
Erasmus University Rotterdam

Bachelor Thesis

Econometrics & Operations Research

Change point method: an exact line search
method for SVMs

Author:
Yegor Troyan
Student number:
386332

Supervisor:
Dr. P.J.F. Groenen

Second assessor:
Dr. D. Fok

July 2, 2017

1 Introduction

Predicting two groups from a set of predictor variables known as binary classification is not a new problem.
Various different statistical approaches to binary classification are available in the literature, such as logistic
regression, linear or quadratic discriminant analysis and neural networks. Another method which have
recently become popular is called Support Vector Machines (SVMs) (Vapnik, 1999). This technique seems
to perform better in terms of prediction quality compared to the alternatives mentioned. Its optimization
problem is well defined and can be solved through a quadratic programming (Groenen et al., 2008). Moreover,
the classification rule SVMs provide is relatively simple and can be immediately used with new samples.
However, a disadvantage is that the nonlinear SVM interpretation in terms of predictor variables is not
always possible and that the standard dual formulation of SVM may be difficult to comprehend (Groenen
et al., 2008).

This paper focuses on linear SVMs, specifically on the primal linear SVM problem. The primal formula-
tion is used as it is easier to interpret, than a standard dual one. Groenen et al. (2008) formulates the SVM
in terms of a loss function regularized by a penalty term. This formulation is called an SVM loss function
with an absolute hinge error. Other researchers tackled similar SVM formulation using various methods. For
example, Zhang (2004) and Bottou (2010) proposed a stochastic gradient descent method. In Collins et al.
(2008) the exponential gradient search method is applied. In our paper we discuss an iterative majorization
approach to minimizing the SVM loss function introduced by Groenen et al. (2008). Its advantage is that at
each iteration of the algorithm we are guaranteed to decrease the loss value until convergence is reached. As
the SVM loss function with an absolute hinge error is convex and coercive, iterative majorization converges
to a global minimum after a sufficient number of iterations.

The main focus of our paper is the development of an original line search method for optimizing the SVM
loss function – the Change Point Method (CPM). The great advantage of the CPM is that it is exact. We
also combine the CPM with different search directions (e.g. majorization, coordinate descent) in order to
create an efficient optimization method for solving SVM problems. Finally, we compare the performance of
different approaches testing them on the seven empirical data sets. The performance measures of interest
are the computational efficiency and the loss value reached.

1

2 Linear SVM

Often in machine learning we need to classify data. Let each object from the dataset be represented by an
m-dimensional vector. Suppose, each of these objects belongs to only one of the two classes. Geometrically
speaking, we want to find the hyperplane that separates the points in Class1 from the points in Class−1.
There might be infinitely many separations possible. A suitable candidate for the best separating hyperplane
is the one for which the distance between it and the nearest point from either group – the margin – is maximal
(Figure 1).

Figure 1: H1 separates classes with a small margin; H2 is better than H1 as the margin is larger; H3 doesn’t
separate classes

Let the data points be of the following form:

{(x1, y1), (x2, y2), . . . , (xn, yn)} ,

where xi is an m-dimensional vector of real values and yi takes values 1 and −1 (these specific numbers are
used for convenience only) indicating the class of the object xi:

yi =

{
1, if xi ∈ Class1

−1, if xi ∈ Class−1.
(1)

Let w be the m × 1 vector of weights used to make a linear combination of the elements of xi. Then the
prediction qi for each object xi is:

qi = c+ x′iw, (2)

where c is the intercept.
We want to find a hyperplane which separates the two groups of the objects in the best possible way.

Any hyperplane can be defined as a set of points x which satisfies a certain linear relation:

x′iw = c,

where w is a normal vector to the hyperplane. If the data set is linearly separable, we can choose two parallel
hyperplanes that split the data such that the distance between them is maximized. Mathematically they
can be described as:

c+ x′iw = 1

and
c+ x′iw = −1.

The distance between these hyperplanes (margin lines) is equal to
2

‖w‖
(Figure 2). The hyperplane we are

interested in lies in the middle between them and is called the maximum-margin hyperplane (Boser et al.,
1992).

