. In the first stage a decision maker, in this case a firm, has
to make all strategic decisions regarding location and capacities of facilities. After this, in the
second stage, operational decisions like production and transportation will be made. When all
parameters are deterministic, this method can be used to obtain optimal results. However, when
uncertainty is being accounted for, this may yield less efficient results. For example in case of
uncertainty in demand, if the real demand in a period is larger than expected, not all demand
may be satisfied. This is due to not anticipating this deviation when deciding on the maximum
capacity in the first stage, resulting in a loss of potential revenue.

Studies that incorporated uncertainty in demand in facility location problems have traditionally
done so by assuming stochastic distributions about the uncertain parameters, e.g., Sheppard
(1974) and Snyder et al. (2007). The aim of stochastic optimization is to optimize the objec-
tive using the expected value of the uncertain parameters. This requires certain assumptions
on the distribution of the uncertain parameters. An alternative approach is to apply robust
optimization to the facility location problem. Here the objective is to obtain solutions that are
immunized against all possible uncertainty. Applications of this method have been previously
used in finance, computer science, engineering and different logistical problems. More recently,
robust optimization has also been applied to facility problems by Baron et al. (2011) and Gülpı-
nar et al. (2013). For an extensive literature review dealing with facility location problems under
uncertainty, we refer to Snyder (2006).

This thesis focuses on the robust optimization approach applied to an adapted version of the
facility location problem, in which we also allow for uncertainty in demand. We use a two-stage
approach, where the locations and the sizes of the facilities to be opened have to be decided on
at the beginning of the time horizon. Since the operational decisions are strongly limited by
previously made strategic decisions, uncertainty in demand has a large effect on the objective.
We will present two different models with the objective to maximize the total profit over the
time horizon. The nominal model is formulated under the assumption that future demand is
known and constant over time. For the robust optimization approach we formulate a model
that immunizes against all possible uncertainty in demand, assuming that all possible values
for demand are located within a multidimensional box uncertainty set. These models are then
tested and compared using sample paths, created by sampling over the uncertainty set.

This thesis is organized as follows: In Section 2 we introduce the facility location problem and
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robust optimization in more detail. We also review previous research that has been done and we
describe the techniques that will be used in this thesis. The models that will be used throughout
the research are presented in Section 3. In Section 4, we introduce the test environment and
compare the results provided by the different models. Furthermore, in Section 5 we will test the
results under different conditions by performing a sensitivity analysis. Finally, we conclude our
results and discuss possible future research directions in Section 6.
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2 Problem Description

This section discusses the facility location problem as considered throughout this thesis and
its deviations from the basic facility location problem. This is followed by an introduction to
robust optimization, including a derivation similar to the case of facility location problem facing
uncertain future demand.

2.1 Facility Location Problems

As stated in Section 1, the basic formulation of the facility location problem consists of customer
locations and sites for potential facilities to be opened. The facility location problem can be
seen as a generalized version of the transportation problem, which considers the optimal trans-
portation and allocation of resources. In addition, the facility location problem incurs costs for
opening facilities. Many different variations of the facility location problem exist. In the most
basic form, p facilities can be selected with the goal to minimize the total distance between
customers and their nearest open facility. This problem is called the p-median problem and has
been widely studied (e.g. Daskin (2011), Drezner and Hamacher (2001)). The p-median problem
ignores the fixed cost for opening facilities. The standard uncapacitated facility location problem
does take these cost into consideration. In both the p-median problem and the uncapacitated
facility location problem, each customer is assigned to its nearest facility. The capacitated facil-
ity location problem assigns a maximum capacity to each facility. This puts a restriction on the
demand that can be supplied from each potential site. To approach a more realistic situation in
which parameters can change over time, multi-period location problems have been proposed. For
an extensive review on different types of facility location problems, we refer to Melo et al. (2009).

In this thesis we consider the capacitated multi-period facility location problem. This implies
that a time horizon is included and that the facilities have a maximum capacity. The size of
these capacities have to be decided on before observing future demand. The restriction that all
customer demand has to be fulfilled is relaxed. Instead, the objective of this facility location
problem is to maximize total profit instead of minimizing costs, where revenue is received for
satisfied demand. And as previously stated we consider a case where demand is no longer
deterministic, but uncertain, and apply a robust optimization approach. We will now provide
an introduction to robust optimization.

2.2 Robust Optimization

In a typical linear program, parameters are deterministic and the problem can be solved to opti-
mality. Robust optimization (RO) approaches consider some of the data to be uncertain, without
taking a specific probability distribution into account. In this section, we give a brief introduc-
tion to robust optimization; for further details, we refer to Ben-Tal and Nemirovski (1999, 2000).

The goal of the RO approach is to immunize against uncertainty for which it defines a set that
expresses limits on the amount of uncertainty. Using this uncertainty set, the RO approach is
able to find a solution that guarantees feasibility even if the uncertain parameters take their
worst-case values within the defined set. To adapt this approach into a mixed integer program
(MIP) formulation, every constraint involving uncertain parameters is replaced by a constraint
that incorporates the uncertainty set.

Consider the following linear program (LP):

max
x∈Rn

{
c>x : Ax ≤ b

}
, (1)
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where c ∈ Rn are the objective coefficients, x ∈ Rn are the decision variables, A ∈ Rm×n is a
constraint coefficient matrix with elements aij and b ∈ Rm are the right-hand side parameters.
In a standard case, c, A and b are deterministic and (LP) can be solved to optimality. RO
is applied when some of the data parameters are uncertain. The objective of RO is to find
a solution that satisfies the constraints for all realizations of the uncertain parameters, which
are limited by an uncertainty set. As an example we suppose A denotes an uncertain matrix,
residing in a known uncertain set U . The robust version of a mathematical optimization problem
is generally referred to as the robust counterpart (RC) problem. Below we present the RC of (1).

max
x∈Rn

{
c>x : Ax ≤ b ∀A ∈ U

}
,

The constraints Ax ≤ b must now be satisfied by all values for A ∈ U , including the worst-case
values related to x.

