
Finding Extreme Supported Solutions to the

Bi-Objective Shortest Path Problem

Bachelor Thesis1

July 2, 2017

Adriaan Molendijk2

Supervisor: T. Breugem MSc
Co-Reader: Dr. T.A.B. Dollevoet

1Erasmus University Rotterdam, Erasmus School of Economics, Econometrics and Operations Research
2Student id: 409865

Abstract

The extreme supported solutions to the one-to-all bi-objective shortest path problem are
analyzed. We start with the implementation of a ratio-labeling algorithm which obtains all
these solutions in O(N(m+n log n)) steps, where N is the total number of extreme supported
solutions and n and m are the number of nodes and arcs in the graph respectively. Next we
consider a setting where the input graph has the property of being acyclic, and propose a
O(Nm) labeling algorithm to solve this problem. We conclude this thesis by showing how
this same algorithm can easily be adapted to handle the scenario where either one or both of
the criteria are of the bottleneck type. Due to the nature of the extreme supported solutions
under this criterion function, a polynomial time algorithm with a complexity of O(m2) steps
is found in this case.

Keywords: Bi-objective, shortest path, extreme supported, acyclic, bottleneck

ii

Acknowledgements

This thesis was written during the summer of 2017, as part of the Bachelor’s degree pro-
gramme Econometrics and Operations Research at the Erasmus University Rotterdam. I
would like to express my gratitude to my supervisor T. Breugem for his guidance and crit-
icism throughout the writing process. His valuable suggestions have greatly helped shape
this thesis.

iii

Contents

1 Introduction 1

2 Literature Review 3

3 Problem Description BSP Problem 5
3.1 Shortest Path Problem . 5
3.2 MOCO Problems . 5
3.3 Bi-Objective Shortest Path Problem . 7

4 Ratio-Labeling Algorithm BSP Problem 9

5 Computational Results RLBSP 11
5.1 Dataset . 11
5.2 Results . 11

6 Problem Description Acyclic BSP Problem 12

7 Labeling Algorithm ABSP Problem 14
7.1 Algorithm and Correctness . 14
7.2 Running Time . 17
7.3 Example Execution . 18
7.4 Optimality Intervals . 19

8 Computational Results ABSP Problem 20
8.1 Dataset . 20
8.2 Results . 20

9 ABSP Problem Bottleneck 22

10 Conclusion 24

Bibliography 25

1 Introduction

In a combinatorial optimization problem a decision maker (DM) aims to find a solution
among a finite or countably infinite set of solutions, that minimizes or maximizes some
criterion function. A multi-objective combinatorial optimization problem (MOCO) is an
optimization problem where, unlike in a regular combinatorial optimization problem, sev-
eral usually conflicting objectives or criteria are considered. The multi-objective shortest
path problem (MSP) is an example of such a problem. It is a variation of the shortest
path problem (SP), in which there is not one but multiple types of cost associated to the
arcs in a network. The MSP problem where only two types of cost are considered is called
the bi-objective shortest path problem (BSP), and this problem has probably received most
attention among the MSP problems. The BSP problem can be split up into one-to-one or
one-to-all, depending on whether the goal is to find the shortest path from an origin node
to a destination node or from an origin node to all other nodes in the network.

In many applications regarding transportation there are several factors that need considera-
tion, such as traveling time, traveling distance and cost. One example of such an application
is the transportation of hazardous materials as discussed in Erkut and Alp (2007), for which
the paths of interest do not only have to be short, but also have to minimize the inflicted
damage in the neighborhood of an accident in case of leakage. Another application men-
tioned in Guerriero and Musmanno (2001) arises in the allocation of new highways. Highways
have to be as short as possible to allow fast traversal from A to B, while maintaining the
accessibility to surrounding cities. The trade-off between the different types of cost is the
major issue that DMs face when they have to choose some solution to these problems, as
the solution will most likely not be optimal for all criteria.

Applications of the BSP problem are not limited to being strictly practical. Take the bi-
objective knapsack problem, for instance. It turns out that despite being a completely
different optimization problem on its own, the problem has a similar structure to that of
the BSP problem. In fact, in Captivo et al. (2003) they show that this problem can be con-
verted to a BSP problem over an acyclic network, and then continue to solve this problem
by means of a labeling procedure. Other theoretical applications are given in Hallam et al.
(2001), in which they show that BSP algorithms can be used to minimize the detection of
mobile objects through a field of sensors, and in Arkin et al. (1991), where BSP problems
are even considered in a geometric setting.

In this thesis we analyze the solutions to the one-to-all BSP problem which have the prop-
erty of being so-called extreme supported. While this thesis only looks at the solutions with
that specific property, these solutions might be sufficient from a DM’s perspective, as the
total number of solutions could be overwhelming (see intractability BSP, Serafini (1987)).
Bazaraa et al. (2013) show that if the utility function of the decision maker is quasi-convex,
the optimal solution to the BSP problem is among the extreme supported solutions. Also,
there exist problems where optimality for one of the extreme supported solutions is guar-
antied, see for example the minimum cost-reliability ratio path problem evaluated in Ahuja
(1988). Finally, the supported solutions can also be used to find the non-supported solutions

1

(as in two-stage approaches), or can function as a starting point in the identification of some
compromise solution for the DM, see for example Current et al. (1990).

This thesis is split up into two main parts. In the first part the BSP problem is consid-
ered, and in the second part the acyclic BSP problem (ABSP) is considered. The first part
starts with Section 2, which presents a literature review of the BSP problem. In Section 3
a description of the BSP problem is given, in which we elaborate on what it means for a
path to be an extreme supported solution. Next, in Section 4 the ratio-labeling algorithm
from Sedeño–Noda and Raith (2015) is presented and Section 5 describes the results from
implementing that algorithm. The rest of the sections in this thesis cover the second part. In
Section 6 the ABSP problem is introduced and in Section 7 a labeling algorithm to obtain all
extreme supported points to this problem is proposed. The results from implementing this
algorithm are described in Section 8, and the ABSP problem with at least one bottleneck
objective function is evaluated in Section 9. Finally, in Section 10 we conclude our findings.

2

2 Literature Review

Multi-objective optimization, often labeled as vector optimization, has received increasing in-
terest in the past decades due to its potential application to real world decision-making prob-
lems. Examples include ones like the multi-objective spanning tree problem (e.g. Knowles
and Corne (2001)), and the multi-objective traveling salesman problem (e.g. Lust and
Teghem (2010)). For a brief survey on the subject we refer to Ehrgott and Gandibleux
(2000), where they give an overview of the literature in the field of multi-objective combina-
torial optimization.

Within the single-objective combinatorial optimization problems, the shortest path prob-
lem is among the best studied problems in this field. Polynomial time algorithms exist for
solving the SP problem, given there are no cycles in the considered graph with negative cost.
Among those algorithms developed for solving the SP problem, the two most famous ones
are Dijkstra’s algorithm (see Dijkstra (1959)) and Bellman-Ford’s Algorithm (see Bellman
(1958)), which have time complexities of O(m + n log n) and O(nm) respectively. In case
the graph has the property of being acyclic, linear time (i.e. O(n+m)) algorithms exist to
solve the one-to-all SP problem, see for example Cormen (2009).

The BSP problem, however, is computationally difficult. Even though only two types of
objectives are considered, it is shown by Serafini (1987) that the problem is NP-hard and
intractable, that is, the number of solutions to the BSP problem could be exponential in the
number of nodes in the network. In Müller-Hannemann and Weihe (2006) they show that
this result still holds, even when only two types of ratios between the two criteria are allowed.

Despite its potential difficulty, there is a wide range of solution approaches available for
solving the BSP problem, with the two main approaches being label correcting (e.g. Skriver
and Andersen (2000)), and label setting (e.g. Hansen (1980)). Other solving approaches in-
clude ranking methods like the one in Climaco and Martins (1982), and two phase methods,
such as the one introduced in Mote et al. (1991). Raith and Ehrgott (2009) do an extensive
computational comparison between the different approaches for solving the BSP problem,
and show that all these approaches are competitive depending on the type of network that
is operated on.

Recently, Sedeño–Noda and Raith (2015) introduced two labeling algorithms for obtain-
ing all extreme supported solutions to the BSP problem. The first one for obtaining the
extreme supported solutions to the one-to-one BSP problem, and the other one for obtain-
ing those to the one-to-all BSP problem. Other parametric approaches for obtaining the
extreme supported solutions are presented in Mote et al. (1991), in the phase one stage of
a two phase method, and in Henig (1986), where also search methods are suggested in case
the utility function of the DM is assumed to either be quasi-concave or quasi-convex.