2

Figure 2: Maximum margin hyperplane and the margins

To extend SVMs to the general case, where the groups are not linearly separable, we introduce a so called
absolute hinge error function. Here observations xi contribute to the error in the following way: if the ith

object belongs to Class1 and the prediction qi is such that qi ≥ 1 then the error for this prediction is zero.
On the other hand, if qi < 1 (wrong side of the margin) then the error is linearly accounted for, yielding a
value of 1−qi. In the case where the observation falls in Class−1 and qi ≤ −1, the object is labelled correctly
and the associated error is zero. However, when qi > 1 (wrong side of the margin) then the value of the
error is also linearly accounted for as qi + 1. Thus, objects that are predicted correctly do not contribute to
the error while objects that are incorrectly predicted contribute to the error linearly. A graph of this error
function, for a single observation is provided in Figure 3.

-4 -3 -2 -1 0 1 2 3 4

q
i

-1

0

1

2

3

4

5

Class
1
 error

Class
-1

 error

Figure 3: Absolute Hinge Error function for Class1 objects and Class−1 objects.

The distance between the margin lines is inversely proportional to ‖w‖. The smaller this distance is, the
more xi’s will be assigned to the correct class. Therefore it might be beneficial to choose very large ‖w‖.
But at the same time, as mentioned before, we want to maximize the margin. The following function must

3

then be minimized (Groenen et al., 2008):

LSVM(c,w) =
∑

i∈Class1

max(0, 1− qi) +
∑

i∈Class−1

max(0, qi + 1) + λw′w,

= Class1 errors + Class−1 errors + Penalty for nonzero w

=

n∑
i=1

max(0, 1− yiqi) + λw′w,

(3)

where parameter λ is added to control the length of w. The penalty term also helps to avoid overfitting.

3 Majorization

Groenen et al. (2008) suggest that the SVM problem can be solved with the iterative majorization (IM). Its
clear advantage is that in each iteration of the algorithm the SVM loss function value decreases until the
convergence criterion is met. As the SVM loss function with the absolute or quadratic hinge error is convex
and coercive, iterative majorization converges close to the global minimum (Groenen et al., 2008).

The principle behind the iterative majorization is relatively simple. Let f(q) be the function to be
minimized. Let g(q, q) be the auxiliary function called majorizing function, that depends on q and the
previous known estimate q – a supporting point. The majorizing function has to satisfy the following
requirements (Groenen et al., 2008):

1. it should touch f at the supporting point: f(q) = g(q, q),

2. it must never be below f : f(q) ≤ g(q, q),

3. g(q, q) should be simple, preferably linear or quadratic.

Let q∗ be such that g(q∗, q) ≤ g(q, q) by choosing q∗ = argminqg(q, q∗). As the majorizing function is
never below the original function, the so called sandwich inequality is obtained (De Leeuw, 1994):

f(q∗) ≤ g(q∗, q) ≤ g(q, q) = f(q). (4)

It follows that the update q∗ obtained by minimizing the majorizing function must also decrease the value of
the original function f . This is how one full iteration of the majorization algorithm is performed. Repeating
the process produces a monotonically non-increasing series of loss function values. For convex and coercive
f the algorithm reaches the global minimum after sufficiently many iterations (Groenen et al., 2008).

Iterative majorization also has a useful property which allows to apply the algorithm to optimizing the
LSVM(c,w) – an additivity rule. Suppose we have two functions f1(q) and f2(q) and both can be majorized
with g1(q, q) and g2(q, q) respectively. Then the following majorizing inequality holds (Groenen et al., 2008):

f(q) = f1(q) + f2(q) ≤ g1(q, q) + g2(q, q) = g(q, q).

To apply the IM to our problem we need to find a majorizing function for (3). Assume the majorizing
function exists for each individual error term of the form

f−1(qi) ≤ a−1iq2i − 2b−1iqi + c−1i = g−1(qi), (5)

f1(qi) ≤ a1iq2i − 2b1iqi + c1i = g1(qi), (6)

where ai, bi and ci are specific and known for certain hinge loss function (A.1). Let

ai =

{
max (δ, a−1i), if i ∈ G−1,
max (δ, a1i), if i ∈ G1,

(7)

bi =

{
b−1i, if i ∈ G−1,
b1i, if i ∈ G1,

(8)

ci =

{
c−1i, if i ∈ G−1,
c1i, if i ∈ G1,

(9)

4

where δ replaces a−i1 or ai1 for the respective class when q = −1 or q = 1. Summing all the terms leads to
the total majorizing inequality, quadratic in c and w:

LSVM(c,w) ≤
n∑

i=1

aiq
2
i − 2

n∑
i=1

biqi +

n∑
i=1

ci + λ

m∑
j=1

w2
j . (10)

If we add a column of ones as the first column of the X matrix and let v′ =
[
c w′

]
, qi = c + x′w can be

expressed as q = Xv. Thus (10) can be rewritten as

LSVM(v) ≤
n∑

i=1

ai(x
′
iv)2 − 2

n∑
i=1

bix
′
iv +

n∑
i=1

ci + λ

m+1∑
j=2

v2j

= v′X ′AXv − 2v′X ′b + cm + λv′Pv

= v′(X ′AX + λP)v − 2v′X ′b + cm, (11)

where A is a diagonal matrix with elements ai on the diagonal, b is a vector with elements bi and P is an
identity matrix except for the element p11 that is equal to zero. Differentiating (11) with respect to v yields

(X ′AX + λP)v = X ′b. (12)

Solving the set of linear equations will result in an update v+:

v+ = (X ′AX + λP)−1X ′b. (13)

The pseudocode of SVM-Maj for the absolute hinge errors is as follows (Groenen et al., 2008):

Input: y, X, λ, ε
Output: ct, wt

t = 0;
Set ε to a small positive value;
Set w0 and c0 to random initial value;
Compute LSVM(c0,w0);
while t = 0 or (Lt−1 − LSVM(ct,wt))/Lt−1 > ε do

t = t + 1;
Lt−1 = LSVM(ct−1,wt−1);

ai = max(δ, 14 |yiqi + 1|−1) and bi = yiai − 1
4 ;

Make diagonal matrix A with elements ai;
Find v that solves

(X ′AX + λP)v = X ′b

Set ct = v1 and wtj = vj+1 for j = 1, ...,m;

end
Algorithm 1: The majorization algorithm for the absolute hinge error.

5

4 Change point method

In this report we optimize the primal loss function with the absolute hinge error using a newly developed
exact linesearch method – Change Point Method (CPM). Recall that this loss function can be formulated
as follows:

LSVM(c,w) =

n∑
i=1

max(0, 1− yiqi) + λw′w.

Assume for simplicity, that
qi = x′iw, (14)

where qi is the prediction and xi is the vector of predictor variables for the ith observation; no intercept.
Prediction qi varies as w does. Assume also we have a search direction s. The change of w in the direction
s by the distance h leads to

qi = x′i(w + hs). (15)

As we move along s, qi increases in one direction and decreases in the opposite one. For a certain value of
h, qi is exactly equal to yi. We call this place a change point – pi. For the values of h below (above) pi,
prediction qi is correct. It changes to incorrect for h above (below) the change point. Incorrectly predicted
observations linearly contribute to the overall error of prediction: with each incorrect prediction qi, the
gradient of the loss function changes by

∂

∂h
(1− yiqi) = −yix′is. (16)

It is important to note that the change from the correct to the incorrect prediction can happen as h steps
over the change point from left to right as well as from right to left. The direction of change depends on the
combination of signs of yi and x′is. Namely, if yi > 0 & x′is > 0 or yi < 0 & x′is < 0 then it follows from (15)
and the definition of the absolute hinge error that the prediction qi is correct on the right of corresponding
the change point. On the other hand, if yi > 0 & x′is < 0 or yi < 0 & x′is > 0 then qi is correct to the left
of pi.

The initial step of the CPM is the derivation of the change points for each observation i. The following
expressions must be solved for h ∀i:

qi = yi

x′i(w + hs) = yi

h = pi =
yi − x′iw

x′is
. (17)

The n calculated change points are sorted in ascending order (from now on pi ≤ pi+1 ≤ ... ≤ pn−1 ≤ pn)
and, splitting the number line, provide us with the n+ 1 intervals of interest.

The SVM loss function is convex and coercive. Then, according to Fermats theorem (interior extremum
theorem), the optimal h is found at the point where the gradient of this function is equal to zero. As the
loss function is a sum of individual elements, we can calculate its gradient as the sum of the gradients of its
elements:

∂LSVM

∂h
=

n∑
i

{0,−yix′is}+ 2λ(h‖s‖2 + w′s). (18)

This is done for each interval made by the change points. As it was mentioned before, depending on the
combination of the signs of yi and x′is, the observation is predicted incorrectly for the values of h either to
the left or to the right of the change point. Grouping the observations based on this criterion, we can sum
each group up cumulatively (from right to left or from left to right depending on the group) to efficiently
get the

∑n
i=1 max(0, 1− yiqi) for each interval.