Several unique classes of uncertainty sets have been introduced in Ben-Tal and Nemirovski (2002)
and Ben-Tal et al. (2015). In this thesis we focus on the box uncertainty set, where an entry ãij in
matrix A is bounded by a symmetric interval. Therefore, ã, the set of all elements ãij , is bounded
by a multidimensional box UB = {ãij ∈ Rmxn : |ãij − āij | ≤ ε|āij | ∀i = 1, . . . ,m, j = 1, . . . , n},
where āij is the nominal value of the uncertain value ãij and ε ∈ R≥0 is the maximum deviation
from the nominal demand. For a constraint i,

∑n
j=1 ãijxj ≤ bi, the robust counterpart with

uncertainty set UB is given by

max
ã∈UB


n∑
j=1

ãijxj

 ≤ bi. (2)

Since the minimum value of ã in UB is found at one of the extreme values, (2) can be reformulated
as

n∑
j=1

āijxj + ε
n∑
j=1

|āij ||xj | ≤ bi. (3)

Assume that aij = āij in (1) for all i, j. Since the second term of the left-hand side in (3) is
positive, the RC provides tighter constraints than the original LP.

4



3 Model Formulations

In this section we first introduce the notation that will be used in the considered formulations
of the facility location problem. Next, we will give a more detailed explanation on the objective
of the two-stage approach. Then we present the formulation for the first stage of the nominal
problem, followed by the first stage of the robust problem. Afterwards, we discuss the formula-
tion of the second stage. Finally, we extend the existing models with the need to deploy trucks
at facilities to deliver the products to customers.

3.1 Notation

We consider the capacitated multi-period fixed-charge facility location problem. The set T =
{1, . . . , T} contains the time periods t up to the horizon length T . Let N = {1, . . . , N} be the
set of nodes, with indices i and j denoting the locations of the facilities and the customers,
respectively.

The essence of the problem is to open facilities and decide on the maximum capacity for each
open facility. These decisions are made once at the beginning of the time horizon and are
called strategic decisions. The decision variable Ii is equal to 1 if facility i is opened and 0
otherwise. The established capacity at facility i is denoted by Zi0. Afterwards, the operational
decisions, regarding the production and the allocation of products, have to be made at each
time period. Let Zit be the production of facility i in period t and let Xijt be the proportion
of demand of customer j provided by facility i in period t. These operational decisions are
restricted by the previously made strategic choices, since products can only be delivered from
open facilities and each facility has a maximum production per period depending on its capacity.

The decisions of opening facilities, establishing maximum capacities, production and product
deliveries result in costs. Let Ki be the cost of opening facility i and let Ci0 be the cost per
unit of capacity established at facility i. The cost per unit of production at facility i in period
t is denoted by cit and the delivery cost of a product from facility i to customer j by dij . The
revenue η is obtained for every delivered product to fulfill customer demand. The parameter
Djt denotes the demand of customer j at period t. The demand of every customer, however, can
vary over time and future demand is not known a priori. The aim of the problem is to maximize
the total profit τ over the time horizon, after being corrected for inflation using discount factor
0 < δ ≤ 1. A complete overview of the notation used in the considered formulations is given in
Appendix A.

3.2 Two Stage Approach

The two stage approach is a method to split the previously described problem into two parts.
The goal of the first part is to decide on the strategic decisions at the start of the time horizon.
The results regarding the locations of the open facilities and their maximum capacities are then
used in the second stage to find the optimal operational decisions, after the demand per cus-
tomer is observed. The application of the two stage approach on different variations of location
problems under uncertainty in demand has been studied by Louveaux (1986).

The nominal problem differs from its robust counterpart in the first stage. The formulation of
the nominal problem describes the future demand as if it is constant over time and therefore
assumed to be known in advance. For the robust method the demand in each period is assumed
to be uncertain, however, the nominal demand is known along with the box uncertainty set in
which the real demand must be located. From the first stage, we only use the results of the
variables Ii and Zi0, which determine the strategic decisions. In the second stage we change the
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variables to fixed parameters equal to the outcomes of Ii and Zi0 provided by the first stage. The
strategic decisions are then tested against different values for demand. Let D̄jt be the nominal
demand of customer j in period t. The demand D̃jt which is uncertain before stage 2 is located
within the interval

[D̄jt(1− εt), D̄jt(1 + εt)], (4)

where εt ∈ [0, 1]. We use sample paths to define these new demand values. These sample paths
are created for each customer by generating values for demand by sampling over the interval
specified in (4) for all t ∈ T .

3.3 Strategic Decisions

We present the formulations of the first stage of both the nominal model and the box uncertainty
model to decide on the strategic decisions. These formulations are based on those from Baron
et al. (2011).

3.3.1 Nominal Problem Formulation

The nominal problem is formulated below. Recall that τ is the total profit over all nodes and all
time periods, which is to be maximized. The objective function is represented in constraint (5)
for convenience when deriving its robust counterpart. The three terms in (5) express the revenue
minus the delivery cost for every delivered product, the total production cost and the cost for
opening facilities and establishing capacities, respectively. Since we investigate the present value
of the total profits, the revenue and costs in future period t are corrected for inflation by the
term δt−1.

(PNom) max
X,Z,I,Z0,τ

τ

s.t.
N∑
i=1

N∑
j=1

T∑
t=1

δt−1(η − dij)D̄jtXijt −
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Zi0 +KiIi) ≥ τ (5)

N∑
j=1

D̄jtXijt ≤ Zit ∀ i ∈ N , t ∈ T (6)

N∑
i=1

Xijt ≤ 1 ∀ j ∈ N , t ∈ T (7)

Zi0 ≤MIi ∀ i ∈ N (8)

Zit ≤ Zi0 ∀ i ∈ N , t ∈ T (9)

Xijt ≥ 0 ∀ i, j ∈ N , t ∈ T (10)

Ii ∈ B ∀ i ∈ N (11)

The term
∑N

j=1 D̄jtXijt, used in constraint (6) and (7) can be interpreted as the demand of
customer i fulfilled by all facilities in period t. Constraint (6) assures that the supplied demand
from a facility is limited by its production, while constraint (7) guarantees that no more than
100% of demand can be satisfied. The necessity that capacity can only be established at open
facilities is ensured by constraint (8). The value ofM has to be sufficiently large to allow a single
facility to have enough capacity to fulfill all demand, which is in this case equal to

∑N
j=1 D̄jt.
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Constraint (9) makes sure that the production can only be carried out at facilities with an
established capacity and that it does not exceed this capacity.

