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Abstract

In this paper, we investigate the robustness of a forecast selection algorithm in which
integer programming is used to select forecasts for averaging, given an estimated covariance
matrix, instead of averaging over every available forecast. While numerous empirical studies
on forecast combination methods fail to consistently outperform simple averaging, we are in-
terested in whether this particular method succeeds in doing so. Using forecasts of real GDP
growth and unemployment from the European Central Bank Survey of Professional Fore-
casters, we apply the algorithm in combination with different estimation windows. Besides
considering a single expanding and a single rolling window, we use pseudo-out-of-sample
cross-validation to determine optimal window size. We also combine different estimation
windows using both equal weights and weights based on the pseudo-out-of-sample perfor-
mance. The findings of our paper reveal that the algorithm is not robust to the estimation
window used in the presence of data instability, and that improvements in forecast accuracy
can be made by taking a careful look at pseudo-out-of-sample performance. Furthermore,
the overall performance of the algorithm is not consistent across different panels and dif-
ferent horizons, as a consequence of bias in the estimation of the covariance matrix. When
there is no significant indication of estimation error, the algorithm shows promising results
relative to simple averaging.
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1 Context and background

Forecasts and expectations play a crucial role in how the economy functions. For key macroeco-
nomic variables that drive policy and decision making, there are often multiple forecasts of the
same event available. Since the widely cited work of Bates and Granger (1969), a considerable
number of both theoretical and empirical studies has supported the usefulness of combining in-
dividual forecasts. The forecasts being combined can either be subjective, provided for example
by forecasters participating in surveys, or else provided by various quantitative models. Still, it
remains unclear which combination method is best to use. Empirical studies show that simple
averaging performs quite well in practice, relative to other approaches that rely on estimated
combination weights. For example, Stock and Watson (2004) apply several forms of forecast
combination methods on output growth for 7 countries and find that the simplest methods were
the most stable and best-performing in terms of mean squared error (MSE). Genre et al. (2013)
look at combining forecasts using data from the European Central Bank (ECB) Survey of Pro-
fessional Forecasters (SPF), and conclude that there is no reason to replace equal weighting as
the headline indicator to summarise the forecasts in the ECB SPF.

No method in previous literature consistently outperforms the equal weighted combination,
both across variables and at different horizons. This phenomenon is often referred to as the
“forecast combination puzzle”. In order to find an explanation for this puzzle, Claeskens et al.
(2016) analyse the properties of a combined forecast theoretically. The authors conclude that
weight estimation may substantially affect the variance of the forecasts and that this effect
is also likely to be larger for weights based on estimated covariances. However, Matsypura
et al. (2017) propose an algorithm in which integer programming is used to select forecasts
for averaging, given an estimated covariance matrix, instead of averaging over every available
forecast. Based on an application to ECB SPF data on quarterly rates of GDP growth and
unemployment, the authors conclude that this method gives improved accuracy over simple
averaging and other common forecast combination methods. A somewhat remarkable result, in
particular when considering the findings of Genre et al. (2013) and Claeskens et al. (2016).

Additionally, looking at data on GDP growth and unemployment, there have been large
fluctuations over the years, indicating unpredictable behaviour. These large fluctuations, also
known as structural breaks, are widely recognised as an important source of forecast failure in
macroeconomics. We notice that the methods employed by Matsypura et al. (2017) are limited
to an expanding window, using all available data. Rossi and Inoue (2012) point out that in
the forecasting literature, reporting empirical results only for a single estimation window raises
concerns, as statistical significance may differ across different windows due to fluctuations in the
data. The main concern is that satisfactory results may be obtained by chance, or perhaps only
the results for a successful window size are presented. In the same vein, it is unclear whether
the empirical conclusions of Matsypura et al. (2017) are specific to the estimation window used.
Therefore, in this paper, we investigate the robustness of the proposed algorithm with a focus
on the use of different estimation windows. Our findings show that for most of the data sets,
the performance varies with the estimation window used. The results reveal the importance of
choice of estimation window in the presence of data instability. We find that the robustness
of the algorithm for a specific data set can be investigated prior to forecasting out-of-sample.
Accordingly, improvements in forecast accuracy can be made by selecting the estimation window
based on pseudo-out-of-sample performance.

The structure of this paper is as follows. First, in Sect. 2, we give a brief outline of related
work and our goals of research. In Sect. 3, we describe the forecast selection algorithm proposed
by Matsypura et al. (2017). Next, in Sect. 4, we describe the data that we operate on and the
way we deal with non-response, followed by the specification of our methodology in Sect. 5. In
Sect. 6 we evaluate the different methods and we discuss the results. Sect. 7 concludes.
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2 Review of relevant literature and goals of research

To deal with the issue of structural breaks, a conventional approach is to estimate the break
points and then to base forecasts on the post-break observations. However, Pesaran and Tim-
mermann (2007) reveal that this approach is not always optimal when the objective is to optimise
forecasting performance. In addition, it is often the case that the time and size of the structural
break are still uncertain. The authors propose a range of alternative methods that can be imple-
mented without relying on exact information about breaks. They propose selecting the window
size by searching across different starting points using pseudo-out-of-sample cross-validation,
or combining forecasts from the same model but computed over various estimation window
sizes. Using Monte Carlo simulation they show that the methods work well in comparison with
methods that do not take the possible presence of breaks into account. Furthermore, they find
that in the absence of breaks, using an expanding window generates the lowest out-of-sample
MSE-value.

Other recent work on forecasting in the presence of breaks extend the research of Pesaran and
Timmermann (2007). For example, Pesaran and Pick (2011) provide empirical evidence that
averaging across estimation windows also works well in practice. Clark and McCracken (2009)
show that combining expanding and rolling windows can provide improvements in forecast
accuracy relative to using either of the two. However, literature on combining forecasts both
across models and across estimation windows is limited. As an example, Assenmacher-Wesche
and Pesaran (2008) find that averaging over estimation windows is at least as effective as, and
even complements averaging over a class of related models in improving forecast precision. In
the same vein, Pesaran et al. (2009) find that averaging global vector autoregressive forecasts
over both different model specifications and different estimation windows gives results that
outperform forecasts based on individual models.

The findings of these papers motivate us to develop similar methods that may be imple-
mented in combination with the forecast selection algorithm proposed by Matsypura et al.
(2017), using survey data from the ECB SPF. Pesaran and Timmermann (2007) and Pesaran
and Pick (2011) among others demonstrate that incorporating information on break dates when
combining estimation windows does not necessarily improve and may even harm the forecasting
performance. Furthermore, little is known about the exact way structural breaks are reflected
in the individual survey forecasts. Therefore, we choose to focus on developing methods that do
not rely on exact knowledge about structural breaks. Hence, we indirectly exploit the trade-off
between the bias and forecast error variance.

Our objective is to evaluate the robustness of the out-of-sample forecasting performance of
the forecast selection algorithm to window size and choice. We do this by considering both
expanding and rolling windows, and we use pseudo-out-of-sample cross-validation to determine
optimal window size. We are also interested in whether combining different estimation windows
can improve the forecasting performance, either by using equal weights, or weights based on the
pseudo-out-of-sample performance. The use of pseudo-out-of-sample evaluation of forecasts for
different starting points allows us to analyse different estimation windows prior to forecasting
out-of-sample. This is especially useful as previous literature has shown that the ideal method
may vary across different variables and different forecast horizons. By looking at the individual
survey forecasts, it remains unclear whether using a single window or a combination of different
windows is more appropriate.

Additionally, due to free entry and exit of forecasters in the SPF panel, there is the issue of
missing data, while the forecast selection algorithm proposed by Matsypura et al. (2017) relies
on an estimate of the full covariance matrix of forecast errors. Rather than imputing the missing
data, the authors suggest using pairwise observations to construct the covariance matrix, which
results in an unbiased estimate, as long as the observations are missing at random. However, if
the observations are not missing at random, the estimate may be biased, with the consequence
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of biased forecasts as well. The authors fail to confront this problem, and also in other literature,
there is no consensus on an ideal way of dealing with forecast bias caused by poor estimation
of the covariance matrix.

While combining different estimation windows may partially account for the forecast bias,
in this paper, we investigate whether a proper bias correction can be made to the forecasts
obtained using the forecast selection algorithm. We follow a method proposed by Capistrán
and Timmermann (2009), where equal-weighted forecasts are adjusted based on a least squares
regression. With an application to both simulated and empirical data, the authors show that
their method has good overall performance and can be extended to other applications if the
sample size permits the estimation. Instead of applying the bias adjustment to one-quarter-
ahead or one-year-ahead equal-weighted forecasts, we apply it to one-year-ahead or two-year-
ahead forecasts obtained using the forecast selection algorithm.

3 Forecast selection algorithm

Let us denote the variable of interest as y ∈ R and the n forecasts of this variable as ŷ =
(ŷ1ŷ2 . . . ŷn)′ ∈ Rn. The errors of the individual forecasts are e = ιy − ŷ = (e1e2 . . . en)′, where
ι is an n-vector of ones. Forecast errors are typically assumed to have expectation E(e) = 0
and finite covariance E(ee′) = Σ. We construct a combination forecast by introducing a vector
of weights w = (w1w2 . . . wn)′ ∈ Rn. Assuming that the individual forecasts are unbiased, the
condition that the weights sum to unity is generally imposed with the result that the constructed
forecasts remain unbiased. A combination forecast formed with these weights is then ŷc = w′ŷ,
whose error ec = y − ŷc has expectation E(ec) = 0 and variance Var(ec) = w′Σw. Minimising
the variance under the constraint w′ι = 1 yields the weights of the optimal combination in
terms of MSE:

wopt = arg min
w′ι=1

(w′Σw) = (ι′Σ−1ι)−1Σ−1ι.

