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Abstract
In this thesis we test the low-volatility anomaly using monotonic relation tests.
We use both portfolios based on all-cap and large cap stocks which are sorted
on some characteristic, such as the volatility, to test whether there is a signifi-
cant relation between the expected or risk-adjusted return and the characteris-
tic. We show that top-minus-bottom tests can give the wrong conclusion about
the presence of a monotonic relation. Also, we conclude that there is indeed an
anomaly present in the risk-return relation, although we generally find that this
relation is not monotonic.
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1 Introduction

In this thesis we test the low-volatility anomaly using monotonic relation tests. This anomaly that low
volatility stocks earn higher risk-adjusted returns than high volatility stocks contradicts the well-known
capital asset pricing model (CAPM), since this model implies that there is a positive linear relation be-
tween the expected return and the risk of an asset. Empirical studies done by Jensen et al. (1972), Fama
and MacBeth (1973) and Haugen and Heins (1975) already show that the expected returns of low-beta
(high-beta) assets are higher (lower) than the CAPM model suggests, which implies that the risk-return
relation is flatter than the CAPM predicts. Twenty years later, Fama and French (1992) find similar
results even when they control for size effects.

More recently, Ang et al. (2006) show that this phenomenon is not only observed between beta en re-
turn, but also between volatility and return. Specifically, they show that stocks with high volatility have
abnormally low returns even when they account for size, value, momentum and liquidity effects. In
fact, Blitz and van Vliet (2007) find that low volatility stocks are more attractive in terms of return than
high volatility stocks, which suggests that there is even a negative relation between risk and return.
They observe this relation on global and regional stock markets, whereas Blitz et al. (2013) find that
this volatility effect is also present in emerging equity markets and that it cannot be explained by size,
value and momentum effects. Blitz et al. (2013) also show that the low-volatility anomaly is robust to
using other risk measures than variance for the volatility, such as the CAPM beta and mean absolute
deviation. To summarize, Baker and Haugen (2012) show that the low-volatility anomaly is observed
in all testable equity markets.

Ang et al. (2006), Blitz and van Vliet (2007) and Blitz et al. (2013) all look at the significance of the
top-minus-bottom return differentials between low-volatility stocks and high-volatility stocks to test
whether there is a relation between volatility and return. However, Patton and Timmermann (2010)
show in their simulation experiment that using this top-minus-bottom differential is not always a good
way to test for a relation as it does not take into account intermediate observations. Therefore, Patton
and Timmermann (2010) propose a new monotonic relation test , which allows us to test whether there
is a significant monotonic relation between volatility and return.

The test of Patton and Timmermann (2010) (henceforth MR test) is nonparametric, easy to implement
and has the monotonic relation under the alternative hypothesis such that we only find a significant
relation when there is enough evidence in the data to support it. Alongside the MR test, we also imple-
ment simple top-minus-bottom tests, the multivariate inequality test of Wolak (1989) and the Bonfer-
onni test of Fama (1984), where the latter two tests have the (weakly) monotonic relation under the null
hypothesis such that we only find a significant relation when there is not enough evidence in the data
against it. Since the MR test is nonparametric, we do not need to assume a specific relation or distribu-
tion. The Wolak test, however, needs to assume that the return differentials are normally distributed.

As a first approach, we use portfolio sorts based on all-cap stocks. First, we show that there is significant
evidence for a monotonic increasing relation between book-to-market ratio and return and somewhat
weaker evidence for a relation between momentum and return. For the portfolios sorted on variance,
market beta and size, however, we can not find such significant evidence. We do show that the relation
between risk-adjusted return and risk seems to be more decreasing than for the expected return, where
the risk adjusted return measures are based on a constant of the CAPM model (also known as Jensen’s
alpha developed by Jensen (1967)), three factor model of Fama and French (1993) and four factor model
of Carhart (1997). This indicates the presence of the low-volatility anomaly, however, the relation is not
significantly monotonically decreasing.

Furthermore, we see that the highest decile portfolio sorted on variance, has a very low return com-
pared to the rest which is consistent with the findings of Ang et al. (2006). As a consequence, the
top-minus-bottom test rejects the null hypothesis of equal returns for the bottom and top ranked asset,
which implies that there is a negative relation. However, according to the MR test this conclusion is
wrong, which shows that the top-minus-bottom test is not always a good way to test for a monotonic re-
lation as Patton and Timmermann (2010) already stated. The MR test of Patton and Timmermann (2010)
is easily generalized to deal with two-way sorted portfolios, such that we can test for a monotonic re-
lation across two variables. We show that there seems to be a significant relation between variance and
return for small-cap stocks, but that this relation is not present for large-cap stocks.
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Next, we use the returns of large-cap stocks which are components of the S&P500 market index to
construct stocks and portfolios which we sort on variance and idiosyncratic volatility. Beside using
monotonic relation tests, we also use a regression analysis which shows that their is a positive relation
between the average return and volatility, but a flat relation between risk-adjusted return and volatility.
For regression analysis, however, we need to assume that the relation is indeed linear, which makes it
less robust. The monotonic relation tests show that the pattern between variance and (risk-adjusted)
return for large cap stocks, in contrary to the portfolios based on all-cap stocks, seems to be increasing,
although the MR test does not find significant evidence for this. For idiosyncratic volatility, we find
similar results, also when we use the Sharpe ratio proposed by Sharpe (1966, 1994) as risk-adjusted
return measure. In addition, we also construct two-way sorted portfolios formed on market beta and
(idiosyncratic) volatility with the large cap stock returns. We show that their is a significant relation
between return and both volatility as idiosyncratic volatility across the market betas. However, their is
no joint relation between these risk measures and the return.

Our contribution to the existing literature, is that we show that top-minus-bottom tests can give wrong
conclusions about the presence of a monotonic relation when we compare their conclusions with that
of the MR test. Also, we conclude that there is indeed an anomaly present in the risk-return relation,
although we generally find that this relation is not monotonic.

2 Methodology

2.1 Notation

Let {Ri,t, t = 1, . . . , T; i = 0, . . . , N} be the returns of N + 1 assets over T time periods, where the
assets are ranked on some characteristic (e.g. market beta) such that asset 0 has the lowest value of
the characteristic and asset N the highest. Since we are also interested in risk-adjusted returns, we use
the constant of a factor model and the Sharpe ratio developed by Sharpe (1966, 1994) as risk-adjusted
return measures. We can denote the general factor model as

Ri,t − R f ,t = αi + β
′
iFt + εi,t, t = 0, 1, . . . T for each i (1)

where Ri,t is the return of asset i at time t, R f ,t is the risk free rate of return at time t, the vector βi
contains the betas of the corresponding factors in Ft and εi,t is the residual for asset i at time t.

