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Abstract

We use the Nelson-Siegel framework to fit and model the dynamics of the yield
curve. We compare models that allow for a time-varying decay parameter to the
widely used two-step-approach that was introduced by Diebold and Li (2006). Next
to the different models to fit the yield curve, we introduce a novice method, recently
used in forecasting realized volatility, to model the latent factors over time. This
method includes the standard errors of the factor coefficients that are obtained in
the first step of the process. We find that there is a clear trade-off between the
in-sample fit and the out-of-sample forecasting power. Robust factors prove to be
essential for the out-of-sample forecasting power.
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1 Introduction

The term structure of the yield curve has been of interest for market practitioners and
academia for quite some decades. Accurately fitting and forecasting the term structure
is of importance for bond portfolio managers as well as policy makers and risk managers.
Various models have gotten a lot of attention over the past years. The models used to
describe the yield curves can be roughly divided into three classes. The affine equilibrium
models, see for example Vasicek (1977), and the no-arbitrage models, see for example
Hull and White (1990), can be considered two popular methods to fit and forecast the
yield curve. However, Duffee (2002) showed that these models do not outperform the
Random Walk in an out-of-sample setting.

More recently, the contribution of Diebold and Li (2006) (hereafter, DL) gained a lot
of attention. They use a variation of the parsimonious factor model as described in Nelson
and Siegel (1987) (hereafter, NS), to obtain three latent factors that they interpreted as
the level, slope, and curvature of the yield curve. These latent factors are then modeled
overtime by means of (vector) autoregressive models. This approach is often referred to
as a two-step approach. Where, in the first step one fits the yield curve to obtain latent
factors. These factors are obtained by applying a simple regression, with the yields of
various maturities as depended variable, for each point in time. The coefficients that are
obtained for each independent variable in the regression can than be seen as time series.
Then, in the second step, one can model these time-series over time and reconstruct the
yield curve. This approach allows the user to both fit and model the yield curve over
time and touch upon the yield curve dynamics. Diebold and Li found that their model
significantly outperformed most of the benchmark models on the medium and longer
forecast horizons. Since the work of DL, the research regarding modeling the yield curve
has extended in various ways.

First of all, the two-step approach in DL was extended by Diebold, Rudebusch, and
Aruoba (2006) (hereafter, DRA) by means of a state-space model. A state-space model
allows the user to instantaneously model and interpret the three factors. After the work
of DRA various researchers have used the state-space model to model the yield curve.
Diebold, Li, and Yue (2008) use the state-space model to incorporate a global yield model,
that models the yield curve for various countries. They find that global factors exist
based on four developed countries, but that there are some differences between countries.
Morita and Bueno (2008) used the same framework to look at emerging countries and
find that there are linkages between developed and emerging countries. Moreover, Bae
and Kim (2011) investigate the global and regional factors for Asian countries. Their
results are in line with those of Diebold et al. (2008) and Morita and Bueno (2008) yet,
very limited regional differences are noticed. The papers mentioned in this paragraph all
focus on regional differences. Yu and Zivot (2011) however looks at US corporate bonds
with different investment ratings including both investment grade and high yield bonds.
They also us the State-space model, but find that only for high yield bonds with short
maturities, the state-space models outperforms the two-stage model of DL in an out-
of-sample setting. However, Caldeira, Moura, and Portugal (2010) finds that the state-
space model outperforms the two-stage model of DL, when looking at data on Brazilian
government bonds. Furthermore, Yu and Zivot find suggestions that parameters might be
time-varying. Koopman, Mallee, and van der Wel (2010) use this idea and implement a
state-space model that allows for time-varying parameters. They find that the in-sample
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fit is improved. However, we do not know whether this model forecasts better, since
Koopman et al. do not focus on out-of-sample analysis.

Secondly, besides the state-space models, Yu and Salyards (2009) look at US corporate
bonds with different investment ratings, using the two-step approach. They find that
depending on the investment rating, different values of λ will give a better fit. They
also find that λ might be time-varying, but that a good in-sample fit does not guarantee
a good out-of-sample forecast. Almeida, Gomes, Leite, and Vicente (2007) also suggest
that the value for the decay parameter in DL might not be optimal in each situation.
They look at Brazilian government bonds and choose the value of λ based on one-step-
ahead forecasts for a ‘train’ sample. Furthermore, they find that implementing a second
curvature factor in the NS framework significantly outperforms the DL model.

A lot of research has been done on parsimonious factor models. However, to model
and forecast the dynamics of the yield curve, most research assumes that the decay
parameter λ is stable over time. Some research has been dedicated to time-varying
parameters such as Koopman et al.. Also, Yu and Zivot find suggestions that λ might
vary over time. An advantage of using a fixed value of λ is that it ensures that the
latent factors are more stable over time. However, little is known about the effect of
loosening the restrictions of this parameter. Instability in the latent factors might result
in weak forecasting results, when applying autoregressive models. Bollerslev, Patton,
and Quaedvlieg (2016), recently used a new model to forecast realized volatility in option
prices that takes into account the error of estimation of the previous step. They proved
that these types of models significantly outperformed the autoregressive models. Since
this method is very recent and only tested for realized volatility, we are interested if this
might also work for yield curve forecasting.

We will extend existing literature, regarding modeling the yield curve, in two ways.
The first extension focuses on the first step of the DL framework, where we fit the yield
curve. We will look at the dynamics at play when fitting the yield curve. We relax the
assumption of DL and compare different restrictions on the Nelson-Siegel formula when
fitting the yield curve. The second extension is related to modeling the latent factors and
uses the idea of Bollerslev et al. (2016) to take into account the estimation error that we
made in the first step. This paper is therefore an extension of the original paper by DL.
Although the use of state-space models is very popular among academia, there is little
evidence that state-space models outperform the original models of DL. Therefore we
choose to only investigate the effect of time-varying parameters in the two-step approach.

The rest of this paper is structured as follows. Section 2 discusses the methods and
data used to fit and model the yield curve. We start of by briefly introducing the Nelson-
Siegel frame work, after which we discuss the data that we use in our further analysis.
The section continues by describing how we intend to fit the yield curve and finally
how we model the latent factors over time. In section 3 we analyze how each of the
models, discussed in the previous section, is able to fit the yield curve. Furthermore,
we analyze how the latent factors behave over time. Then, section 4 analyses how well
each of the models performs in an out-of-sample setting. We will compare the different
models that were used to fit the yield curve, as well as different models that were used to
model the latent factors. Finally, in section 5 we conclude and discuss further research
opportunities.
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2 Methods and Data

In this section we describe the data that we use in our analysis as well as the methods
used in order to fit the yields and model the latent factors that we obtain. We start
of by introducing the Nelson-Siegel framework, which is the basis of fitting the yield
curve. Next, we describe the data that we use in our analysis. The main part of this
section discusses the way how the yield curve is fitted. The assumption of a stable
decay parameter is compared to a method that allows for a time-varying λ. Also, we
will introduce four other models that restrict the latent factors. This section ends by
describing how we model the latent factors over time.

