
BACHELOR THESIS

ECONOMETRICS AND OPERATIONS RESEARCH

The Pickup and Delivery Problem with
Time Windows: an Adaptive Large

Neighborhood Search heuristic

Author:
Liana van der Hagen
409165

Supervisor:
T. R. Visser, MSc.

Second assessor:
Dr. R. Spliet

Erasmus School of Economics
ERASMUS UNIVERSITY ROTTERDAM

July 2, 2017

http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com

Abstract

The Pickup and Delivery Problem with Time Windows, concerns the transportation of goods
between paired pickup and delivery locations. In this problem, which is a generalization of the
classical Vehicle Routing Problem, pickup locations must be visited before the corresponding
delivery locations by the same vehicle.
In this thesis we implement the adaptive large neighborhood search heuristic, as proposed by
Ropke and Pisinger (2006). This heuristic is an extension of the large neighborhood search
heuristic, in which the removal heuristics and insertion heuristics are picked at random with
adaptive selection probabilities. These probabilities change during the search, based on
previous performance.
We reproduce the results of Ropke and Pisinger (2006). In addition, we propose a new
time related removal heuristic for the adaptive large neighborhood search heuristic and
investigate an extension of the problem which includes a transfer point. At this transfer
point the goods from the pickup location can be stored temporarily, after which a different
vehicle can deliver these goods to its corresponding delivery location.
We found that the inclusion of the time related removal heuristic results in better solutions
for part of the test instances. Moreover, the adaptive large neighborhood search heuristic
for the extended problem with transfer point also gives better solutions for many of the test
instances.

2

Contents

1 Introduction 4

2 Literature Review 5

3 Problem Description 6
3.1 PDPTW . 6
3.2 PDPTW with transfer point . 7

4 Methodology 8
4.1 Adaptive large neighborhood search . 8

4.1.1 Initial solution . 9
4.1.2 Removal heuristics . 9
4.1.3 Insertion heuristics . 11
4.1.4 Acceptance criteria . 11
4.1.5 Selection principle . 12
4.1.6 Noise term in the objective function 12
4.1.7 Vehicle minimization . 12

4.2 Extended ALNS: Time related removal heuristic 13
4.3 ALNS with transfer possibility . 14

5 Experimental results 16
5.1 The benchmark data sets . 16
5.2 ALNS experiments . 16
5.3 Parameter settings . 17
5.4 Results original ALNS . 18
5.5 Results ALNS with time related removal heuristic 21
5.6 Results ALNS with transfer point . 22

6 Conclusion 26

References 27

A Appendix 29

3

1 Introduction

In this thesis the Pickup and Delivery Problem with Time Windows (PDPTW) is studied.
The PDPTW is a well-known generalization of the classical Vehicle Routing Problem. The
problem consists of assigning transportation requests to vehicles and routing the vehicles.
Each request consists of the pickup of goods at one customer location and the delivery of
these goods at another location. These customer locations must be visited within a specified
time window.
Typical examples of a PDPTW include service providers which are contracted to move goods
from one location to another, where the locations, for example, correspond to warehouses,
factories or stores. In the context of grocery stores, the suppliers of the supermarkets
correspond to the pickup locations and the supermarkets themselves to the delivery locations.
Research in home health care logistics concerns, among other things, the transportation of
drugs from hospitals to patients’ homes (Liu et al., 2013).
The PDPTW also has a lot of other practical applications for which additional constraints are
necessary. An example of such an application is the transportation of elderly or handicapped
people (Doerner & Salazar-González, 2014), which is often referred to as the Dial-a-Ride
Problem. For transportation of persons, the service quality is very important. Specific type
of transportation requirements can be included to ensure this quality. A service related
constraint can, for example, set a maximum to the duration of the trip for each customer.
The PDPTW can also be applied to many other applications, such as school bus routing
and transportation of bulk products by ship from production to consumption harbours
(Desaulniers et al., 2000).
Ropke and Pisinger (2006) propose an adaptive large neighborhood search (ALNS) heuristic
for the PDPTW and have shown that this heuristic gives very good results on benchmark
instances. The method uses fast and simple removal and insertion heuristics to modify the
current solution. Removal heuristics remove transportation requests from their routes and
insertion heuristics reinsert them into the solution. The adaptive aspect of the heuristic is
that the probability of choosing a removal or insertion heuristic depends on the performance
in previous iterations.
The aim of this research is to implement the proposed ALNS heuristic and replicate the
results obtained by Ropke and Pisinger (2006). Moreover, we will try to obtain better
solutions for the PDPTW by extending their approach. Ropke and Pisinger (2006) show
that especially the removal heuristic has a large influence on the quality of the solution.
Therefore, we include another heuristic for removing requests, that removes requests that
are related in terms of time. As the time windows at the locations restrict the insertion
possibilities of requests into routes, we believe that adding such a removal method could be
beneficial.
Furthermore, we extend the PDPTW by introducing a transfer point. Using a transfer
point, it is possible for a request to be split, such that two vehicles handle the same request.
One vehicle picks up the load at the pickup location and delivers it at the transfer point.
The other vehicle can pick this load up at a later time and deliver it at the corresponding
delivery location. This can, for example, be beneficial when pickup and delivery locations
are far apart from each other, but also when time windows are very restrictive.
The organization of this thesis is as follows. In Section 2, a literature review on the PDPTW
is presented. A description of the problem is given in Section 3 and in Section 4 the ALNS
heuristic is explained. The data for this research and results are discussed in Section 5.
Finally, Section 6 contains a conclusion and a discussion.

4

2 Literature Review

The PDPTW and variants of this problem have been studied extensively in literature. Many
solution methods are proposed and as the problem is NP-hard, the focus has been mostly
on heuristics. A recent survey on the problem and some of its variants are given by Parragh,
Doerner, and Hartl (2008).
Landrieu, Mati, and Binder (2001) develop a tabu search procedure to solve the problem with
a single vehicle. Lau and Liang (2002) also use tabu search and test their method on random
generated instances. In addition, the authors compare several construction heuristics for the
problem. They propose the partitioned insertion heuristic, which combines the advantages
of an insertion heuristic and a sweep heuristic, both modified for the PDPTW. Nanry and
Barnes (2000) present a Reactive Tabu Search approach to solve the problem, which is an
extension of tabu search. This search consists of dynamically alternating neighborhoods, an
adaptive length of the tabu list and an escape mechanism.
Van der Bruggen, Lenstra, and Schuur (1993) develop a variable-depth exchange procedure
for the problem with a single vehicle, in which the number of arcs to be exchanged is
determined dynamically.
Perishable goods, such as catering foods, benefit from short transportation times. Farahani,
Grunow, and Günther (2012) therefore propose a model that integrates the short-term
production and distribution planning to optimize the time between the production and the
delivery of goods. An iterated solution procedure is proposed in which large neighborhood
search (LNS), which was first introduced by Shaw (1997), is used for the distribution
planning part. The principle behind LNS is to improve the solution by destroying it, which
involves the removal of requests from the solution. Then requests are inserted again, thus
repairing the solution.
It has been shown that it is beneficial to split the total amount of goods for a request over
different vehicles in the Pickup and Delivery Problem (Şahin et al., 2013). Nowak, Ergun,
and White III (2008) prove that when the size of the request is slightly over 50% of the
capacity of the vehicle, this benefit is the largest.
Bianchessi and Righini (2007) propose several heuristic algorithms for the problem with
simultaneous pickup and delivery, where customers require the delivery of goods and the
pickup of goods or waste.
Bent and Van Hentenryck (2006) use a two-stage approach for the PDPTW, where in the
first stage the number of vehicles is minimized using Simulated Annealing. In the second
stage the travel costs are minimized using LNS.
Ropke and Pisinger (2006) present an extension of this LNS, the adaptive large neighborhood
search (ALNS) heuristic, and have shown that this heuristic gives very good results for the
PDPTW. ALNS uses simple removal and insertion heuristics that are selected with adaptive
selection probabilities. Using several heuristics and selecting them adaptively based on the
current problem instance, makes this a robust method. In Pisinger and Ropke (2007), ALNS
is tested on five other variants of the Vehicle Routing Problem, where the ALNS heuristic is
able to improve many best known solutions. The authors found that a mixture of good and
less good removal and insertion heuristics results in better solutions, than when only using
good heuristics.
Cortés, Matamala, and Contardo (2010) introduce a strict formulation for the PDPTW with
transfer points. The authors consider the transportation of people and therefore include
an extra restriction on the maximum time each passenger can wait at the transfer point.
They propose a branch-and-cut method to solve the problem. The extension of the PDPTW
including a the transfer point that we consider in this thesis is similar to the problem in

5

Cortés et al. (2010). We focus, however, on the transportation of goods instead of people
and investigate whether including the option of using a transfer point in the ALNS heuristic
can be beneficial.