3.3.2 Robust Problem Formulation Using Box Uncertainty

We now reformulate (PNom) using the robust optimization approach to include the uncertainty
in demand. The uncertain demand D̃jt is assumed to be located in a symmetrically bounded
interval around nominal demand D̄jt, as defined in (4). This uncertainty in demand changes
the definitions of constraints (5) and (6) for all i ∈ N and t ∈ T . First we let UBjt = [D̄jt(1 −
εt), D̄jt(1 + εt)], UBt = UB1t ×UB2t ×· · ·×UBNt and UB = UB1 ×UB2 ×· · ·×UBT . When substituting
Djt by D̃jt to express the uncertainty, we get the following augmented constraints for D̃jt ∈ UB:

min
D̃∈UB


N∑
i=1

N∑
j=1

T∑
t=1

δt−1(η − dij)D̃jtXijt

−
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Zi0 +KiIi) ≥ τ, (12)

max
D̃t∈UB

t


N∑
j=1

D̃jtXijt

 ≤ Zit ∀ i ∈ N , t ∈ T . (13)

The extreme values of D̃jt are D̄jt(1−εt) and D̄jt(1+εt). Since δ, Xijt ≥ 0, the minimum value
of constraint (12) depends on whether the term (η − dij) is either positive or negative. In case
(η − dij) ≤ 0, however, no delivery will be made, thus Xijt = 0. We can therefore ignore this
case and obtain the minimum value at D̄jt(1− εt). Since D̃jt, Xijt ≥ 0, the maximum value of
the left-hand side of constraint (13) is attained at D̄jt(1 + εt). We can now rewrite the robust
counterparts of constraints (5) and (6) as follows:

N∑
i=1

N∑
j=1

T∑
t=1

δt−1(η − dij)D̄jt(1− εt)Xijt −
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Zi0 +KiIi) ≥ τ, (14)

N∑
j=1

D̄jt(1 + εt)Xijt ≤ Zit ∀ i ∈ N , t ∈ T . (15)

Using these constraints, the robust counterpart of PNom is fully immunized against the un-
certainty in the set UB. We can also choose to partially immunize against the uncertainty in
demand. To do so, we include the parameter ρ ∈ [0, 1] as being the fraction of the uncertainty
set to immunize against. The final formulation of the box uncertainty method is as follows:

(PBox) max
X,Z,I,Z0,τ

τ

s.t.
N∑
i=1

N∑
j=1

T∑
t=1

δt−1(η − dij)D̄jt(1− ρεt)Xijt −
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Zi0 +KiIi) ≥ τ (16)

N∑
j=1

D̄jt(1 + ρεt)Xijt ≤ Zit ∀ i ∈ N , t ∈ T (17)

(7)− (11)

The formulations of constraints (7)-(11) remain unchanged. Since the capacities of open fa-
cilities now have to allow for uncertainty, the value of M in constraint (8) is changed to
maxt∈T {

∑N
j=1Djt(1 + εt)}.
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In the base case we set ρ equal to 1, hence immunizing against all uncertainty in demand. Note
that in case ρ = 0, the complete uncertainty set will be ignored and PBox becomes equal to
PNom.

3.4 Operational Decisions

We introduce the formulation of the second stage of the facility location problem, which is to be
performed after the first stage has been completed. The aim of the second stage is to maximize
the total profit over the entire time horizon, restricted by the strategic decisions from the first
stage. These decisions cannot be changed over time and therefore we introduce new parameters
I∗i and Z∗i0, which are initialized as the results of Ii and Zi0 from the first stage. Furthermore,
instead of nominal demand D̄jt, we use the realised demand D̂jt provided by the sample paths.
The remainder of the formulation of the second stage remains similar to formulation (PNom).
For completeness we present the full model of the second stage below:

(POpr) max
X,Z

N∑
i=1

N∑
j=1

T∑
t=1

δt−1(η − dij)D̂jtXijt −
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Z
∗
i0 +KiI

∗
i ) (18)

s.t.
N∑
j=1

D̂jtXijt ≤ Zit ∀ i ∈ N , t ∈ T (19)

N∑
i=1

Xijt ≤ 1 ∀ j ∈ N , t ∈ T (20)

Zit ≤ Z∗i0 ∀ i ∈ N , t ∈ T (21)

Xijt ≥ 0 ∀ i, j ∈ N , t ∈ T (22)

We solve the second stage for every unique sample path. Note that the strategic decisions are
already fixed and this stage can therefore equivalently be solved by maximizing the profit in
each individual time period.

3.5 Transport Problem Formulations

So far we defined the delivery cost to be linear: every single delivered product incurred a cost
based on the distance from the facility in question to the customer. A more realistic approach
would be to require a certain manner of transport to deliver the products. In this section we
introduce the addition of trucks to our models as a means of transport.

