
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Bachelor Thesis Econometrics and Operational Research

Efficient Portfolio Selection in a Large Market
Supervised by Barendse S.

First reader is Keijsers B.

Abstract

The focus of this paper is on a portfolio rule that approaches the optimal Sharpe ratio in a large market with

a realistic amount of historical data and a well-chosen subspace, named “subspaceP mean-variance analysis”. This

portfolio rule carefully balances the tradeoff between the estimation error and the systematic error. A well-chosen

subspace is the key extension on the paper of Chen and Yuan (2016). Also a mathematical comparison is given for

the Markowitz (subspaceP) mean-variance portfolio with and without the constraint that the sum of the portfolio

holdings sums up to one. Another comparison is made between the subspaces PΣ and PCorr, that are created with the

eigenvectors of the covariance- or correlation matrix, by using the efficient frontier, the dimension of the subspaces and

a comparison over different investment opportunities. To give the last comparison, a mathematical explanation needs

to be given that an additional investment option could decrease the Sharpe ratio of the subspaceP mean-variance

portfolio.
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(1-7-2017)



1 Introduction

Diversification is a risk management technique that mixes a variety of risky assets within a portfolio. The number

and properties of these risky assets determine which portfolio rules are optimal. Many rules that exist have been

recently examined and compared by Tu and Zhou (2011), and DeMiguel et al. (2009). The Sharpe ratio (Sharpe,

1966), that is a measure for calculating risk-adjusted return, gives an indication which portfolio rules outperform

each other. The focus of this paper is on a portfolio rule that approaches the optimal Sharpe ratio in a large market

with a realistic amount of historical data and a well-chosen subspace. The name of this portfolio rule is “subspaceP

mean-variance analysis”. A well-chosen subspace is the key extension on the paper of Chen and Yuan (2016).

The Markowitz mean-variance analysis is used, see Markowitz (1952) and Markowitz (1959), to achieve the

optimal Sharpe ratio. The estimates of the first and second central moment conditions are used for the estimated

mean-variance analysis. However, to get meaningful moment estimators in a large market, the estimation window

should be unrealistic large. For example, just a näıve diversification, which simply assigns an equal weight to each

of the assets, already outperforms an estimated mean-variance portfolio in a large market (DeMiguel et al., 2009).

The main reason for this outperformance is that, when the market is large, one cannot realistically expect to have

enough historical data to do better than näıve diversification.

The solution for the problem mentioned above, the problem of an unrealistic large estimation window to get

meaningful moment estimators, is to reduce the amount of estimated parameters in the mean and covariance of the

asset returns. The reduction of parameters can be achieved by taking a linear subspace of RN , where N equals the

number of risky assets in the original market. A subspace for investment opportunities could be a set of portfolios,

including portfolios corresponding to the leading eigenvectors of the covariance- and/or correlation matrix of asset

excess returns. However, due to the selected subspace, an additional investment opportunity does not necessarily

mean that the portfolio composition achieves a better Sharpe ratio. It is even possible that an additional investment

opportunity results in a decrease of the Sharpe ratio. I will explain this phenomenon using mathematical methods.

As is logically the case with other portfolio rules, by introducing an additional investment opportunity, the Sharpe

ratio increase or remain equal due to diversification.

The choice of the linear subspace (P) plays an important role in the subspaceP mean-variance portfolio. Instead

of choosing only the subspace PΣ as the linear subspace spanned by the first d eigenvectors of the covariance matrix

(Σ), which is done by Chen and Yuan (2016), I will also choose PCorr as the linear subspace spanned by the first d

eigenvectors of the correlation matrix (Corr). Depending on the relative variances of the individual excess returns,

the eigenvectors of Σ and Corr can be quite different. Different eigenvectors for Σ and Corr results of course in

different subspaces PΣ and PCorr. These different subspaces results in different subspaceP mean-variance portfolios.

