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Abstract

The use of estimators of volatility based on high-frequency data has greatly
improved our ability to measure and model financial market volatility. Over the
past few years there has been an abundance of research on the subject of modeling
return volatility. This paper compares two of the more successful models, being the
HEAVY and HAR models. The HEAVY model framework as developed in Shephard
and Sheppard (2009) uses two separate equations and realized measures to model
the volatility. The HAR model introduced by Corsi (2009) uses an additive cascade
model of volatility components defined over different time periods. This paper also
uses ideas from Patton and Sheppard (2009b) for the implementation of the HAR
model. To compare the models we use a predictive ability test and compare their
forecast performance at different horizons. Results of these tests show that the HAR
models outperform HEAVY models when using a lot of observations to estimate. But
we see the opposite when using an estimation window of four years, in that case the
HEAVY models perform better at almost every horizon.
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1 Introduction

Volatility forecasting has always been useful in risk management, but now that volatility is
directly tradable using swaps and futures, precise volatility forecasts are more important
than ever. Therefore, the main focus of the research will lie in determining which model
performs best as a predictive model of volatility. We hope to establish our goal by
comparing the models at different horizons and see if there is a model that consistently
outperforms the other, or if we can identify different situations where different models
perform the best.

The use of estimators of volatility based on high-frequency data has greatly improved
our ability to measure and model financial market volatility1. In the past decade there
has been plenty of research to develop methods that exploit the information that high-
frequency data provides, Andersen et al. (2009) provides an extensive overview of this
literature, categorizing the various concepts and procedures relating to the measurement
and modeling of volatility. The goal of this research is to compare two model types
that take completely different approaches in using realized measures to forecast future
volatility.

Firstly, the HEAVY model framework as developed in Shephard and Sheppard (2009),
this framework consists of two equations, one equation to model the volatility of returns
using a realized measure that is modeled by the second equation. This model structure
is reminiscent of the ARCH models and the authors mention using ideas from papers
such as Engle (2002), Engle and Gallo (2006) and Cipollini et al. (2009). Shephard
and Sheppard (2009) argue that the HEAVY models are relatively easy to estimate,
compared to for example the component GARCH model by Engle and Lee (1999), since
their model makes use of two sources of information to determine the long-term component
of volatility. Furthermore, they show that making use of the additional information
that the realized measure provides results in an increased out-of-sample performance
compared to standard GARCH models. This increase in performance is magnified when
using parameters that are estimated to fit a specific forecast horizon. When replicating
their research our results were in line with their conclusions regarding the comparative
performance of the HEAVY models against the GARCH models. The paper itself does not
introduce new theories regarding the estimation of models and instead uses established
results from quasi-likelihood theory.

Secondly, the Heterogeneous Autoregressive (HAR) model (see Corsi, 2009; Müller
et al., 1997) as outlined in Patton and Sheppard (2009b). This model regresses the realized
variance on the past 1-day, 5-day, and 22-day average realized variances and is extended to
include other realized measures. The main idea behind this HAR model is that different
types of agents on the market drive different components of the market volatility. There
are three main volatility components that are of interest for this model, the short-term
traders with daily or intra-day trading frequency, the medium-term investors that adjust
their portfolios weekly, and the long-term agents who trade monthly or every few months.
Patton and Sheppard (2009b) introduce a couple of extensions to this HAR model based
on differentiating between the effects of positive and negative (high-frequency) returns or
jump variation. We have also included their extension that decomposes the first lag of the

1These are some of the papers that show the positive effects of using intra-day data has on modeling
volatility: Andersen et al. (2003); Liu and Maheu (2005); Fleming et al. (2003); Corsi (2009); Chen and
Ghysels (2011); Visser (2008); Andersen et al. (2007).
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realized variance into positive and negative realized semivariance, estimators introduced
by Barndorff-Nielsen et al. (2010). They show that disentangling these effects improves
forecasts of future volatility up to horizons of one month or more.

Our research shows that in-sample the HAR models perform better than the HEAVY
models, particularly at longer horizons. The out-of-sample analysis shows a different
picture, however, with the HEAVY models beating the HAR models at horizons ranging
from one week to one month.

The remainder of the paper is set up as follows. Section 2 explains more about the
methods used in the paper, including estimation techniques and employed tests. The
data set used is discussed in Section 3. Section 4 shows and discusses results for both
in-sample and out-of-sample estimations. Section 5 concludes.