The optimal combination forecast is then ŷopt = (wopt)′ŷ with error variance Var(eopt) =
(ι′Σ−1ι)−1. For a combination forecast formed by simple averaging, a vector of equal weights
is required:

wavg =
1

n
ι.

The corresponding combination forecast is again simply ŷavg = (wavg)′ŷ with the error variance
Var(eavg) = n−2ι′Σι. Naturally, Var(eavg) ≥ Var(eopt), and only in very specific cases wopt

reduces to wavg (Timmermann, 2006).
In order to obtain the optimal combination, Matsypura et al. (2017) suggest using integer

programming rather than brute force to select forecasts prior to averaging. That is, certain
weights are equal to each other and sum to one and the remaining weights are equal to zero.
Formally, the set of all weights with such properties is

W =
{
w | wi = 0∀ i ∈ S1, wi =

∣∣S2|−1 ∀ i ∈ S2, S1 ∪ S2 = {1, 2, . . . , n},S1 ∩ S2 = ∅
}
.

Here, S1,S2 ⊆ {1, 2, . . . , n} are sets of forecast indices, and |S2| denotes the cardinality of S2.
The forecasts whose indices are in S2 are selected for averaging, whereas those in S1 are not
selected. By construction, the weights always sum to one. The number of elements in W
is precisely 2n − 1, containing also simple averaging. That is, wavg ∈ W, with S1 = ∅ and
S2 = {1, 2, . . . , n}. In order to formulate the problem in a way that optimising over it is a 0-1
integer programming problem, we introduce the binary variable w̃ ∈ {0, 1}n. Furthermore, in
order to ensure convexity in the objective function, it is necessary to fix the number of non-zero
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weights to a non-negative integer k ∈ {1, 2, . . . , n}. The subset of W that has all elements
having k non-zero weights can be written as

Wk =

{
w =

w̃

k

∣∣∣∣ w̃′ι = k, w̃ ∈ {0, 1}n
}
.

By dividing w̃ by k, a weight vector w is obtained, where some elements are equal and sum
to one and others are zero. w̃′ι is a count of the number of non-zero elements in w̃, and the
condition w̃′ι ≥ 1 ensures that k forecasts are selected for combination. We can see that w̃ = ι
results in simple averaging, as all forecasts are selected for averaging.

Finding the optimal solution with k equal weights is equivalent to solving Problem P1, with
Σ the n × n positive-definite covariance matrix of forecast errors and w̃ the vector of binary
variables.

min. k−2w̃′Σw̃

s.t. w̃′ι ≥ 1

w̃ ∈ {0, 1}n
(P1)

Within the objective function, the term k−2 is necessary to ensure that the objective is evaluated
at w and not at w̃. Problem P1 is now formulated as a tractable convex optimization problem
and therefore it can be solved using a general-purpose integer programming solver. By solving
the problem n times for all k ∈ {1, 2, . . . , n} and selecting the best solution, we obtain the
optimal solution on the set W = ∪nk=1Wk.

Algorithm 1 shows a natural algorithm for solving the forecast selection problem, as proposed
by Matsypura et al. (2017), where the incumbent solution from a given k is only updated if the
solution for that k is better. Matsypura et al. (2017) show that this problem can be solved to
optimality for relatively high dimensions in reasonable time. The algorithm takes Σ, an n× n
positive-definite covariance matrix of forecast errors, as a single input argument, and returns a
single output argument w∗, an n×1 weight vector. Furthermore, the algorithm requires setting
parameter ε to a sufficiently small constant. In our application, we set ε = 10−5. We implement
the algorithm in R (R Core Team, 2017) using Gurobi (Gurobi Optimization Inc., 2017) as the
solver.

Algorithm 1 Forecast selection algorithm

1: procedure ForecastSelection(Σ)
2: f∗ ← inf . initialise best objective value to infinity
3: for k ∈ {1, 2, . . . , n} do . loop through all k
4: min f̃(w̃) = k−2w̃′Σw̃ s.t. w̃′ι = k, w̃ ∈ {0, 1}n . find solution to Problem P1
5: if f∗ − f̃∗ ≥ ε then . check quality of current solution
6: f∗ ← f̃∗ . update best objective if improvement
7: w∗ ← k−1w̃∗ . update best solution if improvement
8: end if

9: end for

10: return w∗ . return optimal solution
11: end procedure

4 Data source

4.1 Description of the data

In this paper, we focus on survey data from the ECB SPF. The ECB has been conducting the
SPF at a quarterly frequency since the launch of the euro currency in January 1999. The survey
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participants are experts affiliated with financial and non-financial European institutions. They
are asked to provide both point and density forecasts for several variables including rates of
real GDP growth and unemployment in the euro area. As we aim to further investigate the
results from Matsypura et al. (2017), we use data on these two variables over the entire period
up to the first quarter of 2017. We focus on the one- and two-year-ahead forecast horizons
and we obtain the data from http://www.ecb.europa.eu/stats/prices/indic/forecast1.
For GDP growth, there are 71 and 67 observations for the one- and two-year-ahead horizon,
respectively. For unemployment, there are 70 and 66 observations for the one- and two-year-
ahead horizon, respectively, instead. While growth is observed quarterly, unemployment is
observed on a monthly basis. Therefore, in the survey for the latter variable, forecasts are
provided for February for Q1, May for Q2, August for Q3, and November for Q4.

For observations of the actual outcomes of each of the variables, we use data released by
the ECB. However, the ECB alters the estimate of the outcomes through data revisions, with
different releases referred to as vintages, which raises the question of which vintage to use. Genre
et al. (2013) find that the relative performance of different combinations appears insensitive to
the vintage used, and therefore we choose to use the most recent one. We obtain the Q1
2017 vintage for GDP growth and the February 2017 vintage for unemployment from http:

//sdw.ecb.europa.eu2.

4.2 Dealing with non-response

Approximately 100 forecasters participate in the survey. However, as free entry and exit of fore-
casters in the panel is allowed, the SPF suffers from non-response. Since the forecast selection
algorithm relies on historical data for estimation, it is necessary to filter out forecasters who re-
spond infrequently or who only joined the panel recently. Following Matsypura et al. (2017), we
choose to filter out all forecasters who fail to respond for 24 periods (6 years) or more, requiring
a response rate of at least 75 percent, approximately. In most periods, this results in around 25
remaining forecasts for combination in each panel. These are plotted in Fig. 1. We can see that
overall, the one-year-ahead forecasts appear to capture the actual outcomes better than the
two-year-ahead forecasts. We can also see that the overall forecast accuracy varies throughout
the years, with lower accuracy around major events that affected the EU economy, such as the
early 2000s recession, the global financial crisis of 2007-2008 and the European debt from 2009
onwards. For summary statistics of each of the data sets after filtering, see Appendix A.

Since there are still missing observations post-filtering, the forecast selection algorithm that
relies on an estimate of the covariance matrix of forecast errors is not straightforward to imple-
ment, because the standard sample covariance matrix requires a complete set of observations.
Furthermore, it is ineffective to select forecasters that do not respond to the survey in the
period for which we construct a forecast combination. Therefore, we resort to estimating the
covariance matrix using pairwise observations for all forecasters that are available in the given
period. That is, the matrix is constructed element-by-element as follows. Let N be the set of
forecasters that respond in the given period and let Ti be the set of the periods in which the
ith forecaster has responded to the survey, with i ∈ N and T ⊆ {1, 2, . . . , T}, where T is the
period of the latest available observation. Additionally, let eit denote the ith forecasters forecast
error for the time period t ∈ {1, 2, ..., T}. A typical element of the covariance matrix is then
computed as

σ̂ij =


1
|Ti|
∑

t∈Ti e
2
it if i = j

1
|Ti∩Tj |

∑
t∈Ti∩Tj eitejt if i 6= j

0 if Ti ∩ Tj = ∅.

1The data used in this paper was downloaded on May 14, 2017.
2The data used in this paper was downloaded on May 14, 2017.
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The resulting matrix is not necessarily positive-definite, while all covariance matrices in the
population are positive-definite, and therefore we use the nearPD function from Matrix (Bates
and Maechler, 2017) in R to find the nearest valid covariance matrix.

Capistrán and Timmermann (2009) note that, by construction, an estimate of the covariance
matrix may be biased in case entry and exit of forecasters is not at random, or when a pair of
forecasters does not have any overlapping data. As previously described, a biased estimate of the
covariance matrix may in turn result in biased forecasts through the forecast selection algorithm.
In this paper, we perform pseudo-out-of-sample tests for forecast bias and we investigate whether
an appropriate bias correction can be made to the out-of-sample forecasts. This procedure is
further described in Sect. 5.1.

(a) GDP growth one-year-ahead (b) GDP growth two-year-ahead

(c) Unemployment one-year-ahead (d) Unemployment two-year-ahead

Figure 1: Individual quarterly forecasts against actual outcomes

5 Research method

Let Σm,t denote the n × n positive-definite covariance matrix of forecast errors based on an
estimation window from period m to period t, and let w∗m,t denote the corresponding vector of
weights, obtained from Algorithm 1. Then the corresponding h-step ahead combination forecast
is calculated as follows

ŷ cm,t+h|t = w∗m,t
′ŷt+h.

In order to evaluate the forecasting methods, we consider the most recent 16 periods (4 years) as
the test data, representing approximately 25 percent of the available data. Denoting T0 as the
initial period in the testing set, this means T0 = T − 15. For our data from the ECB SPF, the
testing set is period 2013Q2 to period 2017Q1 for GDP growth, and period 2013May to period
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2017Feb for unemployment. The remaining data forms the training set. Specifically, when we
are forecasting period t + h, the training set consists of period 1 to period t. We define the
estimation window as the part of the training set that we use to estimate the covariance matrix
of forecast errors. In the case of an expanding window, this includes the complete training set.
In the case of a rolling window this includes period t − (T0 − h − 1) to period t, with a fixed
window size of T0−h periods. Besides considering these commonly used estimation windows, we
develop a set of methods to either select an estimation window or to combine different windows.
In this section, we first describe the way we deal with forecast bias. We then describe the
different methods used for window selection and window combination. Finally, we describe the
criteria used to evaluate the different methods.