At each change point pi LSVM is non-differentiable, but it is easy to calculate the lower and upper bounds
of the subdifferential there. As pi is both the ending point of the interval i and the starting point of the
interval i+ 1, the gradient of the loss function is calculated for each point twice, resulting in two vectors: E,
containing the lower bounds of subdifferentials at each changepoint, and S, containing the upper bounds.

6

Using these two vectors we can calculate the optimal value of h, considering all its possible positions with
respect to the change points (Figure 4).

Figure 4a represents the scenario where the optimum lies between the two consecutive change points. In
this case, the signs of the gradients at the start and the end of one of the intervals must be different:

sign(Si) 6= sign(Ei).

The optimal h can then be found by a linear interpolation:

h = −(pi+1 − pi)
Si

Ei+1 − Si
+ pi.

Figure 4b pictures the situation where none of the intervals crosses zero. This is true if the signs of the
gradients at the end of interval i and at the start of the interval i+ 1 are different:

sign(Ei) 6= sign(Si+1).

The value of the change point i is the optimal h.
Figures 4c and 4d are special cases of the first considered scenario. The gradient of the loss function is

equal to zero exactly at one of the change points. The optimal h is equal to the value of the change point at
which the element of either S or E is zero.

Figure 4e illustrates the case where E1 and Sn are both negative. The optimal h can be expressed as:

h = pn +

∣∣∣∣ Sn

2λ‖s‖2

∣∣∣∣ .
An opposite scenario is shown in Figure 4f: E1 and Sn are both positive. The optimal h can be expressed
as:

h = pn −
∣∣∣∣ E1

2λ‖s‖2

∣∣∣∣ .
After the optimal h is found, the new vector of parameters w+ is calculated as w+ = w+hs. The intercept
can be easily incorporated in the algorithm by fixing all the elements of w and optimizing the loss function
without the penalty term, as the magnitude of the intercept should not be penalized.

7

p
i-1

p
i

p
i+1

h

E
i-1

S
i

E
i

S
i+1

0

E
i+1

S
i+2

gr
ad

ie
nt

(a)

p
i-1

p
i

p
i+1

h

E
i-1

S
i

E
i

0

S
i+1

E
i+1

S
i+2

gr
ad

ie
nt

(b)

p
i-1

p
i

p
i+1

h

E
i-1

S
i

0

S
i+1

E
i+1

S
i+2

gr
ad

ie
nt

(c)

p
i-1

p
i

p
i+1

h

E
i-1

S
i

E
i

0

E
i+1

S
i+2

gr
ad

ie
nt

(d)

p
n-2

p
n-1

p
n

h

E
n-2

S
n-1

E
n-1

S
n

E
n

S
n+1

0

gr
ad

ie
nt

(e)

p
1

p
2

p
3

h
0

E
1

S
2

E
2

S
3

E
3

S
4

gr
ad

ie
nt

(f)

Figure 4: The six possible positions of the optimum with respect to the changepoints

8

5 Experiments

5.1 Methodology

The CPM was developed as an auxiliary step on the way to creating a new efficient approach to solving
linear SVM problems. To test the CPM, we used an SVM-Maj algorithm as a benchmark for three different
implemented approaches:

• coordinate descent,

• gradient descent (steepest descent),

• αMajorization.

Coordinate descent is a derivative-free algorithm. The idea behind it is, instead of calculating a search
direction, to make use of the axes and search for the optimum cyclically along them. The pseudocode for
the CD approach we used is as follows:

Input: y, X, λ, ε
Output: ct, v
t = 0;
Set ε to a small positive value;
Set v to random initial value;
Compute LSVM;
while t = 0 or (Lt−1 − LSVM(v))/Lt−1 > ε do

t = t + 1;
Lt−1 = LSVM(vt);
for j = 1 : m+ 1 do

Fix all the elements of v except of vj and find an optimal value of vj along this direction using
the CPM. Set vj to this optimum. Do NOT include the penalty in the loss function for v1 as
the magnitude of the constant should not be penalized.

end
Compute LSVM;

end
c = v(1);
w = v(2 : end);

Algorithm 2: The pseudocode for the coordinate descent for the absolute hinge error.