It is therefore interesting to look at the performance of PCorr relative to PΣ. This comparison takes place over the

dimension of the subspaces, the efficient frontier and, perhaps the most important one, over different investment

opportunities. Theoretically, the subspace PΣ should give higher Sharpe ratios than the subspace PCorr with the
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subspaceP mean-variance analysis. However, if an investment option meets certain characteristics, my self-made

subspace PCorr outperforms PΣ.

Gamma is an indispensable parameter for the comparison with the efficient frontier. The Markowitz subspaceP

mean-variance portfolio contains a gamma that did not get any attention in the paper of Chen and Yuan (2016).

This gamma is specified as the coefficient of the relative risk aversion. To evaluate the risk aversion, relative to

gamma, there will be a simulation over this parameter. For each value of gamma the simulation gives an optimal

portfolio composition. All these optimal portfolio compositions together, for each given γ and each subspace

P ∈ {PΣ,PCorr}, should give an indication of the efficient frontier. The two dimensional efficient frontier has the

standard deviation of the portfolio return on the x-axes and the expected return on the y-axes. Finally, the highest

expected return for a defined level of risk is achieved by one of the two subspaces. So a conclusion can be made

about the optimal choice of the subspace P for the subspaceP mean-variance analysis.

It will be shown that the Sharpe ratio, achieved by the Markowitz subspaceP (PCorr or PΣ) mean-variance

analysis mentioned above, approaches the global optimal Sharpe ratio of the entire market that is calculated via

the Markowitz mean-variance analysis. This is done on a theoretical way and a practice-oriented way, where real

and simulated data sets are used for the practice-oriented way. The asset returns for the simulated data set are

driven by systematic risks, which are represented by three research factors. The three factors are simulated from

a multivariate normal distribution with the mean and covariance, calibrated from monthly data of July 1963 till

August 2007, of the market portfolio, Small Minus Big(SMB) and High Minus Low(HML). The correctness of

explaining systematic risks by marketwide factors is confirmed by numerous studies (see, e.g., Connor et al. (2010)).

2 Literature review

Harry Markowitz (Markowitz, 1952) considered the rule that the investor should consider expected return as a

desirable thing and variance of return an undesirable thing. However, the desirable part and the undesirable part

do not have to be assigned the same weight in the portfolio selection. This is due to the risk tolerance factor. The

risk tolerance factor has a one-to-one relationship with the efficient frontier, this is explained in Best and Grauer

(1991). This efficient frontier is the set of optimal portfolios that offers the highest expected return for a defined

level of risk or the lowest risk for a given level of expected return.

The choice of the linear subspace, in the subspaceP mean-variance analysis, determines how close the portfolio

is to the efficient frontier. It determines whether the maximum expected return is achieved for a defined level of

risk. In other words, the subspace P determines if it is possible to achieve a portfolio composition that lies nearby

the efficient frontier. Chen and Yuan chose P to be the linear subspace spanned by the first d eigenvectors of the

variance-covariance matrix, this is also suggested by Carrasco and Noumon (2013). The subspaceP mean-variance

analysis and the Principal Component Analysis (PCA) use both eigenvectors of the variance-covariance matrix for

their analysis. The PCA however, sometimes also derives the eigenvectors of the correlation matrix. Wold et al.
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(1987) claimed that it is well known that the principal components are not independent of the scales in which the

original returns are measured. So the eigenvectors, and thereby also the subspace P, are likewise dependent on the

scales in which the original returns are measured. Wold, Esbensen and Geladi (1987) recommended to derive the

principal components from the correlation matrix. The scaling is essential because PCA is a least squares method,

which makes variables with large variance have large loadings. To avoid this bias, it is customary to standardize

the data matrix so that each column has a variance of one. Standardizing the data matrix and then taking the

variance-covariance matrix is of course the same as taking the correlation matrix of the unstandardized data matrix.

Taking the eigenvectors of the correlation matrix is done because each variable has the same influence on the PC

model. This is why it is very interesting to look at the Markowitz subspaceP mean-variance analysis for the subspace

spanned by the first d eigenvectors of the correlation matrix.