5.1 Bias correction

Due to data limitations, we investigate whether an appropriate bias correction can be made to
the out-of-sample forecasts using only a single expanding window. In order to perform pseudo-
out-of-sample tests for forecast bias prior to constructing out-of-sample forecasts, we reserve
the last ṽ1 observations of the training data up to T0. That is, periods T0− ṽ1 to T0− 1. Using
an expanding window including all remaining training data, we construct forecasts using the
forecast selection algorithm for these periods. With the resulting set of forecasts, we first test
the null hypothesis of no forecast bias, that is, H0 : E(ect+h|t) = 0, by regressing the forecast
errors on a constant as follows

ect+h|t = β0 + ut.

In case the mean forecast error, β0, is significantly different from zero, we can reject the null
hypothesis of unbiased forecasts. Next, we estimate the Mincer and Zarnowitz (MZ) regression
proposed by Mincer and Zarnowitz (1969) using the same set of forecasts, defined as

yt+h = β0 + β1ŷ
c
t+h|t + ηt+h,

with the null hypothesis of unforecastable forecast errors, that is, H0 : β0 = 0, β1 = 1. If we
can reject the null hypothesis of unbiased forecasts based on either of these tests, we adjust the
out-of-sample forecasts in the testing set from T0 to T as follows

ỹct+h|t = β̂0,t + β̂1,tŷ
c
t+h|t, (1)

where we estimate the parameters β0,t and β1,t through least squares regression using an ex-
panding window from T0 − ṽ1 to t.

Note that the choice for an expanding window with starting point T0 − ṽ1 is based on a
trade-off between the number of observations used to construct forecasts ŷct+h|t for the periods
T0− ṽ1 to T0− 1 with the forecast selection algorithm and the number of constructed forecasts,
ṽ1, used to estimate the parameters β0,t and β1,t in Eq. 1.

5.2 Window selection

For the selection of an optimal window size, we use a cross-validation approach following a
method proposed by Pesaran and Timmermann (2007). This approach reserves the last ṽ2
observations of the training data up until period t for a pseudo-out-of-sample estimation exercise
and chooses the starting point m for the estimation window that generates the smallest root
MSE (RMSE) value on this sample. The idea is that we choose the starting point in such a way
that it would also give optimal out-of-sample forecasts in the RMSE sense. We assume that
a minimum of v observations is needed to select forecasters using Algorithm 1, which means
that window sizes smaller then v are not considered. Therefore, for h-step-ahead forecasts,
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ṽ2 + h+ v data points are required to adopt this method. For each potential starting point of
the estimation window, m, the recursive pseudo-out-of-sample RMSE value is computed as

RMSE(m|t, ṽ2) =

√√√√ṽ−12

t−h∑
τ=t−ṽ2−h

(ym,τ+h|τ − ŷcm,τ+h|τ )2. (2)

The optimal starting point is then determined from

m∗(t, ṽ2, v) = arg min
m=1,...,t−ṽ2−h−v

RMSE(m|t, ṽ2), (3)

with the corresponding forecast for period t+ h computed as

ŷct+h|t(m
∗) = ŷcm∗,t+h|t. (4)

Here, the selection of v and ṽ2 is also based on a trade-off. If v is set too short, the forecast
selection algorithm may not be robust against the potential influence of extreme forecast errors.
Similarly, if ṽ2 is set too short, then the performance of the forecast selection algorithm relative
to other combination methods may be affected too greatly by random variations. Alternatively,
if ṽ2 is set too large, then starting points m with good performance earlier in the sample may
more likely be selected than those that perform better closer to t.

5.3 Window combination

Since the size of our training set is relatively small, we develop two alternative methods to deal
with uncertainty over the selection of v and ṽ2 in Eq. 3. Instead of selecting a single estimation
window, we combine different estimation windows. We do this by giving each window size a
weight proportional to the inverse of the associated out-of-sample RMSE-values from Eq. 2
raised to a power q. This approach builds on methods that are often seen in the forecast
combination literature, with weights proportional to some measure of historical performance,
for example in Stock and Watson (1998). Pesaran and Timmermann (2007) also note that
combining different estimation windows instead of selecting a single one can be useful in case
the breaks in the data are relatively small.

We use the resulting weights to construct forecasts in two different ways. The first method
is more straightforward, with the weighted average forecast given by

ŷct+h|t(v, ṽ2) =

t−ṽ2−h−v∑
m=1

ŷcm,t+h|t(RMSE(m|t, ṽ2))−q

t−ṽ2−h−v∑
m=1

(RMSE(m|t, ṽ2))−q
. (5)

Besides setting weights equal to the inverse of the MSE with q = 2, we also consider q = 3 and
q = 1, allowing for more and less variable weights, respectively. Additionally, we consider q = 0,
assigning equal weights to all estimation windows, a commonly used approach when combining
different windows. This is equivalent to averaging over all m ≤ t− v − ṽ2:

ŷct+h|t(v, ṽ2) =
1

t− ṽ2 − h− v

t−ṽ2−h−v∑
m=1

ŷ cm,t+h|t. (6)

For the second method, we average over the covariance matrices estimated using the different
windows and use the resulting covariance matrix to select forecasts for combination. That is,
the weighted average covariance matrix is calulated as follows
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Σc(t, v, ṽ2) =

t−ṽ2−h−v∑
m=1

Σm,t(RMSE(m|t, ṽ2))−q

t−ṽ2−h−v∑
m=1

(RMSE(m|t, ṽ2))−q
, (7)

with corresponding weight vector wc∗ from the forecast selection algorithm. Again, we consider
q = 0, 1, 2, 3, and the corresponding forecast for period t+ h is computed as

ŷct+h|t(Σ
c) = wc∗′ŷt+h. (8)

5.4 Evaluation criteria

While we are mainly interested in finding optimal forecasts in terms of RMSE, another com-
monly used measure of forecast accuracy in the forecasting literature is the mean absolute error
(MAE). Therefore, in order to evaluate the out-of-sample performance of the different methods,
we consider both square and absolute loss using RMSE and MAE, respectively. The forecast
error of an h-step ahead forecast is defined as ect+h|t = ŷct+h|t− yt+h. Then the RMSE and MAE
are defined as follows.

RMSEc =

√√√√ 1

T − T0

T−h∑
t=T0−h

e2t+h

MAEc =
1

T − T0

T−h∑
t=T0−h

|ect+h|

We observe these measures of loss relative to simple averaging over the filtered panel, which
we use as the benchmark, and therefore, we define the relative RMSE and the relative MAE as
follows.

Rel.RMSEc =
RMSEc

RMSEavg(filt)

Rel.MAEc =
MAEc

MAEavg(filt)

A value below one indicates higher forecasting accuracy relative to simple averaging, and a value
greater than one indicates lower forecasting accuracy relative to simple averaging.

In addition to these measures, we analyse the forecasting performance using the Diebold-
Mariano (DM) test proposed by Diebold and Mariano (1995). For the DM test, we define

the loss differential between the two forecasts as dt+h = (ect+h|t)
2 − (e

avg(filt)
t+h )2, since we are

interested in minimizing the RMSE. The two forecasts have equal accuracy if and only if the
loss differential has zero expectation for all t. That is, we test H0 : E(dt+h) = 0∀t against
Ha : E(dt+h) 6= 0. The DM test statistic is given by

DM =
d√

1
T−T0 2πf̂d(0)

∼ N(0, 1),

where d = 1
T−T0+1

∑T−h
t=T0−h dt+h|t is the sample mean loss differential, and f̂d(0) is a consistent

estimate of fd(0) defined as

f̂d(0) =
1

2π

T−T0∑
l=−(T−T0)

I

(
l

h− 1

)
γ̂d(l),
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with

I

(
l

h− 1

)
=

{
1 for | k

h−1 | ≤ 1

0 otherwise
.

and

γ̂d(l) =
1

T − T0 + 1

T−h∑
t=|l|+T0−h

(dt+h − d)(dt+h−|l| − d).

As the size of our testing set is relatively small, we make a bias correction to the DM test
statistic as suggested by Harvey et al. (1997). The corrected statistic is defined as

DM∗ =

√
T − T0 + 2− 2h+ (T − T0 + 1)−1h(h− 1)

T − T0 + 1
DM,

and follows a Student’s t-distribution with T − T0 degrees of freedom instead of the standard
normal distribution.

6 Results

In Table 1, the p-values of the tests for forecast bias using ṽ1 = 32 are presented. Based on
these tests, we can conclude for both the one-year-ahead and the two-year-ahead forecasts of
unemployment rate that there is a significant indication of forecast bias. Therefore, we apply
a bias correction to the expanding window unemployment forecasts according to Eq. 1. The
resulting forecasts using ṽ1 = 32 are presented in Table 2 along with the corresponding forecasts
without bias adjustment. We can see that for one-year-ahead unemployment forecasts the bias
adjustment improves the results, but this is not the case for two-year-ahead forecasts. The
difference is possibly the consequence of the larger horizon limiting the number of observations
available for the estimation of the bias. This suggests that the bias adjustment can only be
applied if the sample size and the forecast horizon allow for it. For a more precise evaluation
of the different window selection and combination methods, we leave out the bias adjustment
in the rest of this section.

Table 1: p-values of tests for forecast bias

Regression on constant MZ regression
GDP growth one-year-ahead 0.2941 0.3213
GDP growth two-year-ahead 0.0620 0.0512
Unemployment one-year-ahead 0.0999 0.0322
Unemployment two-year-ahead 0.0294 0.0004

Tests are based on forecasts computed over the ṽ1 = 32 periods from Q2 2005 to Q1
2013 for GDP growth and from May 2005 to February 2013 for unemployment using an
expanding window. A value below 0.05 implies significant indication of forecast bias.