We use three different factor models and therefore obtain three different estimates for αi. First, we use
the CAPM model where Ft = RM,t − R f ,t is the excess market return. The constant in the CAPM
model is known as Jensen’s alpha proposed by Jensen (1967), but we refer to it as the one-factor
alpha. The second model is the three factor model of Fama and French (1993) which uses Ft =
(RM,t − R f ,t, SMBt, HMLt)′ where SMBt and HMLt represent the size and value factor, respectively.
We call the constant, αi, in this model the three-factor alpha. The last model is the four-factor model of
Carhart (1997) where Ft = (RM,t − R f ,t, SMBt, HMLt, MOMt)′ and MOMt represents the momentum
factor. The corresponding αi in this model is called the four-factor alpha. The Sharpe ratio of asset i is
defined as

SRi =
E(Ri,t − R f ,t)√
var(Ri,t − R f ,t)

. (2)

We can determine α̂i as the ordinary least square (OLS) estimate of the constant for each model. The
Sharpe ratio can be calculated using the sample mean and sample variance of Ri,t − R f ,t such that we
can say that α̂i = ŜRi. If we are interested in the average return, we use a regression of Ri,t on a constant
which results in α̂i =

1
T ∑T

t=1 Ri,t. We denote the vector with the average or risk-adjusted returns of the
assets as α = (α0, α2, . . . , αN)

′. The vector with the corresponding return differentials is denoted as
∆ = (∆1, . . . , ∆N)

′ where ∆i = αi − αi−1. To test whether there is an increasing relation in the average
or risk-adjusted returns, we need to test whether

∆i > 0 for i = 1, . . . , N. (3)

holds. If we want to test for a decreasing relation, we simply multiply∆with -1 and test for an increas-
ing relation.
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2.2 Monotonic relation tests

2.2.1 Top-minus-bottom tests

The first test we discuss is the top-minus-bottom test. The null and alternative hypotheses of this test
are denoted as

H0 : α0 = αN versus H1 : α0 < αN , (4)

such that we test whether the expected return of the bottom ranked asset is lower than the expected
return of the top ranked asset. We can test this with a regression of RN,t − R0,t on a constant. Natu-
rally, the obtained constant in the regression is equal to the mean of the top-minus-bottom differential,
RN,t − R0,t. Using this estimate and its standard error we can compute the t-statistic and test whether
the differential is significantly different from zero. For the risk-adjusted return measures based on the
factor models, we simply regress RN,t − R0,t on a constant and the factors of interest. Again, we use the
t-statistic of the constant to test whether the differential is zero or not. We use the heteroskedasticity
and autocorrelation consistent (HAC) standard errors of Newey and West (1987) in the construction of
the t-statistics to correct for possible heteroskedasticity or autocorrelation.

For the Sharpe ratio, however, we cannot use this approach. Instead we use the Jobson and Korkie
(1981) test with the Memmel (2003) correction (henceforth JKM test) to test whether two Sharpe ratios
are significantly different. The test statistic of the JKM test is

Z =
SRN − SR0√

1
T

(
2(1− ρ0,N) +

1
2
(
SR2

0 + SR2
N − SR0SRN(1 + ρ2

0,N)
)) (5)

where ρ0,N is the correlation between asset 0 and N. Asymptotically, Z follows a standard normal dis-
tribution such that we can easily test the significance of SRN − SR0 .

The top-minus-bottom tests do not take into account intermediate observations, and therefore have
limited purpose to test for a monotonic relation as is shown in the simulation experiment in Patton
and Timmermann (2010). On the other hand, it is an easy way to find an indication of the sign of the
relation.

2.2.2 Bonferroni test

The second test that we discuss summarizes multiple t-tests into one test in terms of a Bonferroni bound
as is proposed by Fama (1984). The null and alternative hypotheses of this Bonferroni test are denoted
as

H0 : ∆ ≥ 0 versus H1 : ∆ unrestricted. (6)

Under the null hypothesis we have a (weakly) monotonically increasing relation and under the alter-
native hypothesis we have a non-monotonic relation. To test this we regress Ri,t − Ri−1,t on a constant
and eventual factors and obtain the t-statistic of the constant for i = 1, . . . , N. Again, we use the HAC
standard errors of Newey and West (1987) to construct the t-statistics. Using the Bonferroni inequality
as it is used in Fama (1984) and Patton and Timmermann (2010) , we calculate the p-value as

p-value = min((N − 1) ·Φ(t1:N), 1) (7)

where t1:N is the smallest t-statistic on ∆̂i, i = 1, . . . , N and Φ is the cumulative distribution function
of a standard normal distribution. We take the minimum of (N − 1) · Φ(t1:N) and one to make sure
that the p-value is between zero and one as (N − 1) ·Φ(t1:N) can become bigger than one. This test is
simple to implement, but according to the simulation experiment in Patton and Timmermann (2010) it
still seems to be a conservative test as it has a low power.
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2.2.3 Wolak test

Here we talk in more detail about the multivariate inequality test of Wolak (1989). The test of Wolak
(1989) has the same null and alternative hypothesis as in equation (6). The test statistic of this test is
based on a comparison between an unrestricted estimate of∆ and a restricted estimate of∆, where the
restriction imposes a weakly monotonic relation. The unrestricted estimate ∆̂ is just the sample return
differential (α̂1 − α̂0, . . . , α̂N − α̂N−1)

′. The restricted estimate ∆̃ is obtained from the minimization

min
∆

(∆̂−∆)′Ω̂−1(∆̂−∆)

subject to∆ ≥ 0
(8)

where Ω̂ is the HAC estimator of the covariance matrix of ∆̂ which can be obtained using the results
in Newey and West (1987). Following the results in Wolak (1989), we calculate the Wald test statistic of
this test as

W = (∆̂− ∆̃)′Ω̂−1(∆̂− ∆̃). (9)

Wolak (1987, 1989) show that if we assume that∆ is normally distributed, that the distribution of W is
a weighted sum of chi-squared distributions ranging from one to N degrees of freedom. To obtain the
weights, Wolak (1989) proposes to perform a Monte Carlo simulation where we take S draws from a
multivariate normal distribution with mean zero and covariance matrix Ω̂. We use draw ∆̂s to obtain
a restricted estimate ∆̃s for s = 1, . . . , S and we count how many elements in ∆̃s are bigger than zero.
The weights w(N, k, Ω̂) are obtained as the proportion of the S draws that ∆̃s has k elements bigger
than zero. The p-value of this test is equal to

p-value =
N

∑
k=1

w(N, k, Ω̂)Pr(χ2
k ≥W) (10)

In a simulation experiment, Patton and Timmermann (2010) find that this test often performs better
in detecting a monotonic relation than the top-minus-bottom t-test and Bonferroni test. However, a
disadvantage of this test is that the Monte Carlo simulation takes a lot of time, especially for large N,
as we need to perform S minimization procedures to find N unknown parameters. Also, Patton and
Timmermann (2010) note that the test has limited power as it does not reject the null hypothesis of a
(weakly) monotonic relation when there is not enough evidence in the data against it.