2.1 The Nelson-Siegel yield curve

The original formula introduced by NS in order to fit the yield curve is the following:

yt(τ) = b1,t + b2,t

(
1− e−λtτ

λtτ

)
+ b3,te

−λtτ (1)

Where yt denotes the continuously compounded zero-coupon nominal yield to maturity,
βit the three latent factors, which are widely interpreted as the level, slope and curvature
of the yield curve, λt the decay parameter, and τ as the time until the bond matures,
given in months. Throughout this paper, when we are talking about maturities we will
always refer to the time to maturities denoted in months.

DL altered the original equation because the loadings of b2 and b3 have a similar
monotonically decreasing shape. DL argue that this may result in multicolinearity and
loss of interpretation of the factors. Therefore, DL use the following formula where
b1t = β1t, b2t = β2t + β3t, and b3t = β3t:

yt(τ) = β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
(2)

As mentioned earlier, the parameters βit represent the level, slope and curvature of
the yield curve. Furthermore, DL show that they can also be interpreted as long-term,
short-term and medium-term parameters, respectively. They also link the latent factors
to the actual yields where β1t ∼ yt(120), β2t ∼ yt(120) − yt(3), and β3t ∼ 2yt(24) −
(yt(120) + yt(3)), which we will refer to as the theorethical level, slope and curvature.
The decay parameter, λt, in equations (1) and (2) influences the decay rate of the slope
and curvature parameter. Small values for λ result in a slow decay, while large values
imply a fast decay in the slope and curvature parameter. Furthermore, the value of
the decay parameter controls where the curvature parameter reaches its maximum. In
the work of DL the value of λt is assumed stable over time and has a value of 0.0609,
which implies that the curvature parameter reaches its maximum at a maturity of thirty
months.

To visualize the effect of the decay parameter on the other parameters, figure 1 shows
the factor loadings for different values of λ, plotted against the time to maturity. Here
figure 1c shows the factor loadings as used by DL. The other three panels show the three
factors where the value of λ is chosen such that the curvature parameter is maximized
at 6, 12, and 60 months. Only the slope parameter and curvature parameter are affected
by λ, but this is evident from equations (1) and (2).
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(a) λ = 0.2989, β3t maximized at 6 months (b) λ = 0.1494, β3t maximized at 12 months

(c) λ = 0.0609, β3t maximized at 30 months (d) λ = 0.0298, β3t maximized at 60 months

Figure 1: The three factor loadings (level, slope, and curvature) plotted against the time to maturity,
given a certain value for λ. In each panel, the level is shown in the solid line, the slope in the dashed
line, and the curvature in the dotted line. The level is equal to 1 for all maturities, the slope equals(

1−e−λtτ
λtτ

)
, and the curvature equals

(
1−e−λtτ
λtτ

− e−λtτ
)

. Where τ is the time to maturity in months.

2.2 Data

In our research, we use so-called “unsmoothed Fama-Bliss yields” for modelling and
forecasting the yield curve. This name is derived from the researchers (Fama and Bliss
(1987)) who came up with this, now very popular, approach to constructing yield curves.
The “unsmoothed Fama-Bliss yields” are obtained by averaging the corresponding “un-
smoothed Fama-Bliss forward rates”. These rates are obtained from bonds that are
taxable and non-calable, measured on a monthly basis. For the complete methodology
on constructing “unsmoothed Fama-Bliss yields” we refer to the original work of Fama
and Bliss. Throughout this paper we will refer to the “unsmoothed Fama-Bliss yields”,
as yields.

For our research, we gratefully use the dataset that was provided by van Dijk, Koop-
man, van der Wel, and Wright (2014). This data set considers the “unsmoothed Fama-
Bliss yields” for the U.S treasury given on a monthly basis. Basically, it is an extension
of the database that was used originally by DL. It is extended in the sense that the data
starts earlier, also covering a period before 1985, and ends later, in the end of the Finan-
cial economic crises from 2007 and 2008. The complete sample runs from January 1970
(1970:M01) until December 2009 (2009:M12) and includes the following (fixed) maturities
3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months.
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Table 1 shows the descriptive statistics of the data as well as a theoretic level, slope,
and curvature that were introduced above. Where the theoretic level is equal to the yield
on the ten years bonds, the slope equals the difference between the ten years and three
months bond yield, and the curvature as the difference between two times the two years
bond yield and the sum of the three months and ten years bond yield. From table 1 we can
clearly derive that the yields are on average upward sloping and become more persistent
for longer maturities. This is also reflected in the autocorrelations. Furthermore, we
observe that the slope and curvature show a relatively high standard deviation compared
to their sample mean and the theoretical level.

Table 1: Descriptive statistics, yields

Maturity (Months) Mean Std. dev. Min. Max. ρ̂1 ρ̂12 ρ̂30
3 5.766 3.071 0.041 16.019 0.983 0.785 0.448
6 5.969 3.098 0.150 16.481 0.984 0.800 0.482
9 6.083 3.089 0.193 16.394 0.985 0.809 0.509
12 6.166 3.053 0.245 16.101 0.985 0.815 0.528
15 6.253 3.029 0.377 16.055 0.985 0.824 0.553
18 6.324 3.009 0.438 16.219 0.986 0.832 0.574
21 6.387 2.990 0.532 16.173 0.986 0.836 0.590
24 6.418 2.943 0.532 15.814 0.986 0.839 0.605
30 6.512 2.878 0.819 15.429 0.986 0.848 0.629
36 6.600 2.832 0.978 15.538 0.987 0.853 0.646
48 6.756 2.755 1.019 15.599 0.988 0.860 0.675
60 6.852 2.671 1.556 15.129 0.988 0.867 0.697
72 6.964 2.638 1.525 15.108 0.989 0.875 0.714
84 7.026 2.573 2.179 15.024 0.989 0.871 0.723
96 7.069 2.536 2.105 15.052 0.990 0.880 0.728
108 7.095 2.519 2.152 15.114 0.990 0.881 0.730
120 (level) 7.067 2.465 2.679 15.194 0.989 0.869 0.723
slope 1.301 1.362 -3.191 3.954 0.939 0.432 -0.130
curvature 0.003 0.863 -2.174 2.905 0.880 0.467 0.147
Note We show the mean, standard deviation, minimum, maximum, and sample autocorrelations

of the “unsmoothed Fame-Bliss yiels” for all available maturities, given in months. The
descriptive statistics are calculated using the full sample from 1970:M01 until 2009:M12.
Level, slope, and curvature relate to the theoretical level, slope, and curvature. Where the
theoretical level is equal to yt(120), the theoretical slope is equal to yt(120)− yt(3), and the
theoretical curvature is equal to 2yt(24)− (yt(120) + yt(3)).