In Fig. 2, for all four data sets, the pseudo-out-of-sample RMSE values obtained with an
expanding window are plotted for different starting points. The starting points considered are
based on ṽ2 = 16 and v = 8. While less starting points are considered when a rolling window
is used, the pseudo-out-of-sample RMSE values for the individual starting points are the same
(see Appendix B). Considering all graphs are scaled identically in Fig. 2, we can clearly see
two important features. First of all, it appears that across all four data sets, the variation in
forecasting accuracy for different starting points is quite limited. Especially for the majority
of the two-year-ahead GDP growth forecasts and the one-year-ahead unemployment forecasts,
the forecasting accuracy appears to be relatively stable across different starting points. This
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suggests that breaks in the data are not well-defined, and an expanding window or combining
different estimation windows is more appropriate than selecting starting points using cross-
validation.

A second feature is that the RMSE is higher for earlier sets of pseudo-out-of-sample periods
used to evaluate the forecasts, and this is more pronounced for GDP growth than for unem-
ployment. This implies that for GDP growth, there is more variation in forecast accuracy of the
individual survey forecasts among different sets of pseudo-out-of-sample periods. Moreover, for
all two-year-ahead forecasts the RMSE is higher than for one-year-ahead forecasts, suggesting
that there is more uncertainty due to the longer forecast horizon. Looking at the data, we
find that the earliest set of pseudo-out-of-sample periods used to evaluate the forecasts is from
August 2008 to May 2012 for one-year-ahead forecasts and from August 2007 to May 2011 for
two-year-ahead forecasts, whereas the latest set of pseudo-out-of-sample periods is from May
2012 to February 2016 for one-year-ahead forecasts and from May 2011 to February 2015 for
two-year-ahead forecasts. In Fig. 1 we could see that all forecasters performed poorly through-
out the financial crisis of 2007-2008, especially for two-year-ahead GDP growth. This explains
the higher RMSE for earlier sets of pseudo-out-of-sample periods.

Table 2: Results of bias-adjusted unemployment forecasts using an expanding window

One-year-ahead forecast horizon

Rel. RMSE Rel. MAE
Expanding window 1.0840 1.0615
Expanding window (bias-adjusted) 1.0350 0.8960

Simple averaging (filtered): 1-y.a. RMSE = 0.4972%, 1-y.a. MAE = 0.4769%

Two-year-ahead forecast horizon

Rel. RMSE Rel. MAE
Expanding window 1.0344 1.0527
Expanding window (bias-adjusted) 1.2241 1.1388

Simple averaging (filtered): 2-y.a. RMSE = 1.0352%, 2-y.a. MAE = 1.2312%

Forecasts are computed over the 16 periods from from May 2013 to February 2017 using an
expanding window and the bias adjustment is based on ṽ1 = 32. Relative RMSE and MAE
are reported with simple averaging (filtered) as the benchmark. A value below one indicates
superior accuracy to the benchmark, and a value greater than one indicates inferior accuracy.
The RMSE and MAE for simple averaging (filtered) are reported at the bottom.

In Table 3, we can see exactly for each out-of-sample period, which starting point is se-
lected based on the RMSE value for the pseudo-out-of-sample forecasts, both in the case of an
expanding window and a rolling window. With an expanding window, we can see that across
all data sets, leaving out the earliest few observations in the data for estimation appears to
give a lower RMSE value in most of the cases. Particularly, for two-year-ahead unemployment
forecasts, February 2003 is consistently selected as the optimal starting point. Selecting starting
points using cross-validation with an expanding window for this data set is therefore equivalent
to directly using an expanding window with February 2003 as the starting point. This pat-
tern could be explained by the fact that the forecast accuracy is more volatile throughout the
early 2000s recession, as we could see in Fig. 1. The results for the other three data sets are
more variable, suggesting that the selection may be affected by minor variation of the RMSE
value. That is, a starting point could be selected based on a pseudo-out-of-sample RMSE value
that is only slightly lower than the ones given by other starting points. This would result in a
situation where the selected starting point is less likely also the optimal starting point for the
out-of-sample forecast. Especially for two-year-ahead GDP growth forecasts, the selected start-
ing points are quite different from each other. Hence, in line with the interpretation of Fig. 2,
this suggests that selecting a single starting point using cross-validation is not appropriate for
this data set.
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With a rolling window, by construction, several of the starting points that are selected when
an expanding window is used, are no longer considered. This is especially the case for one-year-
ahead GDP growth forecasts, where most of the time the earliest considered starting point is
selected instead. For two-year-ahead unemployment forecasts, we can see that when February
2003 is no longer considered as a starting point, the selection is shifted to the fall of 2004.
This suggests that the use of a rolling window is not appropriate for these two data sets as
valuable information may be omitted, not only when selecting a single estimation window, but
also when combining different estimation windows. For two-year-ahead GDP growth forecasts
the selection is not different when a rolling window is used instead, and for one-year-ahead
unemployment forecasts the difference is minor. However, this pattern may appear by chance,
as we speculate that the selection for these two data sets is not accurate. Therefore, it is not
necessarily the case that a rolling window is more appropriate.

(a) GDP growth one-year-ahead (b) Unemployment one-year-ahead

(c) GDP growth two-year-ahead (d) Unemployment two-year-ahead

Forecasts are computed pseudo-out-of-sample for ṽ2 = 16 periods using estimation windows based on v = 8,
and evaluated following Eq. 2. The shortest line corresponds to the earliest set of ṽ2 = 16 pseudo-out-of-sample
periods with a smaller number of feasible starting points and the longest line corresponds to the latest set of
ṽ2 = 16 pseudo-out-of-sample periods with a larger number of starting points.

Figure 2: Pseudo-out-of-sample RMSE for different starting points using an expanding window
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Table 3: Selected starting points using cross-validation

One-year-ahead forecast horizon

Out-of-sample Pseudo-out-of-sample GDP growth Unemployment

From To Expanding Rolling Expanding Rolling
Feb 2017 May 2012 Feb 2016 Aug 2002 May 2003 May 2009 May 2009
Nov 2016 Feb 2012 Nov 2015 Aug 2002 Feb 2003 Aug 2000 Nov 2003
Aug 2016 Nov 2011 Aug 2015 Aug 2002 Nov 2002 Aug 2003 Aug 2003
May 2016 Aug 2011 May 2015 May 2002 Aug 2002 Aug 2003 Aug 2003
Feb 2016 May 2011 Feb 2015 May 2000 May 2002 May 2003 May 2003
Nov 2015 Feb 2011 Nov 2014 May 2000 Feb 2002 May 2003 May 2003
Aug 2015 Nov 2010 Aug 2014 May 2000 Nov 2001 May 2003 May 2003
May 2015 Aug 2010 May 2014 May 2000 Aug 2001 May 2003 May 2003
Feb 2015 May 2010 Feb 2014 May 2000 May 2003 May 2003 May 2003
Nov 2014 Feb 2010 Nov 2013 May 2000 Feb 2001 May 2003 May 2003
Aug 2014 Nov 2009 Aug 2013 Aug 2000 Nov 2000 May 2003 May 2003
May 2014 Aug 2009 May 2013 Aug 1999 May 2003 Aug 2001 Aug 2001
Feb 2014 May 2009 Feb 2013 Feb 2003 Feb 2003 Aug 2001 Aug 2001
Nov 2013 Feb 2009 Nov 2012 Feb 2003 Feb 2003 Aug 2001 Aug 2001
Aug 2013 Nov 2008 Aug 2012 Feb 2003 Feb 2003 Aug 2001 Aug 2001
May 2013 Aug 2008 May 2012 Feb 2003 Feb 2003 May 2002 May 2002

Two-year-ahead forecast horizon

Out-of-sample Pseudo-out-of-sample GDP growth Unemployment

From To Expanding Rolling Expanding Rolling
Feb 2017 May 2011 Feb 2015 Nov 2006 Nov 2006 Feb 2003 Nov 2004
Nov 2016 Feb 2011 Nov 2014 Nov 2006 Nov 2006 Feb 2003 Aug 2004
Aug 2016 Nov 2010 Aug 2014 Nov 2006 Nov 2006 Feb 2003 Aug 2004
May 2016 Aug 2010 May 2014 Aug 2005 Aug 2005 Feb 2003 Aug 2004
Feb 2016 May 2010 Feb 2014 Aug 2005 Aug 2005 Feb 2003 Aug 2004
Nov 2015 Feb 2010 Nov 2013 Aug 2005 Aug 2005 Feb 2003 Aug 2004
Aug 2015 Nov 2009 Aug 2013 Aug 2003 Aug 2003 Feb 2003 Feb 2003
May 2015 Aug 2009 May 2013 Aug 2002 Aug 2002 Feb 2003 Feb 2003
Feb 2015 May 2009 Feb 2013 Aug 2002 Aug 2002 Feb 2003 Feb 2003
Nov 2014 Feb 2009 Nov 2012 Aug 2002 Aug 2002 Feb 2003 Feb 2003
Aug 2014 Nov 2008 Aug 2012 May 2002 May 2002 Feb 2003 Feb 2003
May 2014 Aug 2008 May 2012 May 2002 May 2002 Feb 2003 Feb 2003
Feb 2014 May 2008 Feb 2012 May 2002 May 2002 Feb 2003 Feb 2003
Nov 2013 Feb 2008 Nov 2011 May 2002 May 2002 Feb 2003 Feb 2003
Aug 2013 Nov 2007 Aug 2011 May 2002 May 2002 Feb 2003 Feb 2003
May 2013 Aug 2007 May 2011 May 2002 May 2002 Feb 2003 Feb 2003

For each out-of-sample period, the starting point that gives the lowest RMSE value for the pseudo-
out-sample forecasts is selected. The different starting points are based on ṽ2 = 16 and v = 8.

