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Abstract

We look at goodness-of-fit tests for heavy tailed distributions. As
these distributions are found in numerous fields, adequate goodness-of-
fit testing helps to correctly model them. We inspect the power of four
different tests to find the best one: the Kolmogorov-Smirnov test, the
Anderson-Darling test, the Estimated Score test and the Tail Ratio test.
The latter is developed in this paper. We use simulation to find critical
values of these tests and use simulation once again to find their power.
Our results show that the Tail Ratio test has the highest power of the
four tests.

1 Introduction

In various fields, variables of interest exhibit more tail observations than ac-
counted for in conventional models. If the number of tail observations decreases
to zero slower than exponentially as we get further in the tail, we speak of a
heavy tailed distribution. More formally, a distribution F is called heavy tailed
with tail index α if:

lim
t→∞

1− F (tx)

1− F (x)
= x−α,∀x > 0, α > 0 (1)

Heavy tailed distributions find applications in various practical fields. Rizzo
(2009) mentions applications in economics, finance and actuarial science such
as modeling income, losses or claim sizes. Abidin et al. (2014) mention mod-
eling the likelihood of floods and the occurrence of drought using heavy tailed
distributions. Finally, Reittu and Norros (2004) use heavy tailed distributions
to model Internet traffic size.
Most of the literature on heavy tailed distributions has been on fitting a dis-
tribution and estimating its parameters. On the other hand much less has
been written about goodness-of-fit testing for heavy tailed distributions. The
relevance of development in modeling heavy tailed data is clear: it has an ex-
planatory or predictive function. The use of these models however warrants
the relevance of goodness-of-fit testing: to find a well fitting model with better
explanatory or predictive power, adequate goodness-of-fit tests are necessary.
Therefore this research is directly relevant to all the applications of heavy tailed
modeling.
Hüsler and Peng (2008) show an overview of results in both modeling and
testing univariate and multivariate heavy tails. Other examples of research in
this direction include Beirlant et al. (2006) who introduce a kernel statistic for
Pareto-type behavior and Goegebeur and Guillou (2010) who introduce Lewis-
and Jackson-type test statistics for Weibull-type behavior. Whereas both their
null-hypotheses assume a certain distribution, Koning and Peng (2008) conduct
goodness-of-fit tests under a null-hypothesis with no assumed distribution.
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This paper continues in line with Koning and Peng (2008): We look at sev-
eral tests for the following null-hypothesis and its alternative:

H0 :”F is heavy tailed”, versus

Ha :”F is not heavy tailed”

in which F is a distribution function. This null-hypothesis has two implications:
the tail index parameter remains unknown and thus needs to be estimated and
the tail index only describes tail behavior of the distribution, giving only a par-
tial description of the underlying distribution.
The aim of this paper is to distinguish the power of four different tests. The
first test is the Kolmogorov-Smirnov test (KS). Details of this test can be found
in Kolmogorov (1933) and Smirnov (1939). The second test is the Anderson-
Darling test (AD), presented in Anderson and Darling (1952). This can be seen
as a weighted version of the KS test. In Koning and Peng (2008), the estimated
score test is presented (SC) and its performance is evaluated and compared to
the KS test, among others. The derivation of this test can be found in Hjort and
Koning (2002). We extend on the paper of Koning and Peng (2008) by adding
the AD test and ”tail ratio” test (TR) to the comparison group. This final test,
the tail ratio test, is developed below. It is an intuitive test based on the ratio
between a sample’s largest order statistic and other upper order statistics.
Koning and Peng (2008) find that the integrated version of the SC test is more
powerful than the SC test, the (integrated) KS test and (integrated) Berk-Jones
statistic for most of the chosen tail lengths. However, we do not take the in-
tegrated tests into account. Their paper shows comparable power between the
SC and KS tests. Their performance has to our knowledge not been compared
to that of the AD test. Since this test is often used, we think a comparison of
their power is interesting. On the other hand the tail-ratio test has no set track
record. This raises the research question:

How does the power of the TR test compare to the powers of the SC, KS and
AD tests when testing H0 against Ha?