3 Data

Kenneth R. French is well known for his research on the three-factor model (Fama and French, 1993). He is

considered as an expert on the behavior of security prices and investment strategies.

3.1 Data for simulation

The Fama-French factors are constructed using the six value-weighted portfolios formed on size and book-to-market.

The six portfolios are the combinations of two portfolios formed on Market Equity (ME) and three portfolios formed

on the ratio of Book Equity to Market Equity (BE/ME). The grouping of the six value-weighted portfolios are

Median ME

70th BE/ME percentile
Small Value Big Value

30th BE/ME percentile
Small Neutral Big Neutral
Small Growth Big Growth

With these portfolios, the following three Fama-French factors are constructed:

• Small Minus Big (SMB), is the average return on the three small portfolios minus the average return on the

three big portfolios:

SMB = 1
3 (Small Value + Small Neutral + Small Growth)− 1

3 (Big Value + Big Neutral + Big Growth).

• High Minus Low (HML), is the average return on the two value portfolios minus the average return on the

two growth portfolios:

HML = 1
2 (Small Value + Big Value )− 1

2 (Small Growth + Big Growth).

• The excess return on the market:

excess returnmarket = rm − rf .
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In Fama and French (1993) there is more explanation about the factor returns. The monthly Fama-French data

from July 1963 to August 2007, that is constructed according to the methodology above, can be found on http:

//mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

3.2 Data empirical illustration

In the empirical illustration, specific portfolio returns are used. The Fama-French 25 (5 × 5) and 100 (10 × 10)

portfolios are formed on size and book-to-market. The returns of the 25 portfolios are an equal-weighted combination

of one out of five portfolios formed on Market Equity (ME) and one out of five portfolios formed on the ratio of

Book Equity to Market Equity (BE/ME). The returns of the 100 portfolios are an equal-weighted combination of

one out of ten portfolios formed on Market Equity (ME) and one out of ten portfolios formed on the ratio of Book

Equity to Market Equity (BE/ME). The data set that will be used is from January 1961 to December 2010 and

can be found on http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

4 Methodology

4.1 SubspaceP Mean-Variance Analysis

The Markowitz mean-variance portfolio is given as the solution to

min
w∈RN

{γ
2

wTΣw−wTE
}

where Σ ∈ RN×N , E ∈ RN (1)

solution: L(w) =
γ

2
wTΣw−wTE

∇wL(w) = γΣw− E = 0 ⇔ wmv =
1

γ
Σ−1E.

E and Σ are the mean and variance of r respectively, where r ∈ RN is the return of the assets in excess of a risk-free

rate and N equals the number of risky assets in the original market. The solution of the minimization in Equation

1, denoted as the mean-variance efficient portfolio (wmv), achieves the highest possible Sharpe ratio (s(wmv)) for a

given γ (Chen and Yuan, 2016):

s(wmv) = max
w∈RN

{s(w)}

= max
w∈RN

{
wTE

(wTΣw)
1/2

}
where wmv =

1

γ
Σ−1E.

(2)
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Obviously, the mean-variance portfolio is something theoretical, because investors do not know E and Σ. So the

goal is to find a practical portfolio rule that achieves the best possible approximation of the mean-variance portfolio.

Using meaningful estimators of E and Σ could be such a practical portfolio rule. Meaningful moment estimators

can be achieved in a small market with a realistic amount of historical data. However, to get meaningful moment

estimators in a large market, the estimation window should be unrealistic large. This is caused by the increasing

number of parameters in the mean and covariance of the asset returns if the size of the market increases. The

consistent estimators of both moment conditions, with rt the excess return in month t in the estimation window

[1, T ], are given by

Ê =
1

T

T∑
t=1

rt, and Σ̂ =
1

T − 1

T∑
t=1

(rt − r̄)(rt − r̄)T . (3)

Then the estimated mean-variance portfolio, or better known as the sample mean-variance portfolio, can be calcu-

lated as follows:

ŵmv =
1

γ
Σ̂−1Ê. (4)

In case of a large estimation window for a small market, the sample mean-variance portfolio is efficient. If neither the

estimation window is large nor the market is small, the estimated moment conditions become useless. Unfortuna-

tely, these poor estimations result in a useless portfolio composition where the Sharpe ratio is considerably small.