3 Problem Description

3.1 PDPTW

The PDPTW involves the design of optimal vehicle routes given a number of customer
requests, ri = (i+, i−), consisting of a pickup node i+ and a delivery node i−. Each node
j is assigned a time window [aj , bj], which means that no service can be provided at the
location before the start of the time window nor after the end of the time window. A vehicle
is allowed to arrive at the customer location before the beginning of the time window, but
has to wait to start service. Let N = P ∪D be the set of all customer nodes, with P the
set of pickup nodes and D the set of delivery nodes, where |P | = n. Let K be the set
of all available vehicles, with |K| = m. Each request ri is assigned a subset of vehicles
Kri , which can serve this request. Analogous, Pk and Dk contain all pickup and delivery
nodes, respectively, that can be served by vehicle k and Nk = Pk ∪ Dk. Requests that
cannot be served by every vehicle are called special requests. Each vehicle k has a limited
capacity Ck and a given start terminal, τk, and end terminal, τ ′k. These terminals also
have a specified time window, vehicles have to leave the start terminal at aτk and must
return to the end terminal before bτ ′k . The graph G = (V,A) consists of all customer nodes,
start terminals and end terminals and arcs A = V × V . The graph Gk = (Vk, Ak) is the
subgraph for vehicle k, where Vk consists of the nodes that may be visited by vehicle k,
that is Vk = Nk ∪ {τk} ∪ {τ ′k} and Ak = Vk × Vk. The distance and travel time from node
i to node j are denoted by dij and tij , respectively. We assume that the travel times and
distances satisfy the triangle inequality. Furthermore, si denotes the duration of service at
node i and li the load that should be transported from node i if i is a pickup node, or the
load that should be transported to that node if i is a delivery node. When constructing the
routes, it should be taken into account that the pickup location and the delivery location
are on the same route and the pickup location must be visited before the delivery location.
The decision variable xijk is binary variable, equal to 1 if the edge between node i and
node j is used by vehicle k. It might be that the set of available vehicles is not able to
serve all requests. These requests are placed in a so-called request bank. In this thesis we
do not allow for final solutions to have requests in the request bank, but in a transition
stage of the heuristic the request bank may be used. The binary variable zi is set to 1 if
the request corresponding to pickup node i is placed in the request bank. Moreover, the
decision variables Sik and Lik denote the start time of service by vehicle k at node i and an
upperbound on the amount of goods that are in vehicle k after visiting node i, respectively.
Ti =

∑
k∈K

∑
j∈Vk Sikxijk indicates the time at which service starts at node i.

A mathematical model of the problem, as given by Ropke and Pisinger (2006), is as follows.

Mathematical model

min α
∑
k∈K

∑
(i,j)∈A

di,jxijk + β
∑
k∈K

(Sτ ′k,k − aτk) + γ
∑
i∈P

zi (1)

s.t.
∑
k∈K

∑
j∈Nk

xijk + zi = 1 ∀i ∈ P (2)

6

∑
j∈Vk

xijk −
∑
j∈Vk

xi,n+i,k = 0, ∀k ∈ K, ∀i ∈ Pk (3)

∑
j∈Pk∪τ ′k

xτk,j,k = 1 ∀k ∈ K (4)

∑
i∈Dk∪τk

xi,τ ′k,k = 1 ∀k ∈ K (5)

∑
i∈Vk

xijk −
∑
i∈Vk

xjik = 0 ∀k ∈ K, ∀j ∈ Nk (6)

xijk = 1⇒ Sik + si + tij ≤ Sjk ∀k ∈ K, ∀(i, j) ∈ Ak (7)

ai ≤ Sik ≤ bi ∀k ∈ K, ∀i ∈ Vk (8)

Sik ≤ Sn+i,k ∀k ∈ K, ∀i ∈ Pk (9)

xijk = 1⇒ Lik + lj ≤ Ljk ∀k ∈ K, ∀(i, j) ∈ Ak (10)

Lik ≤ Ck ∀k ∈ K, ∀i ∈ Vk (11)

Lτkk = Lτ ′kk = 0 ∀k ∈ K (12)

xijk ∈ B ∀k ∈ K, ∀(i, j) ∈ Ak (13)

zi ∈ B ∀i ∈ P (14)

Sik ≥ 0 ∀k ∈ K, ∀i ∈ Vk (15)

Lik ≥ 0 ∀k ∈ K, ∀i ∈ Vk. (16)

The objective function (1) minimizes a weighted sum of the total distance travelled, the
time spent by all vehicles and the number of requests that are placed in the request bank.
Constraints (2) specify that either a pickup node is in one route or the corresponding request
is placed in the request bank. Constraints (3) ensure that the pickup location and the
delivery location are visited by the same vehicle and check that the delivery node is visited if
and only if the pickup node is visited. Constraints (4),(5) and (6) specify that each vehicle
has to leave its start terminal, arrive at its end terminal and when visiting a customer node
it must arrive at that node and leave that node, respectively. Constraints (7) and (8) ensure
that service cannot start at a location before the vehicle is able to arrive at that location, it
cannot start before the beginning of the time window or after the end of the time window
at that location, respectively. Constraints (9) are included to make sure that each delivery
location is visited later in time than its corresponding pickup location. Constraints (10),(11)
and (12) ensure that the loads on the vehicles are set correctly and satisfy the capacity
constraints. Finally, constraints (13), (14), (15) and (16) specify the domain of the variables.

3.2 PDPTW with transfer point

We extend the PDPTW by allowing goods to be transferred from one vehicle to another.
The goods from the pickup location can be delivered at a so-called transfer point. Thereafter,
another vehicle can transport the goods from this transfer point to the corresponding
delivery location of the request. We include one transfer point with a specified location
and a specified service time to the problem. We assume that there is unlimited storage
space and no time window at this point. Another assumption we make is that an unlimited
number of vehicles may be loaded and unloaded at each point in time at this transfer point.
In the PDPTW with transfer point, each request ri = (i+, i−) can be served regularly or be
split into two requests r1i = (i+, t−i) and r2i = (t+i , i

−), where t−i ∈ T− denotes the transfer
point as delivery node and t+i ∈ T+ denotes the transfer point as pickup node for request
ri. The sets T− and T+ consist of the transfer nodes for all requests. Cortés et al. (2010)

7

also consider the transfer point to consist of two nodes, to capture the difference between
loading and unloading at the transfer point. The authors, however, consider a fixed loading
and unloading time at the transfer point, whereas we model this as two separate service
durations for both transfer nodes, st−i

and st+i
. The two sub-requests r1i and r2i can be

considered as regular requests that are not split and therefore the constraints are similar to
those in the problem without transfer point. However, the requests r1i and r2i should have
suitable start times of service, where t+ should be served after t−. When a request ri is
split, thus the transfer point is used, the following must hold.

St−i ,k1
+ st−i

≤ St+i ,k2 . (17)

Here k1 ∈ K does not necessarily have to be different from k2 ∈ K. Node t−i must first be
serviced by vehicle k1, before service can start at node t+i by vehicle k2.

4 Methodology

4.1 Adaptive large neighborhood search

In this section the main characteristics of the ALNS approach are discussed. LNS iterations
are performed, using in every iteration another removal and insertion method, based on
previous performance. Algorithm 1 shows the pseudocode of the ALNS heuristic. Here R
denotes the set of removal heuristics and I the set of insertion heuristics.