We conduct two simulation studies to answer this question. In the first sim-
ulation we simulate samples under the null-hypothesis. We use these samples
to find the empirical critical values of the various tests. The second simulation
concerns calculating the power of the different tests. This is done by simulating
samples under the alternative hypothesis and calculating how well the tests can
distinguish these from samples under the null-hypothesis. Both simulations are
conducted for multiple numbers of order statistics, as the choice of this number
influences both critical values and power of the tests.
The rest of this paper is structured as follows: Section two discusses the KS,
AD, SC and TR statistics. Section three presents an outline of the simulation
study conducted to find both the critical values and powers of the tests. Sec-
tions four gives an overview of the simulation results. Finally, in section five we
provide our answers to the research questions and make concluding remarks.
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2 Methodology: Tests

The KS, AD and SC test have a common base, namely the comparison of the
empirical density function to a theoretical density function. In this application,
we use a transformation of the observations which follows a certain empirical
density. Then, under the null hypothesis and two other conditions, we can com-
pare it to a theoretical density.
Suppose we have n independent identically distributed (i.i.d.) observations
X1, X2, . . . , Xn. We order them to form the ordered sample Xn,1 ≤ Xn,2 ≤
. . . Xn,n. Dividing the last k observations by Xn,n−k gives the ordered sample
Xn,n−k+1

Xn,n−k
,
Xn,n−k+2

Xn,n−k
, . . . ,

Xn,n
Xn,n−k

. We will further refer to
Xn,n−k+i
Xn,n−k

as Yi, which

has the following empirical density function:

Gk(r) =
1

k

k∑
i=1

I(
Xn,n−k+i

Xn,n−k
≤ r) =

1

k

k∑
i=1

I(Yi ≤ r). (2)

Under the following two conditions, Gk(r) behaves as the empirical distribution
function derived from a random sample from the Pareto distribution with a
shape parameter α and a scale parameter 1 (see de Haan and Ferreira (2006)
and de Haan and Stadtmüller (1996)). The density of this distribution is given
by:

G(r;α) = 1− r−α, ∀r > 1. (3)

The first condition, which ensures convergence of the distribution, is as follows:
suppose there exists a function A(t)→ 0, as t→∞ such that

lim
t→∞

1−F (tx)
1−F (x) − x

−α

A(t)
= x−α

xρ − 1

ρ
, (4)

for all x > 0, where ρ ≤ 0. Then, if the second condition about the convergence
speed,

lim
n→∞

√
kA(n/k) = 0, (5)

holds we can indeed compare the above empirical and theoretical densities.
A last hurdle remains in the scale parameter α. As it is unknown, we need to
estimate it in order to be able to compare the densities. For this purpose we
use the well known Hill estimator (see Hill (1975)). In the case of this Pareto
distribution it is given by:

α̂ =
[1

k

k∑
i=1

log(Yi)
]−1

. (6)
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2.1 Kolmogorov-Smirnov test

Of the three tests that compare the empirical and theoretical distribution, the
KS test does it in the most straightforward way. We define the following func-
tion:

KS(r, α) = 1−Gk(r)− (1−G(r, α)) = 1−Gk(r)− r−α. (7)

The test statistic would normally be computed as:

KS = sup
r>1
|
√
kKS(r, α̂)|. (8)

However, since KS(r, α) is not smooth and has a multitude of local maximums,
finding this supremum can be rather difficult. We therefore opt for a simplified
version of this statistic:

KS∗ =
√
kmax
r∈Y

(1−Gk(r)− r−α̂). (9)

2.2 Anderson-Darling test

As stated before, the AD test can be interpreted as a weighted version of the
KS test. The test is introduced in Anderson and Darling (1952) as follows:

AD = sup
r>1

√
k|Gk(r)−G(r; α̂)|

√
Ψ(G(r;α)). (10)

Herein Ψ is a weighting function based on the theoretical distribution function.
For this application, however, we use a weighting function based on the empir-
ical distribution function. We give extra weight to the larger order statistics.
Another adaption we make to the original statistic is a discretisation: again
due to the non-smooth nature of the function, we take the maximum of a set of
function values. The test statistic we use is:

AD∗ =
√
kmax
r∈Y

(1− 1

k

k∑
i=1

wiI(Yi < r)− r−α̂), (11)

where wi is the weight assigned to the i-th observation, given by:

wi =
i2∑k
i=1 i

2
. (12)

2.3 Estimated score test

Just like the previous two tests, the SC test compares the theoretical and empir-
ical distribution. This is done using martingale theory. It uses that Gk(r) is a
sub-martingale. Then using Doob-Meyer decomposition (see Meyer (1962)) the
sub-martingale is transformed into a martingale by subtracting the predictable
part of the sub-martingale. In this case, the predictable process is given by∫ r
1

(1−Gk(s)dΛ(s, α). For a more formal derivation of this martingale see Hjort
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and Koning (2002). This motivates the following function introduced in Koning
and Peng (2008):

SC(r, α) = Gk(r)−
∫ r

1

(1−Gk(s))dΛ(s;α), (13)

where Λ(r, α) = −log(1−G(r;α)) = αlog(r) is the cumulative hazard function
of G(r, α). Equation 13 then simplifies to:

SC(r;α) = Gk(r)− α
∫ r

1

1−Gk(s)

s
ds. (14)

As 1 − Gk(s) = 0 when Yi < s, the integral can be solved easily. We rewrite
equation 13 once more to:

SC(r;α) = Gk(r)− αlog(min(Yi, r)). (15)

Finally, the test statistic is computed as:

SC = supr>1|
√
kSC(r; α̂)|. (16)

2.4 Tail ratio test

Unlike the other tests discussed in this paper, the tail ratio test is not based on
the relation between the empirical distribution and a theoretical distribution.
Rather, the tail ratio test only uses information about the shape of the empirical
distribution to draw inference about heaviness of the tail.
As the name suggests, the tail ratio tests uses a ratio of tail observations. Specif-
ically, for a tail of length k, the test statistic is given by:

TR = (

k∑
i=1

|Xn,n−i

Xn,n
|)−1. (17)

The intuition behind this statistic is quite simple. Assume a distribution is
heavy tailed, then it has a higher amount of tail observations. Now as there
are more observations in the tail, the ratio between the last tail observation
and the second-to-last one should be high. The same holds for the last tail
observation and the third-to-last one, the last one and the fourth-to-last one,
and so on. The TR statistic is based on this pattern, where we take the sum of
all these ratios over a specified tail length. Finally the inverse is taken, to set
the statistic in line with most tests: the statistic takes a lower value if it fails
to reject the null-hypothesis and grows as it becomes more likely to reject the
null-hypothesis.
Due to the test’s functional form, we expect the chosen tail length to heavily
influence the test’s performance. If the tail length is chosen too long, compared
to the actual number of tail observations, the test statistic will be computed
based on too many regular (non-extreme) values.
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3 Methodology: Simulation

3.1 Critical values

In order to find the critical values of the various tests, we simulate under the
null-hypothesis. For this purpose we use a Frechet distribution, in line with
Koning and Peng (2008). This distribution has the following density:

F (x) = exp(−x−1). (18)

We create 100.000 samples of size n = 1000 by drawing uniformly distributed
random variables on the interval [0, 1] and transform these to Frechet distributed
random variables using the inverse transformation method. The transformation
we use is given by:

X = F−1(U) = − 1

log(U)
. (19)

Once these samples are created, we calculate the various test statistics over
them. We sort the 100.000 test statistics. For a 5% confidence level, the suitable
critical value is then found at the 95-th quantile. We calculate this as the average
of the 95000-nd and 95001-st sorted test statistic.
This whole simulation procedure is repeated for k = 20, 30, . . . , 200. That is, we
calculate the critical values of the different tests for various numbers of order
statistics.

3.2 Power

In order to calculate the power of the different tests, we simulate under the
alternative hypothesis. For this purpose we again use the same distributions
as used in Koning and Peng (2008). We use the distributions 1 − F (x) =

[1 − δlog(x)]−
1
δ where x > 1. We pair the same numbers of order statistics as

before k = 20, 30, . . . , 200 to various values of δ, such that δ
√
k = 1.5, 2, ..., 3.5.