Most of the literature regarding the BSP problem concerns objective functions that are
of the additive type, but also other types of objective functions can be used. In Martins
(1984) they present two algorithms for solving the BSP problem where one of the objectives

3

is of the bottleneck type, and the other is of the min-sum, min-ratio or also the bottleneck
type. One of these algorithms is later revised in Gandibleux et al. (2006), extending it to
multicriterion path problems. In de Lima Pinto et al. (2009) they discuss tricriterion path
problems where at least two of the objectives are of the bottleneck type.

4

3 Problem Description BSP Problem

In this section we present the problem description of the BSP problem. We start with
introducing the classical shortest path problem and definitions regarding multi-objective
combinatorial optimization problems, since most of the concepts in these problems are also
used in the BSP problem.

3.1 Shortest Path Problem

In the shortest path problem we are given a directed graph G = (N ,A), where N =
{1, . . . , n} is a set of nodes and A ⊆ N × N is a set of arcs. Also given are a function
c : A → R assigning lengths to the arcs in the graph, and an origin node and destination
node denoted by s ∈ N and t ∈ N respectively. The problem comes to finding a directed
path between the nodes s and t for which the sum of the lengths of the arcs in that path is
minimized.

We define a directed path1 p as a sequence of alternating nodes and arcs, that is, p =
(i1,(i1, i2),i2,(i2, i3),. . .,(ik−1, ik),ik), with (im, im+1) ∈ A for all 1 6 m 6 k − 1, and im ∈ N
for all 1 6 m 6 k. We call a path simple if it visits every node exactly once, that is, im1 6= im2

if m1 6= m2, and write pij in case i1 = i and ik = j (we lose the subscripts if the path is clear
from the context or the actual path sequence is not important). We denote P = Pst for the
set of all s− t paths (likewise Pij for the set of all i− j paths). Finally, we extend the length
function by defining the length of a path as the sum of the lengths of the arcs in that path,
so c(p) =

∑
(i,j)∈p cij for any path p. Hence we can formulate the SP problem as

min
p∈P

c(p) =
∑

(i,j)∈ p

cij

 .

3.2 MOCO Problems

A combinatorial optimization problem is a problem of the form

min
x∈X

{
f(x)

}
,

where x = (x1, . . . , xm) is some decision vector, X ⊆ Rm is the feasible decision space, and
f : X → R is a criterion function mapping a solution in the feasible decision space to a
scalar value. A multi-objective combinatorial optimization problem differs from a regular
combinatorial optimization problem, in a sense that the criterion function is now defined as
a mapping f : X → Rk, assigning k > 2 different criteria to a solution in the feasible decision
space. The two problems also differ in terms of their feasible objective space

Y = {f(x) : x ∈ X}
1We often consider it simply as a sequence of arcs, writing (i, j) ∈ p, p = q ∪ (i, j), etc., slightly

disregarding the formal notation here as long as the meaning is clear from the context.

5

and in terms of their definition of optimality. In case a single-objective criterion function is
used, a solution x∗ ∈ X is optimal if f(x∗) 6 f(x) for all x ∈ X (in the case of minimization).
In case a multi-objective criterion function is used, however, there is the potential absence
of an optimal solution (in all criteria), since a solution could be better in one criterion and
worse in another with respect to another solution.

Yet we can still evaluate the solutions of MOCO problems using different notions of op-
timality, one of which is called Pareto efficiency. The concept of Pareto efficiency is based
on a binary relation, and is defined as follows.

Definition 1. Let x1, x2 ∈ X be two solutions in the feasible decision space, then x2 is said
to be dominated by x1 if

f(x1) 6 f(x2) and f(x1) 6= f(x2),

that is, there in a strict improvement in at least one of the criteria without worsening the
others.

We write x1 ≺ x2 to indicate that x1 and x2 satisfy this relationship. A solution x ∈ X is
called efficient if there does not exist another solution x ∈ X for which x ≺ x.

Another notion of optimality is that of the supported solutions, for which we will only
present the bi-objective case.

Definition 2. A solution x ∈ X in the feasible decision space is called supported if there
exists a λ ∈ [0, 1] such that this solution x is a solution to the weighted sum problem

g(λ) = min
x∈X

{
λf 1(x) + (1− λ)f 2(x)

}
.

This definition essentially says that the solution x minimizes some convex combination of the
two considered criteria over the feasible decision space X . Supported solutions are relevant
for several different reasons. First of all, the fact that supported solutions are guaranteed
to be efficient (border cases are an exception) and the fact that their number is significantly
less than the number of efficient solutions (e.g. Mulmuley and Shah (2000)), makes them
particularly attractive in decision-making contexts. Secondly, they are useful from a practi-
cal standpoint, as they can be used in two phase methods to find all or part of the efficient
solutions. Finally, there exist situations where only the supported solutions are required,
since optimality for one of these solutions is guarantied, see for example the minimum cost-
reliability ratio path problem evaluated in Ahuja (1988).

In order to illustrate the introduced concepts above, consider a routing problem where a
truck has to travel from A to B. To each possible routing, there is an associated travel
time T and cost C needed to perform the routing. Now suppose there are 5 such routings
A1, . . . , A5 (or alternatives for that matter) with costs c(A1), . . . , c(A5) for a DM to choose
from, also shown in Figure 1.

6

T

C

•
c(A1)

•
c(A2)

•
c(A3)

•
c(A5)

•
c(A4)

λ = 1/2

λ = 1/4

1 2 3 4 5 6

1

2

3

4

0

Figure 1: Travel times and costs of different alternatives to a routing problem. The values
λ = 1/2 and λ = 1/4 indicate the values of λ associated to the slopes of the dotted lines.

If the DM prefers a short routing, he or she would choose alternative A1, minimizing the
travel time to perform the routing, while if he or she prefers a cheap routing he or she would
choose alternative A5, minimizing the cost to perform the routing. In order to illustrate the
idea of Pareto efficiency consider alternatives A3 and A4. Since alternative A3 has a travel
time of 3 units and a cost of 2 units and alternative A4 has a travel time of 5 units and a
cost of 3 units, A3 ≺ A4, and so if the DM were a rational agent he would never choose
alternative A4 over A3. Now to illustrate the concept of supported solutions, we imagine a
situation where the DM weighs both criteria equally heavy, i.e., λ = 1/2. In this case his
cost preference is described by 1/2T + 1/2C, for which all three alternatives A1, A2 and A3

are supported. The same argument can be held for λ = 1/4 for alternatives A3 and A5.

3.3 Bi-Objective Shortest Path Problem

In the BSP problem we are given, just like in the SP problem, a directed graph G = (N ,A),
where N = {1, . . . , n} is a set of nodes and A ⊆ N ×N is a set of arcs. Also given are an
origin node and destination node denoted by s ∈ N and t ∈ N respectively. The problem
differs from the regular SP problem in the arc function c : A → R2, which now assigns two
different criteria to the arcs in the graph. We keep the rest of the notation identical to that
of the SP problem.

We define a directed cycle as any path of the form pii having at least one arc, and de-
fine the concatenation of two paths as pi` = pij � pk` given j = k. We use crij to indicate the
rth cost of arc (i, j) ∈ A, r = 1, 2, and extend the cost functions by defining the cost of a
path as the sum of the costs of the arcs in that path, that is, cr(p) =

∑
(i,j)∈p c

r
ij for any path

p, and cost r = 1, 2. We can now formulate the BSP problem as

min
p∈P

c(p) =

 ∑
(i,j)∈ p

c1ij,
∑

(i,j)∈ p

c2ij

 .

For the BSP problem we make several assumptions on the graph G, as often done in the
literature (e.g. Martins and Dos Santos (1997)). The first assumption we make is that for

7

all nodes i ∈ N \{s}, Psi 6= ∅, that is, there is at least one directed path from the origin
node to all other nodes in the graph. This assumption is pretty reasonable, since if there is
no directed path from s to i for some node i ∈ N \{s}, then this node i does not lie on any
s− t path, and thus it can be removed from the graph without changing the solution set P .
The second assumption we make is that for every cycle pii in G we have 0 ≺ pii, that is, it is
always cheaper to not traverse a cycle in G, since there is a strictly positive cost associated
to one criterion and a non-negative cost to the other. This assumption prevents the BSP
problem from being unbounded, because it eliminates the potential traversal of cycles in the
graph (we will come back to this later). From a practical point of view this assumption also
seems pretty reasonable. Let’s say we are solving some routing problem, then it is not real-
istic for a truck to be driving in circles while the primary goal is to go as quickly from A to B.