2.2.4 One-way MR test

In this subsection we discuss the monotonic relation test of Patton and Timmermann (2010) based on
one-way sorts. This test has, in contrary to the Bonferroni and Wolak test, a flat or weakly declining
relation under the null and a strictly increasing relation under the alternative. Therefore, this test only
rejects the null hypothesis if there is enough evidence in the data in favor of a monotonic relation.
Mathematically, the null hypothesis and alternative hypothesis of the MR test are denoted as

H0 : ∆ ≤ 0 versus H1 : ∆ > 0. (11)

which can also be written as

H0 : ∆ ≤ 0 versus H1 : min
i=1,...,N

∆i > 0. (12)

These hypotheses motivate the test statistic that is used for this test, namely

JT = min
i=1,...,N

∆̂i. (13)

Under standard conditions which can be found in Patton and Timmermann (2010), ∆̂ = (∆̂1, . . . , ∆̂N)
′

is asymptotically normally distributed for T → ∞, that is
√

T
(
(∆̂1, . . . , ∆̂N)

′ − (∆1, . . . , ∆N)
′) a∼ N (0,Ω). (14)

Since the critical value for the minimum value of ∆ would depend on the entire covariance matrix Ω,
which is difficult to estimate for large numbers of N, Patton and Timmermann (2010) propose a boot-
strap method to find the critical value of the MR test.
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First, they use the stationary bootstrap method of Politis and Romano (1994) to draw (with replacement)
a new random sample of returns {R̃(b)

i,τ(t), τ(1), . . . , τ(T); i = 1, . . . , N}, where τ(t) is a random draw
from the original time indices {1, . . . , T} and b = 1, . . . , B denotes the bootstrap number. To preserve
the time series dependencies in the returns, we draw the data in blocks where both the starting point
and the length of the blocks are random. We draw the block length from a geometric distribution
with parameter θ which denotes the average length of each block. For the average returns we use
the bootstrap mean of R̃(b)

i,τ(t) for α
(b)
i and for the risk-adjusted return measures we use the bootstrap

regression

R̃(b)
i,τ(t) − R̃(b)

f ,τ(t) = α
(b)
i + β

(b)′
i F

(b)
i,τ(t) + e(b)i,τ(t), i = 0, 1, . . . N (15)

to find an estimate of α
(b)
i where R̃(b)

f ,τ(t) is the bootstrap risk free rate of return, α
(b)
i represents the

expected risk-adjusted return, β(b)
i is a vector of the betas of the specified bootstrap factors in F (b)

i,τ(t),

which are constructed with the same bootstrap time indices as the returns, and e(b)i,τ(t) are the residuals

for asset i and bootstrap b. For the Sharpe ratio, we just use the excess bootstrap returns, R̃(b)
i,τ(t)− R̃(b)

f ,τ(t).

Using the estimates of α
(b)
i , we can calculate the bootstrap return differentials as ∆̂(b)

i = α̂
(b)
i − α̂

(b)
i−1. The

bootstrap p-value of this test is equal to

p-value =
1
B

B

∑
b=1

1(J(b)T > JT) (16)

where
J(b)T = min

i=1,...,N
(∆̂(b)

i − ∆̂i), b = 1, 2, . . . , B. (17)

Furthermore, Patton and Timmermann (2010) implement a studentized version of this test to eliminate
possible cross-sectional heteroskedasticity effects. In this version they divide ∆̂i in (13) and ∆̂(b)

i − ∆̂i
in (17) with the stationary bootstrap estimate of the long-run standard deviation of differential i which
is defined in Politis and Romano (1994). The estimate of the long-run N-by-N covariance matrix is
calculated in a similar fasion as the HAC estimator of the covariance matrix of Newey and West (1987)
and is equal to

Σ̂ =
1
T

T

∑
t=1
d′tdt +

1
T

min(T,N)−1

∑
m=1

(
1− m

N

)(
1− 1

θ

)m
(

T

∑
t=1

(d′t+mdt + d
′
tdt+m)

)
(18)

where dt = (d1,t, . . . , dN,t), di,t = Ri,t − Ri−1,t − ∆̂i and θ is the average block length in the stationary
bootstrap. The estimate of the long-run standard deviation of differential i is equal to the square root
of the i-th diagonal element of Σ̂. Since the stationary bootstrap makes use of circularity in the time-
series, we can say that di,T+m = di,m as this assumption is needed in the calculation of the last sum in
(18). The upper bound of the second sum in (18), min(T, N)− 1, comes from the fact that we want to
deal with cases where N > T as we need this for stock sorts in subsection 2.3.2

Patton and Timmermann (2010) also provide two other measures, namely the Up and Down statistic,
which are denoted as

J+T =
N

∑
i=1
|∆̂i|1(∆̂i > 0), (19)

J−T =
N

∑
i=1
|∆̂i|1(∆̂i < 0), (20)

respectively. These measures account for the direction, frequency and the magnitude of deviations
from a flat pattern and therefore provide information whether there is at least a part of the pattern
monotonically increasing or decreasing. Again, the critical values of these tests can be obtained using
bootstrap techniques and it is also possible to perform the studentized version by dividing ∆̂i in (19)
and (20) with the long-run standard deviation of differential i.
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An advantage of the MR test compared to the Wolak test is that we do not need to assume a distribution
for ∆i. Also, the MR test is easily applicable for large N where the Wolak test is not. Since the alterna-
tive hypothesis of the MR test is the one that contains the monotonic relation, we only reject the null
hypothesis in favour of a monotonic relation when there is enough evidence in the data to support it.
This in contrary to the Wolak and Bonferroni test, which do not reject the null hypothesis of a (weakly)
monotonic relation when there is not enough evidence in the data against it.

Patton and Timmermann (2010) find that the Wolak test and Bonferroni test do not always reject the null
hypothesis when there is in fact no monotonic relation. Conversely, the MR test sometimes does not
reject the null hypothesis when there is in fact a monotonic relation. Since we cannot directly compare
the size and power of the Wolak and Bonferroni test with the MR test as their hypothesis are different,
Patton and Timmermann (2010) claim that it depends on the research question or economic framework
which test we should use. In our research, though, we use all aforementioned tests where we rely the
most on the MR test.

2.2.5 Two-way MR test

Patton and Timmermann (2010) show that their one-way monotonic relation test is easily generalized
to deal with two-way sorted assets. We refer to this generalization as the two-way MR test. If we
report the results of the two-way sorts in a (N + 1)× (N + 1) table, where we sort one variable across
rows and the other variable across columns, we can denote the row and column return differentials as
∆r

i,j = αi,j − αi−1,j and ∆c
i,j = αi,j − αi,j−1 respectively. The null and alternative hypothesis are

H0 : ∆r
i,j ≤ 0, ∆c

i,j ≤ 0 for all i, j versus H1 : ∆r
i,j > 0 and ∆c

i,j > 0 for all i, j. (21)

We can rewrite (21) as

H0 : ∆r
i,j ≤ 0, ∆c

i,j ≤ 0 for all i, j versus H1 : min
i,j=1,...,N

(∆r
i,j, ∆c

ij). (22)

In a similar fashion as the one-way MR test, the test statistic is denoted as

JT = min
i,j=1,...,N

(∆̂r
i,j, ∆̂c

i,j). (23)

We can use the same stationary bootstrap method and studentized version as for the one-way MR test,
but now with (∆̂r

i,j, ∆̂c
i,j) instead of ∆̂i.

2.3 Application on the low-volatility anomaly

2.3.1 Portfolio sorts based on all-cap stocks

For this first approach we use decile portfolios sorted on variance, market beta, market equity, book-to-
market ratio and momentum. The monthly returns of these portfolios can be found on the website of
Kenneth R. French1 and are based on all the NYSE, AMEX and NASDAQ stocks which have available
data on the required sorting characteristic. We use the monthly returns from July 1963 to March 2017,
which gives us 645 observations.