An exact overview of all the values of δ is presented in the appendix. To create
the random variables from these distributions we again use the inverse trans-
formation method, where we use that 1− F (x) is also on a [0, 1] interval. This
transformation is given by:

X = F−1(U) = exp(
U−δ − 1

δ
). (20)

We simulate 10.000 samples from each of the distributions, each with size n =
1000. Over each of the samples we calculate the various test statistics and
compare these to their respective critical values. The power of the test is then
the fraction of the samples for which the null-hypothesis is rejected correctly in
favor of the alternative.
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4 Results

Our first results are concerned with the critical values of the various tests. They
are summarized below in table 1. As our simulations are similar to those in Kon-
ing and Peng (2008), the critical values of the KS and SC test should be similar.
This is indeed the case for the SC test. The majority of the critical values found
in our simulations are up to two decimals the same. The slight deviations are
dedicated to the randomness of simulation: although we simulate from the same
distribution, the simulation is very unlikely to yield the exact same samples. On
the other hand, the critical values for the KS test are all slightly lower. This is
likely due to the discretisation of the test.
Two things worth noting from this table are the trend in the critical values of
the AD and TR tests. The critical values of the AD test show a positive trend
with the tail size. This is likely to be caused by the choice of weights, which
also heavily depends on tail size. The critical values of the TR test on the other
hand show a negative trend with the tail size. This is likely to be caused by the
design of the statistic, which heavily depends on the number of order statistics.

Table 1: Critical values of KS, AD, SC and TR tests at 5% significance

k KS AD SC TR

20 0,952 4,229 1,375 4,600
30 0,980 5,280 1,334 4,125
40 0,989 6,154 1,320 3,842
50 0,998 6,919 1,312 3,660
60 1,005 7,608 1,314 3,521
70 1,010 8,239 1,318 3,412
80 1,012 8,825 1,320 3,325
90 1,015 9,374 1,325 3,252
100 1,017 9,893 1,330 3,195
110 1,023 10,386 1,337 3,143
120 1,026 10,857 1,343 3,094
130 1,030 11,308 1,350 3,052
140 1,036 11,741 1,357 3,013
150 1,040 12,160 1,365 2,982
160 1,046 12,564 1,376 2,952
170 1,052 12,956 1,385 2,925
180 1,057 13,336 1,394 2,899
190 1,061 13,706 1,406 2,876
200 1,066 14,066 1,415 2,855

The other results are concerned with the powers of the various tests. Tables
3 through 6 in the appendix summarize these. Again, we see that the powers
we simulated for the SC tests are very close to those simulated in Koning and
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Peng (2008). The small discrepancies are likely caused by difference in simu-
lated samples. On the other hand, our discretised version of the KS test shows
slightly higher power than the KS test conducted by Koning and Peng. This
stands out, as the discretisation is a simplification of the test and one would
expect the original to be more powerful.
As the power of each of the tests varies over both the number of order statistics
k and δ, we compare general trends of each of the tests, varying these param-
eters. The KS test range from 0.2 to approximately 0.75. The lowest powers
are found for the smallest value of δ

√
k. The powers in general increase as δ

√
k

increases. For a δ
√
k = 1.5, 2, 2.5 the power of the test decreases as k increases.

For δ
√
k = 3, 3.5 there is no obvious decrease. At this level the highest powers

are observed for the middle values of k, between k = 70 and k = 130.
The AD test has powers which start a bit higher than the KS test. Its lowest
power is 0.32. On the other end its highest power is approximately 0.72, slightly
lower than the highest power of the KS test. The AD test exhibits a similar
pattern over the values of δ

√
k as the KS test: the power increases as δ

√
k

increases. The trend over the values of k is different. For the smaller values,
k = 20, 30, the power of the AD test is lower. Thereafter, the power stays rather
constant for the various values of k up to k = 200, for a given δ

√
k.