The concepts first introduced in Section 3.2 apply naturally to the BSP problem. A path
p ∈ P is said to be efficient if there does not exist another path p ∈ P that dominates this
path, p ≺ p. In case a path p is efficient we call its mapping c(p) a non-dominated point. A
path p ∈ P is called supported if there exists some λ ∈ [0, 1] such that this path p can be
obtained by solving the weighted sum problem

w(λ) = min
p∈P

{
λc1(p) + (1− λ)c2(p)

}
,

much like the definition of supported solutions for general bi-objective combinatorial opti-
mization problems. In case a path p is supported we call its mapping c(p) a supported point.
We define C (feasible objective space) as the set of images associated to all the s− t paths,
that is, C = {c(p) : p ∈ P}, and denote conv(C) for its convex hull. Since C ⊆ conv(C), we
find that the mappings of all paths are located inside the set conv(C). Of those points, all the
supported points lie on the lower-left boundary of this set and all the non-supported points
do not. Finally, recall that for any convex set, the extreme points are those points that do
not lie on a line segment joining two points in this set. Hence, an extreme supported path
differs in definition from a supported path, because its cost must also be an extreme point
of the set conv(C). In terms of the routing problem example from Section 3.2, alternatives
A1 and A3 are extreme supported but alternative A2 is not, because its cost is a convex
combination of half the cost of alternative A1 and half the cost of alternative A3.

The problem addressed in this thesis is the computation of a single path for each extreme
supported point to the BSP problem. In case one of these paths is associated to a non-
dominated point, it is also simple, due to the following lemma.

Lemma 1. Let pst ∈ P be a path associated to an extreme supported non-dominated point
in the objective space of the BSP problem. Then pst is simple.

Proof. Clearly. Take any path associated to an extreme supported non-dominated point
that is non-simple, say pst = psi � pii � pit. After removal of the cycle pii from that path, we
obtain the path pst = psi � pit for which there is a cost reduction in one criterion without
worsening the other, due to the second assumption on G. But this contradicts the definition
of a non-dominated point (there exists pst ≺ pst), so pst must be simple. �

8

4 Ratio-Labeling Algorithm BSP Problem

In this section we present the ratio-labeling algorithm (RLBSP) from Sedeño–Noda and
Raith (2015), which we will use to compute all paths associated to extreme supported non-
dominated points in the objective space of the one-to-all BSP problem. Sedeño–Noda and
Raith (2015) make the observation that instead of finding all the supported s − t paths,
we can also compute all the supported s − i paths for all nodes i ∈ N \{s}, obtaining a
bi-objective shortest path tree problem (BST). The algorithm they then propose obtains all
extreme supported paths by solving a transformation of the parametric program g(λ) from
Section 3.2 for this BST problem. It does so by first obtaining a tree that is lexicographically
optimal, and next making several arc interchanges until the negative ratio of the so-called
“reduced cost” of all arcs is infinite. The correctness of the algorithm is proved in the paper.

Before giving the exact algorithm, we will elaborate on some of the concepts used in the
RLBSP. These concepts being the shortest path tree, the lexicographic minimum and the
sets of neighbouring nodes. The shortest path tree T (rooted at s) of a directed graph
G = (N ,A) with cost function c : A → R is a subset of the arcs, that is T ⊆ A, with
(i, j) ∈ T if and only if (i, j) ∈ A is on the shortest s− j path. Next, the lexicographic min-
imum is a minimum for a lexicographical order. The lexicographical order is an order such
that given two sequences x and y with n elements, x comes before y if there is a 1 6 k 6 n
such that xi is equal to yi for all 1 6 i 6 k − 1 and xk is strictly smaller than yk. Finally,
we define δ−(i) = {j ∈ N : (j, i) ∈ A} and δ+(i) = {j ∈ N : (i, j) ∈ A} as the sets of nodes
associated to the incoming and outgoing arcs for a node i ∈ N respectively.

The algorithm stores several labels. For each node i ∈ N , di = (d1i , d
2
i) denotes the distance

of this node to the origin node in the current shortest path tree and Predi denotes the pre-
decessor node of this node in the current shortest path tree. The reduced cost cij = (c1ij, c

2
ij)

of an arc (i,j) ∈ A is calculated using cij = cij +di−dj, and represent the change in shortest
s− j path cost when replacing arc (Predj,j) by (i,j) in the shortest path tree. For all nodes
i ∈ N , the value θi denotes the minimum ratio −c1ji/c2ji of incoming arcs (j,i). The value
CPredi is used to keep track of the predecessor node associated to this ratio and ĉi = (ĉ1i , ĉ

2
i)

is the reduced cost for this node i ∈ N . Finally, the initial shortest path tree of G is calcu-
lated by applying a variation of Dijkstra’s algorithm, where labels are updated if there is an
improvement in the first criterion or a tie in the first criterion and an improvement in the
second. Note that this tree is a solution to the lexmin{c(p) : p ∈ P} problem.

The algorithm makes great use of a heap storing labels of the form L = (θi,ĉ
2
i ,i), for each

node i ∈ N . A heap is a special case of the tree data structure (e.g. Eck (2006)), where all
the nodes in the tree satisfy the heap property, i.e., the key stored in a node is smaller or
equal to the keys stored in the node’s children (in case of a min heap). The operations that
are performed on this heap are createHeap(), insert(L), findMin(), deleteMin() and
decreaseKey(L). The operation createHeap() creates the heap, insert(L) inserts a
label L into the heap, findMin() returns the minimum label from the heap, deleteMin()
returns and removes the minimum label from the heap and decreaseKey(L) decreases the
values of θi and ĉ2i of a label L in the heap.

9

Input : G = (N ,A), s ∈ N , c : A → R2.
Output : Paths associated to extreme supported non-dominated points in the objective space

of the s− i BSP problem for all nodes i ∈ N \{s}.
1 Calculate T being optimal for lexmin{c(p) : p ∈ P}. Set N ′ = N \{s}.
2 Store d and pred for tree T . Set L1

i = (predi, 1, d
1
i , d

2
i) and Ni = 1 for all i ∈ N ′.

3 createHeap(). Set (lastRatioi, θi,CPredi) = (0,∞, 0) for all i ∈ N ′.
4 Calculate lex min

j∈δ−(i)
{(−c1ij/c2ij , c2ij , j) : c2ij < 0} and update θi,ĉ

2
i and CPredi for all i ∈ N ′.

5 for i ∈ N ′ where (CPredi 6= 0) do insert(θi, ĉ
2
i , i). Set ĉ

1
i = c1CPredi,i

.

6 while (H 6= ∅) do
7 (θi, ĉ

2
i , i) = findMin(). deleteMin().

8 if (θi > lastRatioi) then

9 Ni = Ni + 1. LNi
i = (CPredi, NCPredi

,LNi−1
i (d1) + ĉ1i ,L

Ni−1
i (d2) + ĉ2i). lastRatioi = θi.

10 else

11 LNi
i = (CPredi, NCPredi

,LNi
i (d1),LNi

i (d2)). LNi
i (d1) = LNi

i (d1)+ ĉ1i . L
Ni
i (d2) = LNi

i (d2)+ ĉ2i .
12 end
13 Set (θi,CPredi) = (∞, 0). Calculate lex min

j∈δ−(i)
{(−c1ij/c2ij , c2ij , j) : c2ij < 0}.

14 Update θi,ĉ
2
i and CPredi.

15 if (CPredi 6= 0) then insert(θi, ĉ
2
i , i). Set ĉ

1
i = c1CPredi,i

.

16 for j ∈ δ+(i) where (c2ij < 0) do
17 if ((−c1ij/c2ij < θj) or ((−c1ij/c2ij = θj) and (c2ij < ĉ2j)) then
18 if (CPredj = 0) then insert(−c1ij/c2ij , c2ij , j). else decreaseKey(−c1ij/c2ij , c2ij , j).
19 Update θj , ĉj , and CPredj .

20 end

21 end

22 end

Figure 2: Ratio-labeling algorithm (RLBSP).