2 Methodology

2.1 HEAVY model

Shephard and Sheppard have developed a volatility model that includes realized measures,
these are called ”HEAVY models” (High frEquency bAsed VolatilitY models) and consist
of a system that models two different quantities:{

Var(rt|Φt−1)
E(yt|Φt−1)

}
, t = 2, 3, . . . , T,

where rt denotes daily financial returns, yt denotes a realized measure2 and Φt−1 is the
information set at time t− 1 containing past values of rt and yt.

The HEAVY model finds its roots in the ARCH literature pioneered by Engle (1982)
and Bollerslev (1986) and shows similarities to the GARCH model which assumed that

Var(rt|Φt−1) = σ2
t = ωG + αGr

2
t−1 + βGσ

2
t−1

This model is easy to extend, we could for example include a realized measure, which
would make it a GARCHX type model:

Var(rt|Φt−1) = σ2
t = ωX + αXr

2
t−1 + βXσ

2
t−1 + γXyt−1

But when estimating this model, we find that the yt−1 component is the main driver
of the model and αX is very small. It seems that yt−1 is better at moving around the
conditional average than r2t−1, so one might argue to replace the squared return with the
realized measure:

Var(rt|Φt−1) = ht = ω + αyt−1 + βht−1, (1)

with ω, α ≥ 0, β ∈ [0, 1]. This is the first equation of the HEAVY model. However, if
we want to forecast the variance of the returns multiple periods ahead, we will also need
forecasts of the realized measure. Hence, we need a model for the realized measure, if
we use a simple linear autoregressive model, we get the most basic example of a HEAVY
model

2Although both HEAVY and HAR models can be used with any realized measure, this paper focuses
solely on applying the models to realized variance.
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Var(rt|Φt−1) = ht = ω + αyt−1 + βht−1, (2)

E(yt|Φt−1) = µt = ωR + αRyt−1 + βRµt−1, (3)

with ωR, αR, βR ≥ 0, αR + βR ∈ [0, 1]. Equations (2) and (3) will be referred to as
HEAVY-r and HEAVY-RM, respectively. Notice that by taking r2t−1 out of the GARCH
equation, we have removed the feedback that GARCH models have which means that the
conditional variance is solely determined by the realized measure.

Clements and Hendry (1999) explain that failure in economic forecasting might be for
a large part due to long run relationships shifting, this can be solved by imposing a unit
root on the model. For the HEAVY model this would mean equating (1−β)(1−αR−βR)
to zero3. Since setting β to zero would not leave much of the HEAVY-r equation, we opt
for setting αR + βR to one. However this means that the intercept ωR becomes a trend
slope4, which is undesirable in a time series of volatility, so we set it to zero. Imposing
these restrictions on the HEAVY model defined before we get

Var(rt|Φt−1) = ht = ω + αyt−1 + βht−1, (4)

E(yt|Φt−1) = µt = αIRyt−1 + (1− αIR)µt−1, (5)

with ω, α ≥ 0, β ∈ [0, 1) and αIR ∈ [0, 1). This is referred to as the “Integrated HEAVY
model”. Although this model is very simple, Shephard and Sheppard show that it can
produce reliable multi-period forecasts.

2.2 HAR model

Financial returns show a number of well-known stylized facts that have proven to be
quite troublesome for econometric models. Strong, slowly declining autocorrelations for
the absolute and squared returns, the return distributions have fat tails and show ev-
idence of scaling and multi-scaling5. Standard GARCH and stochastic short-memory
volatility models are unable to reproduce all of these features, hence the growing interest
for modeling long-memory processes.

Long-memory is usually obtained with FIGARCH (Baillie et al., 1996) and ARFIMA
(Hosking, 1981) models, or other models that make use of fractional difference operators
(Granger and Joyeux, 1980), but these models are cumbersome to estimate, especially
when extended. Moreover, these models lack a clear economic interpretation and the
usage of the fractional difference operator requires a long build-up period, resulting in
the loss of many observations. An alternative method is to view the long-memory and
multi-scaling as features generated by a process, which is not actually long memory or
multi-scaling. It is very difficult to distinguish between true long-memory processes and
simple component models with few time scales, combined with the fact that the latter
is simpler to estimate, Corsi (2009) follows this alternative view and proposes a simple

3See section 2.3 of Shephard and Sheppard (2009) for a derivation of this result.
4When we set αR + βR to one the first equation in section 2.3.3 of Shephard and Sheppard (2009)

becomes ∆r2t = β∆r2t−1 + α ωR + ξt.
5A process is called multi-scaling if there are different scaling exponents for different powers of the

absolute returns, for a more extensive explanation of this phenomenon see Di Matteo (2007).
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component model for conditional volaltility. While remaining simple and easy to estimate,
this model is able to reproduce the stylized facts observed in the returns.