A number of trucks can drive from an open facility i to a customer j at period t and transport
a maximum number of products. We introduce two new parameters: the capacity of a truck
q and the fixed cost ki for each established truck at facility i. We also add two new decision
variables. The number of trucks that travel from facility i to customer j at period t is denoted
by Yijt. This number, however, cannot be larger than the number of trucks available at this
facility, represented by Yi0. There are no trucks needed for transport from facility i to customer
j in case i = j since the distance is equal to zero. Note that the choices of Yi0 are new strategic
decisions, while Yijt denote operational decisions. We assume that there is no maximum number
of trucks that can be hired. We do not consider a routing problem: every delivery will have to be
made directly from an open facility. For simplicity we assume that all trucks are homogeneous
although different types can readily be included. The formulation of the nominal transport
problem is as follows:
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(P TrNom) max
X,Y,Z,I,Z0,Y0,τ

τ

s.t.
N∑
i=1

N∑
j=1

T∑
t=1

δt−1(ηD̄jtXijt − dijqYijt)−
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Zi0 +KiIi + kiYi0) ≥ τ (23)

D̄jtXijt ≤ qYijt ∀ i, j ∈ N , i 6= j, t ∈ T (24)
Yi0 ≤MIi ∀ i ∈ N (25)
N∑
j=1

Yijt ≤ Yi0 ∀ i ∈ N , t ∈ T (26)

Yijt ∈ N ∀ i, j ∈ N , t ∈ T (27)
(6)− (11)

The objective constraint (23) is adapted from (5) by changing the delivery cost from a linear
function to a step-wise function. Furthermore, there are also incurred costs for the number of
deployed trucks. Constraint (24) guarantees that there is sufficient truck capacity for the trans-
port of all fulfilled demand, while no trucks are needed for transport over the same coordinates.
Constraint (25) ensures that trucks are only available at open facilities. The minimum value
needed for M to support this restriction is d1q

∑N
j=1 D̄jte. Finally, constraint (26) implies that

no more trucks can be used than there are available per facility.

We can derive a robust approach for the transport problem in a similar way as before using box
uncertainty. Whereas previously the total possible production had to be sufficient to immunize
against the maximum possible demand, the same principle applies to the decisions regarding
available trucks. Again, we substitute D̄jt by D̃jt to express the uncertainty and obtain the
following augmented constraints for D̃jt ∈ UB:

min
D̃∈UB


N∑
i=1

N∑
j=1

T∑
t=1

δt−1(ηD̃jtXijt − dijqYijt)

−
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Zi0 +KiIi + kiYi0) ≥ τ,

(28)

max
D̃t∈UB

t

{
D̃jtXijt

}
≤ qYijt ∀ i, j ∈ N , i 6= j, t ∈ T . (29)

We know that the extreme values of D̃jt are D̄jt(1−εt) and D̄jt(1+εt). Since η, δ, Xijt ≥ 0, the
minimum value of constraint (28) is attained at D̄jt(1− εt). Since D̃jt, Xijt ≥ 0, the maximum
value of the left-hand side of constraint (29) is located at D̄jt(1 + εt). We can now rewrite the
robust counterparts of constraints (23) and (24) as follows:

N∑
i=1

N∑
j=1

T∑
t=1

δt−1(ηD̄jt(1− εt)Xijt − dijqYijt)−
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Zi0 +KiIi + kiYi0) ≥ τ,

(30)

D̄jt(1 + εt)Xijt ≤ qYijt ∀ i, j ∈ N , i 6= j, t ∈ T . (31)

After the addition of ρ the box uncertainty transport problem is given by:
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(P TrBox) max
X,Z,I,Z0,Y,Y0,τ

τ

s.t.
N∑
i=1

N∑
j=1

T∑
t=1

δt−1(ηD̄jt(1− ρεt)Xijt − dijqYijt)−
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Zi0 +KiIi + kiYi0) ≥ τ

(32)

D̄jt(1 + ρεt)Xijt ≤ qYijt ∀ i, j ∈ N , i 6= j, t ∈ T (33)
(7)− (11), (17), (25)− (27)

The minimum value of M to ensure the functioning of constraint (25) is set to
d1q maxt∈T {

∑N
j=1 D̄jt(1 + εt)}e to allow for uncertainty in demand. Again we let ρ be equal to

1 and therefore immunize against all uncertainty in demand.

Finally, we present the formulation of the second stage of the transport models. In addition to
the location of open facilities and their maximum capacity, the number of available trucks per
facility is also a decision that has been made at the beginning of the time horizon. Therefore
we use parameter Y ∗i0, equal to the outcomes of Yi0 from the first stage. Again, we use D̂jt to
denote the demand provided by the sample paths. The aim of the second stage is again to make
the operational decisions that maximize the profit per time period, while being restricted by the
strategic decisions. The second stage of the transport model is formulated as follows:

(P TrOpr) max
X,Z,Y

N∑
i=1

N∑
j=1

T∑
t=1

δt−1(ηD̂jtXijt − dijqYijt)−
N∑
i=1

T∑
t=1

δt−1citZit −
N∑
i=1

(Ci0Z
∗
i0 +KiI

∗
i + kiY

∗
i0)

(34)

s.t.

D̂jtXijt ≤ qYijt ∀ i, j ∈ N , i 6= j, t ∈ T (35)

N∑
j=1

Yijt ≤ Y ∗i0 ∀ i ∈ N , t ∈ T (36)

(20)− (22), (27)
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4 Computational Results

In this section we analyse how the solutions provided by the nominal models and the box
uncertainty models differ. First, we give a description of the test environment. Then we review
the results provided by the first stage of the non-transport models. Here we investigate the
topologies, which are the number of open facilities along with their location and size. We then
analyse the operational decisions and the total profit provided by the second stage. Finally, we
investigate the solutions provided by the transport models.

4.1 Test Environment

The test environment consists of several coordinates of customers and potential facilities, fixed
cost to incur depending on the different decisions and demand over time. We generate coordi-
nates of customers on a unit square for N = 15 customers. The delivery cost dij is equal to the
Euclidean distance between nodes i and j, for all i, j ∈ N . Nominal demand D̄jt is uniformly
distributed over the interval [17500, 22500] and assumed constant over a time period of T = 20
periods. The uncertainty set is defined using the following recursive function: εt = γ+(1−γ)εt−1,
with ε0 = 0 and γ = 0.15. Uncertainty parameter εt is a concave and monotonically increasing
function, allowing for larger possible deviations from the nominal demand in further periods of
time. We assume that UBjt = [D̄jt(1 − εt), D̄jt(1 + εt)], whose values are strictly positive since
lim
t→∞

εt = 1. All parameter values in the base case are summarized in Table 1.