Gradient or steepest descent is a first-order optimization method. The idea is to search for the optimum
iteratively in the direction of the negative of the gradient. Therefore to solve our SVM problem we simply
apply the CPM with the search direction sk = −∇LSVM(wk) for each iteration k until the convergence
criterion is met.

αMajorization was brought to life from the idea that the iterative majorization process could be accel-
erated by optimizing the step length in the majorization direction. The idea is based on the fact that, even
though in each iteration k of MM algorithm the majorizing function is minimized, this doesn’t imply that
there is no better solution for minimizing the objective function in the direction vk+1−vk. This fact is used
in the SVM-Maj algorithm by Groenen et al. (2008), where, from a certain iteration on, the step length is
doubled which improves the convergence speed. Doubling the step is the simplest way to accelerate the MM
algorithm and in practice it usually halves the number of interations until convergence (Wu et al., 2010).
However this improvement is not guaranteed. In the αMajorization we use the direction provided by an
iteration of the SVM-Maj algorithm and search for the minimum along it with the CPM. As a result we
receive an exact argument of the minimum of the function in the given direction – vk + α(vk+1 − vk) –
where α is an optimal step length multiplier. Achieved point is then used in the next iteration as a new
supporting point (Algorithm 3). This approach is expected to significantly decrease the number of iterations
until convergence and therefore to increase the speed of convergence compared to the SVM-Maj algorithm.

9

Input: y, X, λ, ε
Output: ct, wt

t = 0;
Set ε to a small positive value;
Set w0 and c0 to random initial value;
Compute LSVM(c0,w0);
while t = 0 or (Lt−1 − LSVM(ct,wt))/Lt−1 > ε do

t = t + 1;
vprev = v;
Lt−1 = LSVM(ct−1,wt−1);

ai = 1
4 |yiqi + 1|−1 and bi = yiai − 1

4 ;
Make diagonal matrix A with elements ai;
Find v that solves

(X ′AX + λP)v = X ′b

Use s = vprev − v as a search direction;
Optimize LSVM in the direction s using the Change point method;
Set v = vprev + αs;
Set ct = v1 and wtj = vj+1 for j = 1, ...,m;

end
Algorithm 3: The αMaj algorithm for the absolute hinge error.

We are interested in comparing the speed of convergence and the loss values attained by the algorithms.
The comparison is carried out in Matlab 2017a, on a 2.6 Ghz Intel processor with 8 GB of memory under
Windows 10. All the approaches are tested with the optimal λ’s and p’s for each dataset and a stopping
criterion (Lt−1 − LSVM(ct,wt))/Lt−1 < ε = 10−7 taken from Groenen et al. (2008). Seven different data
sets from UCI repository (Newman et al. 1998) and LibSVM sources (Chang & Lin 2006) are used. Table 1
shows the data sets, where n is the total number of observations, n1 and n−1 are the number of observations
for the Class1 and Class−1 respectively and m is the number of variables.

Data set Source n n1 n−1 m Sparsity
Australian UCI 690 307 383 14 20.04
Breast.cancer.w UCI 699 458 241 9 00.00
Diabetes LibSVM 768 500 268 8 00.00
Heart.statlog UCI 270 120 150 13 00.00
Hepatitis UCI 155 123 32 19 39.86
Sonar UCI 208 97 111 60 00.07
Voting UCI 434 167 267 16 45.32

Table 1: Data sets

5.2 Results

Tables 2 and 3 below show the CPU times and the achieved loss values for the five approaches applied to the
seven data sets. As the optimized function is convex and coercive all the algorithms should find the global
minimum of the loss function. Ideally, this means they should give the same loss value under our pre-set
conditions.

First important observation is that only SVM-Maj (standard and with the doubled step length) and
αMajorization algorithms do consistently converge to the real global minimum. αMajorization in general
provides as good as or better loss function values than SVM-Maj but the difference is less than 10−3.
Coordinate and gradient descents behave worse and in general do not converge, stopping away from the
global optimum. Both are suffering from zigzagging closer to the minimum. Moreover gradient descent’s
performance strongly depends on the starting point: e.g. as seen from the Table 3, with the given starting

10

points, GD failed to converge for datasets 1, 4 and 5, however in general the results are always different and
are not predictable.