The standard HAR in the realized variance literature (Corsi, 2009; Müller et al., 1997)
regresses realized variance on the past 1-day, 5-day, and 22-day average realized variances,
these represent the short-term, medium-term, and long-term components mentioned be-
fore. As is done in Patton and Sheppard (2009b), we use a reparameterization with a
clearer interpretation where the second term contains only lags 2 to 5 of the realized
variance, and the third term contains only lags 6 to 22,

yt+h = µ+ φdyt + φw

(
1

4

4∑
i=1

yt−i

)
+ φm

(
1

17

21∑
i=5

yt−i

)
+ εt+h (6)

where yt is the realized variance at time t. From now on ȳw,t denotes the average value
over lags 2 to 5 and ȳm,t denotes the average over lags 6 to 22.

In the ARCH literature it has been observed many times that negative returns have
a greater impact on future volatility than positive returns. Models have been developed
that exploit this relationship6, one example of such a model is the GJR-GARCH (Glosten
et al., 1993), which allows positive and negative innovations to returns to have different
impacts on the conditional volatility. More recent research has found evidence that this
relationship persists, even when using high-frequency returns (see Bollerslev et al., 2006;
Barndorff-Nielsen et al., 2010; Visser, 2008; Chen and Ghysels, 2011). Barndorff-Nielsen
et al. (2010) introduced estimators that capture the variation that is due only to positive
or negative returns, realized semivariances, denoted by RS+ and RS− for positive and
negative returns, respectively. Knowing that RV can be exactly decomposed into RS+

and RS− 7, Patton and Sheppard suggest an extension to (6). The next model is obtained
by splitting up yt in (6) into realized semivariances RS+

t and RS−t . The model becomes

yt+h = µ+ φ+d RS
+
t + φ−d RS

−
t + φwȳw,t + φmȳm,t + εt+h (7)

From now on (6) will be referred to as HAR-RV and (7) will be referred to as HAR-RS.
Results from Patton and Sheppard (2009b) show that the HAR-RS delivers significantly
better forecasts than the HAR-RV, especially at longer horizons.

2.3 Estimation

Shephard and Sheppard (2009) mention that inference for HEAVY models is a simple
application of multiplicative error models discussed by Engle (2002) who uses standard
quasi-likelihood asymptotic theory. In estimating the parameters we will assume there
are no links between the parameters from the HEAVY-r and HEAVY-RM models. This
means we can estimate each equation separately when maximizing the quasi-likelihoods.
The quasi-likelihoods are

logQ1(ω, α, β) =

T∑
t=2

lrt , where lrt = −1

2
(log ht + r2t /ht),

for the first equation, where we take h1 = T−1/2
∑bT 1/2c

t=1 r2t , and

6See for example section 1.3 in Bollerslev et al. (1994) and section 3.3 in Andersen et al. (2006).
7See Patton and Sheppard (2009b) for a derivation of this result.
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logQ2(ωR, αR, βR) =

T∑
t=2

lRM
t , where lRM

t = −1

2
(logµt +RMt/µt),

for the second equation, where we take µ1 = T−1/2
∑bT 1/2c

t=1 RMt. Calculating robust
standard errors is standard for the HEAVY models. Shephard and Sheppard (2009) show
that the equation by equation standard errors for the HEAVY-r and HEAVY-RM are
correct, even though we view the equations as a system.

For the estimation of the the HAR models we use simple Weighted Least Squares
(WLS), the reason for this is that OLS would focus too much on fitting periods of high
volatility, while putting less weight on less volatile periods. Since the level of variance
changes significantly over our sample period and the level of the variance and the volatility
of the error terms are positively related, we need to account for heteroskedasticity. We do
this by using an implementation of WLS where we first estimate the model using OLS,

bOLS = (X ′X)−1X ′Y

where X is a matrix containing the regressors specific to the equation (a vector of ones,
average weekly and monthly realized variance, and either realized variance or both realized
semivariances) and Y is yt+h. Then we construct weights as the inverse of the OLS fitted
value,

wt = 1/ȳt, for t = 1, . . . , T

where ȳt are the fitted values. The next step is to perform the WLS,

bWLS = (X ′WX)−1X ′WY

where the weighting matrix W is a diagonal matrix containing the wt. Standard errors
are calculated according to the standard WLS theory.