The powers of the SC test behave as the powers of both the KS and AD test
in the sense that they increase in general as δ

√
k increases. However, trends in

power are all over the place for given values of δ
√
k. For δ

√
k = 1.5, 2, 2.5 the

test exhibits a negative trend as k increases. For δ
√
k = 3, the power is rather

constant over values of k. Finally, for δ
√
k = 3.5 the test exhibits a positive

trend. Of the tests we have discussed so far, this test has the lowest minimum
power, less than 0.15. The highest power of this test is comparable to the other
two: approximately 0.73.
The final test we discuss, the TR test, exhibits the greatest powers. They range
from 0.37 all the way up to 0.99. The general trend of higher powers for higher
values of δ

√
k also holds for this test. Given a value of δ

√
k, the power of this

test decreases as k increases. Of all tests that seem to exhibit this, this test has
the steepest descent. But then again, its initial power for k = 20 is much bigger
than the others’.
In figure 1 below, we present the powers of all the tests for δ

√
k = 2.5. All the

tests exhibit the trends as discussed earlier: the power of KS and SC decreases
as k increases, the power of AD stays rather constant and the TR test has the
highest power, but shows a steep decrease.
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Figure 1: Power of KS, AD, SC and TR tests for δ
√
k = 2.5

5 Conclusion

Heavy-tailed distributions find applications in various fields. Research into them
has focussed on estimating these distributions, rather than testing for them.
We discussed a framework for comparing empirical and theoretical distribution
functions. In this framework we discussed three tests for the purpose of testing
for a heavy tail: the Kolmogorov-Smirnov, Anderson-Darling and estimated
score test. Then we discussed a test for the same purpose based only on the
empirical distribution. We simulated under the null-hypothesis to find critical
values for each of the tests. Finally, we simulated under the alternative to
determine the tests’ respective powers.
Now we have determined these powers, we can answer our research question:
How does the power of the TR test compare to the powers of the SC, KS and
AD tests when testing H0 against Ha?
Our results showed that the TR test is more powerful than the SC, KS and
AD tests for all configurations we examined. For the larger amounts of order
statistics incorporated into the the test, the test is slightly more powerful than
the others. However, this tests excels in small samples, as it exhibits powers of
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up to 0.99.
Another interesting finding is the improvement of the AD test. By discretising
the test, we have not only improved computability, but we also improved the
test’s power relative to the original.
We suggest further research to look into the small sample performance of the
TR test: what causes the test’s high power? Another question is whether the
the TR test is a proper goodness-of-fit test. In this paper we have used the test
only against a single alternative. A goodness-of-fit test should be an omnibus
test: a test that works against all alternatives. The test can be used in a same
setting, using another alternative distributions, to find out whether it is just
powerful against this specific alternative or the alternative in general.
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6 Appendix

Table 2: All δ used in various pairs of δ
√
k

δ
√
k

1,5 2 2,5 3 3,5

k

20 0,335 0,447 0,559 0,671 0,783
30 0,274 0,365 0,456 0,548 0,639
40 0,237 0,316 0,395 0,474 0,553
50 0,212 0,283 0,354 0,424 0,495
60 0,194 0,258 0,323 0,387 0,452
70 0,179 0,239 0,299 0,359 0,418
80 0,168 0,224 0,280 0,335 0,391
90 0,158 0,211 0,264 0,316 0,369
100 0,150 0,200 0,250 0,300 0,350
110 0,143 0,191 0,238 0,286 0,334
120 0,137 0,183 0,228 0,274 0,320
130 0,132 0,175 0,219 0,263 0,307
140 0,127 0,169 0,211 0,254 0,296
150 0,122 0,163 0,204 0,245 0,286
160 0,119 0,158 0,198 0,237 0,277
170 0,115 0,153 0,192 0,230 0,268
180 0,112 0,149 0,186 0,224 0,261
190 0,109 0,145 0,181 0,218 0,254
200 0,106 0,141 0,177 0,212 0,247
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Table 3: Power for KS test with 5% significance level using simulated critical
values