Also, the labels Li = (L1
i , . . . ,L

Ni
i) are stored for all nodes i ∈ N , where Ni denotes the

number of extreme supported solutions to the s− i BSP problem. A label Lki is given by the
tuple (j,r,d1i ,d

2
i), where j ∈ N represents the predecessor node in solution k ∈ {1, . . . , Ni},

the number r ∈ {1, . . . , Nj} is the index of the extreme supported solution associated to
this node j needed for restoring the path, and d1i and d2i are the cost of this s − i path in
both criteria. Since the values of Ni are not known a priori, we must store counters in order
to dynamically generate all the labels for all extreme supported solutions. Lastly, we also
keep track of lastRatioi for all nodes i ∈ N , which store the slope corresponding to the last
extreme supported solution for this node.

Since we do not explicitly store the extreme supported solutions to the one-to-all BSP prob-
lem, we need some kind of helper method for restoring their path sequences. This helper
method is given by the method getPath(i, k, Li). It takes as an input a node i ∈ N ,
a number k ∈ {1, . . . , Ni} being the kth extreme supported solution for this node and the
set of labels Li = (L1

i , . . . ,L
Ni
i) for this node. The method then makes recursive calls un-

til the complete path has been restored, by returning the node s if the input i = s, and
getPath(Lki (j),Lki (r),Lj) + i otherwise. Since a path associated to an extreme supported
non-dominated point is by definition simple, the program will make at most O(n) recursive
calls to construct its path sequence.

10

5 Computational Results RLBSP

5.1 Dataset

We use some of the large road networks provided in the 9th DIMACS Implementation Chal-
lenge: Shortest Paths. These road networks represent different road networks from the USA.
We make use of the instances NY (New York), BAY (San Francisco Bay Area), COL (Col-
orado), FLA (Florida) and NE (Northeast USA). The instances contain up to around 1.5
million nodes and 4 million arcs each and are rather sparse. Each instance has around two
or three outgoing arcs per node on average.

5.2 Results

In order to test the performance of the RLBSP algorithm we execute it on the road network
instances described above. We generate 100 random origin nodes s for each instance, for
which the computational results are depicted in Table 1. The results are separated based
on the total number of extreme supported solutions N . We include the s values for the
minimum and maximum number of extreme supported solutions for each instance. The
average number of extreme supported solutions for each instance is rounded.

Table 1: Computational results RLBSP for the road network instances. An ∗ indicates that
during one of the 100 iterations, the run was interrupted due to an out of memory exception.

| N | |A | s CPU (s) N

NY 264,346 733,846
Avg 3.05 2,917,827
Min 47,166 1.98 2,082,588
Max 176,598 6.09 4,090,583

BAY 321,270 800,172
Avg 3.08 3,127,221
Min 320,972 1.94 2,144,949
Max 107,059 6.15 4,575,641

COL 435,666 1057,066
Avg 6.71 5,464,557
Min 206,043 3.75 3,897,902
Max 241,410 13.44 8,731,452

FLA 1,070,376 2,712,798
Avg 22.79 14,953,754
Min 657,833 12.60 9,994,311
Max 245,832 39.01 28,141,173

NE 1,524,453 3,897,636
Avg 117.09∗ 32,377,245∗

Min 686,888∗ 79.68∗ 28,756,310∗

Max 1,186,909∗ 187.99∗ 35,284,750∗

The total number of extreme supported solutions we find after executing the RLBSP are
within the same range as those found in Sedeño–Noda and Raith (2015). To illustrate this,
consider the instance NY (New York). Here we find an average, minimum and maximum
number of extreme supported solutions of 2.92 million, 2.08 million and 4.09 million, while
they found values of 3.00 million, 2.14 million and 4.03 million. The running times are also
similar. While we obtained average, minimum and maximum running times of 3.05, 1.98
and 6.09 seconds for this instance respectively, they obtained running times of 2.30, 1.50 and
3.23 seconds for this instance respectively.

11

6 Problem Description Acyclic BSP Problem

The acyclic bi-objective shortest path problem (ABSP) concerns a special case of the regu-
lar BSP problem, where the underlying graph is assumed to be acyclic. Given are a graph
G = (N ,A), where N = {1, . . . , n} is a set of nodes and A ⊆ N ×N is a set of arcs. Also
given are an origin node s ∈ N , a destination node t ∈ N and a function c : A → R2

assigning two types of cost to the arcs in G. We keep the rest of the notation identical to
that of the regular BSP problem.

We denote n = | N | for the number of nodes and m = | A | for the number of arcs. The first
assumption we make on G is similar to the one from the cyclic case, which is that for all
nodes i ∈ N \{s}, Psi 6= ∅, that is, there is at least one directed path from the origin node
to all other nodes in the graph. The second assumption, however, does differ, since now we
are considering the ABSP problem. This one simply says that the graph G does not contain
any directed cycles.

The theory of acyclic graphs is well understood. It is well known that graphs that are
acyclic can be transformed in order to exploit this property. A transformation that allows
us to do so is called the topological ordering of a graph. It is defined as follows.

Definition 3. Let G = (N ,A) be an acyclic directed graph with node set N = {1, . . . , n}.
The topological ordering of G is a bijective mapping of the nodes π = (π1, . . . , πn), such that
for all arcs (π`, πk) ∈ A, ` < k.

1

2 4

3 5

6 1 2 3 4 5 6

Figure 3: A directed graph G = (N ,A), with node set N = {1, . . . , 6} and arc set A ⊆
N ×N . A topological ordering of the graph G (right) is given by π = (1, 2, 3, 4, 5, 6).

We find that any topological ordering automatically maps the first node to the origin node
π1 = s, due to the first assumption on G. Note that the topological ordering of a graph is
not necessarily unique. Take the example above. Here, π = (1, 2, 4, 3, 5, 6) would also satisfy
the definition of a topological ordering.

Finding a topological ordering of a graph G, also known as topological sorting, can be
done using algorithms like those described in Kahn (1962) and Tarjan (1976). The time
complexity of topological sorting algorithms is well known.

Lemma 2. The topological ordering of a graph can be constructed in O(n+m) steps.

Proof. Omitted. See for example Cormen (2009). �

12

In this thesis we consider the one-to-all ABSP problem, which comes down to finding all
extreme supported solutions to the s− i ABSP problem for all nodes i ∈ N \ {s}. While we
could also consider the one-to-one ABSP problem, it is known that a dichotomic approach
can be used to solve this problem in O(NtASP) steps (e.g. Steiner and R. (2003)), where Nt

denotes the number of extreme supported solutions to the s− t ABSP problem and ASP is
the time complexity of solving the s− t ASP problem. The topological ordering of a graph
can be used to solve this last problem in O(m) steps (Dijkstra’s algorithm but we do not
need the heap data structure anymore), resulting in an O(Ntm) algorithm for solving the
one-to-one ABSP problem.

We could, in theory, solve the one-to-all ABSP problem by solving separate one-to-one
ABSP problems, yielding an algorithm with a time complexity of O(Nm) steps, where
N =

∑
i∈N Ni is the total number of extreme supported solutions. However, there are two

main reasons why we must not do so. First of all, we lose a lot of information by solving
all the one-to-one problems separately. All the extreme supported solutions of one node can
be used to find the extreme supported solutions of another node. Secondly, from a storage
point of view this would be extremely inefficient, since now we would have to store all the
path sequences explicitly, instead of storing labels allowing us to restore them.

As far as we know, a dichotomic approach for solving the one-to-all ABSP problem would
also not be possible. We extend on an argument they give in Sedeño–Noda and Raith (2015),
which also holds for the regular BSP problem. When a dichotomic approach is executed on
an s − t ABSP problem, the path algorithms applied for solving this problem might not
evaluate all the s− j paths (due to the elimination of paths in the labeling procedure). So
after the execution of the first dichotomic procedure, some of the extreme supported paths
to the s − j ABSP problem might still need to be computed. These remaining paths can
be found, however, by applying another dichotomic approach, but now to the s − j ABSP
problem. But this means that in the most extreme scenario, we have to solve almost all the
s− i ABSP problems separately, and we are back to the argument described above.

13

7 Labeling Algorithm ABSP Problem

In this section we propose a labeling algorithm to obtain all the extreme supported solutions
to the one-to-all ABSP problem.

7.1 Algorithm and Correctness

Before getting into the actual algorithm, we extend some of the definitions regarding the
solutions to the BSP problem. We denote Pij for the set of all i− j paths, and Cij = {c(p) :
p ∈ Pij} for its set of images, similar as in Section 3.3. Next we define E(C) as the set
of points associated to the extreme supported paths from the set P , that is, the set E(C)
consists of all points c ∈ C that are a solution to the weighted sum problem

w(λ) = min
c∈C

{
λc1 + (1− λ)c2

}
for some λ ∈ [0, 1], and are an extreme point of the set conv(C). Simply put, E(C) is the
set of extreme points on the lower left boundary of the set conv(C). Note how by definition,
E(C) ⊆ C and Ni = | E(Csi) |. We sometimes write w(λ, C) to indicate which set C is being
used in the parametric program above. The following lemma plays an important role in the
proof of the correctness of the proposed algorithm.