The forecasts for GDP growth and unemployment using different estimation windows are
presented in Table 5 and Table 6, respectively. We find that the use of a weighted average of the
covariance matrices for different estimation windows does not result in a difference in forecasts
selected for q = 0, 1, 2, 3 in Eq. 7. This implies that a minor variation in the estimated covariance
matrix does not affect the forecast selection algorithm, and therefore we also report the results
for q = 10, 20. Each method considered is ranked by its performance under both RMSE and
MAE. For GDP growth, almost all different window types result in improved forecasts relative
to simple averaging, in terms of RMSE and MAE. In the best cases, the forecast selection
algorithm yields RMSE and MAE improvements over the benchmark of 13.63 and 10.65 percent,
respectively, for one-year-ahead forecasts, and even 21.65 and 16.76 percent, respectively, for
two-year-ahead forecasts. However, for unemployment, the opposite holds. Even in the best
cases, the algorithm yields RMSE and MAE loss over the benchmark of 4.94 and 1.78 percent,
respectively, for one-year-ahead forecasts, and 1.66 and 1.00 percent, respectively, for two-year-
ahead forecasts. These results are in line with the outcomes of the tests for forecast bias in
Table 1. That is, unbiased GDP growth forecasts give improvements in accuracy over simple
averaging, whereas biased unemployment forecasts give relatively lower accuracy.
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An important result is that compared to Matsypura et al. (2017), our findings are very dif-
ferent. Whereas Matsypura et al. (2017) find improvements in accuracy over simple averaging
across all data sets using an expanding window, we only find improvements for GDP growth
forecasts. This difference is caused by a minor change in the data used, as we included ob-
servations that recently became available and our expanding window therefore also includes a
few additional observations. This already indicates that the forecast selection algorithm is not
robust to the estimation window used. Additionally, looking at the DM test statistics adjusted
for sample size in Table 4, we can see that not a single value has a absolute value larger than
the critical value 2.131. This means that there is no significant indication that any method
performs better or worse compared to simple averaging, despite the differences in RMSE and
MAE. However, the RMSE and MAE values do give us a good indication of the performance of
the forecast selection algorithm for different estimation windows. Therefore, in the rest of this
section, we look at these values in Table 5 and Table 6 to evaluate the different methods for each
data set, in order to further understand the performance of the forecast selection algorithm.

Table 4: DM test statistics for all forecasts

GDP growth Unemployment
1-y.a. 2-y.a. 1-y.a. 2-y.a.

Expanding window 0.4964 0.5629 -1.0053 -0.5329
Rolling window -0.0190 0.5421 -1.0249 -0.5366
Cross-validation exp. 0.1532 0.5421 -0.7087 -0.2083
Cross-validation rol. -0.1359 0.5421 -0.7375 -0.7806
Weighted forecast exp. q=0 0.8964 0.5490 -0.9402 -0.6643
Weighted forecast exp. q=1 0.8962 0.5490 -0.9397 -0.6638
Weighted forecast exp. q=2 0.8956 0.5490 -0.9393 -0.6632
Weighted forecast exp. q=3 0.8945 0.5490 -0.9389 -0.6626
Weighted forecast rol. q=0 0.8585 0.5451 -0.9337 -0.6948
Weighted forecast rol. q=1 0.8573 0.5451 -0.9330 -0.6948
Weighted forecast rol. q=2 0.8561 0.5451 -0.9323 -0.6948
Weighted forecast rol. q=3 0.8547 0.5452 -0.9316 -0.6947
Weighted cov.mat exp. q=0,1,2,3 0.8638 0.5421 -1.0492 -0.1703
Weighted cov.mat exp. q=10 0.9386 0.5421 -1.0492 -0.1703
Weighted cov.mat exp. q=20 1.0405 0.5421 -1.0253 -0.1703
Weighted cov.mat rol q=0,1,2,3 0.8638 0.5421 -0.9102 -0.5920
Weighted cov.mat rol. q=10,20 0.8638 0.5421 -0.9102 -0.5533

Forecasts are computed over the 16 periods from from May 2013 to February 2017 using
different estimation windows with ṽ2 = 16 and v = 8. A value below the critical value
of -2.131 indicates significant worse forecasting performance than simple averaging, and
a value greater than the critical value of 2.131 indicates significant better forecasting
performance than simple averaging.

As expected, there is not a single method that consistently outperforms other methods across
all four data sets. For one-year-ahead GDP growth forecasts, we can see that combining different
estimation windows gives higher accuracy than using a single estimation window. This is in line
with Fig 2a, where we could see that while there is variation in the pseudo-out-of-sample RMSE
values, in most of the cases there is not a single starting point that clearly gives a lower value.
However, there is a difference between using a single expanding window and using a single rolling
window. Whereas using a single expanding window, either by including all available data or by
selecting starting points with cross-validation, gives an improvement in accuracy over simple
averaging in terms of RMSE, using a single rolling window yields relative RMSE loss. In line
with the results in Table 3, we thus find that a rolling window is not appropriate. An interesting
feature is that while combining different estimation windows in general appears to work well,
using a weighted average covariance matrix gives the highest accuracy. This suggests that for
this data set, the individual covariance matrices can be estimated relatively accurately, and
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combining covariance matrices can give a further improvement in accuracy. Considering the
outcomes of the tests for forecast bias in Table 1, this is not a surprising result. Overall, the
results imply that for this data set, while with most of the methods there is an improvement
in forecast accuracy over simple averaging, the performance of the forecast selection algorithm
still varies with the estimation window used.

In agreement with our expectations based on Fig. 2c and Table 3, we find that for two-year-
ahead GDP growth forecasts, using an expanding window gives both the lowest RMSE value
and the lowest MAE value. However, the different methods result in relative RMSE and relative
MAE values that are all quite close to each other, with biggest differences of only 0.70 and 3.78
percent, respectively. Quite frequently, the same forecasts are selected for each out-of-sample
period, indicating that there are forecasters in the panel that consistently provide relatively more
accurate forecasts. These results imply that for this data set, the forecast selection algorithm
is relatively robust to the estimation window used.

Table 5: Results of real GDP growth forecasts using different estimation windows

One-year-ahead forecast horizon

Rel. RMSE Rel. MAE
Weighted cov.mat. exp. q=20 0.8637 Weighted cov.mat. exp. q=20 0.8935
Weighted cov.mat. exp. q=10 0.8661 Weighted cov.mat. exp. q=10 0.9073
Weighted cov.mat. exp.&rol. q=0,1,2,3 0.8854 Weighted cov.mat. exp.&rol. q=0,1,2,3 0.9451
Weighted cov.mat. rol. q=10,20 0.8854 Weighted cov.mat. rol. q=10,20 0.9451
Weighted forecast rol. q=0 0.8950 Expanding window 0.9470
Weighted forecast rol. q=1 0.8956 Weighted forecast rol. q=0 0.9504
Weighted forecast rol. q=2 0.8962 Weighted forecast rol. q=1 0.9509
Weighted forecast rol. q=3 0.8968 Weighted forecast rol. q=2 0.9515
Weighted forecast exp. q=0 0.9042 Weighted forecast exp. q=0 0.9518
Weighted forecast exp. q=1 0.9053 Weighted forecast rol. q=3 0.9521
Weighted forecast exp. q=2 0.9065 Weighted forecast exp. q=1 0.9522
Weighted forecast exp. q=3 0.9077 Weighted forecast exp. q=2 0.9525
Expanding window 0.9510 Weighted forecast exp. q=3 0.9529
Cross-validation exp. 0.9879 Cross-validation exp. 1.0092
Rolling window 1.0023 Rolling window 1.0573
Cross-validation rol. 1.0137 Cross-validation rol. 1.0711

Simple averaging (filtered): 1-y.a. RMSE = 0.4423%, 1-y.a. MAE = 0.3313%

Two-year-ahead forecast horizon

Rel. RMSE Rel. MAE
Expanding window 0.7835 Expanding window 0.8324
Weighted forecast exp. q=0,1,2,3 0.7882 Weighted forecast exp. q=0,1,2,3 0.8632
Weighted forecast rol. q=0,1,2,3 0.7895 Weighted forecast rol. q=0,1,2,3 0.8673
Rolling window 0.7905 Rolling window 0.8702
Cross-validation exp.&rol. 0.7905 Cross-validation exp.&rol. 0.8702
Weighted cov.mat. exp.&rol. q=0,1,2,3,10,20 0.7905 Weighted cov.mat. exp.&rol. q=0,1,2,3,10,20 0.8702

Simple averaging (filtered): 2-y.a. RMSE = 0.6073%, 2-y.a. MAE = 0.4159%

Forecasts are computed over the 16 periods from Q2 2013 to Q1 2017 using different estimation windows with ṽ2 = 16 and v = 8. Relative
RMSE and MAE are reported. The benchmark is simple averaging (filtered), and the results are ranked. A value below one indicates
higher forecasting accuracy relative to simple averaging, and a value greater than one indicates lower forecasting accuracy relative to
simple averaging. The RMSE and MAE for simple averaging (filtered) are reported at the bottom.

Somewhat surprisingly, for one-year-ahead unemployment forecasts, we find that the cross-
validation methods give the lowest RMSE and MAE values. Looking at the graph in Fig. 2b, we
can see that for the earliest four out-of-sample periods, the earliest few starting points appear to
give higher pseudo-out-of-sample RMSE values. The cross-validation methods therefore do not
select these starting points, resulting in a small gain in accuracy compared to other methods.
Accordingly, the use of a single expanding or rolling window gives the lowest accuracy, as for both
of these methods the concerning starting points for the earliest four out-of-sample periods are
still used. While the window combination methods also use these starting points, the differences
between different starting points are accounted for. This explains why combining estimation
windows results in slightly higher accuracy compared to the use of a single expanding or rolling
window. Overall, we can see that for this data set, the performance of the forecast selection
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algorithm only varies a little with the estimation window used. However, improvements in
forecast accuracy can be made by taking a good look at the pseudo-out-of-sample performance.