So useless portfolio compositions are the result of using the sample mean-variance analysis in a large market.

The reason for this is that the large number of parameters in the mean and covariance all need to be estimated. A

solution to this problem would be to reduce the number of estimated parameters. This reduction is possible if w

is not an element of the whole RN , but of a carefully selected linear subspace P with a specific span. The span is

defined as span{v1, . . . ,vk} = {t1v1 + · · · + tkvk : t1, . . . , tk ∈ R}, with v1, . . . ,vk the leading eigenvectors of the

covariance- or correlation matrix. The estimated parameters are given by t1, . . . , tk, where k � N . The portfolio

composition within a subspace is given as the solution to the Markowitz subspaceP mean-variance analysis:

min
wPd ∈P

{γ
2

wP
T

d ΣwPd −wP
T

d E
}

where P ∈ {PΣ,PCorr} . (5)

If E and Σ, in Equation 5, are given by the mean and variance of the return of the assets respectively, instead

of the mean and variance of the excess return of the assets, the fraction γ
2 has the following interpretation: The

fraction γ
2 is the risk tolerance factor, where γ →∞ results in the portfolio with minimal risk and γ → 0 results in a

portfolio infinitely far on the efficient frontier with both risk and expected return unbounded. The efficient frontier

is the curve that shows all efficient portfolios in a risk-return framework. These efficient portfolios are defined as

the portfolios that minimize the risk subject for a given expected return, or equivalently to minimize Equation 5

with E and Σ the mean and variance of the return respectively.
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To give the solution of the Markowitz subspaceP mean-variance portfolio, some notation needs to be introduced.

PP , in Equation 6, is a N × d matrix whose columns are an orthonormal basis of P. Additionally, for xP ∈ Rd and

PPxP ∈ P, the map Rd → P : xP 7→ PPxP = wPd is injective and surjective. So the solution of Equation 5 is given

by:

L(xP) =
γ

2
(PPxP)

T
Σ (PPxP)− (PPxP)

T
E

∇xPL(xP) = γPTPΣPPxP − PTPE = 0 ⇔ xP =
1

γ

(
PTPΣPP

)−1
PTPE

⇒ wPmv,d :=
1

γ
PP
(
PTPΣPP

)−1
PTPE. (6)

However, the portfolio composition of Chen and Yuan (2016) does not use the constraint that the portfolio weights

have to sum up to one. This gives very difficult interpretable results. Namely, a solution of the Markowitz

(subspaceP) mean-variance analysis gives a portfolio composition where only a fraction of the amount you want

to invest is being invested. The self-made Markowitz (subspaceP) mean-variance portfolio with constraint, the

constraint that the sum of the portfolio weights sum up to one, is denoted as wmv
∗ (wPmv,d

∗
) and is given by:

wmv
∗ := wmv +

1

γ

(
γ − ETΣ−1ι

ιTΣ−1ι

)
Σ−1ι (7)

wPmv,d

∗
:= wPmv,d +

1− 1
γ ι
TPP

(
PTPΣPP

)−1
PTPE

ιTPP
(
PTPΣPP

)−1
PTP ι

PP
(
PTPΣPP

)−1
PTP ι. (8)

I have given the proofs of the Equations 7 and 8 in Appendixes B and C respectively, but there will not be a further

discussion in this paper about the the Markowitz (subspaceP) mean-variance analysis subject to the constraint

mentioned above.