2.3 Fitting yield curves

To fit the yield curve we apply least squares to equation (2). We apply this regression for
each point in time, where we use the set of all available maturities. This means that for
every month we have 17 observations of yields and their corresponding time to maturity.
Since the main goal of this paper is to discover the effect of relaxing λ, we compare a
model with a fixed λ to a model with a time-varying λ.
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For the model where we fix λ we use the same value as proposed in DL, namely
λt = 0.0609 for all t. As a result of fixing λ equation (2) becomes linear in βit. Therefore,
we can apply ordinary least squares (OLS) to obtain the coefficient values. For each day
we obtain three coefficient values that we stack in time series. Later on we will model
these time series, in order to come up with forecasts for the yields. A model that allows
for time-varying parameters is somewhat more complicated, since relaxing λ results in
that equation (2) becomes nonlinear in the parameters. Therefore we will apply nonlinear
least squares (NLS) to fit the yield curve. This comes down to minimizing the following
function for each point in time:

minSt(β) =
∑

τ∈m
(yt(τ)− f(τ, βt, λt))

2 (3)

With yt(τ) being the observed “unsmoothed Fama-Bliss yields”, τ the maturity in months,
with τ ∈ m = {3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 120}, and where:

f(τ, βt, λt) = β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
(4)

Equation 3 is optimized by using the Levenberg–Marquardt algorithm. This results
in four parameter (β̂1t, β̂2t, β̂3t, λ̂t) values that we obtain for every month, such that we
obtain four time series. We choose the parameter values obtained from the OLS regression
to be the starting values for the NLS regression.

To verify that on average these models both capture the yield curve, figure 2 shows
the fit of the average yields for each maturity, that are given in table 1. Panel 2a shows
the fit for the yield curve by using OLS and a value of λ equal to 0.0609 Panel 2b shows
the fit using NLS. From figure 2 it is clear that both models give approximately the
same fit. But, more interestingly is whether there is a difference in the parameter values.
For the OLS regression these are 7.350, -1.651, -0.152, 0.0609 for β1t, β2t, β3t, and λt
respectively. For the NLS regression the parameter values to fit the yield curve are 7.354,
-1.650, -0.0003, and 0.0551 respectively. The level parameter and slope parameter are
very close to each other, however we observe a larger difference between the curvature
parameter and decay parameter. Before we conclude anything about the two models, let
us first explore the dynamics of the parameters in more detail.

(a) OLS (b) NLS

Figure 2: Actual (data-based) yields, given in table 1 and the fitted (model-based) average yields. The
x-axis shows the time to maturity in months, whereas the y-axis shows the yield.
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Plotting the parameters, obtained from the OLS and NLS model, over time shows
that the two models behave differently from time to time. In figure 3 we see that for
certain periods the factor values are very different from each other.

Panel (a) shows the level factor of both the OLS and the NLS regression, together
with the theoretical level. For most observations the OLS and NLS approach have a
similar course. However, we see some extreme observations in certain periods. The
two periods with the most extreme observations are the periods from 1974 until 1978
and from 2006 until 2009. The correlation between the theoretical level and the level
parameter obtained from the OLS and NLS model are 0.98 and 0.04 respectively. The
correlation between the OLS and NLS model for the level parameter is even lower, 0.03.
These low correlations are most likely due to the extreme values that we observe in the
parameter values of the NLS regression. Panel (b) shows the time series of the inverse
of the slope parameter, −β2t, obtained from the OLS and NLS model. The inverse is
taken because we defined the difference of the theoretical slope as yt(120) − yt(3). The
correlations of the theoretical slope and β2t are -0.98 and -0.05, for the OLS and NLS
method respectively. The correlations between the OLS and NLS model 0.01. Panel (c)
shows the curvature factor. Correlations with the theoretical curvature 0.99 and 0.07, for
the OLS and NLS model respectively, whereas the correlations between the two models
is 0.05. The final panel (d) shows the decay parameter λ of the OLS and NLS model. For
the OLS model this value is fixed at 0.0609 over the full sample. The two decay factors
have 0 correlation.

In contrary to what figure 2 might suggest, the factors obtained from the OLS and
NLS model are very different for some time periods. Also when comparing the factors
based on their correlation, we conclude that the two models are not alike. However, this
does not say anything about how the two model are able to fit the yield curve. In fact,
we would expect that the NLS model will fit the data better. Yet, the downside of the
extreme values in the factors of the NLS model is that they are harder to predict and
might lead to poor forecasting results. Another problem the NLS model provides, is that
the factors are more correlated to each other, compared to the NLS model. For the NLS
model the highest correlation is 0.38, whereas for the NLS model the highest correlation
is -0.89.

Because of the properties of the factors obtained from applying NLS, without imposing
any restrictions, we will impose constraints on the coefficients. In the next section we
will propose four new models that make a restriction on each of the factors in the NLS
model. In section B we will look into the in-sample properties of all the models in more
detail.