For two-year-ahead unemployment forecasts, we can see that in line with our interpretation
of Table 3, the cross-validation method using an expanding window has relatively good perfor-
mance. For this data set, this method is equivalent to using an expanding window with starting
point February 2003 instead of November 2000. However, the difference with using November
2000 as the starting point is only 1.78 percent, indicating that the difference in estimation
accuracy is quite small. The weighted average covariance matrix using an expanding window,
with the same forecasts selected for all q considered, also has relatively good performance. This
suggests that this method perhaps removes part of the bias in the estimated covariance matrix,
considering the outcomes of the tests for forecast bias in Table 1. This would also explain the
difference in performance between this method and the other window combination methods.
Overall, the performance of the forecast selection algorithm varies with the estimation window
used. Also for this data set, we find that improvements in forecast accuracy can be made by
taking pseudo-out-of-sample performance into account.

Table 6: Results of unemployment forecasts using different estimation windows

One-year-ahead forecast horizon

Rel. RMSE Rel. MAE
Cross-validation exp. 1.0494 Cross-validation exp. 1.0178
Cross-validation rol. 1.0512 Cross-validation rol. 1.0211
Weighted cov.mat. rol. q=0,1,2,3,10,20 1.0673 Weighted cov.mat. rol. q=0,1,2,3,10,20 1.0495
Weighted forecast rol. q=3 1.0716 Weighted forecast rol. q=3 1.0566
Weighted forecast rol. q=2 1.0717 Weighted forecast rol. q=2 1.0568
Weighted forecast rol. q=1 1.0718 Weighted forecast exp. q=3 1.0568
Weighted forecast rol. q=0 1.0719 Weighted forecast rol. q=1 1.0569
Weighted forecast exp. q=3 1.0720 Weighted forecast exp. q=2 1.0570
Weighted forecast exp. q=2 1.0721 Weighted forecast rol. q=0 1.0571
Weighted forecast exp. q=1 1.0722 Weighted forecast exp. q=1 1.0571
Weighted forecast exp. q=0 1.0722 Weighted forecast exp. q=0 1.0573
Weighted cov.mat. exp. q=20 1.0778 Weighted cov.mat. exp. q=20 1.0581
Weighted cov.mat. exp. q=0,1,2,3,10 1.0806 Expanding window 1.0615
Expanding window 1.0840 Weighted cov.mat. exp. q=0,1,2,3,10 1.0626
Rolling window 1.0857 Rolling window 1.0647

Simple averaging (filtered): 1-y.a. RMSE = 0.4972%, 1-y.a. MAE = 0.4769%

Two-year-ahead forecast horizon

Rel. RMSE Rel. MAE
Cross-validation exp. 1.0166 Weighted cov.mat. exp. q=0,1,2,3,10,20 1.0100
Weighted cov.mat. exp. q=0,1,2,3,10,20 1.0130 Cross-validation exp. 1.0144
Expanding window 1.0344 Expanding window 1.0527
Weighted cov.mat. rol. q=10,20 1.0424 Cross-validation rol. 1.0562
Cross-validation rol. 1.0435 Weighted cov.mat. rol. q=10,20 1.0617
Weighted forecast exp. q=0 1.0462 Weighted forecast exp. q=0 1.0688
Weighted forecast exp. q=1 1.0463 Weighted forecast exp. q=1 1.0688
Weighted forecast exp. q=2 1.0463 Weighted forecast exp. q=2 1.0688
Weighted forecast exp. q=3 1.0464 Weighted forecast exp. q=3 1.0688
Weighted cov.mat. rol. q=0,1,2,3 1.0491 Weighted forecast rol. q=0 1.0717
Weighted forecast rol. q=0 1.0514 Weighted forecast rol. q=1 1.0718
Weighted forecast rol. q=1 1.0516 Weighted forecast rol. q=2 1.0720
Weighted forecast rol. q=2 1.0517 Weighted forecast rol. q=3 1.0721
Weighted forecast rol. q=3 1.0518 Rolling window 1.0753
Rolling window 1.0658 Weighted cov.mat. rol. q=0,1,2,3 1.0799

Simple averaging (filtered): 2-y.a. RMSE = 1.0352%, 2-y.a. MAE = 1.2312%

Forecasts are computed over the 16 periods from from May 2013 to February 2017 using different estimation windows with
ṽ2 = 16 and v = 8. Relative RMSE and MAE are reported. The benchmark is simple averaging (filtered), and the results
are ranked. A value below one indicates superior accuracy to the benchmark, and a value greater than one indicates inferior
accuracy. The RMSE and MAE for simple averaging (filtered) are reported at the bottom.
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7 Conclusion

In this paper, we investigated the robustness of the forecast selection algorithm proposed by
Matsypura et al. (2017), with a focus on the use of different estimation windows. Matsypura
et al. (2017) propose an algorithm in which integer programming is used to select forecasts
for averaging, given an estimated covariance matrix, instead of averaging over every available
forecast. While numerous empirical studies on forecast combination methods fail to consistently
outperform simple averaging, the authors conclude based on an application to ECB SPF data,
that this particular method does succeed in doing so. A quick look at the methodology raises
doubts about the robustness of the method, as results are reported only for a single expanding
window including all available data.

Using ECB SPF data on rates of GDP growth and unemployment, both one-year-ahead
and two-year-ahead, we applied the forecast selection algorithm in combination with different
estimation windows. Besides considering a single expanding and a single rolling window, we
used pseudo-out-of-sample cross-validation to determine optimal window size. We also combined
different estimation windows using both equal weights and weights based on the pseudo-out-
of-sample performance. For most of the data sets, the performance of the forecast selection
algorithm varied with the estimation window used. We find that the robustness of the algorithm
for a specific data set can be investigated prior to forecasting out-of-sample. Accordingly,
improvements in forecast accuracy can be made by selecting the estimation window based on
pseudo-out-of-sample performance.

Furthermore, we find that the overall performance of the forecast selection algorithm is not
consistent across different panels and different horizons. This is in line with previous forecasting
literature, and the pattern can easily be explained. Due to free exit and entry of forecasters
in the survey panel, there is the issue of missing data, resulting in the need for omitting data
and even after filtering, a poor estimation of the covariance matrix. As the forecast selection
algorithm relies on an estimate of the full covariance matrix of forecast errors, a bias in this
matrix can lead to biased forecasts constructed. The forecasts that did not appear to be
biased based on pseudo-out-of-sample analysis, had big improvements in out-of-sample forecast
accuracy relative to simple averaging, in terms of RMSE and MAE. The forecasts that did
appear to be biased had relatively worse out-of-sample performance. However, we find that if
the sample size and the forecast horizon allow for it, a simple bias-adjustment can be applied.

The methods developed in this paper can be extended to other forecast combination meth-
ods. The selection of the estimation window used is often overlooked, and usually only results
for a single estimation window are reported. The findings of our paper show the importance
of choice of estimation window in the presence of data instability, and that improvements in
forecast accuracy can be made by taking a careful look at pseudo-out-of-sample performance. In
future work, the issue of bias in the estimated covariance matrix should be further investigated.
Especially when the matrix is used for forecast combination weights estimation, a bias could
have a large impact on the outcomes.
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Appendix

A Summary statistics of the filtered ECB SPF data

Table 1: Summary statistics of filtered ECB SPF data on GDP growth one-year-ahead

Quarter Obs. Mean Var. Min. Max. Outc. Quarter Obs. Mean Var. Min. Max. Outc.