2.4 Evaluation

Since the main objective of this paper is to compare the performance of several models,
we need a means of comparing the volatility forecasts produced by the different models.
We will do so by comparing the QLIK loss function, which is defined as

Loss
(
r2t+s, σ̂

2
t+s|t−1

)
=

r2t+s

σ̂2
t+s|t−1

− log

(
r2t+s

σ̂2
t+s|t−1

)
− 1, s = 0, 1, . . . , S, (8)

where r2t+s is the proxy we use for the variance at time t + s and σ̂2
t+s|t−1 is some

variance forecast made at time t − 1. Patton (2011) and Patton and Sheppard (2009a)
have shown that the QLIK loss function is robust to certain types of noise in the volatility
proxy, this is useful as the square of returns has long been known to be a noisy proxy for
the true conditional variance. Patton and Sheppard (2009a) also showed that the QLIK
loss function yielded the greatest power in their Diebold-Mariono-White tests, which is
very similar to the test we use here. For this reason we have chosen the QLIK as the
loss function over the MSE or MAE or any of their close relatives. The test statistic is
obtained by averaging the differences of the losses,
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L̂s =
1

T − s

T∑
t=s+1

Lt,s, s = 0, 1, . . . , S, (9)

where

Lt,s = Loss
(
r2t+s, ht+s|t−1

)
− Loss

(
r2t+s, yt+s|t−1

)
, s = 0, 1, . . . , S. (10)

Here ht+s|t−1 is the forecast from the HEAVY model and yt+s|t−1 is the corresponding

forecast from a HAR model. The HEAVY model will be favored if L̂s is negative.
Then

√
T
(
L̂s − Ls

)
d−→ N(0, Vs), (11)

where Vs is the long-run variance of Lt,s and can be estimated by a HAC estimator.
Under the null hypothesis that the models perform equally well, Ls is equal to zero.

In the context of comparing forecasts this method is related to Diebold and Mariano
(1995). This approach follows the ideas of Cox (1961b) on non-nested testing using the
Vuong (1989) and Rivers and Vuong (2002) implementation which has the benefit of being
valid even if neither model is correct.

2.5 Horizon tuned estimation

To increase the forecasting performance of the HEAVY models, Shephard and Sheppard
(2009) implement a method of “direct forecasting”, where the QLIK loss is minimized
for each specific horizon. This way of tuning the parameters to produce multi-step ahead
forecasts has been studied by Marcellino et al. (2006) and Ghysels et al. (2009) and
dates back to Cox (1961a). In theory the iterated forecasts are more efficient if the
one-period ahead model is correctly specified, but direct forecasts are more robust to
model specification. Both Marcellino et al. (2006) and Ghysels et al. (2009) find that
the direct forecasts are unbiased, but inefficient. The former argue that, since the single-
period models are not badly misspecified, the increase in estimation variance arising from
estimating the multi-period model directly outweighs the reduction in bias, which means
the iterated forecasts performed better.

To obtain the horizon tuned parameters we maximize the following quasi-likelihood
for each value of s

logQ1,s(ωs, αs, βs) =

T∑
t=s

lrt,s, where lrt,s = −1

2

(
log ht+s|t−1 +

r2t+s

ht+s|t−1

)
,

logQ2,s(ωR,s, αR,s, βR,s) =

T∑
t=s

lRM
t,s , where lRM

t,s = −1

2

(
logµt+s|t−1 +

RMt+s

µt+s|t−1

)
,

Maximizing these quasi-likelihoods results in a sequence of estimators ω̂s, α̂s, β̂s, ω̂R,s,

α̂R,s, β̂R,s for each horizon s. Since the HEAVY-r equation uses the previous value from
the HEAVY-RM equation, horizon tuned estimation can not be done equation by equa-
tion. One solution would be to optimize the six parameters simultaneously, but that
optimization becomes very time-consuming and is liable to get stuck in a local optimum.
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Therefore, when we implement the horizon tuned parameters, we use the HEAVY-r pa-
rameters optimized for one-step ahead and the HEAVY-RM parameters optimized to
perform best at varying horizons.

In the context of HAR models, horizon tuned parameters are simply obtained by
substituting h = s+ 1 into (6) and (7).