The portfolios formed on variance are based on the variance of daily returns using 60 days (about
3 months) of data. The portfolios formed on market beta are based on an estimate of beta using 60
monthly returns, where beta is estimated with the method of Scholes and Williams (1977) to account
for nonsynchronous trading. Using the monotonic relation tests, we are able to test whether there is
a significant negative monotonic relation between (risk-adjusted) return and volatility. The monthly
factors needed for the factor models to determine the risk-adjusted returns can also be found on the
website of Kenneth R. French.

Beside the variance and market beta, we are also interested whether there is a relation in the expected
returns of decile portfolios that are sorted on market equity, book-to-market ratio and momentum, since
these factors are used in the three-factor and four-factor models. For both portfolios sorted on book-
to-market ratio and momentum, we test for an increasing relation in the expected returns, whereas for
market equity we test for a negative relation.

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

8

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Next, we look at two-way sorted portfolios formed on market equity and market beta and portfo-
lios sorted on market equity and variance. Fama and French (1992) already showed that the low-beta
anomaly is unrelated to size. However, by using two-way sorted portfolios we are able to get more
insight in the overall relation between size, risk and return. We use portfolios which are the intersec-
tions of five portfolios formed on market equity and five portfolios formed on variance or market beta.
Again, monthly returns of these portfolios can be found on the website of Kenneth R. French. Using
the one-way MR test and two-way MR test, we can test for conditional monotonicity (by keeping one
variable fixed) and joint monotonicity in the returns. Both across rows and columns, we test for a de-
creasing relation.

Lastly, we use S = 1, 000 simulation runs for the Wolak test to determine the weights. For the MR test,
we use B = 1, 000 bootstrap replications with an average block length of θ = 10. Furthermore, we use
the studentized version for the one-way MR test, two-way MR test, Up test and Down test.

2.3.2 Stock and portfolio sorts based on large cap stocks

In the second approach we look at individual stock returns of large-cap companies. We use the ad-
justed closing stock prices of S&P500 companies (stated on 27 May 2017) which can be found on Yahoo
Finance and are downloaded using the Multiple Stock Quote Downloader of Samir Khan2. The selec-
tion of these stocks that are in the S&P500 market index entails a bias as we know that these stocks
are performing well over the past, but we would not know this in the beginning of the sample period.
However, in the context of our research this is not a problem as we are only interested in their mean,
standard deviation and the stock and portfolio sorts that we make with them. We use the stocks which
have stock prices available from 10 July 2001 till 28 April 2017 (3976 observations) and do not have
more than one consecutive missing values. This selection procedure leaves us with 377 S&P500 com-
panies. For the stocks which have a missing value, we use linear interpolation between the prior and
subsequent stock price to find an estimate of this missing value. The return of stock i at day t can be
calculated as

Ri,t =
Pi,t − Pi,t−1

Pi,t−1
(24)

where Pi,t is the stock price of company i at day t. Instead of only 10 portfolios in the previous approach,
we now have return data for 377 stocks which gives us the possibility to do a regression between the
mean and standard deviation of the returns, this is we do the regression

αi = φi + γisi + εi, i = 1, 2, . . . , 377 (25)

where αi is the mean of the returns of stock i, φi is the constant, γi is the slope parameter, si is the stan-
dard deviation of the returns of stock i and εi is the error term of stock i. We denote the cross-sectional
OLS estimates as φ̂i,OLS and γ̂i,OLS. To correct for possible heteroskedasticity and/or autocorrelation
when the error terms are not white noise, we use the HAC standard errors of Newey and West (1987).

Beside the HAC standard errors, we also use the Fama-MacBeth (FM) procedure suggested by Fama
and MacBeth (1973) to estimate standard errors which are corrected for cross-sectional correlation be-
tween the different stocks. In this procedure we first run a regression of the returns at each time t on a
constant and the standard deviation of stock i , this is do the regression

Ri,t = φt + γtsi + εi,t, i = 1, 2, . . . , 377 for each t. (26)

Next, Fama and MacBeth (1973) propose to estimate the parameters and residuals as

φ̂i,FM =
1
T

T

∑
t=1

φ̂t, γ̂i,FM =
1
T

T

∑
t=1

γ̂t and ε̂i,FM =
1
T

T

∑
t=1

ε̂i,t (27)

Cochrane (2005) shows that the cross-sectional OLS estimates are equivalent to the FM estimates, this
is φ̂i = φ̂i,FM = φ̂i,OLS and γ̂i = γ̂i,FM = γ̂i,OLS . We can now estimate the standard errors corrected for
cross-sectional correlation as

σ2(φ̂i,FM) =
1

T2

T

∑
t=1

(φ̂t − φ̂i,FM)2 and σ2(γ̂i,FM) =
1

T2

T

∑
t=1

(γ̂t − γ̂i,FM)2. (28)

2http://investexcel.net/multiple-stock-quote-downloader-for-excel/
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By using the estimated slope parameter and both the HAC and FM standard errors, we can test whether
the slope parameter, γi, is significantly different from zero. We also look at the risk-adjusted returns
where we set αi as the constant of one of the used factor models. For the FM procedure we first calcu-
late Ri,t− R f ,t− β̂i

′
Fi,t, where Fi,t contains the eventual daily factors and β̂i contains the corresponding

OLS estimates, and then use this term instead of Ri,t in (26).

Since we need to assume that there is a linear relation between the return and volatility with the regres-
sion methods, we also want to look at the situation where we do not need to assume a specific relation,
namely by using the monotonic relation test. To use these tests, we need to construct new return series
which are sorted on variance. First, we take a month (20 trading days) of data for each stock and use
this to calculate the sample standard deviation. Next, we sort all the stocks from smallest standard
deviation to highest. Then we calculate the monthly return for each stock and save this in the sorted
return series. After that, we continue to the next month and do exactly the same such that we get the
sorted monthly returns of the month after the first. Finally, we continue this process till we have our
new 377 return series which are sorted on variance and based on the returns of 377 stocks. In the end,
the sorted return series consist of T = b 3975−20

20 c = 197 monthly returns. We use the floor function to
remove the remaining days which are than 20 days and therefore do not have enough days to deter-
mine another monthly return.

Beside sorting on volatility, we also sort on idiosyncratic volatility which means that we sort on unsys-
tematic risk that cannot be captured by certain market factors. To find this idiosyncratic volatility we
use one of the three factor models discussed in 2.1 and use the standard deviation of the residuals as the
idiosyncratic volatility. The daily factors needed in the estimation of the factor models can be found on
the website of Kenneth French. The sorting procedure is the same as with the regular volatility, though,
we now use 3 months (60 trading days) to determine the idiosyncratic volatility since we need enough
observations to do the regression. This procedure gives us sorted return series of b 3975−60

20 c = 195
monthly returns.