1999Q3 24 2.10 0.06 1.60 2.50 2.90 2008Q3 27 1.73 0.13 0.90 2.60 0.10
1999Q4 27 2.24 0.11 1.70 3.10 4.00 2008Q4 26 1.33 0.12 0.60 1.90 -2.10
2000Q1 23 2.48 0.08 2.10 3.30 4.20 2009Q1 25 0.92 0.22 0.10 2.20 -5.50
2000Q2 25 2.88 0.06 2.40 3.40 4.50 2009Q2 27 -0.04 0.19 -1.00 0.70 -5.40
2000Q3 26 3.05 0.08 2.20 3.70 3.90 2009Q3 28 -1.93 1.04 -3.80 0.10 -4.60
2000Q4 27 3.26 0.10 2.50 3.90 3.40 2009Q4 28 -2.13 1.78 -4.80 1.00 -2.40
2001Q1 23 3.39 0.07 3.00 3.90 3.20 2010Q1 27 -0.44 0.40 -1.40 1.50 1.00
2001Q2 30 3.08 0.08 2.50 3.60 2.30 2010Q2 26 1.06 0.26 0.20 2.60 2.30
2001Q3 29 2.67 0.05 2.10 3.10 1.90 2010Q3 29 1.07 0.17 0.20 1.80 2.40
2001Q4 27 2.30 0.15 1.10 2.80 1.20 2010Q4 25 1.34 0.12 0.70 2.20 2.40
2002Q1 25 1.92 0.23 1.00 2.90 0.50 2011Q1 27 1.30 0.15 0.50 2.10 2.80
2002Q2 24 1.29 0.30 0.40 2.60 0.90 2011Q2 29 1.43 0.13 0.70 2.10 1.80
2002Q3 27 1.54 0.30 0.60 3.20 1.20 2011Q3 28 1.45 0.08 0.80 2.10 1.40
2002Q4 28 2.32 0.22 1.30 3.20 1.20 2011Q4 27 1.57 0.04 1.10 1.90 0.50
2003Q1 24 2.42 0.23 1.10 3.20 0.80 2012Q1 26 1.50 0.14 0.70 2.30 -0.50
2003Q2 28 1.61 0.22 0.15 2.40 0.40 2012Q2 30 0.62 0.15 -0.30 1.20 -0.80
2003Q3 28 1.46 0.10 0.60 2.25 0.50 2012Q3 28 0.05 0.37 -1.00 1.20 -1.00
2003Q4 26 1.28 0.14 0.75 2.10 1.10 2012Q4 26 0.19 0.23 -0.70 1.70 -1.10
2004Q1 23 1.22 0.26 0.60 2.20 1.90 2013Q1 23 0.01 0.08 -0.40 1.00 -1.20
2004Q2 31 1.53 0.05 1.00 2.00 2.40 2013Q2 26 0.10 0.16 -0.50 1.20 -0.40
2004Q3 26 1.92 0.04 1.50 2.30 2.20 2013Q3 24 0.02 0.17 -0.70 1.00 0.10
2004Q4 31 1.87 0.07 1.30 2.50 1.80 2013Q4 25 0.33 0.10 -0.30 0.80 0.70
2005Q1 29 2.03 0.11 1.20 2.50 1.40 2014Q1 21 0.58 0.14 0.00 1.80 1.30
2005Q2 31 1.98 0.09 1.20 2.50 1.50 2014Q2 26 0.91 0.06 0.40 1.40 1.00
2005Q3 29 1.89 0.04 1.40 2.20 2.00 2014Q3 25 1.14 0.05 0.80 1.80 1.10
2005Q4 29 1.89 0.05 1.50 2.30 2.20 2014Q4 24 1.28 0.10 0.50 2.00 1.30
2006Q1 25 1.67 0.08 1.10 2.30 3.00 2015Q1 24 1.27 0.06 0.80 1.70 1.80
2006Q2 27 1.64 0.07 1.10 2.20 3.40 2015Q2 25 1.00 0.10 0.40 1.60 2.00
2006Q3 29 1.92 0.04 1.60 2.30 3.30 2015Q3 27 1.15 0.04 0.80 1.50 1.90
2006Q4 29 2.16 0.05 1.70 2.60 3.70 2015Q4 24 1.62 0.12 0.65 2.30 2.00
2007Q1 24 2.04 0.04 1.70 2.40 3.60 2016Q1 23 1.72 0.06 1.30 2.20 1.70
2007Q2 26 1.99 0.07 1.40 2.60 3.10 2016Q2 25 1.67 0.09 1.20 2.70 1.60
2007Q3 27 2.00 0.07 1.40 2.50 3.00 2016Q3 23 1.68 0.04 1.30 1.93 1.80
2007Q4 27 2.12 0.06 1.60 2.60 2.40 2016Q4 23 1.58 0.05 1.10 2.00 1.80
2008Q1 24 2.28 0.04 1.70 2.60 2.10 2017Q1 23 1.31 0.08 0.80 1.90 1.70
2008Q2 30 2.10 0.12 0.90 2.70 1.20

’Quarter’ the given period, ’Obs.’ the number of available observations after filtering, ’Mean’ the mean value of the individual
forecasts after filtering, ’Var.’ the variance of these forecasts, ’Min.’ and ’Max.’ the minimum and maximum forecast after filtering,
respectively, ’Outc.’ the actual outcome of GDP growth rate in the period.
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Table 2: Summary statistics of filtered ECB SPF data on GDP growth two-year-ahead

Quarter Obs. Mean Var. Min. Max. Outc. Quarter Obs. Mean Var. Min. Max. Outc.

2000Q3 22 2.63 0.07 2.20 3.20 3.90 2009Q1 20 2.13 0.06 1.60 2.50 -5.50
2000Q4 24 2.55 0.11 1.70 3.00 3.40 2009Q2 24 2.12 0.04 1.70 2.40 -5.40
2001Q1 22 2.69 0.04 2.30 3.00 3.20 2009Q3 24 2.05 0.03 1.70 2.40 -4.60
2001Q2 24 2.73 0.12 1.90 3.40 2.30 2009Q4 23 1.81 0.09 1.40 2.50 -2.40
2001Q3 22 2.87 0.05 2.50 3.30 1.90 2010Q1 21 1.64 0.06 1.10 2.10 1.00
2001Q4 25 2.92 0.04 2.50 3.30 1.20 2010Q2 24 1.13 0.30 -0.80 2.00 2.30
2002Q1 20 2.90 0.09 2.10 3.50 0.50 2010Q3 24 0.81 0.21 -0.80 1.50 2.40
2002Q2 26 2.90 0.05 2.50 3.30 0.90 2010Q4 24 0.94 0.40 -0.90 2.25 2.40
2002Q3 26 2.75 0.13 1.20 3.20 1.20 2011Q1 22 1.19 0.20 0.30 2.30 2.80
2002Q4 24 2.85 0.09 2.40 3.90 1.20 2011Q2 24 1.60 0.13 0.70 2.20 1.80
2003Q1 21 2.53 0.10 1.80 2.90 0.80 2011Q3 26 1.52 0.10 0.90 2.00 1.40
2003Q2 19 2.39 0.20 1.70 3.40 0.40 2011Q4 23 1.60 0.12 0.80 2.50 0.50
2003Q3 23 2.63 0.19 1.80 3.50 0.50 2012Q1 23 1.39 0.14 0.50 2.00 -0.50
2003Q4 23 2.57 0.07 2.10 3.10 1.10 2012Q2 23 1.61 0.14 1.00 2.30 -0.80
2004Q1 21 2.58 0.17 2.00 3.60 1.90 2012Q3 25 1.79 0.11 1.20 2.40 -1.00
2004Q2 23 2.49 0.16 1.60 3.50 2.40 2012Q4 23 1.74 0.06 1.30 2.20 -1.10
2004Q3 26 2.36 0.09 1.80 3.20 2.20 2013Q1 20 1.80 0.04 1.40 2.20 -1.20
2004Q4 21 2.37 0.16 1.60 3.40 1.80 2013Q2 25 1.42 0.18 0.50 2.20 -0.40
2005Q1 20 2.15 0.14 1.30 3.00 1.40 2013Q3 23 1.06 0.16 0.20 1.80 0.10
2005Q2 27 2.18 0.08 1.60 2.60 1.50 2013Q4 22 1.21 0.12 0.10 1.70 0.70
2005Q3 22 2.29 0.03 2.00 2.60 2.00 2014Q1 16 1.21 0.16 0.30 1.87 1.30
2005Q4 27 2.18 0.07 1.50 2.50 2.20 2014Q2 20 1.15 0.15 0.00 1.80 1.00
2006Q1 23 2.29 0.06 1.90 3.00 3.00 2014Q3 20 1.27 0.10 0.40 1.90 1.10
2006Q2 26 2.16 0.04 1.90 2.60 3.40 2014Q4 19 1.18 0.07 0.50 1.60 1.30
2006Q3 26 2.13 0.04 1.80 2.60 3.30 2015Q1 16 1.17 0.06 0.70 1.60 1.80
2006Q4 26 2.05 0.10 1.00 2.80 3.70 2015Q2 20 1.39 0.07 0.60 1.70 2.00
2007Q1 20 1.96 0.06 1.50 2.50 3.60 2015Q3 20 1.47 0.03 1.10 1.80 1.90
2007Q2 24 1.99 0.07 1.40 2.60 3.10 2015Q4 20 1.55 0.03 1.20 1.80 2.00
2007Q3 27 1.87 0.08 1.40 2.50 3.00 2016Q1 19 1.59 0.04 1.10 1.90 1.70
2007Q4 26 1.78 0.10 1.10 2.40 2.40 2016Q2 20 1.48 0.09 0.90 2.10 1.60
2008Q1 20 1.86 0.06 1.10 2.20 2.10 2016Q3 21 1.47 0.05 1.10 1.80 1.80
2008Q2 23 1.97 0.09 1.30 2.50 1.20 2016Q4 22 1.67 0.03 1.30 1.90 1.80
2008Q3 26 2.09 0.06 1.7 2.5 0.10 2017Q1 17 1.71 0.01 1.50 1.82 1.70
2008Q4 25 2.16 0.06 1.8 2.6 -2.10

’Quarter’ the given period, ’Obs.’ the number of available observations after filtering, ’Mean’ the mean value of the individual
forecasts after filtering, ’Var.’ the variance of these forecasts, ’Min.’ and ’Max.’ the minimum and maximum forecast after filtering,
respectively, ’Outc.’ the actual outcome of GDP growth rate in the period.
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Table 3: Summary statistics of filtered ECB SPF data on unemployment one-year-ahead

Quarter Obs. Mean Var. Min. Max. Outc. Quarter Obs. Mean Var. Min. Max. Outc.