Table 1: Parameter values in base case

η 1
cit 0.1
Ci0 0.1
ki 10
Ki 50000
δ 1
ρ 1
q 3000
D̄j ∼ U [17500, 22500]

4.2 Topology Comparison

We start off with reviewing the results from the first stage of the non-transport models regarding
the decisions to be made at the beginning of the time horizon. We solve for 250 instances for
both the nominal and the box formulation problem, each instance having different node locations
over the unit square and different deterministic nominal demands.

In Table 2 we show the mean number of open facilities and the mean capacities of these open
facilities over all instances. We also present the mean number of connections from open facilities,
which is defined as:

N∑
i=1

N∑
j=1

1

{
T∑
t=1

Xijt > 0

}
N∑
j=1

Ij

. (37)

The indicator function 1 {·} defines a connection from node i to j if any products over the
entire time horizon are delivered from facility i to customer j. Note that connections between
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facilities do not need to be symmetric. Finally, we also report the average strategic cost. These
are the costs incurred by the strategic decisions, which will not change after the first stage.
For completeness, we also present the objective values of the first stage. Note that for the box
uncertainty model these values do not equal the total profit due to the immunization against
lower potential revenues.

Table 2: Comparison of the topology solutions of both non-transport models

Non-transport
Model

Mean number of
open facilities Mean capacity Mean number

of connections Strategic cost Objective value

η = 1 Nominal 10.97 27,303 1.37 578,346 4,686,304
Box 3.48 135,718 4.46 221,230 477,022

η = 3 Nominal 10.97 27,303 1.37 578,346 16,664,740
Box 4.04 139,430 3.77 258,074 3,445,601

η = 6 Nominal 10.97 27,303 1.37 578,346 34,632,393
Box 4.16 139,841 3.62 266,430 8,276,814

The most striking difference between the topology results of both models is the decrease in the
number of open facilities provided by the box uncertainty model. The mean capacities of these
facilities are on the other hand larger, as well as the average total capacity. This is due to the
immunization against demand uncertainty, forcing a larger maximum production by all facilities
per period. The mean number of connections of open facilities in the nominal model is equal
to N divided by the average number of open facilities. This means that all demand of every
customer is satisfied by a single facility. This is due to the assumption of the nominal formulation
that all future demand is constant and therefore all planned deliveries are the same in every
period of time. We also see that the strategic cost for the box uncertainty model is on average
only 40% of the cost in the nominal model. Finally, we observe that the initial characteristics
of the facilities in the nominal model do not differ for the presented different revenues. The
box uncertainty method opens more facilities when the revenue increases. This is caused by the
diminishing effect of the response against lower potential revenue in the objective function. For
larger revenues, the effect of lower potential revenue decreases.

4.3 Product Allocation and Profit Comparison

In this section we compare the performances of the box uncertainty model to that of the nom-
inal model in terms of profit and the realization of the deliveries. For both models, we solve
the second stage of the problem formulations for the first 100 of the previously generated 250
topologies. For each topology we simulate the real demand over time using 30 sample paths,
sampled over the uncertainty set (4). We sample from the Uniform, the Bell-shaped Beta(2,2),
and the U-shaped Beta(0.5,0.5) distribution, with ten sample paths per distribution. The nom-
inal demand of all customers remains the same as in the first stage. The other parameters also
remain unchanged, see Table 1. We first consider the performance of the topologies determined
by the first stage and presented in Table 2 for both models, after which we present the different
costs and the final profit.

The solutions regarding the performance of both models after solving the second stage with the
sample paths are presented in Table 3. We present the percentage of total demand which is
covered, the fraction of capacity of all facilities which is used by production, and the average
number of connections as defined in (37). Finally, we present the changes in the number of
connections in relation to the first stage. Note that these changes do not exactly correspond
with the values reported in Table 2, due to the decrease in the number of topologies. The esults
are given for the three different distributions used to generate sample paths for both models.
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Table 3: Comparison of the production and delivery performances of both non-transport models

Non-transport
Model

% Demand
covered

% Usage of
capacity

Mean number of
connections

% Increase in
connectivity

Nominal Bell-shaped Beta 96.62 96.53 6.12 341
Uniform 95.53 95.62 6.15 343
U-shaped Beta 94.66 94.50 6.28 352

Box Bell-shaped Beta 100 63.55 4.36 −11.76
Uniform 100 63.67 4.48 −9.35
U-shaped Beta 100 63.51 4.71 −4.77

The first observation we can make is that for all sample methods in the box uncertainty model
all of the demand is covered, while the nominal model covers around 95.6% of the demand. This
lost demand is due to a lack of total capacity in periods with high total demand, while the box
uncertainty model is immunized against this demand and therefore performs as expected. This
is also supported by the average percentage of the capacity used by production. For the nominal
model this is around 95%, implying that there is not much capacity available for production in
periods with high total demand. Finally, we compare the real number of connections with its old
values. The deviation in the number of connections of the box uncertainty model is relatively
small. The large increase in the number of connections in the nominal model, however, is yet
another indication that the model does not handle the deviation in demand well. Instead of all
customers getting provided exclusively by a single facility, over time this is now an average of
4.5 facilities.

In Figure 1 we present the solutions of one topology obtained by both the nominal model and
the box uncertainty model after both stages. The nodes in the figures represent the locations of
customers and open facilities. The locations at which a facility is opened are represented by a
grey border around the node. The size of the capacity of each open facility is represented by the
size of the node. The edges show the deliveries from open facilities to customers. Finally, the
thickness of the edges denote the number of periods in which a connection is used for transport.
Figure 1a shows that the initial plan of the nominal problem is to have all demand over the time
horizon of every customer satisfied by only one facility. However, we can see in Figure 1b that
in reality more and longer connections are used to fulfill demand. The robustness of the box
uncertainty method is shown in Figures 1c and 1d. The only difference between the planned and
the executed transportation is the number of periods in which connections are used. This is a
consequence of the lower potential revenue used in the objective function of the box uncertainty
problem (16). This causes the potential revenue for fulfilled demand, starting from a certain
period, to become smaller than the production cost, hence not resulting in any profit.