Alongside the stock sorts, we also construct equally-weighted decile portfolios sorted on variance or
idiosyncratic volatility based on the 377 stocks. The construction of these decile portfolios is the same
as for the stock sorts, except that we now take the average of the monthly returns of each block of
d 377

10 e = 38 sorted stocks except for the last three decile portfolios where we use only 37 stocks as we do
have not enough stocks for an equal division. Using the stock and portfolio sorts, we now have the pos-
sibility to test whether there is a significant relation between the (idiosyncratic) volatility and expected
returns. However, since N is 377 for the stock sorts it is not possible to use the Wolak test, since this test
is computationally to intensive for such a large N. Therefore, we only focus on the top-minus-bottom
tests and the MR test since these test are still usable for large N in this case. For the portfolio sorts, we
are still able to use all monotonic relation tests.

For the portfolios sorted on variance, we use the constant of one of the three factor models as risk-
adjusted return measures. However, to find these we need to estimate the factors which correspond
with the constructed monthly returns. Therefore, we take the sum of the daily factor returns of the 20
trading days and use this as the corresponding factor. For the idiosyncratic volatility, however, we use
the Sharpe ratio as risk adjusted return measure where the monthly risk free rate of return is created the
same way as the factors but now by taking the sum of the daily risk free rate of returns for 60 trading
days. Furthermore, we construct two-way sorted portfolios where we sort on (idiosyncratic) volatility
and market beta. We first sort on variance or idiosyncratic volatility and then we sort the stocks on the
market beta, where we use the CAPM beta as an estimate of the market beta. We make intersections
of quantile portfolios for both characteristics, such that we get 25 portfolios. Every monthly portfolio
return is based on b 377

25 c = 15 stocks, except for the lowest and highest (idiosyncratic) volatility port-
folios with the lowest market beta which are based on 16 stocks. We use 60 trading days to determine
the standard deviaton and market beta. By using the two-way MR test, we are able to jointly test for a
monotonic relation across market beta and (idiosyncratic) volatility.

We take B = 10, 000 to make sure we have enough bootstrap replications as we have a large N for the
stock sorts and we set θ = 10 as the average block length. For the portfolio sorts, we use S = 1, 000
simulation runs for the Wolak test. Again, for all tests we use the standardized version of the MR test
where we just take the same estimate of the long-run bootstrap variance for the Sharpe ratio as for the
expected returns. For all tests, we test for an increasing relation.

10



3 Results

3.1 Preliminary results
Before we discuss the results of the monotonic relation tests, we first discuss some summary statistics
of the portfolio and stock data. Table 1 shows that the average returns of portfolios sorted on variance
and momentum have a lower minimum average return than the other portfolios. Therefore, the stan-
dard deviation of their average returns is higher. The standard deviation of the standard deviations of
the portfolio returns are, however, lower for size and value sorts than for the variance, market beta and
momentum sorts. This also becomes clear from the minimums and maximums of standard deviation of
the the size and value , which are indeed further away from each other than for the other characteristics.

For the stock data, in the last five columns of table 1, we naturally see that the daily stock returns have a
much lower standard deviation of average returns than the monthly returns of the sorted stocks. Since
the statistics are based on a large number of individual stocks, their is always a return series which has
a negative average return. This explains the negative minimums of the average stock returns. Lastly,
we see that the statistics for the stocks sorted on variance and idiosyncratic volatility are all very close
to each other which could indicate that they have quite similar return series.

Table 1: Summary statistics of portfolio and stock data

Portfolios Stocks
VA BE ME BE-ME MOM All VA IV1 IV3 IV4

Std. 0.22 0.06 0.10 0.15 0.32 0.03 0.69 0.74 0.73 0.74
Mean Min. 0.37 0.90 0.85 0.82 0.21 -0.02 -0.60 -0.59 -0.56 -0.43

Max. 1.15 1.04 1.19 1.30 1.49 0.15 5.33 7.12 6.66 7.21
Std. 1.73 1.37 0.71 0.50 1.19 0.64 3.05 3.13 3.11 3.10

Std. Min. 3.28 3.45 4.19 4.33 4.31 1.11 4.24 4.37 4.40 4.33
Max. 8.81 7.87 6.31 6.08 8.03 4.65 30.22 28.23 27.93 31.27

Note: This table shows the standard deviation (Std.), minimum (Min.) and maximum (Max.) of the average returns (Mean) and standard
deviations of the portfolio ans stock returns. The sorting variables of the portfolios are variance (VA), market beta (BE), market-equity
(ME), book-to-market value (BE-ME) and momentum (MOM). For the stocks, we have a column that contains information on the daily
returns of the large-cap stocks which are not sorted. Also, we show the statistics of monthly returns of stocks sorted on variance and
idiosyncratic volatility based on the CAPM model (IV1), three factor model (IV3) and four factor model (IV4). The average returns and
standard deviations are in percentages. The sample period for the portfolio data is July 1963 - March 2017 and for the stock data 11 July
2001 till 28 April 2017f for the daily returns, August 2001 till April 2017 for the stocks sorted on variance and October 2001 till April 2017
for the stocks sorted on idiosyncatic volatility.

3.2 Portfolio sorts based on all-cap stocks

3.2.1 Average returns

We now discuss the results of the tests for monotonicity in the average returns. The first five columns
of table 2 show that the top-minus-bottom t-test only finds a significant top-minus-bottom spread for
book-to-market ratio (p-value of 0.013) and momentum (p-value of 0.000). Furthermore, we see that
the Wolak and Bonferroni test fail to reject the null of a (weakly) monotonic relation for all sorting vari-
ables, where the p-values are the highest for book-to-market ratio and momentum. The MR test only
rejects the null hypothesis in favour of a monotonic relation for book-to-market ratio with a p-value of
0.039, whereas the Up test also finds that at least a part of the pattern for momentum is monotonically
increasing with a p-value of 0.032. The last three columns of table 2 correspond to results of Patton and
Timmermann (2010) based on the same portfolios, but with a different sample. We see that the p-values
are quite similar despite the different sample such that we can draw the same conclusions as Patton
and Timmermann (2010).

From figure 1b we indeed observe that the relation between book-to-market ratio and return seems to
be monotonically increasing. The same holds for momentum, although this pattern has a more flat part
in the middle which could explain why the MR test does not reject the null hypothesis in favour of a
monotonic relation here. The pattern of market equity looks slowly decreasing or even flat. The relation
between market beta and average return in figure 1a also looks flat. In contrast, the pattern between
variance and returns seems to be slightly increasing, except for the highest two decile portfolios which
have very low returns compared to the rest. This observation is consistent with the finding of Ang et al.
(2006) that high volatility stocks have abnormally low returns.
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Table 2: p-values of monotonic relation tests in average returns

07/1963 - 03/2017 07/1963 - 12/2006
VA BE ME BE-ME* MOM* ME BE-ME* MOM*

t-test 0.080 0.599 0.084 0.013 0.000 0.062 0.005 0.000
Bonferroni test 0.481 0.606 0.661 1.000 1.000 1.000 1.000 1.000
Wolak test 0.410 0.309 0.552 0.962 0.897 0.736 1.000 0.873
MR test 0.638 0.564 0.552 0.039 0.166 0.274 0.000 0.291
Up test 0.380 0.270 0.621 0.032 0.000 0.737 0.045 0.000
Down test 0.115 0.442 0.068 0.968 0.964 0.051 1.000 0.954