1999Nov 22 10.54 0.09 9.90 11.00 9.54 2008Aug 26 6.74 0.04 6.30 7.20 7.38
2000Feb 24 10.29 0.09 9.60 11.00 8.88 2008Nov 26 7.11 0.06 6.70 7.50 8.03
2000May 21 9.90 0.10 9.00 10.80 9.27 2009Feb 25 7.18 0.11 6.70 7.90 9.86
2000Aug 21 9.66 0.07 9.30 10.30 9.04 2009May 24 7.33 0.16 6.30 7.80 9.01
2000Dec∗ 22 8.97 0.06 8.50 9.30 8.57 2009Aug 26 8.06 0.15 7.40 8.80 9.55
2001Feb 24 8.78 0.05 8.30 9.20 8.37 2009Nov 26 9.20 0.37 8.20 10.50 10.07
2001May 21 8.55 0.05 8.20 9.00 8.42 2010Feb 26 10.45 0.55 9.20 12.00 10.17
2001Aug 27 8.49 0.07 8.10 9.30 8.39 2010May 25 11.00 0.28 10.10 12.10 10.20
2001Nov 26 8.37 0.06 7.80 9.00 8.45 2010Aug 25 10.72 0.17 10.20 11.60 10.30
2002Feb 23 8.35 0.04 8.00 8.80 8.72 2010Nov 27 10.72 0.10 10.06 11.50 10.14
2002May 21 8.21 0.07 7.80 8.70 8.50 2011Feb 24 10.49 0.07 9.90 10.90 10.22
2002Aug 20 8.56 0.13 7.80 9.30 8.56 2011May 25 10.18 0.12 9.50 10.70 10.01
2002Nov 24 8.66 0.11 8.00 9.50 8.86 2011Aug 27 10.02 0.06 9.50 10.50 10.00
2003Feb 24 8.39 0.06 7.80 8.90 9.07 2011Nov 25 9.92 0.09 9.20 10.40 10.60
2003May 20 8.16 0.25 6.40 8.90 8.99 2012Feb 25 9.62 0.05 9.10 10.10 11.50
2003Aug 25 8.35 0.08 7.50 8.80 9.04 2012May 23 9.56 0.03 9.10 10.00 10.93
2003Nov 25 8.46 0.08 7.50 9.00 9.08 2012Aug 27 10.04 0.13 9.30 11.00 11.29
2004Feb 22 8.87 0.05 8.40 9.30 9.23 2012Nov 25 10.69 0.15 10.00 11.80 11.79
2004May 21 8.89 0.11 8.03 9.50 9.24 2013Feb 21 11.11 0.03 10.70 11.40 12.02
2004Aug 28 8.83 0.04 8.50 9.20 9.28 2013May 20 11.40 0.13 10.90 12.30 12.05
2004Nov 21 8.73 0.05 8.40 9.50 9.26 2013Aug 22 11.69 0.22 10.60 12.40 12.05
2005Feb 27 8.63 0.02 8.30 8.90 9.03 2013Nov 22 12.14 0.25 11.00 13.00 11.90
2005May 26 8.69 0.03 8.20 8.90 9.18 2014Feb 22 12.36 0.07 11.90 12.90 11.48
2005Aug 28 8.75 0.03 8.30 9.20 9.16 2014May 17 12.42 0.14 11.50 13.10 11.89
2005Nov 25 8.72 0.03 8.10 9.00 8.95 2014Aug 23 11.98 0.12 11.20 12.90 11.65
2006Feb 25 8.73 0.04 8.20 9.30 8.25 2014Nov 23 11.90 0.05 11.30 12.40 11.50
2006May 23 8.68 0.03 8.40 9.00 8.76 2015Feb 22 11.64 0.04 11.20 12.00 10.68
2006Aug 24 8.43 0.02 8.00 8.63 8.48 2015May 19 11.39 0.08 11.10 12.40 11.18
2006Nov 27 7.99 0.02 7.60 8.30 8.05 2015Aug 20 11.32 0.03 11.10 11.80 11.06
2007Feb 26 7.92 0.02 7.50 8.30 7.48 2015Nov 22 11.13 0.05 10.70 11.61 10.47
2007May 21 7.69 0.04 7.40 8.20 7.75 2016Feb 21 10.80 0.05 10.40 11.30 9.92
2007Aug 24 7.56 0.03 7.20 7.90 7.53 2016May 21 10.62 0.05 10.15 10.90 10.33
2007Nov 25 7.38 0.02 7.10 7.70 7.31 2016Aug 22 10.47 0.03 10.00 11.00 10.14
2008Feb 26 6.99 0.03 6.70 7.30 7.58 2016Nov 22 10.10 0.04 9.60 10.50 9.74
2008May 21 6.75 0.06 6.30 7.20 7.30 2017Feb 18 9.87 0.07 9.20 10.50 9.54

’Quarter’ the given period, ’Obs.’ the number of available observations after filtering, ’Mean’ the mean value of the individual forecasts
after filtering, ’Var.’ the variance of these forecasts, ’Min.’ and ’Max.’ the minimum and maximum forecast after filtering, respectively,
’Outc.’ the actual outcome of unemployment rate in the period.
* For this period, forecasts are provided for December instead of for November.

22



Table 4: Summary statistics of filtered ECB SPF data on unemployment two-year-ahead

Quarter Obs. Mean Var. Min. Max. Outc. Quarter Obs. Mean Var. Min. Max. Outc.

2000Nov 22 10.14 0.15 9.50 11.00 8.65 2009Feb 23 6.83 0.06 6.50 7.50 9.01
2001Feb 22 9.90 0.17 9.20 11.00 8.42 2009May 18 6.66 0.10 6.10 7.40 9.55
2001May 20 9.47 0.25 8.00 10.70 8.39 2009Aug 23 6.59 0.09 5.80 7.40 9.86
2001Aug 21 9.20 0.11 8.30 9.60 8.37 2009Nov 23 6.95 0.14 6.40 7.70 10.07
2001Dec∗ 22 8.57 0.13 7.90 9.50 8.47 2010Feb 21 6.96 0.22 6.00 8.00 10.20
2002Feb 23 8.31 0.18 7.40 9.30 8.5 2010May 19 7.39 0.30 6.00 8.40 10.30
2002May 19 8.21 0.26 7.30 9.30 8.56 2010Aug 23 8.04 0.40 7.10 9.60 10.17
2002Aug 24 8.15 0.23 7.40 9.50 8.72 2010Nov 24 9.28 0.89 7.10 11.10 10.14
2002Nov 24 8.09 0.31 7.40 10.00 8.86 2011Feb 23 10.37 1.18 8.50 12.40 10.01
2003Feb 22 8.05 0.12 7.50 8.90 8.99 2011May 21 10.62 0.51 9.70 12.00 10.00
2003May 20 7.90 0.13 7.40 8.70 9.04 2011Aug 22 10.37 0.42 9.40 11.80 10.22
2003Aug 20 8.21 0.30 7.00 9.20 9.07 2011Nov 25 10.49 0.51 9.30 13.00 10.60
2003Nov 22 8.31 0.13 7.70 9.20 9.08 2012Feb 22 9.96 0.27 8.90 11.20 10.93
2004Feb 23 8.04 0.11 7.20 8.50 9.24 2012May 21 9.80 0.20 9.00 10.70 11.29
2004May 21 7.87 0.13 7.20 8.60 9.28 2012Aug 23 9.57 0.27 8.50 10.21 11.50
2004Aug 23 7.95 0.14 7.00 8.50 9.23 2012Nov 24 9.51 0.26 8.50 10.40 11.79
2004Nov 23 8.07 0.13 7.00 8.60 9.26 2013Feb 22 9.22 0.13 8.50 10.00 12.05
2005Feb 18 8.45 0.13 7.50 9.00 9.18 2013May 19 9.23 0.10 8.30 9.70 12.05
2005May 20 8.58 0.17 7.80 9.40 9.16 2013Aug 25 9.74 0.46 8.40 12.10 12.02
2005Aug 25 8.46 0.09 7.80 9.00 9.03 2013Nov 23 10.41 0.46 9.00 12.00 11.90
2005Nov 19 8.40 0.06 8.00 8.90 8.95 2014Feb 20 10.62 0.11 10.00 11.20 11.89
2006Feb 25 8.30 0.07 7.80 8.80 8.76 2014May 17 10.81 0.34 9.80 11.70 11.65
2006May 21 8.34 0.10 7.50 8.80 8.48 2014Aug 19 11.23 0.47 9.80 12.40 11.48
2006Aug 25 8.42 0.12 7.30 8.80 8.25 2014Nov 20 11.48 0.57 9.50 12.60 11.50
2006Nov 24 8.41 0.10 7.40 8.80 8.05 2015Feb 19 11.79 0.29 10.50 12.90 11.18
2007Feb 23 8.41 0.10 7.50 9.00 7.75 2015May 16 11.98 0.36 10.40 13.00 11.06
2007May 20 8.41 0.10 7.40 8.80 7.53 2015Aug 21 11.47 0.28 10.10 12.30 10.68
2007Aug 23 8.17 0.08 7.40 8.50 7.48 2015Nov 20 11.44 0.16 10.60 12.00 10.47
2007Nov 26 7.72 0.06 7.10 8.10 7.31 2016Feb 20 11.16 0.13 10.30 11.80 10.33
2008Feb 24 7.65 0.08 7.00 8.30 7.3 2016May 17 10.93 0.24 9.90 12.20 10.14
2008May 19 7.50 0.08 7.10 8.20 7.38 2016Aug 18 10.89 0.17 9.60 11.50 9.92
2008Aug 22 7.39 0.03 7.10 7.80 7.58 2016Nov 21 10.66 0.15 9.80 11.30 9.74
2008Nov 24 7.21 0.06 6.80 7.80 8.03 2017Feb 21 10.33 0.21 9.50 11.30 9.54

’Quarter’ the given period, ’Obs.’ the number of available observations after filtering, ’Mean’ the mean value of the individual forecasts
after filtering, ’Var.’ the variance of these forecasts, ’Min.’ and ’Max.’ the minimum and maximum forecast after filtering, respectively,
’Outc.’ the actual outcome of unemployment rate in the period.
* For this period, forecasts are provided for December instead of for November.
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B Pseudo-out-of-sample RMSE

(a) GDP growth one-year-ahead (b) Unemployment one-year-ahead

(c) GDP growth two-year-ahead (d) Unemployment two-year-ahead

Forecasts are computed pseudo-out-of-sample for ṽ2 = 16 periods using estimation windows based on v = 8,
and evaluated following Eq. 2. The line with earliest starting points corresponds to the earliest set of ṽ2 = 16
pseudo-out-of-sample periods and the line with the latest starting points corresponds to the latest set of ṽ2 = 16
pseudo-out-of-sample periods.

Figure 1: Pseudo-out-of-sample RMSE for different starting points using a rolling window
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