13



(a) Nominal after first stage (b) Nominal after second stage

(c) Box after first stage (d) Box after second stage

Figure 1: Topologies as obtained by the solutions of the nominal model and the box uncertainty
model after both stages

In Table 4 we present the average values of the strategic cost, the operational cost, the revenue
and the profit obtained by the different sample distributions for both non-transport models. The
total profit can be calculated as the revenue minus both the strategic cost and the operational
cost. We also show the percentage increase in profit of the box uncertainty model in relation to
the nominal model. As shown before, the cost incurred by opening and establishing capacities
of the facilities of the box uncertainty model is only about 40% of the strategic cost provided by
the nominal model. Note that strategic cost between Table 2 and Table 4 slightly deviate since
the number of sample topologies has decreased from 250 to 100. The operational cost of the
nominal model however, is about 60% of the operational cost of the box uncertainty model, which
is mainly due to the additional open facilities resulting in lower delivery cost. Furthermore, we
find a slight increase in revenue for the box uncertainty method related to the higher demand
coverage. Finally, we see that these costs and revenues do not result in significant improvements
in terms of profit. The box uncertainty method only yields on average higher profits when the
sample paths are generated by the U-shaped Beta distribution. On average, the box uncertainty
method yields a decrease in profit of 0.69%. The standard deviations are displayed between
brackets and show large deviations in profit based on different topologies.
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Table 4: Comparison of the profit of both non-transport models

Non-transport
Model Strategic cost Operational cost Revenue Profit % Increase

in profit

Nominal Bell-shaped Beta 577,942 836,469 5,780,619 4,366,208
Uniform 577,942 872,792 5,725,794 4,275,060
U-shaped Beta 577,942 912,461 5,659,088 4,168,685

Box Bell-shaped Beta 220,599 1,523,047 5,982,691 4,239,045 −2.91 (2.68)
Uniform 220,599 1,525,852 5,993,979 4,247,528 −0.64 (2.77)
U-shaped Beta 220,599 1,523,583 5,978,803 4,234,621 1.58 (2.87)

4.4 Results for the Transport Models

We observed that the box uncertainty model does not result in significantly larger profits than
the nominal model when immunizing against full uncertainty in demand. The addition of trucks
as a manner of transport requires an extra strategic decision that may influence the impact of
robust optimization. In this section we compare the results from the box uncertainty transport
model to the nominal transport model. We reduced the number of sample topologies from 100
to the first 20 due to the increase in solving time. The number of sample paths per topology
remains unchanged.

In Table 5 we present the main results of the nominal transport model and the box uncertainty
transport model after performing both stages. We report the average number of open facilities
and the mean number of trucks over all facilities. We also show the relative increase in profit
of the box uncertainty transport model compared to the nominal transport model. Finally, we
report on the average covered demand and the average use of the available trucks. We present
the results for capacity sizes q equal to 1000, 3000 and 7000, to allow for variation in the number
of trucks needed to transport products over the interval of the nominal demand [17500, 22500].

Table 5: Comparison of the results of both transport models

Transport
Model

Mean # of
open facilities

Mean #
of trucks

% Increase
in profit

% Demand
covered

% Usage
of trucks

q = 1000 Nominal Bell-shaped Beta 12.1 56.3 89.27 86.34
Uniform 12.1 56.3 85.38 81.68
U-shaped Beta 12.1 56.3 81.45 77.06

Box Bell-shaped Beta 5.2 260.2 8.52 (0.99) 99.91 74.76
Uniform 5.2 260.2 14.16 (1.36) 99.82 74.66
U-shaped Beta 5.2 260.2 20.07 (2.02) 99.49 74.54

q = 3000 Nominal Bell-shaped Beta 12.2 17.2 88.00 87.69
Uniform 12.2 17.2 84.29 83.86
U-shaped Beta 12.2 17.2 80.30 80.26

Box Bell-shaped Beta 5.3 86.4 9.76 (2.56) 99.73 76.60
Uniform 5.3 86.4 15.30 (2.14) 99.60 76.35
U-shaped Beta 5.3 86.4 21.40 (1.73) 99.24 76.21

q = 7000 Nominal Bell-shaped Beta 12.5 6.9 87.95 89.79
Uniform 12.5 6.9 84.16 85.26
U-shaped Beta 12.5 6.9 80.12 81.34

Box Bell-shaped Beta 5.5 36.5 9.25 (3.65) 99.36 80.35
Uniform 5.5 36.5 14.84 (3.60) 99.18 80.07
U-shaped Beta 5.5 36.5 20.89 (3.48) 98.71 79.70
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First, we notice that the ratio of the average number of open facilities between the nominal model
and the box uncertainty model is roughly the same as for both models without transport. The
actual numbers, however, have slightly increased. This is due to the addition of needed transport
in the form of trucks, which causes the average delivery cost to increase and incurs a fixed cost
for the availability of trucks. The facilities as obtained by the box uncertainty transport model
need more trucks to deliver products to all customers, to compensate for the smaller number of
open facilities. As expected, the demand covered is higher for the robust approach, although it
is not 100% anymore. Even though there are a sufficient number of trucks available to fulfill all
demand at every period, the step-wise delivery cost function does not result in profits if a truck
is not filled with a certain number of products. The demand covered by the nominal transport
model on the other hand is much lower. The strategic decisions, which now also include the
number of available trucks per open facility, limit the amount of demand that can be fulfilled in
an extra way: a lack of available trucks. Finally, we can see that the box uncertainty transport
model yields significantly higher profits compared to the nominal transport model for all sample
path distributions. This is mainly caused by the high difference in the percentage of demand
that can be covered, causing a lack of revenue for the nominal method. Our final observation
is that the truck capacity has no big impact on the difference in profit, although the standard
deviations increase for higher capacities. This is due to the effect of truck capacity to the step
sizes in the delivery cost function.