Note: This table contains the p-values of monotonic relation tests of portfolios sorted on variance (VA), market beta
(BE), market equity (ME), book-to-market ratio (BE-ME) and momentum (MOM). For the variables with a star, we
test for an increasing relation and for all other variables for a decreasing relation. We use S = 1, 000 for the Wolak
test and B = 1, 000 and θ = 10 for the MR, Up and Down test. Also, we use the studentized version of these latter
three tests.
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Figure 1: Average monthly returns on decile portfolios sorted on variance, market beta, market equity
(ME), book-to-market ratio (BE-ME) and momentum (MOM) from July 1963 to March 2017

3.2.2 Risk-adjusted returns

Instead of average returns, we now look for monotonicity in risk-adjusted returns. Table 3 shows that
the top-minus-bottom differentials are significantly smaller than zero for all risk-adjusted return mea-
sures, except for the 4-factor α of the portfolios sorted on market beta (p-value of 0.083). The Wolak
and Bonferroni tests are again unable to reject the null hypothesis of a (weakly) decreasing monotonic
relation for both variance and market beta. The MR test, however, does not reject the null in favour of
a decreasing relation. The conclusions in terms of rejections are mostly the same as with the average
returns, but the p-values of the MR test (Wolak and Bonferroni tests) for risk-adjusted returns are way
smaller (higher) than for the average returns. This suggests that there is more evidence for a decreasing
relation in the risk-adjusted returns than for the average returns.

This also becomes clear when we look at the Down test. We find that for all risk-adjusted return mea-
sures and sorting variables at least a part of the pattern is monotonically decreasing with p-values
ranging from 0.001 to 0.045. Figure 2 also supports this, especially for the three highest decile portfo-
lios. However, the patterns between variance and risk-adjusted returns in figure 2a seems to be more
flat for the lower decile portfolios, which could explain that the MR test does not reject its null hy-
pothesis. We also find that the highest portfolio has abnormally low risk-adjusted returns compared
to the rest, which causes the t-tests to reject an equal top-minus-bottom return differential. The overall
patterns between market beta and risk-adjusted return in figure 2b seems to be decreasing, although
we cannot say that this relation is monotonic as there are lots of reversals of the relation between the
lowest and highest decile portfolio.
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Table 3: p-values of monotonic relation tests in risk-adjusted returns, July 1963 - March 2017

Variance Market beta
1-factor α 3-factor α 4-factor α 1-factor α 3-factor α 4-factor α

t-test 0.000 0.000 0.000 0.018 0.003 0.083
Bonferroni test 1.000 1.000 1.000 1.000 1.000 0.209
Wolak test 0.943 0.891 0.878 0.898 0.865 0.428
MR test 0.050 0.190 0.117 0.143 0.148 0.726
Up test 0.932 0.914 0.849 0.833 0.777 0.357
Down test 0.004 0.001 0.012 0.039 0.009 0.045

Note: This table contains the p-values of monotonic relation tests of portfolios sorted on variance and market beta.
We test for a decreasing relation of variance and market beta with the risk-adjusted return measures 1-factor alpha,
3-factor alpha and 4-factor alpha. We use S = 1, 000 for the Wolak test and B = 1, 000 and θ = 10 for the MR, Up and
Down test. Also, we use the studentized version of these latter three tests.
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Figure 2: Average monthly risk-adjusted returns (based on the CAPM model, three-factor model and
four-factor model) of decile portfolios sorted on variance and market beta from July 1963 to March 2017

3.2.3 Two-way sorts

We now discuss the results when we test for monotonicitiy in two-way sorted portfolios. Table 4 indi-
cates that we cannot reject the null hypothesis in favour of a joint monotonic relation (p-value of 0.963).
However, we see that there is a significant relation between size and return for the smallest three vari-
ance portfolios with p-values of 0.001, 0.003 and 0.043. The finding that there is no overall significant
relation between size and return (p-value of 0.988) across all variance portfolios, is due to the fact that
the high variance and small market equity portfolio has a very low return of 0.200 %. Figure 3a shows
this more clearly. We see that for the low variance portfolios there is a clear relation between the size
and return, but for the high variance portfolio this relation disappears. Furthermore, the conditional
MR tests do not reject the null hypothesis in favor of a monotonic relation between variance and return,
since there is only a decreasing relation for the small market equity and high variance portfolios. This
suggests that volatile small-cap stocks often perform worse in terms of their return than less volatile
small-cap stocks.

Table 5 shows that across all market beta portfolios, we reject the null hypothesis in favour of a decreas-
ing relation between size and return with a p-value of 0.030. Figure 3a also shows that this relation is
more present than in the case of the variance in figure 3b. However, we cannot reject the null hypoth-
esis of a (weakly) increasing relation between market beta and return, since the patterns seems to be
parabolic for the small market equity stocks and flat for the big market equity stocks. As a consequence,
we cannot find evidence for a joint monotonic relation across both market beta and market equity (p-
value of 0.750). Since the size effects are unable to explain the strange relation between market beta and
return, we can say that the size is indeed unrelated to the low-beta anomaly which is consistent with
the findings of Fama and French (1992).
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Table 4: Conditional and joint monotonicity tests for market equity and variance, July 1963 to
March 2017

Variance
Low 2 3 4 High MR p-value Joint MR p-value

Market equity
Small 1.407 1.548 1.464 1.160 0.200 0.855
2 1.300 1.431 1.428 1.302 0.668 0.812
3 1.148 1.227 1.344 1.273 0.829 0.880 0.723
4 1.084 1.137 1.169 1.145 0.866 0.401
Big 0.830 0.934 0.928 0.861 0.873 0.645

MR p-value 0.001 0.003 0.043 0.644 0.995
Joint MR p-value 0.988 0.963

Note: This table contains the average returns (in %) of the two-way sorted portfolios on market equity and variance and
the p-values of the corresponding joint and conditional monotonicity tests. Both across rows and columns, we test for a
decreasing relation. We use B = 1, 000 and θ = 10 and the studentized version of the MR tests.

Table 5: Conditional and joint monotonicity tests for market equity and market beta, July 1963 to
March 2017

Market beta
Low 2 3 4 High MR p-value Joint MR p-value

Market equity
Low 1.122 1.281 1.302 1.363 1.160 0.958
2 1.106 1.254 1.343 1.281 1.097 0.921
3 1.088 1.250 1.240 1.188 1.122 0.899 0.852
4 1.057 1.164 1.125 0.989 1.142 0.643
High 0.887 0.923 0.892 0.888 0.817 0.236

MR p-value 0.054 0.109 0.194 0.001 0.201
Joint MR p-value 0.030 0.750

Note: This table contains the average returns (in %) of the two-way sorted portfolios on market equity and market beta
and the p-values of the corresponding joint and conditional monotonicity tests. Both across rows and columns, we test
for a decreasing relation. We use B = 1, 000 and θ = 10 and the studentized version of the MR tests.
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Figure 3: Average monthly returns of two-way sorted portfolios for the combinations market equity
with variance and market beta from July 1963 to March2017
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3.3 Stock and portfolio sorts based on large cap stocks

3.3.1 Regression analysis

Here we discuss the results of regressing the stock returns on a constant and the standard deviation
of the stock returns. Figure 4 shows that the regression line of the average returns seems to be more
positive than the line of the risk-adjusted return measure, 3-factor alpha. This is conform the expec-
tation, since the relation between risk-adjusted return and risk is expected to be flat. We also observe
that the returns are more spread out for a higher standard deviation which suggests the presence of
heteroskedasticity, so it is good thing that we use the HAC standard errors instead of the normal OLS
standard errors since these are biased in case of heteroskedasticity.