Algorithm 1 ALNS

1: Input: initial solution sstart
2: sbest ← sstart
3: s← sstart
4: initialize weights w
5: while stopping criteria not met do
6: i← 0
7: set scores to 0
8: while i < segment size do
9: determine q

10: select x ∈ R and y ∈ I according to w
11: s′ ← y(x(s))
12: if accept(s,s′) then
13: s← s′

14: if f(s′) ≤ f(sbest) then
15: sbest ← s′

16: update scores
17: update temperature T
18: i← i+ 1

19: update w

20: return sbest

In each iteration of the ALNS heuristic the number of requests to be removed is determined
randomly. This number, q, is in the interval 4 ≤ q ≤ min(100, ξn), where n is the number
of requests and ξ is a predetermined parameter. The removal and insertion heuristics are
randomly determined with probabilities based on their weights, w. Then q requests are

8

removed by the chosen removal heuristic x and inserted back into the solution by insertion
heuristic y, which is denoted by y(x(s)). This results in a solution that can either be accepted
or not, based on acceptance criteria from Simulated Annealing. Simulated Annealing uses
a temperature T which determines the probability of accepting a non-improving solution
and this temperature is updated after each iteration. We also keep track of the best known
solutions obtained so far in the heuristic. The weights w determine the probability of
selecting each of the removal and insertion heuristics. These weights are not updated after
each iteration, but after each segment, consisting of a predefined number of iterations. After
each iteration, the scores that partly determine the weights are updated. The heuristic stops
after having performed N iterations.
In section 4.1.1 we discuss how an initial solution is obtained. In Section 4.1.2 and 4.1.3 the
removal and insertion heuristics are discussed, respectively. The acceptance criterion, the
principle for selecting the removal and insertion methods and the additional noise term that
is added to the objective function are discussed in Section 4.1.4, Section 4.1.5 and Section
4.1.5, respectively. We also discuss a two-stage method, in which the primary objective is
the minimization of vehicles, in Section 4.1.7. Finally in Section 4.2 and 4.3 we discuss the
extensions to the original ALNS heuristic.

4.1.1 Initial solution

Before starting the ALNS heuristic, we first require an initial solution for the problem. We
use the following simple insertion heuristic to construct this first solution. The costs of all
feasible insertion positions are evaluated for both the pickup and delivery locations for all
routes. We insert the request with the lowest insertion cost, that is, the smallest change in
objective value when inserting the request in its best position. This is repeated until no
request can be inserted into the routes. Remaining requests are placed in the request bank.
To check if the performance of the ALNS heuristic depends on the initial solution, we also
change this construction heuristic a bit. When calculating the insertion cost of a request
in a vehicle, we add an extra term if this vehicle is empty: 4 maxi,j∈V dij . We do so, to
avoid the case of too many vehicles in the solution. The purpose of this modified insertion
heuristic, which we name penalized insertion heuristic, is to investigate the influence of an
initial solution on the final solution obtained by the ALNS heuristic.

4.1.2 Removal heuristics

We consider three removal heuristics: the Shaw removal heuristic, the worst removal heuristic
and a random removal heuristic. All three heuristics destroy the solution, by removing q
requests.

Shaw removal heuristic In the Shaw removal heuristic q requests that are related in
terms of distance, start time of service, size of the load and vehicles that are able to
serve these requests, have a larger probability of being removed from the solution s. This
relatedness between two requests ri and rj is measured by the relatedness measure R(ri, rj),
given as follows.

R(ri, rj) = φ
(
di+,j+ + di−,j−

)
+ χ

(
|Ti+ − Tj+ |+ |Ti− − Tj− |

)
+ ψ (li − lj) +

ω

(
1−

|Kri ∩Krj |
min{|Kri |, |Krj |}

)
, (18)

where the same notation is used as in Section 3.1. The terms are weighted by predefined
parameters φ, χ, ψ and ω. The terms dij , Ti and li are scaled by dividing them by the

9

maximum value over all edges for dij , or nodes for Ti and li. In this way the measure is
normalized, such that 0 ≤ R(ri, rj) ≤ 2(φ+ χ) + ψ + ω. The smaller R(ri, rj) is, the more
related the requests ri and rj are.
The idea of removing requests that are similar is that there could be more possibilities
when reinserting the requests into the solution other than the place from where the requests
where removed. A request can more likely be inserted in routes where related requests were
previously in.
Pseudocode for the Shaw removal heuristic is shown in Algorithm 2. The routed requests
are sorted in array L according to the relatedness measure. The parameter p ≥ 1 introduces
some randomness in the selection of requests to be removed. A larger value of p corresponds
to a larger probability that requests in the beginning of L, thus more related, are selected.

Algorithm 2 Shaw removal heuristic

1: Input: solution s, parameter q, parameter p
2: Z ← random routed request from s
3: while |Z| < q do
4: select request x ∈ Z uniform randomly
5: Array: L← requests from s not in Z
6: sort L according to relatedness to x:
7: i < j ⇐⇒ R(L[i], x) < R(L[j], x)
8: y ← random number in interval [0, 1)
9: Z ← Z ∪ L [byp|L|c]

10: remove requests in Z from their routes in s

Random removal heuristic The random removal heuristic selects in each iteration
uniform randomly a routed request to be removed. The only parameter used in this
procedure is q, the number of requests to be removed.

Worst removal In the worst removal heuristic, q requests for which removing leads to
the smallest objective values are removed. The idea behind this removal heuristic is that for
requests that are inserted in positions for which removing results in much lower objective
values, there must exist better insertion positions. The heuristic is similar to the Shaw
removal heuristic, as it includes a parameter pworst that introduces some randomness in the
selection of the requests. However, the sorting of array L, containing the routed requests, is
based on the change in objective value when removing a request L[i], denoted by c(L[i]).

Algorithm 3 Worst removal heuristic

1: Input: solution s, parameter q, parameter pworst
2: Z ← ∅
3: while |Z| < q do
4: Array: L← requests from s not in Z
5: sort L:
6: i < j ⇐⇒ c(L[i]) > c(L[j])
7: y ← random number in interval [0, 1)
8: Z ← Z ∪ L [bypworst |L|c]
9: remove requests in Z from s

10

4.1.3 Insertion heuristics

Insertion is based on the following heuristics: the basic greedy heuristic and a set of regret
heuristics. These insertion heuristics insert the unrouted requests back into the solution.

Basic greedy heuristic In each iteration of the basic greedy heuristic, the request is
inserted that leads to the lowest objective value when inserting it at its best position. That
is, for each request the insertion possibilities inside all vehicles are evaluated and the best
insertion place for both pickup and delivery node are determined. Then, request ri∗ is
inserted, for which

ri∗ = arg min
ri∈U

∆f1ri , (19)

where U is the set of unplanned requests and ∆f1ri denotes the change in objective value
when inserting request ri in the best position.

∆f1ri = min
k∈K
{∆f1ri,k}, (20)

where ∆f1ri,k is the change in objective value when inserting request ri in vehicle k at the

best position. When no insertion in vehicle k is possible, we set ∆f1ri,k =∞.

Regret-k heuristic The regret-2 heuristic inserts the request that leads to the largest
difference in insertion cost when not inserting it at the best position, but at its second best
position. The insertion cost is the change in objective value when inserting the unrouted
request into the solution. Anticipating more successive insertions occurs in the regret-3,
regret-4 and regret-m heuristic, where m is the number of vehicles. Request r∗i is inserted,
for which

r∗i = arg max
ri∈U

 k∑
j=2

∆f jri −∆f1ri

 , (21)

where ∆f jri denotes the change in objective value when inserting request ri in the j-th best
position. The degree of regret is denoted by k. In contrast with the basic greedy heuristic,
the regret-k heuristic anticipates on successive insertions, and therefore avoids leaving bad
insertions for later.

4.1.4 Acceptance criteria

After the removal and insertion operators are applied, the ALNS heuristic determines whether
or not the obtained solution is accepted. To avoid getting trapped in a local minimum, we
do not only accept solutions that are better than the current solution, but sometimes we
also accept worse solutions. We use acceptance criteria from Simulated Annealing, where we
accept solution s′ with probability e−(f(s

′)−f(s))/T , where s is the current solution, f(s) is the
objective value of solution s and T > 0 is the temperature. In every iteration, T is updated
as follows: T = Tc, where c is the cooling rate. T is initialized with Tstart, depending on
the initial solution as follows. The start temperature is chosen such that a solution that is
w% worse than the initial solution is accepted with probability 0.5. To determine Tstart,
we do not include the costs of the requests in the request bank. These costs could have
a very large influence on Tstart, as we set the γ parameter to a large number in order to
have a final solution with no requests in the request bank. As the heuristic only needs a
few iterations to obtain a solution with an empty request bank, the costs of requests in the
request bank could cause a too large start temperature in the remaining iterations.