Lemma 3. Let C ⊆ R2 and E(C) ⊆ C1 ⊆ C. Then

E (C1) ⊆ E(C).

Proof. Since E(C) ⊆ C1, C1 can be partitioned into C1 = E(C) ∪ C2, with C2 = C1 \ E(C). If
C2 = ∅ the lemma follows. For the following, assume that C2 6= ∅. Take any c ∈ E(C1). If
c ∈ E(C) we are done. If c ∈ C2, then c /∈ E(C), due to the partition of C1. We evaluate two
cases, | E(C) | = 1 and | E(C) | > 2.

If | E(C) | = 1, then a single point e ∈ E(C) is supported for all λ ∈ [0, 1], and all the
points in C \{e} are not supported at all. But this means that c is not supported for C1
(because e ∈ C1), so this results in the contradiction c /∈ E(C1).

Take now the second case, | E(C) | > 2. Let’s number the points e1, . . . , eN ∈ E(C), 2 6 N ,
first on non-decreasing value of the first criterion and then on non-increasing value of the
second criterion. We distinguish between two scenarios, which are c ∈ conv(E(C)) and
c /∈ conv(E(C)). If c ∈ conv(E(C)) (e.g. c2 in Figure 4), then the point c can not be an
extreme point of this set. Since E(C) ⊆ C1, this means that c can also not be an extreme
point of the set conv(C1), and we arrive at the contradiction c /∈ E(C1). Now consider the
second scenario, c /∈ conv(E(C)) (e.g. c3 in Figure 4). This means that c lies above right
of the line ` between the points e1 and eN . But this means that c is not supported for the
set C3 = {e1, eN , c} for any λ ∈ [0, 1]. If c is not supported for the set C3 ⊆ C1, then it is
clearly also not supported for the set C1, because w(λ, C1) 6 w(λ, C3) for all λ ∈ [0, 1]. We
again arrive at the contradiction c /∈ E(C1). For all points c ∈ E(C1) we have c ∈ E(C), thus
E(C1) ⊆ E(C). �

14

c2

c1
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

0

�e1

•c2

�e2

�e3
�e4

•c3

•c1

•c4

conv(C)

`

Figure 4: Points in the objective space of a BSP problem. A • indicates a point in the
objective space, while a � indicates a point in the objective space that is extreme supported
for the set conv(C). A thick dotted line between two points means that these points are both
supported for some λ ∈ [0, 1]. Also displayed is the line ` between the two points e1 and e4
from the set E(C). An example of a set C1 would be C1 = C \ {c4}, for which the partition
would be given by C1 = E(C) ∪ C2, with E(C) = {e1, . . . , e4} and C2 = {c1, c2, c3}.

Before giving the labeling algorithm, we would like to introduce one more result regarding
the supported solutions to the BSP problem.

Lemma 4. All supported paths pst ∈ P satisfy Bellman’s Principle of Optimality. That is,
if pst is supported for all λ ∈ Λ ⊆ [0, 1], than any sub-path pij of this path (pst = psi�pij �pjt)
is also supported for all λ ∈ Λ.

Proof. Similar to the proof of Theorem 3.2 from Sniedovich (1986). Assume that a sub-path
pij ∈ Pij is not supported for some λ ∈ Λ. Then there exists another path pij which is, so

w(λ, pij) < w(λ, pij). If we let pst = psi � pij � pjt, then for this λ,

w(λ, pst) = w(λ, psi) + w(λ, pij) + w(λ, pjt)

< w(λ, psi) + w(λ, pij) + w(λ, pjt)

= w(λ, pst),

contradicting the fact that pst is supported for λ ∈ Λ. �

15

We are now ready to present the algorithm. The pseudocode of the algorithm is given as
follows.

Let π = (π1, π2, . . . , πn) be a topological ordering of G.
Set Ks = {(0, 0)} and Ki = ∅ for all nodes i ∈ N \{s}.
for i = 2 to n do

for (π`, πi) ∈ A do

Kπi = E

(
Kπi

⋃
c∈Kπ`

(c+ cπ`πi)

)
Return (K1, . . . ,Kn).

Figure 5: Labeling algorithm for the ABSP problem.

Here, π denotes a topological ordering of the graph G where π1 = s and Ki is a set of
costs associated to the solutions to the s − i ABSP problem, for all nodes i ∈ N . We
claim that after executing the algorithm, all the sets Ki are exactly the sets containing all
points associated to extreme supported solutions to the s− i ABSP problems. This claim is
captured in the following theorem.

Theorem 1. After executing the algorithm it holds, for all 1 6 i 6 n, that

E(Csπi) = Kπi .

Proof. We will prove the theorem by induction on 1 6 i 6 n. For i = 1 the proof is trivial,
since

E(Csπ1) = E(Css) = {(0, 0)} = Ks = Kπ1 .

Now let 2 6 j 6 n, and suppose that E(Csπi) = Kπi for all 1 6 i 6 j − 1. We will now show
that E(Csπj) = Kπj , by showing that both E(Csπj) ⊆ Kπj and E(Csπj) ⊇ Kπj .

⊆. Take any c ∈ E(Csπj) associated to a path psπj ∈ Psπj . Than this c can be split up in

c = c+ cπ`πj ,

where cπ`πj is the cost of some arc (π`, πj) ∈ A, and c is a supported point in Csπ` due
to Lemma 4. Now suppose c is not extreme, then this would imply that c is also not
extreme, so c must be an extreme supported point, hence c ∈ E(Csπ`). By the induction
hypothesis it then holds that c ∈ Kπ` . Since the arc (π`, πj) ∈ A and the set Kπ` are
both visited in the algorithm, the point c must at some point be included in the set
Kπj , and since this point has the property of being both extreme and supported for
the set conv(Csπj), it cannot be eliminated. Hence c ∈ Kπj and E(Csπj) ⊆ Kπj .

⊇. Let’s write Kπj for the set that is given by Kπj before the execution of the last E(·)
operation for this node πj. Since E(Csπj) ⊆ Kπj , all points of E(Csπj) must be included

in Kπj before executing this last E(·) operation (taking E(C1) of any set C1 ⊆ C does not

add any points to the set). We also have Kπj ⊆ Csπj , because Csπj is the set of points
associated to all the s−πj paths. From Lemma 3 now follows that after executing the
last E(·) iteration, we get Kπj = E

(
Kπj

)
⊆ E(Csπj). �

16

7.2 Running Time

In order to implement the algorithm we need some kind of merging procedure, which we
will call ext(A,B), for merging two sets of extreme supported points in R2. We elaborate
on an algorithm used in Henig (1986). The elimination procedure takes as an input two
ordered sets A = (a1, . . . , an) and B = (b1, . . . , bm) containing extreme supported points in
R2, and returns a single ordered set C = (c1, . . . , ck), 1 6 k 6 n+m, containing all extreme
supported points of the set conv(A ∪B). The ordering is first done in non-decreasing order
on the first coordinate and then on non-increasing order on the second coordinate.

In order to determine all the extreme supported points, the algorithm needs to compute
the slope ∆ between two points x1, x2 ∈ R2, defined as ∆(x1, x2) = (x22 − x21)/(x12 − x11) if
x11 6= x12, and ±∞ or 0 if x11 = x12 depending on whether x1 lies above, below, or is equal to
x2. The pseudocode of the algorithm is given by:

Set curr equal to most left (in case of tie most above) point of (a1, b1). Set C = {curr}.
while (A,B) 6= (∅,∅) do

Find next ai ∈ A for which curr1 < a1i and ∆1 = ∆(curr, ai) is minimal. If no such ai
exists set A = ∅ and ∆1 =∞.
Find next bj ∈ B for which curr1 < b1j and ∆2 = ∆(curr, bj) is minimal. If no such bj
exists set B = ∅ and ∆2 =∞.
If (∆1,∆2) 6= (∞,∞) then choose from (ai, bj) according to the minimal value of ∆i,
i = 1, 2. If ∆1 = ∆2 choose the furthest of the two points. Update curr and
set C = C ∪ {curr}. If ai is chosen set A = A \{ai}. Else set B = B \{bj}.

Figure 6: ext.