In the following two equations there will be a more specific solution given for each subspace discussed in this

paper, the subspace PΣ of Chen and Yuan and my own subspace PCorr, of the Markowitz subspaceP mean-variance

portfolio. The solution of the Markowitz subspaceΣ mean-variance portfolio is more concisely written down in

Equation 9, with a self-made step-by-step procedure that uses orthogonal diagonalization, for the linear subspace

PΣ. This subspace is spanned by the first d eigenvectors of Σ. By taking PPΣ = [η1, · · · , ηd] (PΣ = [η1, · · · , ηN ]),
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with ηi and θi the eigenvector and eigenvalue of Σ respectively, the solution for subspace PΣ is given by

wPΣ

mv,d :=
1

γ
PPΣ

(
PTPΣ

Σ PPΣ

)−1
PTPΣ

E

=
1

γ
PPΣ

(
PTPΣ

PΣ DΣ PTΣ PPΣ

)−1
PTPΣ

E with DΣ = diag(θ1, · · · , θN )

=
1

γ
PPΣ




1 · · · 0 · · · 0
...

. . .
...

...

0 · · · 1 · · · 0



θ1 · · · 0
...

. . .
...

0 · · · θN





1 · · · 0
...

. . .
...

0 · · · 1
...

...

0 · · · 0





−1

PTPΣ
E

=
1

γ
PPΣ


1
θ1
· · · 0

...
. . .

...

0 · · · 1
θd

PTPΣ
E

=
1

γ

[
1
θ1
η1 · · · 1

θd
ηd

] [
η1 · · · ηd

]T
E =

1

γ

d∑
k=1

1

θk
ηkη

T
k E where θ1 ≥ θ2 ≥ . . .

(9)

The solution in Equation 6 is more concisely written down in Equation 10, with a self-made step-by-step procedure

that uses orthogonal diagonalization, for my own linear subspace PCorr. This subspace is spanned by the first d

eigenvectors of Corr. By taking PPCorr
= [η1, · · · , ηd] (PCorr = [η1, · · · , ηN ]), with ηi and θi the eigenvector and

eigenvalue of Corr respectively, the solution for subspace PCorr is given by

wPCorr

mv,d :=
1

γ
PPCorr

(
PTPCorr

ΣPPCorr

)−1
PTPCorr

E

=
1

γ
PPCorr

(
PTPCorr

Dσ Corr Dσ PPCorr

)−1
PTPCorr

E with Dσ = diag(σ11, · · · , σNN )1/2

=
1

γ
PPCorr

(
PTPCorr

Dσ PCorr DCorr P
T
Corr Dσ PPCorr

)−1
PTPCorr

E with DCorr = diag(θ1, · · · , θN ).

(10)

An element of I = PTPCorr
Dσ PCorr DCorr P

T
Corr Dσ PPCorr

is given by the expression

I(i, j) =

N∑
k=1

θk
([
ηTi eσ1

ηTi eσ2
· · · ηTi eσN

]
ηk
) ([

ηTj eσ1
ηTj eσ2

· · · ηTj eσN

]
ηk
)

for i, j = 1, . . . , d, (11)

where eσk
is the kth column of diag(σ11, · · · , σNN )1/2, eσk

=
[
0 · · · √σkk · · · 0

]T
. The set of eigenvectors (PCorr)

is already an orthonormal basis, so the eigenvectors per set are pairwise orthogonal when their eigenvalues are

different and the eigenvectors have an Euclidean norm of 1. The proof of Equation 11 is given in Appendix D.
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The subspaceP mean-variance portfolio is again a theoretical measurement, because of the unknown Σ and

E. To use this portfolio rule in practice, we need to estimate these moment conditions with Equation 3 and use

the eigenvectors and eigenvalues of Σ̂ and ˆCorr in Equations 9 and 10. The estimated subspaceP mean-variance

portfolios, for P ∈ {PΣ,PCorr}, are given by

ŵPΣ

mv,d =
1

γ

d∑
k=1

1

θ̂k
η̂kη̂

T
k Ê

ŵPCorr

mv,d =
1

γ
P̂PCorr

Î−1P̂TPCorr
Ê.