While prior to the necessity of transport, a customer could be provided by all open facilities, they
can now only be supplied by a facility at its own location or by other facilities that have trucks
to their availability. We can therefore distinguish open facilities to be either a local facility or
a global facility. Global facilities have at least one truck available and can therefore transport
deliveries to all customers. Local facilities, however, can only fulfill demand of a customer at its
own location. The average number of trucks per global facility is defined as:

N∑
i=1

Yi0

N∑
i=1

1 {Yi0 > 0}
.

We find the average number of trucks per global facility of the nominal transport model to be
20.5, 7.5 and 3.2 for capacity sizes q = 1000, 3000 and 7000, respectively. For the box uncertainty
transport models these averages are 56.3, 18.4, 7.4. In case of q = 3000 we find that 18.8% of
the open facilities provided by the nominal transport model are global facilities, against 88.6%
using the box uncertainty transport model. Therefore, the reason that the average deployment
of available trucks is only slightly higher for the nominal model is due to larger average distance
from a customer to its closest global facility, resulting in a larger average delivery cost.
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5 Sensitivity Analysis

In this section we will test the performance of the models with parameter values different than
used in the base case. We first test the performances of the models when only immunizing
against a subset of the uncertainty set. Then we compare the differences in the increase in profit
relative to the nominal models when varying the discount factors and the length of the time
horizon. We do not perform a sensitivity analysis for other parameters as they seem to have a
linear effect on the objective. For example, higher values of K have a linear negative effect on
the number of open facilities and the increase in profit of the box uncertainty models over the
nominal models, as shown in Baron et al. (2011).

5.1 Performance of Different Degrees of Robustness

So far, we studied the case where the box uncertainty models were fully immunized against the
uncertainty in demand, including the most extreme but unlikely deviations. In this section we
compare the results when immunizing against a smaller subset of the uncertainty set, while still
sampling from the initial box uncertainty set (4). We use ρ, as defined earlier, to denote the
fraction of the symmetric interval to immunize against. This way the box uncertainty model
immunizes against demand in the interval [(1 − ρεt)D̄jt, (1 + ρεt)D̄jt]. We first test the effect
of partial immunization in the non-transport box uncertainty model, followed by the box uncer-
tainty model including transport.

We observed that the box uncertainty model, without transport, does not obtain significant
improvements in profit. While the robust approach performed as expected and obtained a 100%
demand coverage, the increase in operational cost was higher than the reduced strategic cost and
the improved revenue. We also observed that on average only about 64% of the total capacity
was being used for production and that facilities barely needed to cooperate to deliver to a
customer. This implied that fully immunizing against the uncertainty set might not be optimal.
In Figure 2, we plot the increase in profit provided by the box uncertainty model, compared to
the nominal model.

Figure 2: Percentage increase in profit for the box uncertainty model for different values of ρ
compared to the nominal model (ρ = 0)
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We observe that the relative profit increases when immunizing against more uncertainty up until
a point. When ρ becomes too large, the model starts to immunize against uncertainties that
are not likely to occur and the relative profits decrease. We also notice that all three sam-
ple distributions start yielding positive increase in profits when ρ is smaller than 0.9. Sample
paths generated by the Uniform or Bell-shaped Beta distribution obtain their maximum increase
in profit at ρ = 0.4, while the U-shaped Beta distribution yields highest improvements when
ρ = 0.5, since the latter distribution allows for more uncertainty. Over all distributions, the
maximum improvement is on average 8.02% and is obtained at ρ = 0.4. This is also the lowest
value for ρ for which 99.99% of the demand still is covered, supporting the assumption that it
may not be desired to immunize against all uncertainty.

We also investigate the increase in profit for the transport model when decreasing the fraction
of immunized uncertainty. In Figure 3, we show the plot of the increase in profit provided by
the box uncertainty transport model relative to the profits of the nominal transport model.
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Figure 3: Percentage increase in profit for the box uncertainty transport model for different
values of ρ compared to the nominal transport model (ρ = 0)

We see a similar concave shape of the performance under different fractions of immunization
against uncertainty as with the basic models. The maximum increase in profit, however, is
achieved at ρ = 0.8. This shows that with the introduction of transport, the robust model
needs to immunize against more uncertainty to provide better solutions. The average increase
in profit, however, is larger than before and achieves a maximum of 21.5% at ρ = 0.8.

5.2 Variation in Inflation and Time Horizon

In this section we investigate the differences in profit provided by the nominal solutions and the
robust solutions with different values for the discount factor δ and the time horizon length T .
So far we ignored inflation by keeping δ equal to 1. When studying revenues and costs over time
it is interesting to take the deprecation of value over time, caused by inflation, into account,
to mimic a more realistic setting. For example, with a constant inflation equal to 100(1 − δ)%
per period, the present value of P in future period t is only δ(t−1)P . In Table 6 we present the
increase in profit provided by the non-transport box uncertainty model compared to the nominal
model for ρ equal to 1, and the earlier optimal case with ρ = 0.4 as obtained in Section 5.1.
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Table 6: Percentage increase in profit for box uncertainty model when varying T and δ compared
to the nominal model

ρ = 0.4 δ ρ = 1 δ
|T | 1 0.999 0.99 0.95 0.9 |T | 1 0.999 0.99 0.95 0.9
3 0.88 0.88 0.90 0.77 0.64 3 −1.08 −1.03 −1.38 −1.41 −2.31
5 2.11 2.11 2.00 1.94 1.72 5 −0.30 −0.29 −0.24 −1.74 −1.23
10 4.55 4.50 4.56 3.93 3.07 10 1.46 1.49 1.74 1.25 −0.04
20 8.02 7.99 6.81 5.09 4.76 20 −0.69 −0.10 0.30 0.75 −0.13
30 5.26 5.29 5.47 5.55 4.27 30 4.40 4.47 3.85 2.22 1.31