11

4.1.5 Selection principle

We divide the ALNS heuristic in segments of 100 iterations. In every segment, new weights for
the removal and insertion heuristics are calculated. These weights determine the probability
of selecting that heuristic. The probability of choosing heuristic j with weight wj,h in
segment h is

wj,h∑
i∈Gwi,h

, (22)

where G = {1, .., g}, with g the number of removal or insertion heuristics included in the
search. The weight for the next segment h+1 is based on the weight of the previous segment
h, the number of times attempted to use the heuristic in this segment θj , a specific score
obtained in this segment πj , and a parameter r:

wj,h+1 = wj,h(1− r) + r
πj
θj
. (23)

At the start of each segment in the ALNS heuristic, the score for each of the heuristics
is initialized at zero. After each iteration t in that segment, the scores of both the used
removal and insertion heuristic are updated by the same number (σ1, σ2 or σ3), depending
on the solution found in this iteration as follows:

πt+1
j = πtj +

σ1 if new global best solution

σ2 if better than current solution, not visited before

σ3 if worse than current solution, accepted now but not visited before.
(24)

The heuristic only increments the scores when a solution is obtained that we did not already
visit before. To keep track of the visited solutions, a unique hash code representing the
solution is generated and stored in a list. We do not increment the scores for already visited
in order to diversify the search.

4.1.6 Noise term in the objective function

With the same selection principle that we use for the selection of the heuristics, we choose
whether or not we add a noise term to the insertion costs in the insertion heuristics, based
on earlier performance. We modify the insertion cost c(ri) of request ri to randomize the
insertion a bit such that insertion does not always take place when it is locally the best. The
term that is added is a random number in the interval [−X,X], where X is a parameter
times the maximum distance between two nodes in the graph.

X = η maxi,j∈V dij (25)

As this noise term can also be negative, we round negative insertion costs to zero. The
modified insertion cost c′(ri) for request ri is then as follows:

c′(ri) = max{0, c(ri) +X}. (26)

4.1.7 Vehicle minimization

In the ALNS heuristic discussed so far, we minimize the objective (1) as stated in Section
3.1. However, the minimization of the number of vehicles used to serve all requests is also
often considered to be the primary objective. We therefore discuss a two-stage method,
proposed by Ropke and Pisinger (2006), in which the vehicle minimization is the primary

12

objective and the secondary objective is the objective (1) as in Section 3.1. This two-stage
method can only be used for a homogeneous fleet.
First an initial solution is created, assuming that the number of vehicles is unlimited. For
this we use a sequential insertion heuristic, which constructs one route at a time. This
heuristic inserts requests with the smallest insertion costs in their best positions in the route,
until no more insertions in that route are feasible. We keep constructing routes until all
requests are routed.
In the first stage of this algorithm, we perform at most Φ iterations in total. One route
is selected uniform randomly to be removed from the solution. The requests in this route
are placed in the request bank. We then perform ALNS iterations, and stop the heuristic
immediately when a solution is found with no requests in the request bank. We obtained a
solution in which all requests can be served with one vehicle less. The number of remaining
iterations is then reduced by the number of iterations used to obtain this solution and
thus to empty the request bank. The procedure starts again, removing another route from
the solution and performing again ALNS iterations. We stop this stage if the Φ iterations
are performed or if the request bank contains more than 5 requests and the size of the
request bank has not reduced in the past τ iterations. If the first stage is terminated and
the solution contains requests in the request bank, we step back to the previous solution in
which all requests were routed.
The second stage of the algorithm consists of performing the original ALNS heuristic, starting
with the solution found in the first stage.

4.2 Extended ALNS: Time related removal heuristic

As an extension to the framework of Ropke and Pisinger (2006), we add a new removal
method to the ALNS heuristic. In the PDPTW each location has a specified time window
and the start time of service at the pickup location has a large influence on the possibilities
for inserting the delivery node in the route. Thus, the time windows are usually very
restrictive in the possibilities of inserting requests. We therefore add a removal method that
focusses on removing requests that are similar in terms of time. The heuristic we add to the
ALNS heuristic is an adaptation of the Shaw removal heuristic. The same procedure is used
as in Algorithm 2 in Section 4.1.2, but with another relatedness measure:

R(ri, rj) = −min{bj+ − Ti+ , Ti+ − aj+} −min{bi+ − Tj+ , Tj+ − ai+}

−min{bj− − Ti− , Ti− − aj−} −min{bi− − Tj− , Tj− − ai−}. (27)

This measure consists of 4 terms comparing the start of service times of both the pickup
and the delivery location of a request with the time window of the other request. The
relatedness measure R(ri, rj) indicates how much slack there is between the start of service
times and time windows. The first two terms compare the time windows and start of service
times of the pickup locations. Figure 1 illustrates what these terms measure. The first and
second term of R(ri, rj) are indicated by a red arrow. The terms for the delivery locations
are similar to those for the pickup locations.

13

(a) −min{bj+ − Ti+ , Ti+ − aj+} (b) −min{bi+ − Tj+ , Tj+ − ai+}

Figure 1: Illustration relatedness measure for the pickup locations

The first term compares the start of service time at the pickup location of request ri to
the time window of the pickup location of request rj (Figure 1a). The service time at the
pickup location of request ri lies outside the time window of the pickup location of request
rj . In this case the term measures the distance in time from the closest boundary of the
time window of request rj . A large term indicates that is not likely that j+ can be inserted
at the old position of i+. Thus, removing two requests with a large relatedness measure can
result in insertion of the requests at the same place as where they were previously inserted.
Vice versa, the second term compares the start of service time at the pickup location of
request rj to the time window of i+. Now the service time of j+ lies inside the time window
of pickup location i+ of request ri (Figure 1b). The term is negative and smaller when it is
further away from the closest boundary of the interval. In this case it is more likely that
i+ can be placed at the position of j+. Thus, the smaller the sum of four terms, the more
related the requests are in terms of time. By taking into account the time windows we keep
in mind that inserting the other request into the route will almost inevitably change the
start of service times, due to difference in locations.

4.3 ALNS with transfer possibility

We adapt the proposed ALNS heuristic for the PDPTW with transfer point. The greedy
insertion heuristic is adapted in such way that not only full requests can be placed into a
route, but requests can be divided into two sub-requests: from pickup location to transfer
point and from transfer point to delivery location. The number of insertion possibilities
increases when allowing for requests to split, using a transfer point.
Consider a request ri = (i+, i−). Its possible transfer nodes are represented by t−i and t+i ,
where the first is to denote the transfer node as a delivery node and the second as a pickup
node. The heuristic inserts the request for which insertion leads to lowest objective value,
but in contrast to the basic greedy insertion heuristic, the lowest objective value can either
be from inserting ri or from inserting ri

1 and ri
2. Here ri

1 = (i+, t−i) and ri
2 = (t+i , i

−)
are the split requests. For each request we thus check the best position for insertion of
the original request ri and the best position for inserting the sub-requests ri

1 and ri
2. We

insert the request, either using a transfer node or not, that leads to the lowest value of
min

{
c(ri), c(ri

1) + c(ri
2)
}

. Here c(ri) is the insertion cost of request ri, the change in
objective value when inserting ri. For every insertion possibility of ri

1, all possibilities of
insertion of ri

2 are considered and the insertions that lead to the lowest joint costs are
compared to the costs of inserting the original full request ri. Figure 2 illustrates how the
two sub-requests could be placed into a solution.

14

. . .

i+ t−i

i−t+i

. . .route 1

route 2

Figure 2: Inserting request into two routes

As goods can only be picked up at the transfer point after they have been delivered there,
we need to model a temporal dependency between t−i and t+i . We do so, by assigning
time windows to these nodes. Service at t+i cannot start before service at t−i is completed.
This is illustrated in Figure 3. The time windows of t−i and t+i are initialized as follows:
[at+i

, bt+i
] = [ai+ , bi−] and [at−i

, bt−i
] = [ai+ , bi−]. For each insertion place of the first sub-

request, ri
1, the time window of the transfer point t+i is adjusted to account for temporal

synchronization at the transfer point: [at+i
, bt+i

] = [Tt−i
+ st−i

, bi−]. The load can only be

picked up at the transfer point after it has been delivered at the transfer point and service
has been provided.

(a) Initial time windows (b) Time windows after inserting ri
1

Figure 3: Time windows when using a transfer point

We still include the original basic greedy insertion heuristic which does not use a transfer
point in the ALNS heuristic, as the new insertion heuristic including transfer point increases
run time.
We also have to adapt our removal heuristics to handle these sub-requests with transfer
point properly. If the request is split into two sub-requests and one of the sub-requests is
removed from the solution by a removal heuristic, we also remove the other sub-request. In
the insertion heuristics we evaluate the insertion of the original request, which can be split
again into two sub-requests. We choose to evaluate the insertion of the original request,
as this leads to more insertion possibilities due to the restriction of temporal dependency
between the two sub-requests.