3 Data

In the paper we use data on four different equity indices: S&P 500, FTSE 100, Nikkei
225 and the German DAX. The data is taken from the Oxford-Man’s realized library 8,
the current version of the database starts at January 3rd 2000 and is updated daily. We
use data up until May 5th 2017.

Asset r2 RV RS
T Avol sd acf1 Avol sd acf1 Avol sd acf1

S&P 500 4333 18.7 4.34 .213 17.2 2.58 .671 12.2 1.41 .552
FTSE 100 4354 15.0 2.25 .184 14.8 1.65 .571 10.5 0.87 .508
Nikkei 225 4200 18.6 4.92 .251 16.7 1.74 .642 12.0 1.08 .424
German DAX 4388 20.9 4.54 .210 21.2 3.05 .708 15.2 1.73 .559

Table 1: Calculations in this table use 100 times the daily data. Avol approximates the

annualized volatility, Avol =
√

252
T

∑T
t=1 xt, where xt is either squared returns or the

realized measure. The sd is the daily standard deviation and acf1 is the first autocorre-
lation.

Table 1 shows some summary statistics for the data used. Avol is calculated by taking
either the squared returns or the realized measure, multiplying by 252, and then taking
the square root of the average over the sample period. This means that Avol is on the
scale of annualized volatilty. We see that the annualized volatility lies around 15% to 20%
for the squared returns and the realized variance, with Avol between 10% and 15% for
the realized semivariance. Furthermore, out of the four indices, the German DAX seems
to be the most volatile over the sample period.

Table 1 also shows standard deviations (sd) of percentage daily squared returns or
realized measure. The sd figures show much higher standard deviations for squared
returns than for the realized variance, which is to be expected.

The acf1 figures are the first autocorrelations. They show a modest degree of serial
correlation in the squared returns, higher serial correlations in the realized semivariance,
and higher still in the realized variance. This is a strong indication that models with an
autoregressive component will perform well. These results are in accordance with past
literature on realized measures.

Also included is a plot of the realized variance for the DAX (Figure 1). There are a
few noteworthy events, such as the increased volatility as a result of the internet bubble
bursting in the first couple of years of the century. Also the spike following the 9/11

8Gerd Heber, Asger Lunde, Neil Shephard and Kevin Sheppard (2009) ”Oxford-Man Institute’s real-
ized library” version 0.2, Oxford-Man Institute, University of Oxford
http://realized.oxford-man.ox.ac.uk
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Figure 1: Plot of the realized variance of the German DAX returns.

attacks in 2001, the DAX crash of January 2008 and the credit crisis starting that same
year. We will later see that the spike in January 2008 is very impactful in the parameter
estimation. Fears of the European sovereign debt crisis spreading to other Mediterranean
countries affected the stock market around August 2011. Spikes in more recent years
can be attributed to, among other things, fears about China’s economy and the United
Kingdom’s 2016 referendum to determine whether it would be leaving the European
Union.

4 Results

4.1 Parameter Estimates

The results of the estimation of the HEAVY models are shown in Table 2, the models
are estimated over the full 17-year period. Estimates for the intercepts are omitted since
they are very small and almost never significantly different from zero. For the HEAVY-r
equation the momentum parameter β lies around 0.7, while for the HEAVY-RM model
βR is somewhat lower with values between 0.5 and 0.6. The HEAVY-RM shows a high
degree of persistence with αR being around 0.4 and αR+βR very close to one. Finally, the
table also shows estimates of αIR for the integrated HEAVY-RM model. These do not
differ much from the αR figures and are estimated to be slightly smaller. These results
coincide with the findings from Shephard and Sheppard (2009).

Table 2 also shows the robust standard errors of the estimated coefficients in paren-
theses. Most standard errors are relatively small and a great proportion of the parameters
appear to be significantly different from zero, but there are a couple of striking exceptions.
It seems that the HEAYV-r and HEAVY-RM equations do not form an apt specification
for the DAX series, as α, αR and βR are not significantly different from zero. The other
result that stands out is the high standard error for αIR that is estimated for the Nikkei
225, which means that imposing a unit root on this particular series is a misspecification.

Parameter estimates for the HAR models at horizon one are shown in Table 3. Again,
results for the intercepts are omitted on account of them being close to zero. The left
panel shows results for the HAR-RV model, these figures are in line with results from
previous research: a high degree of persistence, with φd + φw + φm close to one. The
φd is highest for the German DAX, meaning that more weight is put on the RV of the

9



Table 2: Full-sample estimation results for HEAVY models, robust standard errors in
parentheses.