2.4 Restrictions on NLS

Figure 3 suggests that applying NLS without imposing restrictions leads to non-persistent
factors. This might give a better in-sample fit, but it will also make forecasting more
difficult. The question arises what kind of restrictions should be implemented in order
to obtain more persistent factors that are easier to forecast, but on the other hand still
give a good enough in-sample fit. In this section we will propose four new models. In all
of the models we start from the unrestricted NLS model and impose a constraint on one
of the four factors. In this way we are able to investigate the robustness of each factor
on the fit of the yield curve as well as the effect on the forecasting power.
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(a) Level

(b) Slope

(c) Curvature

(d) Decay (λ)

Figure 3: Parameter values for the level, slope, curvature, and decay. We show the parameter values
obtained from the ordinary least squares (OLS) and the nonlinear least squares (NLS) model, as well as
the theoretical level, slope and curvature. The theoretical level, slope, and curvarture are displayed with
a black solid line. The OLS and NLS factors are displayed with a black and grey dashed line respectively.
Panel (a) shows the level factor, β1t, from the OLS and NLS method as well as the theoretical level.
Panel (b) shows the inverse of the slope factor, −β2t, as well as the theoretical slope. Panel (c) shows the
curvature factor, β13, as well as the theoretical curvature. Finally, panel (d) shows the decay parameter,
λt, obtained from the NLS model, as well as the fixed value (λt = 0.0609) used in the OLS model.
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For sake of notation we will refer to the unrestricted NLS model as Model 0. In Model
1 we impose a restriction on the level parameter. Because of the high correlation between
the OLS level factor and the theoretical level factor we will restrict the level factor to be
equal to the theoretical level, such that we will apply NLS to the following equation:

yt(τ) = yt(120) + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
(5)

In Model 2 and Model 3 we restrict the slope and curvature parameter using the same
logic as in Model 1. We set β2t and β3t equal to the inverse of the theoretical slope and
the theoretical curvature respectively. The two models are shown in equation (6) and
(7).

yt(τ) = β1,t + [yt(120)− yt(3)]

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
(6)

yt(τ) = β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ [2yt(24)− [yt(120)− yt(3)]]

(
1− e−λtτ

λtτ
− e−λtτ

)
(7)

Finally, in model 4 we make a restriction on the parameter λt. In contrast to the other
three models we do not fix the parameter, because this would simply be the OLS model.
Therefore, we allow λt to vary over time but within boundaries, such that the curvature
parameter reaches it maximum value between 24 and 36 months. These two values are
most commonly used in previous research. The model looks as follows:

yt(τ) = β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
s.t. 0.0498134 ≤ λt ≤ 0.0747201

(8)

2.5 Modelings the latent factors

After fitting the yield curve, we want to model the 4 latent factors over time in order to
forecast the whole yield curve for different time horizons. Besides the standard autore-
gressive models we introduce a new model that is inspired on the work of Bollerslev et al.
(2016). They refer to this model as an ARQ model, which they use to model and forecast
realized volatility on a dense interval. The ARQ model is an autoregressive model where
the lagged variable is linearly dependent on some error term. We gratefully use this idea
to define our ARQ(1) model as:

βt = φ0 + (φ1 + φ1Q

√
Qt−1)βt−1 + εt (9)

With
√
Qt being the standard error of the parameter β in the first regression at time

t, and βt ∈ (β1t, β2t, β3t, λt). One can easily see that the ARQ(1) becomes an AR(1)
model when Q approaches 0, and penalizes, so to say, observations with a large error.
In this sense we are actually weighing the past observations and give a lower weight to
dates where we were not able to get a perfect fit of the yield curve, and higher weights to
observations where we fit the yield curve better. Therefore we expect φ1Q to be negative.
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A potential downside of this way of modeling the factors is that if the standard error
becomes to big it might occur that φ1 + φ1Q

√
Qt < 0. To solve this we can incorporate

a logistic function to model the factors, like in equation (10). We refer to this model as
ARQL(1).

βt = φ0 +
φ1

1 + exp(φ1Q(
√
Qt−1 − c))

βt−1 + µt (10)

With c being a constant. We choose c to be the average of the standard errors of the
three factors obtained from applying OLS.

We compare the ARQ(1) and the ARQL(1) model to a simple autoregressive model
with one lag (AR(1)), which has proven to be a hard benchmark to beat in previous
research, and a Random Walk (RW) model. We define the AR(1) and the RW model in
equation (11) and (12) respectively.

βt = φ0 + φ1βt−1 + ηt (11)

βt = βt−1 (12)

3 In-sample Analysis

In this section we analyze the in-sample statistics of the models that we use to fit the
yield curve in more detail. In total we analyze six models. The model where we obtained
the factors by applying OLS, and five other models where we applied NLS (Model 0 up
to and including Model 4). We analyze the models based on their descriptive statistics
of the factors and later by analyzing the residuals of the fit.

3.1 Factor analysis

Table A5 (appendix A) shows the mean, standard deviation, minimum, maximum, au-
tocorrelations, and the p-value of the Augmented Dickey-Fuller (ADF) test statistic. In
panel (a) and (b) we find the summary statistics of the factors that were obtained from
the OLS and (unrestricted) NLS regression. It is evident that the mean of all factors
from the NLS regression are different from those obtained from the OLS regression. Also,
we find that the decay parameter λ is much higher than the 0.0609 that was used in the
OLS regression. Also, we see that the minimum and maximum values that the factors
reach are much larger in the NLS model. This also explains the high standard devia-
tion and the low autocorrelations. In fact, we find that the 12-month and 30-month lag
autocorrelations are very close to zero.

It is clear that the NLS model will gives extreme values. In panels (c)-(f) we show
the four models with a restriction on one of the factors. Panel (c) show the summary
statistics for Model 1, where we set the level factor equal to the theoretical level. The
mean of the slope and curvature factor seem somewhat more reliable, however, from
the standard deviation as well as the minimum and maximum values we conclude that
extreme values still exists. Also, the decay parameter is higher than in the unrestricted
NLS model. Furthermore, the auto correlations for all lags are very close to zero. In
Model 2 (panel (d)) we set the slope parameter equal to the theoretical slope. We now
see that the mean for all factors are approaching those of the OLS model. Furthermore,
we see that the level parameter as well as the decay parameter move between reasonable
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bounds. The curvature parameter still shows some large negative values. However, these
are limited since the standard deviation is not even three times that of the OLS model.
Although the second model seems to remove quite some extreme values, Model 3 does
not succeed at this point. The level, slope, and decay parameter again show quite some
extreme values, although less so as in the NLS model and Model 1. Finally, Model 4
shows again promising results. The mean of all four factors are closely related to that of
the OLS model, there are no extreme values across the whole sample and we find that
the autocorrelations are significantly different from zero for the first three factors. It is
clear that restriction on the decay parameter λ works best in reducing extreme values.
Although, it has to be noted that it remains still hard to say what the precise effect of
each restriction is on the in-sample fit and out-of-sample prediction power.

The last column in table A5 shows the p-value of the ADF test. This test whether
there is a unit root in the time series. This is an indication whether a time series is
stationary or not. We conclude that most of the time series are stationary. Therefore,
we will model the factors without taking the first difference.