15

5 Experimental results

5.1 The benchmark data sets

We test the heuristics on the 116 instances from Li and Lim (2003), containing around 100
and 200 locations. These instance can be downloaded from SINTEF (2008). We also use
the 24 instances that were randomly generated by Ropke and Pisinger (2006), containing 50
and 100 requests. The instances from Li and Lim (2003) are divided into 6 sets: R1, R2,
C1, C2, RC1 and RC2. Here the R, C and RC indicate that the set contains instances that
are uniformly distributed in space, clustered or a mix of both, respectively. The 1 indicates
that the set contains instances with a small scheduling horizon, thus few customers per
route, whereas 2 indicates the opposite. Inside each set the instances differ in width of time
windows.
The difference between the instances generated by Li and Lim (2003) and Ropke and
Pisinger (2006) is that the latter contains multiple terminals and vehicles with different
start and end terminals. In addition, some of the instances from Ropke and Pisinger (2006)
contain special requests, requests that can only be served by some of the vehicles. The
instances each contain a different combination of route type, request type and geographical
distributions. As route type we consider vehicles with the same start and end terminal and
vehicles with different start and end terminal. Each instance can either contain normal
requests or a combination of normal and special requests. The geographical distributions
are either uniform over space, clustered or a mix of both.

5.2 ALNS experiments

We run three versions of the heuristic separately: the original ALNS heuristic proposed
by Ropke and Pisinger (2006), the ALNS heuristic with the extra time related removal
heuristic and the ALNS heuristic applied to the problem with a transfer point. In all runs
we set N = 25, 000. We use one transfer point and for each instance it is located at the
centre of the customer locations. The service time at a transfer node, which can be either
unloading or loading time, is set to 1

3 of the average service time of all customer nodes, since
we assume that loading and unloading at the transfer point can be more efficient. This
results in a total handling time of 2

3 of the average service time of all customer nodes at the
transfer point.
We run the different versions of the ALNS heuristic 5 times to each of the instances of 100
locations from Li and Lim (2003) and of 50 and 100 requests from Ropke and Pisinger (2006).
We also apply the original ALNS heuristic 5 times on the instances with 200 locations of
Li and Lim (2003). The original ALNS heuristic with the penalized insertion heuristic
and the original ALNS heuristic with the vehicle minimization procedure are applied to
the instances from Li and Lim (2003) with 100 locations, where we set Φ = 25, 000 and
τ = 2, 000. For the instances with 50 and 100 requests from Ropke and Pisinger (2006) we
also compare the results obtained by ALNS with those obtained by using LNS. As Ropke
and Pisinger (2006) show that the LNS configurations with the Shaw removal heuristic, the
regret-4 heuristic and noise in the objective function leads to the best results, we will also
use this configuration.
The methods are coded in Java. All experiments were performed on a 2.8 GHz Intel Core 2
Duo PC with 4 GB internal memory, running Windows 8.1. The travel times and distances
are calculated with double floating point precision.

16

5.3 Parameter settings

For both sets of instances we have a different objective. For the instances from from Li
and Lim (2003) the objective is to minimize the total travelled distance, setting α = 1 and
β = 0 in the objective (1). To ensure that the final solution contains all requests, γ is set
to 100, 000. The objective for the instances generated by Ropke and Pisinger (2006) is
to additionally minimize the total time spent by the vehicles, setting α = 1, β = 1 and
γ = 100, 000.
In our implementation we use the same parameter values as Ropke and Pisinger (2006),
except for the values of ξ and r, which control how many requests are removed in each
iteration and how the weights are adjusted, respectively. The value of ξ can have a large
impact on the solution quality, but also on the running time of each iteration. We tune r as
we believe it might be beneficial to have a greater reaction factor. A low reaction factor
keeps the weight at about the same level during the search, while a higher reaction factor can
make the weights converge faster. Our tuning set consists of 8 instances: LR1 2 1, LR202,
LRC1 2 3, and LRC204 from Li and Lim (2003) and 50A, 50B, 50C, 50D from Ropke and
Pisinger (2006). These instance are also in the tuning set of Ropke and Pisinger (2006), but in
addition to these instances the authors include 8 more instances containing 50 requests. We
first set all parameters equal to those given by Ropke and Pisinger (2006) and vary ξ between
0.3 and 0.5 with a step size of 0.05. We run each of the instances 5 times for each value of ξ.
We choose the ξ that leads to the smallest average deviation (av. gap) from the best obtained
solution during this tuning experiment. The results of this tuning can be found in Table 1.
The smallest average gap is obtained when setting ξ = 0.50. Having this new parameter
setting, we vary r between 0.1 and 0.5 with a step size of 0.1. The results can be found in
Table 2, where it is shown that r = 0.2 leads to the smallest average gap. The final pa-
rameter setting is given by the following vector: (φ, χ, ψ, ω, p, pworst, w, c, σ1, σ2, σ3, r, η, ξ) =
(9, 3, 2, 5, 6, 3, 0.05, 0.99975, 33, 9, 13, 0.2, 0.025, 0.5). Ropke and Pisinger (2006) found that
for the vehicle minimization stage different values for w and c give better results: (w, c) =
(0.35, 0.9999). Hence, we also use these parameters in this first stage of the two-stage vehicle
minimization method.
We obtain a different parameter vector than the one obtained by Ropke and Pisinger (2006).
They found ξ = 0.4 and r = 0.1. This could be due to the fact that the authors used a
larger tuning set. However, the instances we used have already quite diverse characteristics.
Another plausible reason is the difference in implementation details. We therefore choose to
use our own parameter vector.

Table 1: Results of tuning ξ

ξ 0.30 0.35 0.40 0.45 0.50

Av. gap (%) 4.98 4.52 3.96 4.40 3.67

Notes. The first row contains the value for parameter ξ. The
second row contains the average deviation from the best obtained
solution in the tuning experiment. In bold the best parameter
value is shown.

17

Table 2: Results of tuning r

r 0.1 0.2 0.3 0.4 0.5

Av. gap(%) 4.42 4.16 4.40 4.19 5.02

Notes. The first row contains the value for parameter r. The sec-
ond row contains the average deviation from the best obtained
solution in the tuning experiment. In bold the best parameter
value is shown.

5.4 Results original ALNS

In this section we discuss the results of our implementation of the ALNS heuristic as proposed
by Ropke and Pisinger (2006). In Table 3 and Table 4 we report the number of vehicles and
the objective values for the instances from Li and Lim (2003) with 100 and 200 locations,
respectively. In addition, we report the average run time for each set of instances. The
instances with a larger scheduling horizon (R2, C2 and RC2) have a larger run time than
those with a smaller scheduling horizon. The average run time for all instances is larger
than the run time of Ropke and Pisinger (2006). However, the average run time of 200
locations relative to the average run time of 100 locations is almost the same.
The objective values and number of vehicles in Table 3 and Table 4 deviate from the solutions
obtained by Ropke and Pisinger (2006). This can be due to several factors. Firstly, Ropke
and Pisinger (2006) run each of the instances 10 times instead of 5 times. Furthermore, we
chose to minimize the total distance travelled and not to minimize the number of vehicles
for these instances. We therefore obtain for some instances solutions with lower objective
values than the best known solutions, but with more vehicles. For the instance LC109, for
example, Ropke and Pisinger (2006) obtained a solution with 9 vehicles and a objective
value of 1000.60, whereas our solution consists of 11 vehicles, but a lower objective value:
937.45. Furthermore, we used other parameters for ξ and r, this could also cause different
results.