First off we observe that in most instances, the maximum increase in profit is attained at δ = 1.
However, a discount value of 0.99 seems to result in a higher increase in many instances. The
discount factor δ = 0.999 seems to be too small to change the topological results, hence only
slightly reducing the present value of the higher revenues obtained by the box uncertainty model,
compared to the case of δ = 1. On average we see that higher discount values result in smaller
increases in profits. This is due to a decrease in the number of open facilities provided by the
nominal model, to reduce the strategic cost. When looking at the differences between ρ equal
to 0.4 or 1, we observe that as the length of the time horizon increases, a larger fraction of
immunization is required to achieve a better performance. For ρ = 0.4, the best improvements
are obtained at T = 20, and in case of ρ = 1 at T = 30. However, the full immunization against
uncertainty performs better at T = 10 than T = 20. This is caused by a bad performance of
the nominal model at T = 10 due to high strategic cost. Finally, for ρ = 1, we observe a larger
effect on the increase in profits from the discount factor for larger values of T . This is explained
by the high operational cost when fully immunizing against all uncertainty.

We present the increase in profit provided by the transport box uncertainty model compared to
the nominal model in Table 7. The results are provided for ρ equal to 1, and the earlier optimal
case obtained in Section 5.1 with ρ = 0.8

Table 7: Percentage increase in profit for box uncertainty transport model when varying T and
δ compared to the nominal transport model

ρ = 0.8 δ ρ = 1 δ
|T | 1 0.999 0.99 0.95 0.9 |T | 1 0.999 0.99 0.95 0.9
3 0.66 0.67 0.66 0.51 0.46 3 0.71 0.73 0.81 0.74 0.41
5 2.48 2.59 2.46 2.34 1.78 5 2.45 2.47 2.27 2.20 1.88
10 7.51 7.59 7.32 6.06 4.81 10 7.38 7.35 6.64 5.16 3.63
20 21.50 21.20 19.54 13.62 8.28 20 15.30 14.87 13.25 9.62 5.24
30 13.25 13.34 13.37 12.41 7.59 30 12.86 12.94 12.86 10.96 5.90

The highest increase in profit are obtained at T = 20 for both ρ = 0.8 and ρ = 1, while all
instances yield a positive increase in profit compared to the nominal transport model. Similar
as in Table 6, we observe a larger effect on the increase in profits caused by the discount factor
δ for larger values of T . As a final remark we mention that for a long time horizon length T and
a small discount factor δ, the topologies provided by the nominal model become more similar
to those provided by the box uncertainty model, albeit with a smaller total capacity. Therefore,
the nominal model also needs to establish more trucks and approaches the performance of the
box uncertainty model. This results in relatively smaller differences between the solutions of
these models. However, the box uncertainty model will still be able to handle the uncertain
demand better, thus still providing higher profits.
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6 Conclusion

In this thesis we considered a robust optimization (RO) approach to immunize against demand
uncertainty in a multi-period fixed-charge facility location problem. We applied a two-stage
approach where first the locations and the maximum capacities of the facilities to be opened are
established. We show that in case the uncertain demand is bounded in a multidimensional box,
the topology results differ from the nominal case by opening less, yet larger, facilities. After
these strategic decisions have been made, we test the performance in the second stage using
demand sampled from the uncertainty set in the form of sample paths. We show that when
immunizing against all possible uncertainty in this box, the profit over the time horizon does
not significantly improve.

We then contributed to this approach by extending the models to include trucks as a means of
transport. This results in the additional strategic decision on the number of trucks to be estab-
lished at open facilities. We can now distinguish open facilities between those that have trucks
available and those that do not. This makes it more restrictive to deliver products in future
time periods, since facilities without trucks cannot service customers at a different location. We
show that the RO approach applied to this adapted problem results in large improvements in
terms of profits compared to the nominal transport model. For both box uncertainty models we
also show that larger increases in profit, relative to the nominal models, can be obtained when
immunizing against a smaller subset of the uncertainty set.

Future research directions may include more variations in the immunization against uncertainty,
including simultaneously using different subsets of the uncertainty set to immunize against. For
example, we could investigate the effect on the objective when immunizing against different
degrees of uncertainty in the objective function, the strategic decisions regarding production
and the strategic decisions on the number of deployed trucks.
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A List of Notation

Sets:

• N = {1, . . . , N}: the nodes in the graph. The indices i, j ∈ N are used for the facilities
and the customers respectively.

• T = {1, . . . , T}: the time periods t up until time horizon T .

Parameters

• D̄jt ∈ R≥0: the nominal demand of customer j in period t.

• D̃jt ∈ R≥0: the uncertain demand of customer j in period t.

• D̂jt ∈ R≥0: the realised demand of customer j in period t.

• η ∈ R>0: the revenue of every delivered product.

• δ ∈ (0, 1]: the discount factor of value over a period.

• dij ∈ R≥0: the distance and delivery cost of a product from node i to j.

• Ki ∈ R≥0: the cost of opening facility i.

• ki ∈ R≥0: the cost of deploying a truck at facility i.

• Ci0 ∈ R≥0: the cost per unit of capacity established at facility i.

• cit ∈ R≥0: the cost per unit of production at facility i in period t.

• εt ∈ [0, 1]: the uncertainty in demand in period t.

• γ ∈ [0, 1]: the uncertainty in demand in the first period.

• q ∈ R≥0: the capacity of a truck.

• ρ ∈ [0, 1]: the fraction of the uncertainty set to immunize against.

Variables

• Ii ∈ B: equals 1 if facility i is opened, 0 otherwise.

• Zi0 ∈ R≥0: the maximum capacity of facility i.

• Zit ∈ R≥0: the production of facility i in period t.

• Xijt ∈ [0, 1]: the proportion of demand of customer j provided by facility i in period t.

• Yi0 ∈ N: the number of trucks available at facility i.

• Yijt ∈ N: the number of deployed trucks from facility i to customer j in period t.

• τ ∈ R: the total profit over the time horizon.
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