3.2 Residual analysis

To evaluate how well the models fit the yield curve, table B6 (appendix B) shows the
in-sample residual statistics. We show the mean, standard deviation , mean absolute
error (MAE), root mean squared error (RMSE), and the autocorrelations of the errors
on a yield level. To obtain these numbers we first calculated the yields by using the
factors obtained from the regression to fit the yield curve. The errors are then calculated
by taking the difference of the actual observed data points and the fitted yields for
every given month. We choose to only display the 3, 12, 36, 60, and 120 month yields.
Together they represent the short-, medium-, and long-term maturities, and therefore
give a representative picture of the whole set of maturities.

Let us first compare the OLS and NLS models. The MAE and RMSE is lower for
the NLS model for all maturities compared to the OLS model. Also, the errors seem to
be less correlated for most maturities. Both models fit the medium-term maturities best
and the short term maturities worst. Finally, the errors obtained from the NLS method
are more persistent since they show a lower standard deviation. These results show that
although the NLS method might give some extreme values in the factors, they do result
in a better overall in-sample fit.

Now we want to see what the effect of the restrictions on the NLS model is on the fit
of the yield curve. Model 1, where we fix the level parameter, shows the highest MAE
and RMSE for the yields of a 120-month maturity bond. This is interesting, since we
take the actual value of these bonds as an explanatory variable in the regression. One
explanation might be that the model allows for low value for λ, however this might also
occur in the unrestricted NLS. Also, we find the highest correlation in the errors for the
120-month maturity. In general, Model 1 gives a worse fit than the unrestricted NLS
model. For the short-term maturities it still gives a better fit than the OLS model,
however for the long-term maturities the OLS model performs better. Model 2 clearly
under performs compared to the NLS model. Since the theoretical slope can be seen as
the short-term factor, as argued by DL, we would expect the best fit for the short-term
maturities. However, we see that the maturities that are used in the regression, in this
case the 3-month and 120-month maturities, give the worst fit. Again we see relatively
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high autocorrelations in the errors for the short-, and long-term maturities. Model 3
shows the same pattern as Model 2. Again, we see the highest autocorrelations for the
short-, and long-term maturities. The model clearly under performs to the unrestricted
NLS model based on the RMSE. The RMSE is however, slightly lower compared to the
OLS model except for the 3-months maturity. Finally, Model 4, scores better than the
OLS model, but worse than the NLS model based on the RMSE.

Overall, the unrestricted NLS gives the best in-sample fit compared to all other mod-
els. Yet, we saw in table A5 that this gives very sensitive factors. Clearly there is a
trade-off between in-sample fit and the sensitivity of the factors. In the next section we
will see how this sensitivity influences the out-of-sample forecasting power.

4 Out-of-Sample Analysis

In this section we show how well the models, described in previous section, are able to
capture the yield curve dynamics over time.

4.1 Forecasting methodology

For simplicity we we refer to the latent factors (β̂1t, β̂2t, β̂3t, λ̂t) as β̂t. We model the
latent factors β̂t in three different ways. A simple AR(1) model, an ARQ(1) model, and
an ARQL(1) model that were described in section 2.5. For the AR(1) model, forecasts
for the latent factors are obtained as follows:

β̂t+h|T = φ̂0 + φ̂1βT (13)

For the ARQ(1) model:

β̂t+h|T = φ̂0 + (φ̂1

√
QT )βT (14)

And for the ARQL(1) model:

β̂t+h|T = φ̂0 +
φ̂1

1 + exp(φ̂1Q(
√
QT − c))

βT + µt (15)

Using the forecasted factor values we are able to reconstruct the yield curve. Forecasting
errors are then obtained by comparing the forecasts to the actual yield rates. We then
evaluate and compare the different models based on their RMSE. We define the RMSE
as:

RMSE(τ) =

√√√√√T−h∑
t=1

(yt+h(τ)− ŷt+h(τ))

n
(16)

Where ŷt+h(τ) is defined as:

ŷt+h(τ) = β̂1,t+h + β̂2,t+h

(
1− e−λ̂t+hτ

λ̂t+hτ

)
+ β̂3,t+h

(
1− e−λ̂t+hτ

λ̂t+hτ
− e−λ̂t+hτ

)
(17)

We will look at three forecasting horizons: 1-month-ahead, 6-months-ahead, and 12-
months-ahead. We use a moving window of ten years (120 months) to generate the
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forecasts. Furthermore, to keep all forecasting window equal we generate forecasts from
1981:M01 until 2009:M12, meaning that we have 348 forecasting points for each maturity.
We will use a direct forecasting method for the 6-, and 12-months-ahead forecasting
horizons.

4.2 Forecast evaluation

In tables 2, 3, and 4 we show the RMSE for all model combinations. Six models to fit the
yield curve, and four models to model the factors. This results in a total of 24 models.
For each model we show the RMSE for five maturities; 3, 12, 36, 60, and 120 months.

Table 2: 1-step-ahead forecast

Maturity OLS NLS Model 1 Model 2 Model 3 Model 4
Panel a: ARQL(1)

3 0.479 131.0 12.87 0.572 8.855 0.541
12 0.422 119.5 6.607 0.518 6.194 0.525
36 0.400 111.6 2.541 0.487 87.18 0.532
60 0.385 111.3 1.539 0.429 3116 0.520

120 0.362 112.1 0.807 0.366 8.6E+08 0.494

Panel b: ARQ(1)
3 0.476 47.91 8.402 0.559 9.089 0.473

12 0.415 22.10 12.33 0.493 16.07 0.424
36 0.397 7.790 153.7 0.449 23.95 0.401
60 0.381 7.344 2009 0.404 26.18 0.384

120 0.357 9.201 1.3E+06 0.360 27.87 0.357

Panel c: AR(1)
3 0.473 79.85 5.401 0.564 8.498 0.469

12 0.419 8.872 1.284 0.499 19.52 0.426
36 0.399 12.49 0.599 0.474 25.65 0.406
60 0.383 18.19 0.452 0.426 26.92 0.390

120 0.359 22.69 0.384 0.371 27.82 0.362

Panel d: Random Walk
3 0.465 0.447 0.458 0.488 0.455 0.461

12 0.414 0.421 0.419 0.415 0.421 0.414
36 0.404 0.394 0.412 0.407 0.392 0.402
60 0.389 0.380 0.378 0.390 0.382 0.387

120 0.365 0.369 0.427 0.368 0.379 0.364

Note We show the root mean squared error (RMSE) for all model combinations. Six models to fit
the yield curve and obtain the latent factors, and four models to model the factors. This results
in a total of 24 unique forecasts for the yields, that are obtained from a 1-month-ahead forecast.
We show RMSE for five different maturities; 3, 12, 36, 60, and 120 months. The lowest RMSE
for each maturity is depicted in bold.