(12)

If the number of eigenvectors in the orthonormal basis of the subspace equals the number of risky assets in the

market (dim (P) = N), then the sample mean-variance portfolio is the same as the estimated subspaceP mean-

variance portfolio given above. Namely, the linear subspace spanned by N eigenvectors is equal to the space RN .

So in mathematical notation:

ŵmv = ŵPmv,d=N

(
= ŵPΣ

mv,d=N = ŵPCorr

mv,d=N

)
. (13)

As indicated in Equation 13, the choice of d = dim(P) is important, knowing that the estimated subspaceP

mean-variance portfolio for d = N is a poor portfolio rule in a large market. There is namely a trade-off between

two errors when the subspace dimension vary:

s(wmv)− s(ŵPmv,d) = [s(wPmv,d)− s(ŵ
P
mv,d)] + [s(wmv)− s(wPmv,d)]. (14)

The first error is referred to as the estimation error and the second error is referred to as the systematic error. The

estimation error measures the loss of optimality due to the estimated moments, also depends on the size of the

estimation window, whereas the systematic error is due to less investment options.

4.2 A decreasing Sharpe ratio as a result of an additional investment option

In this section there will be a mathematical explanation about the magnitude of the Sharpe ratio relative to the

number of different investment opportunities. Logically, by adding an additional investment opportunity, the Sharpe

ratio should increase or remain equal due to diversification. It should not be possible for the Sharpe ratio to fall

whenever an additional investment opportunity is introduced. However, it is possible for the subspaceP mean-

variance analysis due to the selected subspace. This decreasing Sharpe ratio as a result of an additional investment

option, for the subspaceP mean-variance portfolio, will be further explained below. This phenomenon could have

consequences for how many assets investors have to incorporate in their investment strategy.
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Let PRN ⊆ RN and PRN+1 ⊆ RN+1 be different subspaces of investment compositions. These subspaces are

constructed out of the leading eigenvectors of the covariance- or correlation matrix and are used in the subspaceP

mean-variance analysis. The only reasonable assumption that will be made for explanatory purposes is that the

number of different investment compositions is finite, or in other words |PRN | <∞ and |PRN+1 | <∞. Reasonable, as

an example, because of transaction costs. Because of this assumption, the subspaces PRN ⊆ RN and PRN+1 ⊆ RN+1

can made visible via a set diagram in Figure 1. Obviously, the two subspaces are disjoint, PRN ∩ PRN+1

= ∅. This

is because of the different dimension of the elements of the subspaces PRN

= {{w̄1}, · · · , {w̄k}} and PRN+1

=

{{w̄1∗}, . . . , {w̄m∗}}, where w̄i =
[
wi1 · · · wiN

]T (
|w̄i| = N

)
with i = 1, . . . , k and w̄j∗ =

[
w̃j1 · · · w̃jN+1

]T
(
|w̄j∗| = N + 1

)
with j = 1, . . . ,m.

Figure 1: The left panel contains a Venn diagram in RN and the right panel contains a Venn diagram in RN+1. All

dots represent different investment compositions of dimension N , left panel, or dimension N + 1, right panel. PRN

and PRN+1

are subspaces made out of the leading eigenvectors of the covariance- or correlation matrix.

Because of the disjoint subspaces, explained above, there can not be any comparison between the sets in the left

and right panel of Figure 1 without doing any modifications. However, a comparison between the two subspaces is

needed to verify if it is possible that the subspacePRN+1 mean-variance portfolio has a smaller Sharpe ratio than the

subspacePRN mean-variance portfolio. To compare the subspaces, another set diagram needs to be introduced that

contains the transformed subspaces PR
N and PR

N+1 of the subspaces PRN

and PRN+1

respectively. Let the subspace

PR
N contain the k ×N possible investment holdings that occur in the subspace PRN

:

PR
N = {{w1

1}, . . . , {w1
N}, {w2

1}, . . . , {w2
N}, . . . , {wk−1

1 }, . . . , {wk−1
N }, {wk1}, . . . , {wkN}}

= {{w1
1}, . . . , {wk1}, {w1

2}, . . . , {wk2}, . . . , {w1
N−1}, . . . , {wkN−1}, {w1

N}, . . . , {wkN}}

= {w1, w2, . . . , wN−1, wN} where wq = {{w1
q}, . . . , {wkq }} for q = 1, . . . , N.