δ
√
k

1,5 2,0 2,5 3,0 3,5

k

20 0,284 0,404 0,515 0,613 0,700
30 0,275 0,393 0,520 0,628 0,722
40 0,271 0,396 0,524 0,642 0,738
50 0,268 0,393 0,521 0,645 0,747
60 0,260 0,389 0,519 0,645 0,749
70 0,260 0,386 0,517 0,644 0,752
80 0,251 0,383 0,518 0,644 0,751
90 0,250 0,382 0,515 0,643 0,753
100 0,243 0,376 0,518 0,644 0,751
110 0,233 0,368 0,508 0,641 0,752
120 0,232 0,367 0,505 0,642 0,755
130 0,233 0,361 0,504 0,636 0,753
140 0,228 0,348 0,495 0,633 0,747
150 0,222 0,344 0,486 0,623 0,739
160 0,219 0,339 0,480 0,619 0,737
170 0,208 0,328 0,473 0,610 0,730
180 0,204 0,325 0,462 0,608 0,726
190 0,201 0,322 0,458 0,603 0,726
200 0,200 0,313 0,452 0,595 0,720
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Table 4: Power for AD test with 5% significance level using simulated critical
values

δ
√
k

1,5 2,0 2,5 3,0 3,5

k

20 0,319 0,420 0,487 0,495 0,389
30 0,329 0,434 0,528 0,592 0,616
40 0,335 0,438 0,537 0,623 0,675
50 0,334 0,441 0,541 0,630 0,697
60 0,337 0,442 0,547 0,633 0,707
70 0,336 0,442 0,545 0,636 0,712
80 0,333 0,440 0,547 0,637 0,713
90 0,332 0,439 0,544 0,638 0,715
100 0,329 0,439 0,544 0,637 0,716
110 0,328 0,437 0,541 0,637 0,715
120 0,329 0,436 0,541 0,639 0,718
130 0,328 0,437 0,543 0,641 0,719
140 0,326 0,439 0,541 0,640 0,718
150 0,325 0,437 0,542 0,639 0,719
160 0,327 0,435 0,542 0,638 0,718
170 0,326 0,434 0,540 0,636 0,717
180 0,326 0,434 0,537 0,638 0,717
190 0,326 0,435 0,539 0,638 0,717
200 0,327 0,434 0,542 0,637 0,716
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Table 5: Power for SC test with 5% significance level using simulated critical
values

δ
√
k

1,5 2 2,5 3 3,5

k

20 0,251 0,355 0,463 0,558 0,642
30 0,238 0,353 0,467 0,577 0,672
40 0,224 0,345 0,471 0,582 0,686
50 0,219 0,341 0,474 0,594 0,702
60 0,214 0,337 0,475 0,604 0,714
70 0,211 0,333 0,470 0,602 0,715
80 0,203 0,331 0,471 0,602 0,720
90 0,201 0,325 0,470 0,604 0,723
100 0,191 0,320 0,466 0,605 0,725
110 0,187 0,315 0,460 0,607 0,726
120 0,182 0,315 0,459 0,605 0,727
130 0,183 0,309 0,458 0,603 0,728
140 0,179 0,305 0,453 0,599 0,725
150 0,174 0,303 0,447 0,593 0,726
160 0,174 0,292 0,445 0,590 0,721
170 0,167 0,286 0,436 0,583 0,713
180 0,162 0,279 0,429 0,582 0,712
190 0,154 0,276 0,420 0,574 0,708
200 0,148 0,267 0,417 0,567 0,702
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Table 6: Power for TR test with 5% significance level using simulated critical
values

δ
√
k

1,5 2 2,5 3 3,5

k

20 0,817 0,906 0,953 0,975 0,988
30 0,747 0,854 0,915 0,953 0,972
40 0,689 0,811 0,882 0,928 0,957
50 0,645 0,774 0,853 0,905 0,939
60 0,604 0,739 0,827 0,883 0,921
70 0,570 0,709 0,803 0,863 0,905
80 0,545 0,682 0,780 0,844 0,889
90 0,521 0,659 0,760 0,827 0,875
100 0,502 0,634 0,738 0,811 0,862
110 0,483 0,614 0,717 0,795 0,849
120 0,467 0,596 0,700 0,780 0,835
130 0,453 0,576 0,684 0,767 0,823
140 0,437 0,561 0,670 0,753 0,812
150 0,420 0,547 0,656 0,739 0,802
160 0,411 0,536 0,640 0,726 0,790
170 0,400 0,523 0,628 0,712 0,778
180 0,389 0,513 0,614 0,702 0,770
190 0,378 0,502 0,601 0,691 0,759
200 0,368 0,491 0,592 0,679 0,748
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