The RMSE’s for the 1-step-ahead forecasting results are shown in table 2. First let
us compare the six models that were used to fit the yield curve. Overall, we conclude
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that the OLS model is superior to all other models. The Random Walk model however,
does not give a clear winner, since the results are closely related. The results of the four
models to model the factors depend on which model is used to obtain the factors. The
Random Walk gives the lowest RMSE for the NLS model, Model 1, and Model 3. There
is no clear winner among the other three models.

The 6-step-ahead forecast are shown in table 3. Again, we notice that the OLS model
performs best for the ARQL(1) and AR(1) model. However, the forecasts from ARQ(1)
model given the factors obtained from Model 4 shows a slightly lower RMSE for the
short-, and long-term maturities. In general, we now see that the Random Walk model
performs worse compared to the other three models, except when the factors from the
NLS model or Model 3 are used. Model 1 performs better on the long-term maturities
when using the ARQL(1) and AR(1) model. However, the ARQ(1) model performs very
poorly, given the factors from Model 1.
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Table 3: 6-step-ahead forecast

Maturity OLS NLS Model 1 Model 2 Model 3 Model 4
Panel a: ARQL(1)

3 0.491 130.9 13.25 0.595 7.931 0.604
12 0.435 122.9 6.951 0.548 6.053 0.604
36 0.413 116.8 2.658 0.513 1312 0.621
60 0.398 116.2 1.608 0.451 1.6E+06 0.614

120 0.372 116.2 0.835 0.384 1.4E+14 0.592

Panel b: ARQ(1)
3 0.502 158.9 7.495 8161 29.18 0.496

12 0.437 26.38 47.72 1.4E+23 33.78 0.444
36 0.422 220.4 1.4E+08 6.5E+73 38.50 0.425
60 0.408 268.8 3.2E+16 3E+124 39.85 0.407

120 0.376 221.9 8.7E+35 inf 40.90 0.374

Panel c: AR(1)
3 0.479 37.26 5.508 0.576 6.412 0.476

12 0.428 9.439 1.448 0.513 14.05 0.437
36 0.406 13.56 0.643 0.485 18.38 0.416
60 0.389 19.88 0.470 0.437 19.26 0.399

120 0.364 25.61 0.388 0.379 19.87 0.369

Panel d: Random Walk
3 1.250 1.238 1.240 1.259 1.243 1.248

12 1.183 1.196 1.193 1.187 1.192 1.185
36 1.081 1.069 1.077 1.081 1.063 1.079
60 1.000 0.991 0.988 0.998 0.990 0.996

120 0.896 0.905 0.923 0.892 0.917 0.897
Note We show the root mean squared error (RMSE) for all model combinations. Six models to fit

the yield curve and obtain the latent factors, and four models to model the factors. This results
in a total of 24 unique forecasts for the yields, that are obtained from a 6-month-ahead forecast.
We show RMSE for five different maturities; 3, 12, 36, 60, and 120 months. The lowest RMSE
for each maturity is depicted in bold.
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Finally, the 12-step-ahead forecasts are shown in table 4. Again, we see that the OLS
model performs best when modelling the factors with either the ARQL(1), ARQ(1), or the
AR(1) model. Given the factors from the OLS model all these three models outperform
the Random Walk model. The same three models also outperform the Random Walk
model given the factors from Model 4. Model 2 also outperform the Random Walk model
when using the ARQL(1) or AR(1) model. However, the ARQ(1) model provides poor
forecasting results given the factors from Model 2. Model 1 and Model 3 perform poorly
when using the ARQL(1), ARQ(1), or AR(1) model.

Table 4: 12-step-ahead forecast

Maturity OLS NLS Model 1 Model 2 Model 3 Model 4
Panel a: ARQL(1)

3 0.504 143.3 12.11 0.616 6.963 0.643
12 0.448 135.8 6.462 0.569 6.326 0.653
36 0.423 126.6 2.524 0.523 13.61 0.668
60 0.405 123.9 1.534 0.459 2346 0.661

120 0.379 122.1 0.799 0.392 4.3E+09 0.643

Panel b: ARQ(1)
3 0.512 68.77 206.6 7.4E+04 53.13 0.519

12 0.449 112.5 2628 6.4E+26 49.54 0.465
36 0.433 287.3 6.8E+16 6.7E+84 41.78 0.441
60 0.417 307.0 6.5E+29 7E+142 35.45 0.420

120 0.382 227.9 1.4E+62 inf 24.15 0.382

Panel c: AR(1)
3 0.483 28.70 5.109 0.590 2.361 0.482

12 0.434 10.23 1.376 0.528 5.456 0.445
36 0.410 14.24 0.653 0.493 8.038 0.423
60 0.392 20.46 0.475 0.442 8.678 0.403

120 0.366 26.19 0.385 0.383 9.281 0.371

Panel d: Random Walk
3 1.981 1.963 1.963 1.975 1.975 1.979

12 1.856 1.869 1.868 1.864 1.862 1.857
36 1.611 1.601 1.604 1.608 1.597 1.610
60 1.458 1.451 1.451 1.457 1.451 1.456

120 1.316 1.322 1.333 1.309 1.333 1.316
Note We show the root mean squared error (RMSE) for all model combinations. Six models to fit

the yield curve and obtain the latent factors, and four models to model the factors. This results
in a total of 24 unique forecasts for the yields, that are obtained from a 12-month-ahead forecast.
We show RMSE for five different maturities; 3, 12, 36, 60, and 120 months. The lowest RMSE
for each maturity is depicted in bold.
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Overall, we see that using an AR(1) given the factors from the OLS regression gives
the best forecast for especially the longer forecasting horizons. We find that for the longer
forecasting horizons the ARQL(1) and the ARQ(1) can obtain better forecasts than the
Random Walk, however, in some situations they give very poor forecasting results. Model
1 and Model 3 do not give proper forecasting results. This might be due to the fact that
we still obtain extreme values, although we restrict the NLS model. All these forecasts
are obtained from the full forecast sample. In the next subsection we will compare two
smaller sub-sample to see how these models perform at different time periods.