The speed of convergence is much more interesting. Both coordinate and gradient descent show some
great potential – based on our experiments they can be up to 20-25 times faster than SVM-Maj – but
as convergence is not guaranteed, they cannot be applied safely to solving the problem. αMajorization,
however, besides consistently reaching the smallest loss values, is also much faster than the standard iterative
majorization and it’s accelerated version with the double step length. The average improvement for the 7
datasets is 3.4 times over the SVM-Maj and 1.8 – over the doubled step majorization (which, as expected, is
around twice faster than the basic version). This is already a feasible advantage, but moreover it is known
(Groenen et al., 2008) that iterative majorization becomes slower for the large number of variables m and
the number of objects n, as each its iteration becomes slower. During the testing αMajorization showed up
to 8-9 times decrease in the number of iterations needed to converge to the global minimum. Indeed on the
larger datasets the CPU time decrease is consistently higher than on average reaches up to 6.3 times.

The graphical comparison of the performance of the algorithms is shown on the Figure 5. Here the
evolution of L − Lbest is plotted against the CPU time, where L is the loss value after a certain CPU time
used and Lbest is the minimal loss value achieved by any of the five methods. The graph further confirms that
the majorization approaches are better than the other two, and that αMajorization is a great improvement
over the SVM-Maj algorithm. It is also interesting to see that sometimes CD or GD clearly show a very fast
convergence, which again leads to the idea of their potential.

Data set p
CPU time

Maj 2Maj αMaj CD GD
Australian −0.5 0.4417 0.2338 0.1003 0.1908 1.4037
Breast.cancer.w 7.5 0.2432 0.1285 0.0512 0.0130 0.0128
Diabetes 1 0.2274 0.0818 0.0481 0.0478 0.0434
Heart.statlog 0 0.0136 0.0102 0.0125 0.0213 0.0639
Hepatitis 0 0.0101 0.0076 0.0069 0.0426 0.0095
Sonar 0.5 0.0234 0.0233 0.0198 0.0274 0.0280
Voting −5.5 0.5063 0.2217 0.0903 0.0635 0.0156

Table 2: CPU time comparison

Data set p
Loss value

Maj 2Maj αMaj CD GD
Australian −0.5 199.3379 199.3379 199.3365 199.3556 889.8765
Breast.cancer.w 7.5 68.5778 68.5778 68.5777 73.0607 68.6139
Diabetes 1 396.5750 396.5758 396.5751 396.5952 397.7805
Heart.statlog 0 92.1256 92.1249 92.1240 92.2704 156.8364
Hepatitis 0 101.3649 101.3650 101.3651 102.1506 157.3018
Sonar 0.5 121.5664 121.5669 121.5664 134.8765 122.1448
Voting −5.5 25.3687 25.3686 25.3684 26.0129 26.3085

Table 3: Loss value comparison

11

10-4 10-3 10-2 10-1 100 101

CPU time

10-5

100

105

L-
L be

st

Majorization
Double step majorization
Alpha Majorization
Coordinate descent
Gradient descent

(a) Australian

10-4 10-3 10-2 10-1 100

CPU time

10-6

10-4

10-2

100

102

104

L-
L be

st

Majorization
Double step majorization
Alpha Majorization
Coordinate descent
Gradient descent

(b) Breast.cancer.w

10-4 10-3 10-2 10-1 100

CPU time

10-6

10-4

10-2

100

102

104

L-
L be

st

Majorization
Double step majorization
Alpha Majorization
Coordinate descent
Gradient descent

(c) Diabetes

10-4 10-3 10-2 10-1

CPU time

10-8

10-6

10-4

10-2

100

102

104

L-
L be

st
Majorization
Double step majorization
Alpha Majorization
Coordinate descent
Gradient descent

(d) Heart.statlog

10-4 10-3 10-2 10-1

CPU time

10-6

10-4

10-2

100

102

104

L-
L be

st

Majorization
Double step majorization
Alpha Majorization
Coordinate descent
Gradient descent

(e) Hepatitis

10-4 10-3 10-2 10-1

CPU time

10-5

10-4

10-3

10-2

10-1

100

101

102

L-
L be

st

Majorization
Double step majorization
Alpha Majorization
Coordinate descent
Gradient descent

(f) Sonar

10-4 10-3 10-2 10-1 100

CPU time

10-6

10-4

10-2

100

102

L-
L be

st

Majorization
Double step majorization
Alpha Majorization
Coordinate descent
Gradient descent

(g) Voting

Figure 5: The evolution of L− Lbest for five methods for each dataset

12

6 Conclusion

In this paper, we developed an exact line search method which works in the framework of SVMs – the CPM.
It was tested in combination with several different search directions in application to the primal linear SVM
loss function with an absolute hinge error defined in the paper of Groenen et al. (2008).