The subset wq contains all the different holdings for asset q from the subspace PR
N , so wq ⊆ PR

N ⊆ R. Finally, let
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the subspace PR
N+1 contain the m× (N + 1) possible investment holdings that occur in the subspace PRN+1

:

PR
N+1 = {{w̃1

1}, . . . , {w̃1
N+1}, {w̃2

1}, . . . , {w̃2
N+1}, . . . , {w̃m−1

1 }, . . . , {w̃m−1
N+1}, {w̃

m
1 }, . . . , {w̃mN+1}}

= {{w̃1
1}, . . . , {w̃m1 }, {w̃1

2}, . . . , {w̃m2 }, . . . , {w̃1
N}, . . . , {w̃mN }, {w̃1

N+1}, . . . , {w̃mN+1}}

= {w1∗, w2∗, . . . , wN∗, wN+1∗} where wq‘∗ = {{w̃1
q‘}, . . . , {w̃mq‘ }} for q‘ = 1, . . . , N,N + 1

The subset wq‘∗ contains all the different holdings for asset q‘ from the subspace PR
N+1, so wq‘∗ ⊆ PR

N+1 ⊆ R. It

holds that both subspaces PR
N and PR

N+1 are finite. This can be concluded from the assumption made earlier, that

|PRN | < ∞ and |PRN+1 | < ∞, so k ×N < ∞ and m × (N + 1) < ∞. Because both subspaces PR
N and PR

N+1 are

finite, they can made visible via a set diagram in Figure 1. For illustrative purposes, N is equal to 5 in this figure.

It holds by construction that the cardinality of the finite subset wq equals k, |wq| = k <∞
(
|wq‘∗| = m <∞

)
for ∀q (∀q‘). Then the first draw out of PR

N

(
PR
N+1

)
is from an arbitrary subset wq (wq‘∗), so the first draw has

k ×N (m× (N + 1)) different options and is the qth (q‘th) element of the vector w̄i (w̄j∗). Knowing the first draw

from PR
N

(
PR
N+1

)
, the remaining N −1 (N + 1−1) drawings from the remaining subspaces wq (wq‘∗), to fill the the

vector w̄i (w̄j∗), are fixed. This is due to the known investment compositions in the left (right) panel of Figure 1.

By adding one extra investment opportunity, the eigenvectors of the covariance- or correlation matrix will change.

The span of the leading eigenvectors, that made the subspaces PRN

and PRN+1

, will shift or change completely

because of the change in the eigenvectors. However, there can still be an overlapping part of the subspaces PR
N

and PR
N+1, as shown in Figure 2. By the shift of the subspace PR

N+1, new investment opportunities are joining

or disappearing. Perhaps better investment opportunities arise in PR
N+1 due to this shift, but more importantly,

perhaps the best investment composition in subspace PR
N disappears and no better one arises in the subspace PR

N+1!

This disappearance means that the best investment opportunity of the set PR
N ∪ PR

N+1 is in the subset PR
N \ PR

N+1

of Figure 2. In this case, a drop of the Sharpe ratio is the result after adding one investment opportunity.