Here, curr represents the last point added to the set C, ∆1 denotes the minimal slope between
the point curr and some point from (ai, . . . , an), a1i > curr1, and ∆2 denotes the minimal
slope between the point curr and some point from (bj, . . . , bm), b1j > curr1. Since A and B
both only contain extreme supported points, the values of ∆1 and ∆2 will first (possibly)
decrease, and then steadily increase. As soon as they increase the minimal slope between
curr and the point from that set is found. If ∆1 = ∆2, the furthest of the two points is chosen
to prevent the inclusion of supported non-extreme points. While a double for loop would
have been sufficient in determining the set C, this somewhat more elaborate algorithm has
a nice computational complexity, as stated by the following lemma.

Lemma 5. ext(A,B) runs in O(n+m) steps, where n = |A | and m = |B |.

Proof. All lines in the main while loop run in constant time and consist of either visiting
or removing an element from one of the sets. Since an execution of the main while loop
therefore permanently visits at least one of the elements from one of the sets, the algorithm
runs in linear time in the sizes of the sets A and B. �

The computational complexity of the proposed algorithm for solving the ABSP problem is
given by the following theorem.

17

Theorem 2. The ABSP algorithm runs in O(maxi∈N{Ni}m) steps, where Ni is the number
of extreme solutions to the s− i ABSP problem, and m = | A | is the number of arcs in the
graph under consideration.

Proof. Finding a topological ordering of the graph G does not contribute much to the asymp-
totic complexity, because this can be done in O(n+m) steps. Finding the extreme supported
points, however, does, since it takes at most O(mEXT) steps to execute all the merging pro-
cedures, with EXT the maximum running time of the algorithm ext(A,B). The input of
the merging procedure ext(A,B) at any point during execution is given by the sets Kπ` and
Kπi , associated to the evaluation of arc (π`, πi) ∈ A. Now, since the merging procedure runs
in linear time, we find that the maximum number of steps EXT needed for the algorithm
to execute is bounded by 2 maxi∈N{Ni}, for any arc (π`, πi) ∈ A, so that the full algorithm
is executable in O(maxi∈N{Ni}m) steps. �

We will state that the time complexity is O(Nm) though, with N =
∑

i∈N Ni, for simplicity.
The exact running time is something we will use later, when dealing with the case where at
least one of the criteria is of the bottleneck type in Section 9.

7.3 Example Execution

In this section we present an example execution of the proposed algorithm for solving the
ABSP. We consider an instance of the ABSP problem given by the graph in Figure 7 below,
with an origin node s = 1.

1

2 4

3 5

6

(2, 4)

(5, 4)

(1, 5)

(5, 5)

(5, 2)

(2, 4)

(1, 5)

(2, 5)

Figure 7: A directed graph G = (N ,A), with node set N = {1, . . . , 6}, arc set A ⊆ N ×N ,
and (c1ij, c

2
ij) the costs associated to traversing arc (i, j) ∈ A.

The algorithm starts with determining a topological ordering of the graph G, which is given
by π = (1,2,4,3,5,6). It then initializes K1 = {(0,0)} and Ki = ∅ for all nodes i ∈ N \{1}.
Since π2 = 2, the first arc visited is (1,2), giving K2 = E ({(2,4) + (0,0)}) = {(2,4)}.
The next node in the topological ordering is given by π3 = 4, visiting arc (2,4) and giving
K4 = E ({(1,5) + (2,4)}) = {(3,9)}. After that, node π4 = 3 is visited. This node has two
incoming arcs (1,3) and (2,3), resulting in K3 = E ({(5,4) + (0,0), (5,5) + (2,4)}) = {(5,4)},
because (5,4) < (7,9). Node π5 = 5 is considered next, with incoming arcs (3,5) and (4,5),
hence K5 = E ({(5,2) + (5,4), (2,4) + (3,9)}) = {(10,6), (5,13)}. Finally, the node π6 = 6
is evaluated with incoming arcs (4,6) and (5,6), for which K6 = E ({(1,5) + (3,9), (2,5) +
(10,6), (2,5) + (5,13)}) = {(4,14), (12,11)}, because (4,14) < (7,18). The algorithm then
terminates by returning (K1, . . . , K6).

18

7.4 Optimality Intervals

While our proposed algorithm currently only computes the extreme supported points in the
objective space and thus does not provide any information regarding the extreme supported
solutions to the ABSP problem, the algorithm can easily be adapted to do so. Let, without
loss of generality, the extreme supported solutions p1, . . . , pN ∈ P with costs c1, . . . , cN ∈ C
of an s − i ABSP problem be numbered first on non-decreasing value of the first criterion
and then on non-increasing value of the second criterion. Right now, the only information
that is available for a path p ∈ P is its associated cost c(p) ∈ C. Yet, much more information
of these paths can be captured, like the actual path sequence i1 → i2 → . . . → i` or its
optimality interval Λ ⊆ [0, 1] for the parametric program w(λ) described in Section 3.3.
This information can then be captured by using labels of the form

Lki = (j, r, c,Λ),

similar as we would for the RLBSP algorithm. When executing the algorithm, the predeces-
sor nodes j, the indices r and the costs c of the extreme supported solutions are then readily
available, but Λ is not. However, Λ can easily be calculated using the following lemma.

Lemma 6. Let C = (c1, . . . , ck) be a set of extreme supported points in R2. For all 1 6 i 6
k−1, the points ci and ci+1 are both supported for λi = ∆i/(∆i−1), where ∆i = ∆(ci, ci+1)
is the slope between these two points ci, ci+1 ∈ C.

Proof. Since ∆i = ∆(ci, ci+1) denotes the slope between the points ci and ci+1, and C is a
set of extreme supported points, ci and ci+1 both minimize the expression −∆ic

1 + c2. This
is because the line between the two points can be described as c2 = K + ∆ic

1, with K some
non-negative constant. The value of ∆i is either negative or zero, so 1 − ∆i > 0, hence
ci and ci+1 are both also minimizers of (similar trick used in the proof of Lemma 5.1 from
Hamacher and Ruhe (1994))

1

1−∆i

(
−∆ic

1 + c2
)

=

(
∆i

∆i − 1

)
︸ ︷︷ ︸

λi

c1 +

(
1− ∆i

∆i − 1

)
︸ ︷︷ ︸

1−λi

c2,

and are therefore a solution to the parametric program w(λ) from Section 7.1 for λi =
∆i/(∆i − 1). �

The optimality intervals Λ = [λ1, λ2] for the extreme supported solutions can then be cal-
culated as follows. For the kth extreme supported solution, the value of λ1 is given by
∆/(∆ − 1), with ∆ = ∆(c(pk−1), c(pk)) the slope between the cost of the previous solution
and the cost of the current solution, and the value of λ2 is given by that same expression,
but now with ∆ = ∆(c(pk), c(pk+1)) the slope between the cost of the current solution and
the cost of the next solution. Note that for the border cases p1,pN ∈ P we intuitively define
∆0 = ∆(c(p0), c(p1)) = −∞ and ∆N = ∆(c(pN), c(pN+1)) = 0, so the first solution p1 and
the last solution pN are optimal for values of λ of 1 and 0 respectively. That a path is
supported for all λ ∈ Λ requires us to evaluate any λ ∈ (λ1, λ2), but the fact that this path
is supported for these λ follows from an argument similar to the one given above.

19

8 Computational Results ABSP Problem

8.1 Dataset

We use grid networks in order to test the implementation of the labeling algorithm used for
solving the ABSP. The grid networks consist of L layers, with every layer containing L nodes
each.

0 2

1

3

4

5

6

7

8

9

10 0 2

1

3

4

5

6

7

8

9

10

Figure 8: A sparse grid network (left) and a dense grid network (right) of size L = 3.

For every node in the sparse grid network, there is an outgoing arc to its immediate right
and bottom neighbour, given these neighbours exist. An origin node is added to the front
and outgoing arcs from this node are added to every node in the first layer, and a destination
node is added to the back and outgoing arcs to this node are added for every node in the
last layer. For every node in the dense grid network, there is an outgoing arc to all the nodes
in the right neighbouring layer, given this layer exists. The origin node and the destination
node are added in the same way as described for the sparse grid network. Hence, for a given
grid size L, the number of nodes is equal to L2 + 2 for both types of grid networks and the
number of arcs is equal to to 2L2 and L2(L − 1) + 2L ≈ L3 for the sparse and dense grid
networks respectively. We label the nodes as r + (` − 1)L for row 1 6 r 6 L and layer
1 6 ` 6 L, and 0 and L2 + 1 for the origin and destination node. The costs cij = (c1ij, c

2
ij)

are drawn randomly from the set {1, . . . , 100}2, for all arcs (i, j). Finally, note that due to
the structure of the grid networks, all instances satisfy the property of being acyclic.