4.3 Sub-sample evaluation

So far we have only looked at the forecasting results over the full sample. The poor
forecasting results might be due to the fact of extreme values. To see if this is actually
the case we make two sub-samples. One that contains a lot of extreme values, and one
that does not. The first sample, ranges from 1981M01-1985M12, and the second ranges
from 2000M01:2004M12. Both samples contain 60 observations. Since we use a moving
forecasting window of 120 months, we chose these two sample based on the amount of
extreme values in the period before the two forecasting samples. The period before 1981
shows a lot of extreme values for the factors that are obtained from the models where we
applied NLS. The period before 2000 however, does not have that many of these extreme
values in the factors. Therefore, one would expect that the second sample gives better
forecasting results.

Table C7 (Appendix C) shows the RMSE for these two sub-samples, for all three
forecasting horizons. In the second sample the RMSE’s are lower than in the first sample
for all model combinations. However, the models that use the factors from the OLS
regression still give the best forecasting results. Next, if we compare the ARQL(1),
ARQ(1), AR(1), and Random Walk model we see that there is no clear winner among
the models.

5 Conclusion

In this paper we attempt to fit the yield curve for any given point in time and attempt
to model the yield curve over time. Our research extends the current literature in two
ways. First of all, we discuss six models to fit the yield curve. Whilst different, all the
models use the Nelson-Siegel formula as a starting point. The topic of interest is the
decay parameter in this formula. Previous researchers chose to fix the decay parameter
over time. We however, choose to allow for variance over time in the decay parameter λ.
Next to that, we come up with four alterations to this model. In each of the four models
we make a restriction on one of the parameters in the Nelson-Siegel formula. We find
that all models are able to capture the yield curve. This does not come as a surprise since
we relax the parameter values by allowing for a time-varying parameters. As a direct
result that the parameters obtained from NLS are very sensitive and non robust. Setting
the right constraints proves to be important when we want to forecast the yield curve.

Besides fitting the yield curve we are also interested in forecasting and modelling the
parameters over time. We propose two new models, the ARQL and ARQ model. These
two models take into account the standard error of the coefficients, obtained from the
first regression. When comparing the out-of-sample forecasting results, by means of the
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RMSE, we find that fitting the yield curve plays an important role. The model were
OLS is applied to obtain the latent parameters proves to be a hard benchmark to beat.
The results of the other models, where NLS is used, depend on the constraints. Simply
applying NLS without any restrictions does not give a good forecast, this might be due
to the fact that the factors can attain very extreme values over time. We find that some
restrictions do give reasonable forecasts. Since we only use very basic restrictions on the
parameters, we believe that further investigation in the relations between the parameters
is of interest for further research.The novice ARQ(1) and ARQL(1) model that we use to
model the yield curve dynamics over-time is very comparable to the AR(1) model, given
that the parameters are well specified. As previously stated, these remain highly basics
models. Because the parameters might be linked to each other, a more advanced version
of the model that also takes into account the dynamics of the other parameters might
improve the forecasting power of this method.

Overall, we conclude that there is a clear trade-off between the in-sample fit and
the out-of-sample forecasting power. Perfectly fitting the yield curve does certainly not
guarantee superior forecasting results. Over fitting the yield curve might in fact lead
to very poor forecasting results. The AR(1) model given the factors obtained from an
OLS regression with a fixed value of λ still gives the user good forecast results compared
to the models we propose. However, it is interesting to investigate how these models
perform when looking at daily, or even intra-day, data since the difference in the yield
curve might then be smaller than when looking at monthly data. This might improve
forecasting results, since the factors are expected to be more smooth over time. Further-
more, changing the forecasting window or using an indirect forecasting method might
also lead to better out-of-sample results.
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Appendix A Factor summary

Table A5: Descriptive statistics, factors

Mean Std. dev. Min. Max. ρ̂(1) ρ̂(12) ρ̂(30) ADF
Panel a: OLS

level 7.350 2.295 3.336 14.39 0.990 0.885 0.742 -1.189
slope -1.651 1.843 -5.195 5.021 0.953 0.486 -0.140 -3.852∗

curvature -0.152 2.220 -6.032 7.523 0.888 0.456 0.098 -3.281∗∗

Panel b: NLS
level -41.49 574.3 -8324 131.7 0.669 -0.004 -0.008 -7.642∗

slope 64.74 651.4 -126.8 8329 0.515 -0.007 -0.010 -7.392∗

curvature 32.93 667.2 -6502 8540 0.526 0.002 -0.003 -7.255∗

decay 0.103 0.225 0.000 3.337 0.123 0.018 0.019 -5.831∗

Panel c: Model 1, fixed β̂1t
level 7.067 2.465 2.679 15.19 0.989 0.869 0.723 -1.318
slope -7.781 130.2 -2846 4.180 -0.003 -0.003 -0.002 -21.90∗

curvature 6.241 130.2 -6.737 2844 -0.002 -0.003 -0.005 -21.88∗

decay 0.136 0.240 0.015 3.248 0.157 -0.026 -0.017 -5.096∗

Panel d: Model 2, fixed β̂2t
level 7.145 2.341 3.064 14.78 0.987 0.873 0.715 -1.378
slope -1.301 1.362 -3.954 3.191 0.939 0.432 -0.130 -3.957∗

curvature -0.499 5.795 -101.6 7.506 0.259 0.153 0.002 -6.305∗

decay 0.084 0.067 0.000 1.092 0.328 0.049 0.029 -5.619∗

Panel e: Model 3, fixed β̂3t
level 10.68 31.76 -100.8 400.0 0.586 -0.001 -0.010 -6.103∗

slope -5.252 32.26 -398.8 108.9 0.592 0.016 0.067 -5.922∗

curvature 0.003 0.863 -2.174 2.905 0.880 0.467 0.147 -2.978∗∗

decay 0.151 0.719 -0.016 10.50 0.179 -0.012 -0.024 -6.770∗

Panel f: Model 4, restricted λt
level 7.360 2.283 3.619 14.516 0.989 0.882 0.735 -1.331
slope -1.673 1.841 -5.442 4.874 0.949 0.488 -0.126 -3.713∗

curvature -0.138 2.304 -6.084 6.817 0.867 0.495 0.115 -2.783∗∗∗

decay 0.063 0.012 0.050 0.075 0.558 0.007 -0.054 -5.371∗

Note We show the mean, standard deviation, minimum, maximum, sample autocorrelations, and
the p-value for the augmented Dickey-Fuller (ADF) test for every factor and each model. In
panel a, the decay factor is not mentioned because λt = 0.0609 for every t. Starts indicated
significance level: 1%∗∗∗, 5%∗∗, 10%∗. ADF H0: there is a unit root, versus Ha: there is no unit
root.