In table 6 we see indeed that the the estimate of the slope parameter is bigger than the estimates for
the risk-adjusted returns. By using the HAC standard errors for the t-test, we find that the slope pa-
rameters of the fitted line for both the average return as the alphas are significantly different from zero.
However, when we use the FM standard errors we find that the slope parameters are not significantly
different from zero for the risk-adjusted return measures. This is due to the fact that the FM standard
errors are higher than the HAC standard errors, which suggests that there is a strong correlation be-
tween the different stock returns, since the FM standard errors correct for this correlation.

In the last column of 6 we find the R-squared of the regressions. We see that they are very low, especially
for the risk-adjusted returns, which means that the model does only explain a small part of the variation
in the returns. Also, when we reject a significant relation with this model it could by due to the fact
that we made a wrong assumption, namely that the relation is linear. Therefore, we need a more robust
way to test for a monotonic relation, namely with the monotonic relation tests, as they do not need to
make an assumption about a specific relation.
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Figure 4: Scatter plots of average returns and 3-factor alphas versus standard deviation of 377 S&P500
stocks based on daily returns from 11 July 2001 till 28 April 2017

Table 6: Estimation output of regressions based on daily returns of 377
stocks for the period 11 July 2001 till 28 April 2017

γ̂i HAC FM R2

S.E. p-value S.E. p-value
Average return 0.020 0.002 0.000 0.010 0.023 0.204
1-factor alpha 0.008 0.003 0.001 0.007 0.106 0.039
3-factor alpha 0.006 0.002 0.010 0.006 0.177 0.019
4-factor alpha 0.008 0.002 0.000 0.006 0.075 0.041

Note: This table contains the estimates of γi and the HAC and FM standard errors (S.E.)
with the corresponding p-values of the t-tests. The last column contains the R-squareds of
the regressions.
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3.3.2 One-way sorts

In this subsection we first discuss the results of the monotonic relation tests when we apply them on
the stock sorts formed on variance. Table 7 shows that the top-minus-bottom t-test finds a significant
increasing relation for all return measures based on stock sorts. Figure 5a shows that this is due to the
the very high return for the highest variance stock. The MR test, however, does not even once reject
the null hypothesis in favour of a monotonic relation with p-values ranging from 0.836 to 0.921. The
overall pattern, namely, seems to be more flat when we look at figure 5a. This is a clear example that
the top-minus-bottom can draw controversial conclusions, since it only looks only at the lowest and
highest ranked assets. The Up and Down test are both unable to find support for only a part in the
pattern which is monotonically increasing or decreasing.

In the last 4 columns of table 7, we find the p-values of the monotonic relation tests applied on port-
folios sorted on variance. Again, the top-minus-bottom t-tests find evidence for an increasing relation,
except for the 3-factor alpha (p-value of 0.070). The Wolak and Bonferroni test do not reject the null
hypothesis of a (weakly) increasing relation. The MR test, though, does not find a significant relation
between variance and return. On the other hand, the Up test shows that there is at least a part of the
pattern which is monotonically increasing for the average return and 4-factor alpha with p-values of
0.021 and 0.023 respectively. We can also see this in figure 5b, where the pattern, especially for the lower
variance portfolios, seems to be monotonically increasing.

The finding that there is some evidence for an increasing relation between variance and return, whereas
we found evidence for a decreasing relation in table3, is due to the fact that we now use large cap stocks
instead of all-cap stocks. In table 4 we already showed that the relation between variance and returns
seems to be more decreasing for small cap stocks and more flat or increasing for large cap stocks.
Instead of observing it in the two-way sorted portfolios, we now observe it more generally by looking
at the differences between large cap and all-cap stock returns.

Table 7: p-values of monotonic relation tests based on stocks and portfolios sorted on vari-
ance, August 2001 to April 2017

Stocks Portfolios
AVR Risk-adjusted returns AVR Risk-adjusted returns

1F α 3F α 4F α 1F α 3F α 4F α
t-test 0.000 0.002 0.002 0.002 0.008 0.044 0.070 0.003
MR test 0.908 0.836 0.882 0.921 0.342 0.605 0.706 0.546
Up Test 0.164 0.201 0.206 0.212 0.021 0.190 0.219 0.023
Down test 0.217 0.242 0.242 0.257 0.917 0.786 0.665 0.776
Bonferroni test - - - - 1.000 0.413 0.300 0.417
Wolak test - - - - 0.752 0.550 0.412 0.501

Note: This table contains the p-values of monotonic relation tests of stocks and portfolios sorted on variance. We
look at both the average returns (AVR) and the risk-adjusted return measures 1-factor alpha (1F α), 3-factor alpha
(3F α) and 4-factor alpha (4F α). We use S = 1, 000 for the Wolak test and B = 10, 000 for the MR, Up and Down
test. We use the studentized version of the MR, Up and Down test. We test for an increasing relation.
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Figure 5: Average monthly returns of stocks and portfolios sorted on variance for the period August
2001 to April 2017

We now discuss the monotonic relation tests on the portfolios and stocks sorted on idiosyncratic volatil-
ity. Panel A in table 8 shows that the p-values for stocks sorted on idiosyncratic volatility are similar
to the p-values in table 7 based on stocks sorted on variance. However, we see that the JKM test does
not reject equal top-minus-bottom Sharpe ratios for idiosyncratic volatility based on the CAPM model.
Also, the p-values of the Up and Down test for the stock sorts are higher in table 8 than they are in table
7, which suggests that there is less support for a part of the pattern that is monotonically decreasing for
stocks sorted on idiosyncratic volatility.

Panel B in table 8 shows that the top-minus-bottom tests reject equal return differentials. The Wolak
and Bonferroni tests also find significant evidence for an increasing relation by not rejecting the null
hypothesis. The MR test still does not reject the null hypothesis in favour of an increasing, although
the p-values are somewhat smaller than they are for the portfolios sorted on variance, especially for the
average returns of the portfolios sorted on the variance of the residuals of the CAPM and four facor
model with p-values of 0.062 and 0.135. We also observe this in figure 6a where the relation between
idiosyncratic volatility and return seems to be increasing. When we compare figure 6a with figure 5a,
we see that the patterns are pretty similar.