Asset HEAVY-r HEAVY-RM Int-HEAVY
α β αR βR αIR

S&P 500 0.385
(0.042)

0.661
(0.014)

0.441
(0.125)

0.551
(0.166)

0.350
(0.001)

FTSE 100 0.351
(0.039)

0.664
(0.035)

0.443
(0.058)

0.550
(0.054)

0.373
(0.006)

Nikkei 225 0.317
(0.033)

0.715
(0.028)

0.395
(0.025)

0.589
(0.048)

0.328
(0.237)

German DAX 0.302
(0.239)

0.663
(0.275)

0.450
(0.353)

0.531
(0.297)

0.355
(0.002)

previous day and the corresponding error, as a result the plot of the RV of the DAX
returns would be more erratic than the other RV plots. Shown in parentheses are robust
standard errors.

The right panel shows parameter estimates for HAR-RS, where we split the first lag
of RV into RS+ and RS− with the intention of disentangling the effects of these two
components on realized volatility. The implied effect of lagged RV in this specification
is (φ+d + φ−d )/2 and we see this is close to the coefficient found in the first specification,
this indicates that models that use only lagged RV are essentially averaging the effects
of positive and negative returns. Most importantly, these results show that the effects of
positive and negative semivariance on future volatility are vastly different, with the effect
of negative semivariance estimated to be 3 to 7 times as large as the effect of positive
semivariance.

Table 3: Full-sample estimation results for HAR models, robust standard errors in
parentheses. yt+1 = µ+ φdyt + φ+d RS

+
t + φ−d RS

−
t + φwȳw,t + φmȳm,t + εt+1

Asset φd φw φm φ+d φ−d φw φm
S&P 500 0.474

(0.021)
0.344
(0.027)

0.135
(0.023)

0.104
(0.033)

0.776
(0.034)

0.379
(0.025)

0.130
(0.021)

FTSE 100 0.477
(0.021)

0.331
(0.027)

0.148
(0.024)

0.180
(0.040)

0.741
(0.041)

0.338
(0.026)

0.154
(0.024)

Nikkei 225 0.481
(0.026)

0.276
(0.030)

0.139
(0.028)

0.225
(0.048)

0.662
(0.041)

0.307
(0.030)

0.137
(0.028)

German DAX 0.557
(0.019)

0.253
(0.022)

0.147
(0.020)

0.266
(0.039)

0.764
(0.032)

0.279
(0.022)

0.154
(0.020)

4.2 In-sample Evaluation

As explained in subsection 2.4, we compare the models by comparing their predictive
accuracy, Table 4 shows t-statistics for the LR tests comparing the QLIK loss of HEAVY
models to that of HAR models. Results are shown for horizons 1, 5, 10 and 22 (1-day,
1-week, 2-weeks and 1-month ahead respectively). Recall that negative values favor the
HEAVY models.

The iterated multi-step ahead forecasts from the HEAVY models are made using
parameters that are tuned to perform best at one-step ahead forecasting. It is therefore
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no surprise that both HAR models outperform both HEAVY models at longer lags, with
the exception of the standard HEAVY model outperforming both HAR-RV and HAR-RS
for the Nikkei 225. Something else that may contribute to the HAR models performance is
the presence of the long-term volatility component in the HAR models, this term gives the
HAR models long-memory which the HEAVY models lack. HEAVY models do present
some degree of memory, but not for one month. We expect this to change when we use
horizon tuned parameters for the HEAVY models, those results are shown in Table 5.

Table 4: t-statistics for LR tests for iterative forecasts at different horizons. Negative
values favor the HEAVY model over the HAR model.
* = forecasting performance is significantly different from zero at a 95% level.