18

Table 3: Best results Li & Lim 100

R1 R2 C1 C2 RC1 RC2
f # f # f # f # f # f

1 22 1806.16 7 1344.69 15 1245.25 6 829.46 18 1915.98 7 1603.32
2 20 1652.72 6 1406.48 15 1258.71 6 834.29 17 1910.24 6 1591.65
3 15 1416.69 6 1170.10 12 1012.18 6 811.57 12 1343.55 5 1278.44
4 13 1266.45 4 1164.16 11 889.56 5 774.70 12 1342.57 6 1042.24
5 18 1610.99 6 1239.28 14 1193.72 6 809.34 17 1933.22 7 1457.40
6 15 1447.31 5 1164.37 14 1154.90 6 789.41 16 1756.66 6 1436.63
7 15 1391.80 5 1133.80 15 1224.27 6 817.07 13 1451.61 6 1538.76
8 13 1280.33 4 1101.14 13 1128.36 6 813.95 13 1398.21 5 1130.27
9 15 1475.73 5 1143.68 11 937.45
10 15 1348.67 5 1131.96
11 13 1279.89 4 1108.70
12 12 1223.63

CPU(s) 136 362 152 261 130 253

Notes. Results of the ALNS heuristic of the Li and Lim (2003) instances with 100 locations. These instances are
divided into 6 sets, containing up to 12 problem instances. The major columns correspond to these sets and the
left column indicates the number of the problem. For each instance the number of vehicles and the best objective
value in the experiment are reported in the columns denoted by # and f respectively. In the last row, denoted by
CPU(s), the average run time for each set of instances is reported in seconds.

Table 4: Best results Li & Lim 200

R1 R2 C1 C2 RC1 RC2
f # f # f # f # f # f

1 21 4955.39 9 4255.11 29 4166.95 11 2586.19 25 4372.05 10 3199.92
2 21 4346.40 9 4260.28 25 3783.39 12 2503.26 22 3686.40 11 3104.03
3 20 3815.58 9 3797.96 22 3497.49 10 2345.80 20 3678.33 10 3093.21
4 16 3239.33 7 3355.73 19 3044.51 9 2444.65 16 3268.60 7 2917.85
5 20 4608.73 8 4114.26 29 4010.36 12 2484.62 22 4338.89 9 3378.00
6 20 4172.73 9 4065.89 29 4004.83 12 2550.97 22 3928.92 9 3274.58
7 18 3637.09 8 3495.12 28 3899.45 12 2611.44 20 3806.99 9 3028.32
8 15 3103.52 6 2783.57 25 3644.65 12 2499.40 19 3694.14 8 3000.25
9 19 4396.47 7 4051.56 26 3791.34 12 2512.85 18 3587.17 8 3020.38
10 18 3778.74 7 3586.90 23 3486.97 11 2531.43 19 3486.86 7 2760.70

CPU(s) 1181 2193 987 1748 1025 1644

Notes. Results of the ALNS heuristic of the Li and Lim (2003) instances with 200 locations. Each set contains 10
instances. The columns and rows should be interpreted as in Table 3.

The results obtained with the penalized insertion method for the initial solution and the
results obtained using the two-stage vehicle minimization method are summarized in Table
5. The objective values and the number of vehicles for each instance separately can be
found in Table 12 and Table 13 in Appendix A. In Table 5 the total number of vehicles and
the total distance are reported, based on the best solution obtained for each instance. The
average run time per instance is also reported. The results of Table 3 are also summarized
to be able to make a comparison.
The number of vehicles obtained by the ALNS heuristic using the different initial solution,
in which additional vehicles were penalized, is only one less than when using the original
insertion heuristic. On the other hand, the total travelled distance increased 278. The

19

desired effect of solutions with less vehicles, does not occur with this heuristic. Nevertheless,
this heuristic changed the solutions of many instances, indicating that an initial solution
can have a lot of influence on the final solution obtained by ALNS.
The two-stage method, with the first priority being the minimization of the number of
vehicles, results in a solution with 72 less vehicles. The total travelled distance is 0.3%
higher with this two-stage method, but depending on the objectives in the problem, this
relative small increase in total distance could be outweighed by the decrease in the number
of vehicles of 12.5%
As expected, the original ALNS heuristic with the two different initial solutions have a
similar run time. Surprisingly, the vehicle minimization two-stage method has a smaller
run time on average, even though this method performs more iterations in total. The sets
with instances with a smaller scheduling horizon (R1, C1 and RC1) have a larger run time
than with the original ALNS, whereas the sets containing instances with a larger scheduling
horizon (R2, C2 and RC2) have a smaller run time compared to the run times of the original
ALNS. The sets R2, C2 and RC2 also have the largest percentage change in the number of
vehicles used in the final solution. It could, thus, be that less insertion possibilities must be
evaluated as there are less vehicles and therefore run time decreases. We believe, however,
that this decrease in run time could be due to the difference in implementation of both
the heuristics. In the original ALNS heuristic without vehicle minimization, we consider a
fixed number of available vehicles as heterogeneous vehicles and therefore must evaluate
insertion in all of these vehicles, even if the fleet is homogeneous. In the implementation
of the two-stage vehicle minimization algorithm, we only consider the vehicles that are
determined in the first stage of the method.

Table 5: Summary results Li & Lim 100

Vehicles Distance Av. time (s)

Original ALNS 576 70964 217
Penalized insertion 575 71242 214
Vehicle minimization 504 71181 191

Notes. Summary of the results for the instances of Li and Lim (2003) obtained
with the original ALNS heuristic (Table 3), the original ALNS heuristic with
penalized insertion method for the initial solution and the vehicle minimization
two-stage method. The total number of vehicles and the total travelled distance
are reported. We also report the average run time.

The results for the instances from Ropke and Pisinger (2006) are shown in Table 6. We
report the results relative to the best solution in these experiments and compared them to
the solutions obtained using LNS. The objective values and number of vehicles can be found
in Table 14 in Appendix A.
It can be seen that LNS performs worse in terms of solution quality than ALNS for both
the instances with 50 and with 100 requests. In contrast to Ropke and Pisinger (2006), our
implementation of the ALNS heuristic performs better for the instances with 100 requests,
whereas the authors found a smaller average gap for the instances with 50 requests. The
run times for both methods increase a lot from 50 to 100 requests. This increase is larger
for the LNS heuristic.

20

Table 6: Results Ropke & Pisinger 50 and 100 requests

Av. gap (%) Av. time (s)
ALNS LNS ALNS LNS

50 requests 1.88 3.23 67 60
100 requests 1.51 3.13 441 503

Notes. Results obtained with ALNS and LNS. The major columns
correspond to the average gap from the best solution obtained from
ALNS or LNS and the average run time in seconds.

5.5 Results ALNS with time related removal heuristic

In Table 7 and Table 8 the results for the heuristic including the extra time related removal
heuristic are shown for the instances from Li and Lim (2003) and Ropke and Pisinger (2006),
respectively. A solution in bold means that it is better than the solution obtained using the
original ALNS heuristic. The other values are either the same or worse than the solutions
in Table 3.
Most benefit for the instances from Li and Lim (2003) is in the sets C1 and R1. These sets
contain instances with a small scheduling horizon. There is, however, no clear pattern on
the characteristics of the instances for which this extension leads to better results.
The run times for this extension are similar to those of the original ALNS heuristic, which
is not surprising as this extra heuristic is an adaptation of the Shaw removal heuristic.

Table 7: Best results Li & Lim 100, ALNS with time related removal

R1 R2 C1 C2 RC1 RC2
f # f # f # f # f # f

1 22 1806.16 7 1345.04 16 1280.91 6 829.46 18 1915.98 7 1629.92
2 20 1652.72 6 1386.29 15 1256.45 6 821.60 17 1896.77 7 1619.15
3 16 1441.94 6 1208.23 11 996.96 6 814.26 12 1425.49 6 1292.76
4 12 1255.20 5 1195.41 10 841.14 5 782.40 12 1315.18 6 1067.08
5 18 1614.51 6 1260.98 14 1191.62 6 811.06 17 1925.77 6 1440.86
6 15 1479.84 6 1206.72 14 1180.27 6 795.85 16 1794.09 7 1457.70
7 14 1385.18 5 1231.86 14 1190.46 6 815.26 14 1502.16 6 1524.92
8 13 1275.35 5 1135.29 13 1070.10 6 808.84 13 1441.16 5 1111.50
9 16 1468.46 6 1138.77 11 952.19
10 14 1311.52 7 1237.23
11 13 1303.79 4 1060.80
12 12 1213.72

CPU(s) 134 313 145 230 125 224

Notes. In this table the results are shown of the ALNS heuristic including the time related removal heuristic of the Li
and Lim (2003) instances with 100 locations. The columns and rows should be interpreted as in Table 3. In bold are the
objective values that are lower than obtained using ALNS without including the time related removal heuristic.