The numerical experiments exhibited some great results. First of all, we found out that coordinate and
gradient descent methods do not in general converge to the global minimum. The problems of the gradient
descent methods were expected as its convergence for non-differentiable functions is ill-defined. Secondly,
combining CPM with the SVM-Maj algorithm we created the αMajorization algorithm and were able to
achieve major performance improvements, especially on larger datasets. This fact makes our algorithm
comparable to the best ones out there.

The main limitation of our method is that it only works with the absolute hinge error. Nevertheless,
there are no visible obstacles to adapt it to different hinges e.g. quadratic. Research in this direction is very
interesting: implementing the quadratic hinge would presumably allow for the problem to be tackled with
the steepest descent method, as the loss function becomes everywhere differentiable. In combination with
the CPM we expect the minimization to converge fast and accurately.

Finally, it is important to note, that there clearly is a room for code optimizations. It might lead to
improvements in computational time of the majorization step relative to the time used by the CPM search or
vice versa. For example, one could find an efficient solution to the set of linear equations which is required in
each iteration of the majorization algorithm or use a sophisticated sorting algorithm to speed up the CPM.
However, the number of iterations decreases significantly enough to state that αMajorization will generally
outperform the SVM-Maj algorithm.

13

A Appendix

A.1 Majorization with absolute hinge error

Here we show the quadratic majorizing function for the absolute hinge error derived in Groenen et al. (2008).
The majorizing function for Class−1 is as follows:

g−1(q) = a−1q
2 − 2b−1q + c−1.

The formal requirements for it are:

f−1(q, q) = g−1(q, q),

f ′−1(q, q) = g′−1(q, q),

f−1(−2− q) = g−1(−2− q),
f ′−1(−2− q) = g′−1(−2− q),

f−1(q) ≤ g−1(q).

It can be verified that the choice of

a−1 =
1

4
|q + 1|−1, (19)

b−1 = −a−1 −
1

4
, (20)

c−1 = a−1 +
1

2
+

1

4
|q + 1|, (21)

satisfies these requirements.
The process is similar for Class1. The formal requirements for the majorizing function

g1(q) = a1q
2 − 2b1q + c1.

are now:

f1(q, q) = g1(q, q),

f ′1(q, q) = g′1(q, q),

f1(2− q) = g1(2− q),
f ′1(2− q) = g′1(2− q),

f1(q) ≤ g1(q).

The appropriate choice for parameters is:

a1 =
1

4
|q + 1|−1, (22)

b1 = a1 +
1

4
, (23)

c1 = a1 +
1

2
+

1

4
|q + 1|, (24)

14

References

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on computational learning theory (pp. 144–152).

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of comp-
stat’2010 (pp. 177–186). Springer.

Chang, C.-C., & Lin, C.-J. (2006). Libsvm: a library for support vector machines, 2001. software available
at http.

Collins, M., Globerson, A., Koo, T., Carreras, X., & Bartlett, P. L. (2008). Exponentiated gradient
algorithms for conditional random fields and max-margin markov networks. Journal of Machine Learning
Research, 9 (Aug), 1775–1822.

De Leeuw, J. (1994). Block-relaxation algorithms in statistics. In Information systems and data analysis
(pp. 308–324). Springer.

Groenen, P., Nalbantov, G., & Bioch, C. (2008, April). Svm-maj: A majorization approach to linear support
vector machines with different hinge errors. Advances in Data Analysis and Classification, 2 (1), 17–43.
doi: 10.1007/s11634-008-0020-9

Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). {UCI} repository of machine learning
databases.

Vapnik, V. (1999). The nature of statistical learning theory (information science and statistics). Springer.

Wu, T. T., Lange, K., et al. (2010). The mm alternative to em. Statistical Science, 25 (4), 492–505.

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient descent algorithms.
In Proceedings of the twenty-first international conference on machine learning (p. 116).

15