Moreover, the Up test rejects the null hypothesis in favour of a partly monotonic relation for almost all
return measures (p-values ranging from 0.002 to 0.039), except for the Sharpe ratios of the portfolios
based on idiosyncratic volatility of the CAPM and four factor model. Figure 6b shows that this is the
case for the lower four idiosyncratic volatility portfolios. We see that the Sharpe ratios of the portfolios
based on the three factor model has a slightly stronger increasing relation than for the CAPM and
four factor model, which explains the p-value of 0.039 for the Up test instead of the p-values of 0.116
and 0.056. The overall pattern between Sharpe ratio and idiosyncratic volatility does not seems to be
monotonically increasing which explains the higher p-values of the MR test than those of the MR test
based on average returns.
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Table 8: p-values of monotonic relation tests based on stocks and port-
folios sorted on idiosyncratic volatiliy, October 2001 to April 2017

Panel A: Stocks
IV1 IV3 IV4

AVR SR AVR SR AVR SR
t-test 0.000 0.065 0.000 0.029 0.000 0.027
MR test 0.770 0.396 0.701 0.934 0.995 0.998
Up Test 0.198 0.233 0.255 0.275 0.277 0.280
Down test 0.332 0.331 0.401 0.349 0.300 0.280
Panel B: Portfolios

IV1 IV3 IV4
AVR SR AVR SR AVR SR

t-test 0.003 0.022 0.002 0.012 0.001 0.008
MR test 0.062 0.153 0.574 0.775 0.135 0.549
Up Test 0.004 0.116 0.002 0.039 0.003 0.056
Down test 0.974 0.933 0.711 0.533 0.956 0.811
Bonferroni test 1.000 - 0.649 - 1.000 -
Wolak test 0.948 - 0.597 - 0.904 -

Note: This table contains the p-values of monotonic relation tests of stocks (Panel A) and portfolios
(Panel B) sorted on idiosyncratic volatility based on the CAPM model (IV1), three factor model (IV3)
and four factor model (IV4). We look at both the average return (AVR) and the Sharpe ratio (SR). The
p-values of the top-minus-bottom tests in the colums of the Sharpe ratios (SR) are based on the JKM
test and of the average returns on the t-tests. We use S = 1, 000 for the Wolak test and B = 10, 000 for
the MR, Up and Down test. We use the studentized version of the MR, Up and Down test.
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Figure 6: Average monthly returns and Sharpe ratios of stocks and portfolios sorted on idiosyncratic
volatility (IV) based on the CAPM model, three factor model and four factor model for the period
October 2001 to April 2017

3.3.3 Two-way sorts

Lastly, we discuss the results of two-way sorted portfolios on (idiosyncratic) volatility and market beta.
Table 9 shows that there is an significant increasing relation between variance and return across all
market betas (p-value of 0.010) and that this relation is also present for the conditional MR tests, except
the high market beta portfolio, with p-values ranging from 0.008 to 0.02. Figure 7a also shows this clear
monotonic pattern for all market betas between variance and return. The relation between market beta
and return, however, is not significant across all variance portfolios where the joint p-value is 0.448.
Figure 7a shows, namely, that the pattern seems to reverse. This is, for the low variance portfolio does
the highest market beta portfolio have the lowest average return, whereas for the high variance portfo-
lio the highest market beta portfolio has the highest average return. This phenomenon also happen for
the fourth quantile portfolio of the market beta, except than reversed.
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For the portfolios sorted on idiosyncratic volatility and market beta, we find similar results as we can
see in table 10. We find a significant increasing relation between idiosyncratic volatility and return with
a p-value is 0.004. This relation seems to be the strongest for the highest two market beta portfolios with
p-values of 0.000 and 0.006. The relation between market beta and return is still insignificant though.
We can also observe this in figure 7b. Only the low market beta portfolio has significantly lower average
returns than the rest, but all the other portfolios are mixed and therefore do not show a clear pattern.

Table 9: Conditional and joint monotonicity tests for variance and market beta, October 2001 till
April 2017

Market beta
Low 2 3 4 High MR p-value Joint MR p-value

Variance
Low 0.652 0.662 0.572 0.770 0.532 0.797
2 0.828 1.014 0.964 0.878 0.958 0.210
3 1.035 1.078 1.056 1.084 0.941 0.349 0.448
4 1.133 1.628 1.475 1.301 1.023 0.827
High 1.896 2.072 1.727 1.690 2.507 0.741

MR p-value 0.020 0.011 0.008 0.009 0.093
Joint MR p-value 0.010 0.360

Note: This table contains the average returns (in %) of the two-way sorted portfolios on variance and market beta and
the p-values of the corresponding joint and conditional monotonicity tests. We use B = 1, 000 and the studentized version
of the MR tests.

Table 10: Conditional and joint monotonicity tests for idiosyncratic volatility and market beta, October
2001 till April 2017

Market beta
Low 2 3 4 High MR p-value Joint MR p-value

Idiosyncratic volatility
Low 0.616 0.749 0.631 0.705 0.864 0.582
2 0.726 0.933 1.028 0.962 0.973 0.187
3 0.695 1.068 0.997 1.073 1.139 0.114 0.609
4 0.997 1.098 1.562 1.292 1.542 0.613
High 1.679 1.702 2.219 1.704 2.580 0.862

MR p-value 0.134 0.027 0.105 0.000 0.006
Joint MR p-value 0.004 0.501

Note: This table contains the average returns (in %) of the two-way sorted portfolios on idiosyncratic volatility and market beta
and the p-values of the corresponding joint and conditional monotonicity tests. We use B = 1, 000 and the studentized version
of the MR tests.
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Figure 7: Average monthly returns of two-way sorted portfolios formed on market beta and (idiosyn-
cratic) volatility from October 2001 to April 2017

4 Conclusion

We found significant evidence for a monotonic relation between book-to-market ratio and return and
somewhat weaker evidence for a relation between momentum and return. For the portfolios sorted
on variance, market beta and size, however, we can not find such significant evidence. We do show
that for the portfolios based on all-cap stocks, the relation between risk-adjusted return and risk seems
to be more decreasing than for the expected return, which indicates the presence of the low-volatility
anomaly, although, the relation is not significantly monotonically decreasing.

Furthermore, we saw that the highest decile portfolio sorted on variance, has a very low return com-
pared to the rest which is consistent with the findings of Ang et al. (2006). The consequence of this is
that the top-minus-bottom test finds a significant relation, whereas the MR test shows that this con-
clusion is wrong, which shows that the top-minus-bottom test is not always a good way to test for
a monotonic relation as Patton and Timmermann (2010) already stated. Also, we showed that there
seems to be a significant relation between variance and return for small-cap stocks, but that this rela-
tion is not present for large-cap stocks.

We saw with regression analysis that their seems to be a positive relation between the average return
and volatility, but a flat relation between risk-adjusted return and volatility. However, this conclusion
relies on the assumption that the relation between return and volatility is linear, which suggest that this
method is not a very robust way of testing for a significant relation. Also, we found that the relation
between (idiosyncratic) volatility and return seems to be increasing for large cap stocks, whereas it was
decreasing for all-cap stocks, although both relations are not significant. Lastly, we showed that their is
a significant relation between return and both volatility as idiosyncratic volatility when we control for
different market betas.

To summarize, we showed that the top-minus-bottom tests can give wrong conclusions about the pres-
ence of a monotonic relation. Also, we conclude that there is indeed an anomaly present in the risk-
return relation, although we generally find that this relation is not monotonic.
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