HEAVY vs. HAR-RV Int-HEAVY vs. HAR-RV
Asset 1 5 10 22 1 5 10 22
S&P 500 0.94 -0.68 1.32 1.17 0.97 -0.21 2.97* 2.90*
FTSE 100 1.39 1.58 2.21* 2.14* 1.36 1.83 2.50* 2.18*
Nikkei 225 0.68 -0.31 -0.85 -0.33 0.70 0.62 0.22 1.29
German DAX 1.71 2.49* 3.17* 2.78* 1.68 2.43* 2.03* 1.64

HEAVY vs. HAR-RS Int-HEAVY vs. HAR-RS
Asset 1 5 10 22 1 5 10 22
S&P 500 1.39 -0.37 1.56 1.21 1.42 0.14 3.07* 2.94*
FTSE 100 1.49 2.39* 2.65* 2.38* 1.47 2.38* 2.72* 2.28*
Nikkei 225 0.75 -0.19 -0.82 -0.32 0.77 0.73 0.27 1.30
German DAX 2.20* 2.64* 3.64* 3.17* 2.16* 2.63* 2.21* 1.73

We indeed see that the comparative performance of the HEAVY models has increased.
Although the integrated HEAVY model still gets outperformed at almost every horizon
and all four indices, the standard HEAVY model beats the HAR models at the 22 horizon
for two of the indices. When the HEAVY model does get beaten, it is by a considerably
smaller margin and the difference in performance is rarely significant. Overall it appears
that the HEAVY forecasts do indeed benefit from tuning the parameters to different
horizons.

4.3 Out-of-sample Evaluation

The out-of-sample evaluation was conducted in a more realistic setting. The models
were estimated using a moving window with a width of 4 years (1008 observations) and
parameters were updated daily. After that forecasts were made for horizons 1 through
22 using horizon tuned parameters. Table 6 shows the results of this exercise, making
comparisons between the four pairs of models.

The figures are remarkably different from the previous results. Both the standard
HEAVY and the integrated HEAVY models now consistently outperform the HAR models
over all horizons and all indices. From this we can conclude that the HEAVY models do
not need as much observations as the HAR models to produce accurate forecasts.

Figure 2 shows the forecasts that resulted from the moving window estimation on the
data from the DAX. The shown forecasts are from the standard HEAVY model and the
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Table 5: t-statistics for LR tests for iterative forecasts at different horizons using horizon
tuned parameters for the HEAVY models. Negative values favor the HEAVY model over
the HAR model.
* = forecasting performance is significantly different from zero at a 95% level.

HEAVY vs. HAR-RV Int-HEAVY vs. HAR-RV
Asset 1 5 10 22 1 5 10 22
S&P 500 0.94 -0.76 0.79 -1.02 0.97 0.66 2.22* -0.09
FTSE 100 1.39 1.75 1.09 -0.10 1.36 2.45* 1.47 0.51
Nikkei 225 0.68 -0.42 -1.14 -1.00 0.70 0.72 1.43 0.40
German DAX 1.71 3.03* 0.55 0.02 1.68 2.75* 1.04 1.16

HEAVY vs. HAR-RS Int-HEAVY vs. HAR-RS
Asset 1 5 10 22 1 5 10 22
S&P 500 1.39 -0.36 1.09 -0.96 1.42 1.08 2.39* -0.05
FTSE 100 1.49 2.60* 1.49 0.20 1.47 2.93* 1.67 0.66
Nikkei 225 0.75 -0.28 -1.11 -0.98 0.77 0.84 1.49 0.43
German DAX 2.20* 3.11* 1.21 0.41 2.16* 2.87* 1.29 1.26

Table 6: t-statistics for LR tests for the out-of-sample performance of iterative forecasts
at different horizons. Negative values favor the HEAVY model over the HAR model.
* = forecasting performance is significantly different from zero at a 95% level.

HEAVY vs. HAR-RV Int-HEAVY vs. HAR-RV
Asset 1 5 10 22 1 5 10 22
S&P 500 -1.13 -3.21* -1.88 -1.67 -1.31 -3.46* -1.20 -1.50
FTSE 100 -1.17 -4.49* -2.80* -2.45* -1.16 -4.18* -2.46* -2.01*
Nikkei 225 -0.88 -1.88 -2.17* -1.43 -0.76 -1.02 -1.98* -0.42
German DAX -0.23 -3.85* -2.41* -2.27* 0.01 -3.79* -2.16* -2.07*

HEAVY vs. HAR-RS Int-HEAVY vs. HAR-RS
Asset 1 5 10 22 1 5 10 22
S&P 500 0.73 -3.24* -1.65 -1.70 0.62 -3.49* -0.80 -1.53
FTSE 100 -1.08 -4.42* -2.97* -2.29* -1.09 -4.13* -2.62* -1.90
Nikkei 225 -0.46 -1.89 -2.18* -1.47 -0.29 -1.03 -2.02* -0.43
German DAX 0.23 -3.78* -2.43* -2.28* 0.39 -3.66* -1.95 -2.12*
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Figure 2: Plotted are the squared returns of the DAX, the conditional variance forecasts
made by the HEAVY model and the forecasts from the HAR-RV model.
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Figure 3: Squared DAX returns and variance forecasts during the credit crunch.