21

Table 8: Best results Ropke & Pisinger 50 and 100
requests, ALNS with time related removal

50 requests 100 requests
f # f

A 13 76236.90 26 159446.85
B 14 86252.97 25 142301.04
C 13 75377.71 27 142313.83
D 14 85636.46 28 157054.90
E 15 69563.36 27 136898.12
F 14 68680.07 27 138385.70
G 14 67587.62 25 128971.82
H 14 72957.49 28 136412.34
I 13 68362.58 27 148481.26
J 15 85279.23 28 153154.60
K 13 72899.72 25 129244.56
L 14 79329.38 26 145048.81

CPU(s) 65 378

Notes. Results of the ALNS heuristic with time related removal
heuristic of the Ropke and Pisinger (2006) instances with 50
and 100 requests. The columns and rows should be interpreted
as in Table 3. In bold are the objective values that are lower
than obtained using ALNS without including the time related
removal heuristic.

5.6 Results ALNS with transfer point

In Table 9 and Table 10 the results for the problem including a transfer point are shown.
An objective value in bold indicates that it is better than that of the solution obtained using
the original ALNS heuristic. For the instances from Li and Lim (2003), in slightly less than
50% of the cases a better solution is obtained. For the instances generated by Ropke and
Pisinger (2006) especially the instances containing 50 requests benefit from the possibility
of using a transfer point. The objective values that are not bold indicate either a worse
solution or the same objective value as for the original ALNS heuristic.
As expected, the run time increased for all instances, where the largest percentage change
occurred in the set RC2. This increase in run time is, not surprisingly, strongly related to the
number of times that the greedy insertion heuristic with transfer point is used. This heuristic
investigates much more insertion possibilities than the basic greedy insertion heuristic.

22

Table 9: Best results Li & Lim 100, ALNS with transfer point

R1 R2 C1 C2 RC1 RC2
f # f # f # f # f # f

1 22 1806.16 7 1338.26 16 1257.95 6 829.46 17 1863.46 7 1596.63
2 20 1652.72 6 1401.28 15 1252.61 6 824.80 18 1900.73 7 1582.37
3 16 1414.03 6 1172.07 12 994.02 6 827.04 13 1483.72 7 1332.31
4 13 1241.27 5 1169.67 11 891.47 5 773.03 12 1285.00 5 1007.11
5 18 1622.50 5 1233.95 14 1242.07 6 801.22 17 1921.98 6 1484.86
6 15 1459.28 6 1221.88 14 1145.89 6 791.36 15 1700.47 6 1451.41
7 15 1410.40 5 1229.68 14 1199.79 6 805.95 14 1490.41 6 1514.17
8 12 1244.92 5 1093.34 13 1124.76 6 822.40 13 1417.93 6 1173.77
9 16 1530.65 6 1159.61 11 985.40
10 15 1341.23 7 1214.78
11 13 1287.88 4 1052.71
12 13 1239.82

CPU(s) 204 3544 404 2252 187 2597

Notes. Results of the ALNS heuristic including a transfer point of the Li and Lim (2003) instances with 100 locations. The
columns and rows should be interpreted as in Table 3. In bold are the objective values that are lower than obtained using
ALNS without including a transfer point.

Table 10: Best results Ropke & Pisinger 50 and 100 requests,
ALNS with transfer point

50 requests 100 requests
f # f

A 13 77024.74 27 160341.86
B 14 85930.44 26 142990.21
C 14 75428.88 26 142022.89
D 14 85638.67 29 160088.30
E 15 69277.09 27 136079.70
F 14 68129.17 27 137809.43
G 14 66657.12 25 129381.47
H 14 73236.17 28 138422.96
I 13 68247.95 27 146750.35
J 14 83333.95 29 155663.56
K 14 74823.60 25 131904.08
L 14 78596.63 26 143136.59

CPU(s) 104 503

Notes. Results of the ALNS heuristic with transfer point of the Ropke
and Pisinger (2006) instances with 50 and 100 requests. The columns
and rows should be interpreted as in Table 3. In bold are the objective
values that are lower than obtained using ALNS without including a
transfer point.

Of the 80 instances this adapted heuristic was tested on, only for 4 instances the transfer
point is used in the final solution. For most of the other instances a transfer point is only
used in the transition phase of the heuristic, but not in the final solution. For the instance
LRC101, for example, the greedy insertion heuristic with transfer point is used in 75.9% of
the iterations. In 8.5% of the iterations in which this heuristic was used, at least one request
was split into two sub-requests.

23

Table 11 shows the number of requests that are using the transfer point for these 4 instances.
Striking is that only for 1 instance this solution including a transfer point has a better
objective value than obtained by the original ALNS heuristic. For the LRC205 instance,
the transfer point is used for 11 requests, which is over 20% of all requests. The objective
value obtained for this instance is however 1.9% higher than when using the original ALNS,
but one less vehicle is used. The greedy insertion heuristic with transfer point is used in
80.8% of the iterations, in which on average 8 requests are split. We believe that, due to the
many insertion possibilities, it is possible that the ALNS heuristic needs to perform more
iterations to give better results for this instance.

Table 11: Instances using transfer point in final solution

Number of requests Better solution

LR207 2 false
LR210 5 false
LRC201 2 true
LRC205 11 false

Notes. This table shows the instances for which a transfer point
is used in the final solution. The number of requests for which
this transfer point is used is reported. The last column indi-
cates if the best solution obtained by the ALNS heuristic using
a transfer point is better than the best solution in the original
ALNS heuristic.

The solutions of the instance LRC201 are demonstrated in Figure 4. Figure 4a shows the
solution obtained with the original ALNS heuristic and Figure 4b shows the solution for the
problem with transfer point. Both solutions consist of seven routes, starting and ending at
the terminal, denoted by the black dot. The arcs from the terminal to the first customer and
from the last customer to the terminal are left out in all routes. In this way the routes are
more clearly visible. For demonstration purposes, the routes in which the split requests are
in the solution with transfer point, are accentuated. In addition, we highlight the original
pickup and delivery locations of these requests ri = (i+, i−) and rj = (j+, j−). We also
accentuate their routes in the solution of the problem without transfer point. The transfer
point is indicated by a purple square.
Some interesting observations can be made from this figure. The route in which i+ is in
the solution without transfer point, is similar to the route that visits this transfer point.
This could be because i− is close to the transfer point and therefore there are small changes
in the best route, which makes the solution with transfer point better. Moreover, the two
delivery nodes i− and j− are visited by the same vehicle. Hence, the transfer point is only
visited once to pick up the goods that have to be delivered at i− and j−. The route in
Figure 4a, where rj is in, visits locations that are very dispersed. Because the request is
split in the solution which uses a transfer point, this vehicle is able to serve less dispersed
locations and j+ and j− can be visited separately by vehicles that cover less distant locations.

24

i+

i−

j+
j−

Figure 4 (a) PDPTW

i+

i−

j+
j−

Figure 4 (b) PDPTW with transfer point

Figure 4: Solutions of LRC201

25

6 Conclusion

This thesis focuses on the ALNS heuristic as proposed by Ropke and Pisinger (2006). In
the first part of this thesis the aim was to reproduce the results obtained by Ropke and
Pisinger (2006). We implemented the ALNS heuristic and tested it on benchmark instances
for the Pickup and Delivery Problem with Time Windows, in which we minimized the total
travelled distance and for some instances the total time spent by the vehicles.
The results obtained by this heuristic deviate from those of Ropke and Pisinger (2006).
Thus, some changes could be made to improve the results. To obtain parameter settings
that are suitable for our implementation, all parameters could be tuned, instead of only
two parameters. Furthermore, the heuristic could be run more times to each of the test
instances to obtain better solutions. Depending on the objective in the specific application,
the number of vehicles could be minimized by using the two-step approach proposed by
Ropke and Pisinger (2006). We showed that this method resulted in much fewer vehicles
and only slightly larger travelled distances in total for the instances this method was tested
on, than when the only objective is to minimize the travelled distance. This two-stage
approach does however require the assumption of a homogeneous fleet, which was not the
case in some benchmark instances. Moreover, as the initial solution can have an impact on
the quality of the solution obtained in the ALNS heuristic, more research could be done in
finding good initial solutions.
In the second part of this thesis we tried to improve the solutions obtained by the ALNS
heuristic as proposed by Ropke and Pisinger (2006). We included an extra removal heuristic
in the ALNS heuristic, which removes requests that are related in terms of time. With this
adapted heuristic we obtained for some instances better results than with the original ALNS.
Especially for instances with a smaller scheduling horizon and therefore less transportation
requests per route.
We also extended the problem by the introduction of a transfer point, so two different
vehicles can handle the same request. We therefore adapted the ALNS heuristic. The
additional possibilities for the insertion of requests increased run times, but the adapted
heuristic was able to improve many solutions compared to the original ALNS heuristic. We
saw that mostly in the transition phase of the heuristic a transfer point was used, rather
than in the final solution. More extensive analysis could be dedicated to the inclusion of a
transfer point in the heuristic, even if this point is not allowed to be actually used in the
final solution.
More research could be done on both these extensions of the original ALNS heuristic. The
impact on the solution quality of a removal heuristic can be large, so it is definitely worth
investigating and tuning good removal heuristics. For the problem with a transfer point,
research could be done on the benefits of removing only part of the request (that includes a
transfer node) in the removal heuristics, instead of removing all sub-requests. In addition, it
is interesting to investigate if better solutions can be obtained when using more than one
transfer point. This comes, however, at a price: even larger run times are expected when
additional transfer points are introduced. Furthermore, in future research these extensions
could be applied to larger test instances.