8.2 Results

We tested the algorithm by executing it on the sparse and dense grid networks introduced
in Section 8.1, for which the results are depicted in Table 2.

Table 2: Computational results of the proposed algorithm for solving the ABSP problem.
Both the sparse and dence grid networks are considered.

Type L | N | |A | Min Max Avg

CPU (s) N CPU (s) N CPU (s) N

Sparse

400 160,002 320,000 1.14 6,378,903 4.55 7,347,313 1.45 6,706,961
600 360,002 720,000 5.59 21,354,559 14.89 22,940,312 7.43 22,027,827
800 640,002 1,280,000 15.39 49,664,229 38.07 52,764,789 20.22 51,127,673
950 902,502 1,805,000 33.68 82,506,930 78.33 87,988,381 52.83 85,008,735
985 970,227 1,940,450 93.99 91,871,797 322.38 95,363,161 153.90 93,958,098

Dense

100 10,002 990,200 6.10 463,998 8.48 561,798 6.72 503,388
150 22,502 3,352,800 28.29 1,321,438 39.52 1,623,482 31.13 1,444,929
200 40,002 7,960,400 75.40 2,622,431 91.34 3,145,959 83.84 2,912,480
250 62,502 15,563,000 166.24 4,547,961 202.44 5,459,411 186.81 5,036,390
300 90,002 26,910,600 279.07 6,844,633 378.71 8,530,446 320.65 7,770,658

20

We ran the algorithm 100 times on both types of grid networks for various values of L,
and stored the minimum, maximum and average run statistics. The sizes of the dense grid
network instances we considered are much smaller than those of the sparse grid network
instances, due to the rapidly increasing number of arcs in the network. We also performed
a computational comparison between the RLBSP algorithm from Sedeño–Noda and Raith
(2015) and the algorithm we proposed for solving the ABSP problem.

The results from the comparison of the sparse grid networks are shown in Figure 9. We
see a superior performance by the algorithm we proposed. The difference in running time
can be explained by the structure of the algorithms. The running time of the algorithm
we proposed is insensitive to the number of nodes in the network due to the inclusion of a
topological sorting phase, while the RLBSP is dependent on the number of nodes by a term
O(Nn log n) due to the use of a heap data structure. Hence, for rather sparse networks we
find that many extra operations are needed to execute the RLBSP, while this is not the case
for our proposed algorithm. For the dense grid networks we find a similar performance by
both algorithms. For sizes L = 75, 100 and 125 (dense grid network instances with L = 125
already have 2 million arcs) we find average running times of 2.27 and 1.86, 6.72 and 5.09,
and 17.13 and 10.22 seconds for the ABSP algorithm and the RLBSP respectively. This
suggests that our algorithm is a little slower, but both algorithms can still be used to quickly
solve dense grid network instances. An explanation for the similar performance can be found
in the structure of the dense grid networks. For a given number of layers L, the number of
arcs in the network is much bigger than the number of nodes in the network. Hence, for
dense grid networks where the size L is rather large, the term n log n in the complexity of
the RLBSP becomes negligible, so in this case the algorithm is roughly dependent on an
Nm term (since in this case N(m + n log n) ≈ Nm, or at least by some factor). Since this
dependence is similar for the algorithm we proposed, it explains the similar performance.

100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
grid size (L)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

ru
n
ti
m

e
(s

)

RLBSP Algorithm
ABSP Algorithm

Figure 9: The ABSP algorithm runtimes and the RLBSP runtimes for different sizes of the
sparse grid networks.

21

9 ABSP Problem Bottleneck

In this section we evaluate the ABSP problem, where either one or both of the objectives are
of the bottleneck type (or min-max type for that matter). We are given, exactly like in the
regular ABSP problem, a directed graph G = (N ,A), an origin node s ∈ N , a destination
node t ∈ N and a cost function c : A → R2 assigning two types of cost to the arcs in G. We
continue to use π to denote a topological ordering of the graph G. We consider a difference
that takes place in the way that the cost function is extended for a path p ∈ P for at least
one of the criteria. Without loss of generality we assume that this difference in extension is
only for the first criterion, but all arguments are still valid if the extension is for both criteria.

We will show that only minor changes to the algorithm are needed while still obtaining
the extreme supported solutions for the one-to-all ABSP problem. In order to realize these
changes, we consider the algorithm from Section 7.1, with the generalization of the main line
given by

Kπi = E
(
Kπi

⋃
Kπ`πi

)
,

where the set Kπ`πi is defined appropriately for the type of criteria used. This set Kπ`πi

should be defined in such a manner that the cost of an s− πi path can be calculated using
the cost of an s − π` path and the cost of the arc (π`, πi) ∈ A connecting these two sets.
Simply put, the problem comes down to finding how we can determine the cost of a path
q given the cost of a path p and the cost of an arc (k, `), given q = p ∪ (k, `). In case two
additive criterion functions are used we can find c(q) simply by c(q) = c(p) + ck`, since

c(q) =
∑

(i,j)∈ q

cij =
∑

(i,j)∈ p∪ (k,`)

cij =
∑

(i,j)∈ p

cij + ck` = c(p) + ck`,

and this is exactly the relationship used in the calculation of Kπ`πi for the labeling algorithm
we proposed in Section 7.1. In case a bottleneck criterion function is used instead of the
regular additive criterion function for the first criterion, we have the criterion function given
by c1(p) = max{c1ij : (i, j) ∈ p}, for any path p ∈ P . We can then easily determine the cost
c(q) given the cost c(p), with the help of the following lemma.

Lemma 7. Given two paths p and q satisfying q = p ∪ (k, `) and a maximum function d,
then d(q) can be determined using d(q) = max {d(p), dk`}.

Proof.

d(q) = max
(i,j)∈ q

{dij} = max
(i,j)∈ p∪ (k,`)

{dij}

= max

{
max
(i,j)∈ p

{dij} , dk`
}

= max {d(p), dk`} . �

Hence, we can find all extreme supported points by defining the set Kπ`πi as

Kπ`πi =
{

(max{c1, c1π`πi}, c
2 + c2π`πi) : c ∈ Kπ`

}
,

given the set Kπ` and the cost of the arc (π`, πi) ∈ A. We now claim that the algorithm we
proposed with this definition of the set Kπ`πi obtains all the extreme supported solutions to

22

the ABSP problem with the bottleneck criterion in O(m2) steps, where m is the number of
arcs in the graph. Before we justify this claim we introduce one more lemma. This lemma
provides an upper bound on the number of extreme supported solutions in the graph.

Lemma 8. Let c1 be a bottleneck function on the arcs in G. Then, for all nodes i ∈ N \{s},

Ni 6 m+ 1.

Proof. The proof builds on the idea that there are at most m unique values for any path for
the first criterion. Consider, without loss of generality, the objective space C associated to
an s− i BSP problem. Next partition the set E(C) into E1 ∪ E2, with ∅ (E1 ⊆ E(C) the set
of points supported for λ = 1 and E2 = E(C) \ E1 the rest of the points. Since all the points
in E1 have the same value for the first criterion, there can be at most two of them, one with
the second criterion minimal and the other with the second criterion maximal. Now take
any two points c, c ∈ E2 for which c1 = c1 and c2 < c2. But now

λc1 + (1− λ)c2 < λc1 + (1− λ)c2

for any λ ∈ [0, 1), so c is not supported for any λ in this interval. This implies that c /∈ E2
and we end up in a contradiction. Hence, every point in E2 must have a unique value for
the first criterion. Since there are at most m− 1 unique values for the first criterion (one of
them has points supported for λ = 1) and Ni = | E(C) |, we get

Ni = | E1 |+ | E2 | 6 2 + (m− 1) = m+ 1.

�

Notice how Lemma 8 implies that the total number of extreme supported solutions, N , is
bounded, since

N =
∑
i∈N

Ni 6
∑
i∈N

(m+ 1) = n(m+ 1).

We could stop here and argue that the ABSP bottleneck algorithm runs in O(nm2) steps,
by substituting this upper bound on N . However, when using the exact running time of the
proposed algorithm, an even better time complexity is found.

Theorem 3. The ABSP algorithm for the bottleneck case runs in O(m2) steps, where m is
the number of arcs in the graph under consideration.