20



Appendix B Residual summary

Table B6: Descriptive statistics, residuals

Maturity Mean Std. dev. Min. Max. MAE RMSE ρ̂(1) ρ̂(12) ρ̂(30)
Panel a: OLS

3 -0.062 0.135 -0.794 0.295 0.103 0.149 0.733 0.357 -0.020
12 0.022 0.097 -0.224 0.475 0.073 0.100 0.604 0.340 -0.156
36 -0.036 0.065 -0.399 0.256 0.055 0.075 0.465 0.203 0.131
60 -0.021 0.085 -0.400 0.288 0.066 0.088 0.753 0.230 0.082

120 -0.036 0.138 -0.580 0.380 0.095 0.143 0.814 0.351 -0.052

Panel b: NLS
3 -0.041 0.086 -0.547 0.256 0.060 0.096 0.614 0.203 0.158

12 0.011 0.075 -0.216 0.382 0.055 0.076 0.495 0.345 -0.023
36 -0.027 0.051 -0.193 0.249 0.044 0.058 0.332 0.155 0.089
60 -0.023 0.061 -0.267 0.242 0.048 0.065 0.548 -0.053 -0.079

120 -0.026 0.074 -0.443 0.245 0.054 0.078 0.451 0.056 -0.013

Panel c: Model 1, fixed β1t
3 -0.051 0.081 -0.561 0.315 0.068 0.096 0.547 0.160 0.022

12 0.022 0.078 -0.212 0.403 0.063 0.081 0.524 0.351 -0.049
36 -0.071 0.081 -0.324 0.252 0.084 0.108 0.649 0.406 -0.021
60 -0.012 0.088 -0.500 0.275 0.065 0.089 0.660 0.106 0.043

120 0.076 0.236 -0.559 0.807 0.182 0.247 0.895 0.653 0.175

Panel d: Model 2, fixed β2t
3 -0.126 0.129 -0.678 0.348 0.141 0.180 0.688 0.320 -0.157

12 0.036 0.075 -0.231 0.390 0.065 0.083 0.451 0.338 -0.132
36 -0.056 0.059 -0.382 0.274 0.067 0.082 0.425 0.220 0.006
60 -0.039 0.074 -0.276 0.290 0.068 0.084 0.731 0.247 0.158

120 0.011 0.142 -0.485 0.496 0.103 0.142 0.841 0.476 0.121

Panel e: Model 3, fixed β3t
3 -0.024 0.144 -0.653 0.399 0.100 0.146 0.742 0.367 0.025

12 0.005 0.094 -0.224 0.436 0.069 0.094 0.607 0.375 -0.154
36 -0.022 0.067 -0.292 0.267 0.052 0.071 0.540 0.143 -0.032
60 0.002 0.087 -0.389 0.356 0.064 0.087 0.758 0.274 -0.029

120 -0.068 0.153 -0.712 0.290 0.110 0.167 0.806 0.398 -0.155

Panel f: Model 4, restricted λt
3 -0.056 0.120 -0.701 0.273 0.090 0.133 0.706 0.396 0.002

12 0.020 0.090 -0.217 0.437 0.067 0.092 0.573 0.348 -0.136
36 -0.036 0.063 -0.365 0.254 0.053 0.072 0.442 0.217 0.173
60 -0.019 0.074 -0.367 0.242 0.057 0.077 0.707 0.166 0.060

120 -0.037 0.123 -0.530 0.316 0.085 0.129 0.780 0.303 -0.072
Note We show the mean, standard deviation, minimum, maximum, mean average error (MAE), root

mean squared error (RMSE), and sample autocorrelations for five different maturities for the six
discussed models.
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Appendix C Sub-sample forecast results

Table C7: Root mean squared errors for two sub-samples

1-month-ahead OLS NLS Model 1 Model 2 Model 3 Model 4
Panel a: 1981:M01-1985M12

ARQL(1) 0,680 230,0 0,847 0,750 1,106 0,831
ARQ(1) 0,672 40,56 0,780 0,712 1,738 0,679

AR(1) 0,674 58,32 0,814 0,756 3,886 0,676
RW 0,699 0,697 0,696 0,698 0,698 0,698

Panel b: 2000:M01-2004M12
ARQL(1) 0,308 2,102 0,475 0,324 4,613 0,341

ARQ(1) 0,303 1,192 0,359 0,327 2,239 0,306
AR(1) 0,304 1,729 0,353 0,325 1,921 0,306

RW 0,299 0,297 0,338 0,307 0,303 0,298

6-months-ahead
Panel a: 1981:M01-1985M12

ARQL(1) 0,697 247,0 0,864 0,771 1,438 0,940
ARQ(1) 0,702 43,8 0,795 9,1E+21 2,084 0,702

AR(1) 0,679 37,9 0,832 0,758 4,142 0,683
RW 1,764 1,765 1,771 1,764 1,764 1,765

Panel b: 2000:M01-2004M12
ARQL(1) 0,314 2,326 0,515 0,332 5,118 0,358

ARQ(1) 0,309 1,270 0,367 0,350 3,117 0,313
AR(1) 0,311 1,787 0,356 0,329 1,998 0,313

RW 0,845 0,845 0,855 0,848 0,844 0,845

12-months-ahead
Panel a: 1981:M01-1985M12

ARQL(1) 0,719 281,8 0,884 0,790 2,010 1,053
ARQ(1) 0,722 39,4 0,812 7,0E+13 2,666 0,726

AR(1) 0,685 35,5 0,854 0,770 4,411 0,691
RW 2,651 2,652 2,659 2,651 2,651 2,651

Panel b: 2000:M01-2004M12
ARQL(1) 0,313 2,467 0,507 0,329 5,458 0,356

ARQ(1) 0,308 1,404 0,362 0,362 3,273 0,315
AR(1) 0,313 1,856 0,352 0,325 2,076 0,314

RW 1,372 1,372 1,373 1,374 1,370 1,372
Note We show the root mean squared error (RMSE) for all model combinations. Six models to fit the yield

curve and obtain the latent factors, and four models to model the factors. This results in a total of 24
unique forecasts for the yields, that are obtained from a 1-, 6-, and 12-month-ahead forecasts. For each
forecast horizon we compare two sub-samples. In panel (a) the sample ranges from 1981:M01-1985:M12,
and in panel (b) the sample ranges from 2000:M01-2004:M12 We show RMSE of all maturities combines.
The lowest RMSE for each maturity is depicted in bold.
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