26

References

Bent, R., & Van Hentenryck, P. (2006). A two-stage hybrid algorithm for pickup and delivery
vehicle routing problems with time windows. Computers & Operations Research, 33 (4),
875–893.

Bianchessi, N., & Righini, G. (2007). Heuristic algorithms for the vehicle routing problem
with simultaneous pick-up and delivery. Computers & Operations Research, 34 (2),
578–594.

Cortés, C. E., Matamala, M., & Contardo, C. (2010). The pickup and delivery problem
with transfers: Formulation and a branch-and-cut solution method. European Journal
of Operational Research, 200 (3), 711–724.

Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M. M., & Soumis, F. (2000). The
vrp with pickup and delivery. Montréal: Groupe d’études et de recherche en analyse
des décisions.

Doerner, K. F., & Salazar-González, J.-J. (2014). Pickup-and-delivery problems for people
transportation. Vehicle Routing: Problems, Methods, and Applications, 18 , 193–198.

Farahani, P., Grunow, M., & Günther, H.-O. (2012). Integrated production and distribution
planning for perishable food products. Flexible Services and Manufacturing Journal ,
24 (1), 28–51.

Landrieu, A., Mati, Y., & Binder, Z. (2001). A tabu search heuristic for the single vehicle
pickup and delivery problem with time windows. Journal of Intelligent Manufacturing ,
12 (5), 497–508.

Lau, H. C., & Liang, Z. (2002). Pickup and delivery with time windows: Algorithms and
test case generation. International Journal on Artificial Intelligence Tools, 11 (03),
455–472.

Li, H., & Lim, A. (2003). A metaheuristic for the pickup and delivery problem with time
windows. International Journal on Artificial Intelligence Tools, 12 (02), 173–186.

Liu, R., Xie, X., Augusto, V., & Rodriguez, C. (2013). Heuristic algorithms for a vehicle
routing problem with simultaneous delivery and pickup and time windows in home
health care. European Journal of Operational Research, 230 (3), 475–486.

Nanry, W. P., & Barnes, J. W. (2000). Solving the pickup and delivery problem with time
windows using reactive tabu search. Transportation Research Part B: Methodological ,
34 (2), 107–121.

Nowak, M., Ergun, Ö., & White III, C. C. (2008). Pickup and delivery with split loads.
Transportation Science, 42 (1), 32–43.

Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2008). A survey on pickup and delivery
models part ii: Transportation between pickup and delivery locations. Journal für
Betriebswirtschaft , 58 (2), 81–117.

Pisinger, D., & Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers
& Operations Research, 34 (8), 2403–2435.

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science, 40 (4),
455–472.

Şahin, M., Çavuşlar, G., Öncan, T., Şahin, G., & Aksu, D. T. (2013). An efficient
heuristic for the multi-vehicle one-to-one pickup and delivery problem with split loads.
Transportation Research Part C: Emerging Technologies, 27 , 169–188.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle
routing problems. Technical report, APES Group, Department of Computer Science,
University of Strathclyde, Glasgow, Scotland .

27

SINTEF. (2008). Li & lim benchmark. https://www.sintef.no/projectweb/top/pdptw/li-
lim-benchmark/. (Accessed: 2017-05-05)

Van der Bruggen, L., Lenstra, J. K., & Schuur, P. (1993). Variable-depth search for the
single-vehicle pickup and delivery problem with time windows. Transportation Science,
27 (3), 298–311.

28

A Appendix

Table 12: Best results Li & Lim 100 with penalized insertion method

R1 R2 C1 C2 RC1 RC2
f # f # f # f # f # f

1 22 1806.16 6 1312.54 16 1257.95 6 829.46 18 1907.10 6 1557.59
2 20 1652.72 7 1426.13 15 1261.14 6 823.25 17 1897.80 6 1613.95
3 15 1416.69 6 1228.89 11 999.88 6 827.23 12 1343.55 6 1340.25
4 12 1254.77 4 1184.55 11 878.57 5 821.70 12 1342.57 5 1032.92
5 18 1622.50 6 1293.17 14 1191.46 6 793.77 17 1925.07 7 1476.42
6 15 1437.73 4 1199.49 14 1154.90 6 776.24 16 1763.19 7 1456.63
7 15 1391.80 4 1180.44 14 1198.30 6 824.50 14 1488.18 6 1445.29
8 13 1280.33 4 1106.50 13 1130.38 6 817.24 13 1398.21 6 1173.05
9 14 1480.84 6 1139.05 11 951.67
10 15 1348.67 6 1159.95
11 13 1294.10 4 1099.08
12 12 1223.63

CPU(s) 143 355 143 258 128 249

Notes. Results of the ALNS heuristic of the Li and Lim (2003) instances with 100 locations, using the penalized
insertion method to construct the initial solution. The columns and rows should be interpreted as in Table 3.

Table 13: Best results Li & Lim 100 with vehicle minimization algorithm

R1 R2 C1 C2 RC1 RC2
f # f # f # f # f # f

1 22 1806.16 5 1367.05 14 1211.99 5 889.51 16 1863.62 5 1599.14
2 20 1652.71 5 1382.64 13 1225.94 4 874.61 17 1900.93 4 1694.01
3 14 1386.64 3 1144.59 10 1076.95 4 842.34 12 1430.43 4 1401.14
4 12 1253.90 3 1088.25 10 923.66 4 788.33 12 1271.84 3 1013.59
5 17 1588.72 4 1359.42 13 1286.49 4 893.89 16 1860.17 5 1440.48
6 15 1447.24 4 1209.41 12 1096.23 4 832.44 15 1659.62 4 1419.94
7 13 1383.57 3 1293.47 13 1213.78 4 879.95 13 1440.37 5 1400.19
8 12 1280.95 3 1001.65 11 932.54 4 826.41 12 1421.10 4 1179.64
9 15 1492.85 4 1126.37 10 871.62
10 13 1344.95 3 1199.30
11 13 1269.50 3 1181.63
12 12 1256.87

CPU(s) 167 252 153 221 150 195

Notes. Results of the two-stage vehicle minimization method of the Li and Lim (2003) instances with 100 locations.
The columns and rows should be interpreted as in Table 3.

29

Table 14: Best results Ropke 50 & 100 requests

ALNS 50 requests ALNS 100 requests LNS 50 requests LNS 100 requests
f # f # f # f

A 13 76150.56 26 157418.82 13 76825.03 26 160220.87
B 14 84394.66 25 142029.56 14 85507.39 26 144599.70
C 13 75611.96 26 140765.28 13 75743.75 27 142202.36
D 15 87706.31 28 156155.94 15 87249.37 28 157211.51
E 14 69354.13 28 137373.52 14 69771.91 28 139389.04
F 14 68939.01 27 137304.72 14 71148.87 27 140330.53
G 14 66508.54 25 127799.53 14 67712.45 25 131622.48
H 14 71829.14 28 136902.85 14 72908.76 28 139412.88
I 13 68058.81 27 147501.05 13 69002.75 27 149576.13
J 14 83527.31 28 153286.94 15 86189.21 28 157168.46
K 13 73307.26 24 131247.05 13 74443.04 25 132261.40
L 15 79688.26 26 145615.13 14 77806.12 26 145623.70

CPU(s) 67 441 60 503

Notes. Results of the ALNS heuristic and LNS heuristic of the Ropke and Pisinger (2006) instances with 50
and 100 requests. The left column indicates the type of problem. For each instance the number of vehicles
and the best solution in the experiment are reported in the columns denoted by # and f respectively. In
the last row, denoted by CPU(s), the average run time is reported in seconds.

30

	front page hoofdletter
	scriptie (6).1