Proof. Immediate from Lemma 8 and Theorem 2. �

As we can see, only minimum changes to the proposed algorithm are needed and a speed-
up is found due to the structure of the extreme supported solutions under the bottleneck
criterion function. Whether the algorithm from Sedeño–Noda and Raith (2015) can be used
to find all the extreme supported solutions under a bottleneck criterion function is highly
questionable. One would need to redefine the reduced costs cij, the cost ratios θi, the shortest
path tree T and tons of other variables and commands in the algorithm, and even then it
remains uncertain whether such a ratio-labeling approach can be used to solve this problem.

23

10 Conclusion

In this thesis we considered a special subset of the solutions to the bi-objective shortest
path problem. This subset being those solutions which minimize a convex combination of
the considered criteria and whose cost are not a convex combination of the costs of other
solutions in this set.

We first contributed to the literature by verifying the results from Sedeño–Noda and Raith
(2015). We showed that their one-to-all algorithm is able to solve road network instances
containing millions of extreme supported solutions in just a matter of minutes, confirming
its applicibility to real life routing problems.

Our next contribution was the introduction of an O(Nm) algorithm to obtain the extreme
supported solutions to the one-to-all acyclic BSP problem, given by a combination of a topo-
logical sorting phase along with a labeling and merging procedure. The algorithm turned
out to not only be interesting from a theoretical perspective, but also from a computational
perspective, outperforming the algorithm from Sedeño–Noda and Raith (2015) for sparse
grid network instances. We then showed that this same algorithm can also be used to solve
the ABSP problem with one or both objectives of the bottleneck type. For this algorithm
a polynomial time complexity of O(m2) in the number of arcs was achieved, due to the
structure of the extreme supported solutions under this criterion function.

Our last contribution was to the BSP problem literature in general. While the arguments
in this thesis are dedicated to finding the extreme supported solutions, most of them can
almost directly be applied to finding the efficient solutions. Similar generalizations hold for
other arguments made in this thesis, take for example the discussed lemmas. Most of them
hold in the cyclic setting as well.

New research directions include further testing of the proposed algorithm. It might be inter-
esting to see for what density of the graph we find a superior performance by our algorithm
over the RLBSP, and for what density of the graph we find a similar performance. Another
research direction would be to develop a fast ratio-labeling algorithm for the ABSP prob-
lem, since the RLBSP seems to be competitive with our algorithm for dense grid networks
even without the exploitation of the acyclicness property. Finally, it might be interesting
to see to what extend the methodology of this thesis can be used in a more general setting.
One example would be the development of a (polynomial time) algorithm for finding the ex-
treme supported solutions to the regular one-to-all BSP problem with at least one bottleneck
objective.

24

Bibliography

R. K. Ahuja. Minimum cost-reliability ratio path problem. Computers & operations research,
15(1):83–89, 1988.

E. M. Arkin, J. S.B. Mitchell, and C. D. Piatko. Bicriteria shortest path problems in the
plane. In Proc. 3rd Canad. Conf. Comput. Geom, pages 153–156, 1991.

R. Batta and S. S Chiu. Optimal obnoxious paths on a network: transportation of hazardous
materials. Operations Research, 36(1):84–92, 1988.

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear programming: theory and algo-
rithms. John Wiley & Sons, 2013.

R. Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

M. E. Captivo, Jo Climaco, . Figueira, r. Martins, and J. L. Santos. Solving bicriteria 0–1
knapsack problems using a labeling algorithm. Computers & Operations Research, 30(12):
1865–1886, 2003.

J. C. N. Climaco and E. Q. V. Martins. A bicriterion shortest path algorithm. European
Journal of Operational Research, 11(4):399–404, 1982.

T. H. Cormen. Introduction to algorithms. MIT press, 2009.

J. R. Current, C. S. Revelle, and J. L Cohon. The median shortest path problem: a multiob-
jective approach to analyze cost vs. accessibility in the design of transportation networks.
Transportation Science, 21(3):188–197, 1987.

J. R. Current, C. S. Revelle, and J. L Cohon. An interactive approach to identify the best
compromise solution for two objective shortest path problems. Computers & Operations
Research, 17(2):187–198, 1990.

L. de Lima Pinto, C. T. Bornstein, and N. Maculan. The tricriterion shortest path prob-
lem with at least two bottleneck objective functions. European Journal of Operational
Research, 198(2):387–391, 2009.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

DIMACS. 9th dimacs implementation challenge - shortest paths. http://www.dis.

uniroma1.it/challenge9/download.shtml, Last visited June 2017.

D. J. Eck. Introduction to programming using Java. David J. Eck, 2006.

M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective
combinatorial optimization. Or Spectrum, 22(4):425–460, 2000.

E. Erkut and O. Alp. Designing a road network for hazardous materials shipments. Com-

25

http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml

puters & Operations Research, 34(5):1389–1405, 2007.

X. Gandibleux, F. Beugnies, and S. Randriamasy. Martins’ algorithm revisited for multi-
objective shortest path problems with a maxmin cost function. 4OR: A Quarterly Journal
of Operations Research, 4(1):47–59, 2006.

F. Guerriero and R. Musmanno. Label correcting methods to solve multicriteria shortest
path problems. Journal of optimization theory and applications, 111(3):589–613, 2001.

C. Hallam, K.J. Harrison, and J.A. Ward. A multiobjective optimal path algorithm. Digital
Signal Processing, 11(2):133–143, 2001.

H. W. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives. Annals
of Operations Research, 52(4):209–230, 1994.

P. Hansen. Bicriterion path problems. In Multiple criteria decision making theory and
application, pages 109–127. Springer, 1980.

M. I Henig. The shortest path problem with two objective functions. European Journal of
Operational Research, 25(2):281–291, 1986.

A. B. Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):
558–562, 1962.

J. D. Knowles and D. W. Corne. A comparison of encodings and algorithms for multiobjective
minimum spanning tree problems. In Evolutionary Computation, 2001. Proceedings of the
2001 Congress on, volume 1, pages 544–551. IEEE, 2001.

T. Lust and J. Teghem. The multiobjective traveling salesman problem: a survey and a new
approach. In Advances in Multi-Objective Nature Inspired Computing, pages 119–141.
Springer, 2010.

E. Q. V. Martins. On a multicriteria shortest path problem. European Journal of Operational
Research, 16(2):236–245, 1984.

E. Q. V. Martins and J. L. E. Dos Santos. An algorithm for the quickest path problem.
Operations Research Letters, 20(4):195–198, 1997.

J. Mote, I. Murthy, and D. L. Olson. A parametric approach to solving bicriterion shortest
path problems. European Journal of Operational Research, 53(1):81–92, 1991.

M. Müller-Hannemann and K. Weihe. On the cardinality of the pareto set in bicriteria
shortest path problems. Annals of Operations Research, 147(1):269–286, 2006.

K. Mulmuley and P. Shah. A lower bound for the shortest path problem. In Computational
Complexity, 2000. Proceedings. 15th Annual IEEE Conference on, pages 14–21. IEEE,
2000.

A. Raith and M. Ehrgott. A comparison of solution strategies for biobjective shortest path

26

problems. Computers & Operations Research, 36(4):1299–1331, 2009.

A. Sedeño–Noda and A. Raith. A dijkstra-like method computing all extreme supported non-
dominated solutions of the biobjective shortest path problem. Computers & Operations
Research, 57:83–94, 2015.

P. Serafini. Some considerations about computational complexity for multi objective combi-
natorial problems. In Recent advances and historical development of vector optimization,
pages 222–232. Springer, 1987.

A. J.V. Skriver and K. A. Andersen. A label correcting approach for solving bicriterion
shortest-path problems. Computers & Operations Research, 27(6):507–524, 2000.

M. Sniedovich. A new look at bellman’s principle of optimality. Journal of Optimization
Theory and Applications, 49(1):161–176, 1986.

S. Steiner and Tomasz R. Solving the biobjective minimum spanning tree problem using a
k-best algorithm. Technical report, Citeseer, 2003.

R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica, 6(2):
171–185, 1976.

27

	Introduction
	Literature Review
	Problem Description BSP Problem
	Shortest Path Problem
	MOCO Problems
	Bi-Objective Shortest Path Problem

	Ratio-Labeling Algorithm BSP Problem
	Computational Results RLBSP
	Dataset
	Results

	Problem Description Acyclic BSP Problem
	Labeling Algorithm ABSP Problem
	Algorithm and Correctness
	Running Time
	Example Execution
	Optimality Intervals

	Computational Results ABSP Problem
	Dataset
	Results

	ABSP Problem Bottleneck
	Conclusion
	Bibliography