HAR-RV model. The graphs are plotted below each other because the forecasts from the
models lie very close together, making it very difficult to distinguish between them when
plotted in the same space. Nevertheless, from this picture it becomes apparent that when
the squared returns peak, the HAR forecasts are better able to follow, reaching higher
values. Both models seem to need quite some time to adjust to higher levels of volatility,
this becomes most apparent near the end of our sample in the period of 2015 and 2016.
Here we observe short sustained periods of extreme returns, however both models display
only modest increases in volatility.

For a better look at the movements of the forecast we have also included a plot of
the period around the credit crunch of 2008. From Figure 3 we can see that the models
show a delayed reaction to extreme returns and also take some time to return to a lower
level of volatility. Again we see how close the forecasts from the models are to each other,
however when the forecasts do deviate a little further from each other, it seems to be the
HAR model that is at a higher level of volatility.

Figure 4 shows some of the HEAVY coefficients changing through the sample period.
The first panel shows results from the HEAVY models, only the α’s are plotted. Since

13



2004 2006 2008 2010 2012 2014 2016

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α

α
R

α
IR

Figure 4: Plot of HEAVY coefficients as estimated using the moving window estimation
on the DAX data.

α+β and αR +βR are always close to one, the plots of the β’s are mirror images of there
α counterparts. The first major thing to note is the increase in the parameters after 2008,
the start of the credit crisis. In order to cope with the increased levels of volatility the
models estimate these parameters to be higher than in more tranquil periods. Interesting
to note is that the increase of αR is very gradual and starts in 2006, whereas α and αIR

show a very abrupt increase in January 2008. Then, four years later, when the spike of
January 2008 leaves the estimation sample, we observe sudden drops in the estimated
values of all three parameters. Furthermore, the plot of α in the last couple of years
seems very volatile, the increases are probably caused by the spikes in RV that we saw
in Figure 1. Since these are just occasional spikes and not lasting increases in the level of
RV , their effect on estimates of αR and αIR is limited. The increase in α, however, might
be an indication that these spikes do have a longer effect on the level of the volatility of
the returns as calculated by the model.

Next, Figure 5 shows the estimated coefficients for the HAR-RV model, the picture is
much less volatile than that for the HEAVY parameters, but we again see a large increase
at the start of 2008. It seems that the increase in φd is at the expense of φw, which
means that when we enter a period of higher volatility, the model shifts weight off of the
aggregate RV of the past week towards the past day volatility. The graph of φm looks
quite constant over the 13 year period, staying mostly between 0.10 and 0.15. Figure 6
shows the coefficients from the HAR-RS model and looks similar to the previous figure,
as the plots of φw and φm have not changed much. The shape of the plot of φ− is almost
identical to that of φd, but the values are up to twice as large. φ+ mostly moves in the
opposite direction of φ−, but is not exactly a mirror image.

5 Conclusion

In this paper we have discussed and compared two different types of volatility models,
both of which make use of realized measures to increase our ability to accurately predict
return volatility. With full-sample estimations the HAR models produced better forecasts
than the HEAVY models, indicating that in a context of measuring and analyzing long-
run volatility, the HAR models might be more effective in determining the long-memory
component of volatility. But in a setting more focused on practice the HEAVY models
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Figure 5: Plot of HAR-RV coefficients as estimated using the moving window estimation
on the DAX data.
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Figure 6: Plot of HAR-RS coefficients as estimated using the moving window estimation
on the DAX data.
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heavily outperformed both the HAR-RV and the HAR-RS specifications. One might
argue that the moving window set-up that was used comes much closer to day-to-day
forecasting than the other estimations performed. Therefore, the results in this paper
lead us to conclude that, for forecasting purposes, the HEAVY models from Shephard
and Sheppard (2009) are superior to the HAR type models.

In addition to being easy to estimate, both models have the virtue of being easily
extendable, which makes them both great candidates for future research. One might
figure to include the leverage effect into the HEAVY model or make use of signed jump
variation as in Patton and Sheppard (2009b). Assessing whether HEAVY is successful in
concrete financial applications promises to be an interesting area for further research.
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