Figure 2: This Venn diagram contains two different subspaces PR
N (gray area with thin borders) and PR

N+1 (white
area with thick borders) in R. All dots represent a one dimensional holding. For illustrative purposes there is an
overlapping part of the subspaces (PR

N ∩ PR
N+1), so the same holdings are in both subspaces. There are holdings

only present in PR
N (PR

N \ PR
N+1) and holdings only present in PR

N+1 (PR
N+1 \ PR

N ). The subspace w6∗ contains the

(N + 1)th investment holdings.
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4.3 Econometric Properties

In this section, the theoretical explanation will be given that in a large market the Sharpe ratio, achieved by the

estimated subspaceP mean-variance analysis, approaches the optimal Sharpe ratio, achieved by the global mean-

variance analysis. The assumption is made that the systematic risk, some undiversifiable risk, of the portfolio excess

returns (rt = [r1t, . . . , rNt]
T ) is due to systematic risk factors:

rjt = αj + βj1f1t + · · ·+ βjKfKt + εjt j = 1, . . . , N ; t = 1, . . . , T. (15)

Or this factor model in matrix notation:

rt = α+Bf t + εt t = 1, . . . , T, (16)

where αj (α = [α1, . . . , αN ]T ) is the Jensen’s alpha (Jensen, 1968) that is assumed to be equal to zero, fjt

(f t = [f1t, . . . , fKt]
T ) is the jth common factor, βji (B is the N×K matrix) is the factor loading for asset j on factor

i and εjt (εt = [ε1t, . . . , εNt]
T ) is the idiosyncratic component or asset-specific factor. The factor realizations f t are

assumed to be stationary with unconditional moments E(f t) = µf > 0 and V (f t) = E[(f t−µf )(f t−µf )T ] = Σf .

The asset specific terms εjt are assumed to be uncorrelated with each of the common factors fjt. Finally, the

assumption that the error terms εjt are serially uncorrelated and contemporaneously uncorrelated across assets, so

the variance-covariance matrix of the idiosyncratic risks is equal to the diagonal matrix Σε. As a result, the true

covariance matrix of the excess returns equals:

Σ = E
{

(rt − E(r)) (rt − E(r))
T
}

= E
{(
B(f t − µf ) + εt

) (
B(f t − µf ) + εt

)T}
= BE {(f t − µf )(f t − µf

)
T
}
BT + E

{
εtε

T
t

}
= BΣfB

T + Σε.

(17)

In Appendix A, multiple assumptions about the approximate factor model are made. Because of these previ-

ous assumptions, the main result can be introduced in Equation 18, which is proven in Chen and Yuan (2016).

This equation shows that the optimal Sharpe ratio achieved by the Markowitz subspaceP mean-variance portfolio

approaches asymptotically, in a large market and estimation window, the optimal Sharpe ratio of the entire market.

s2(ŵPmv,d=K) = s2(wmv) +Op(T
−1/2 +N−1/2). (18)

The number of factors for this equation, K, in the Data Generated Process (DGP) is of course unknown. However,

11



Bai and Ng (2002) developed a method to obtain a consistent estimation of the number of factors in the DGP:

K̂P = arg max
1≤k≤kmax

log

∑
j>k

θ̂Pj

+
k(N + T )

NT
log

(
NT

N + T

) with kmax = 8 and P ∈ {PΣ,PCorr} . (19)

The estimated eigenvalues in Equation 19 are the eigenvalues of Σ̂ or ˆCorr. If P{K̂P = K} → 1 as N,T → ∞,

Equation 18 can also be used for d = K̂P .

5 Results

The main result of Section 4 was that the Sharpe ratio, achieved by the subspaceP mean-variance analysis, ap-

proaches theoretically the global optimal Sharpe ratio of the entire market, that is calculated via the Markowitz

mean-variance portfolio. In this section this will be shown in a practice-oriented way instead of a theoretical way,

where simulated and real data sets are used. Because of the great similarities in the simulated results of the two

subspaces PΣ and PCorr, only the results for the subspace PCorr will be given. However, both subspaces will be

represented in the empirical illustration.

5.1 Simulation

Stochastic simulations reproduce the behavior of the economy using a mathematical model. The mathematical

model in this paper will be a Fama-French three-factor model (Craig MacKinlay and Pástor (2000), DeMiguel et al.

(2009) and Tu and Zhou (2011) use the same simulation setup). The economy is represented by a number of risky

assets (N = 25, 100). The returns of these risky assets are driven by systematic risks that are represented by three

simulated research factors. The three factors are simulated from a multivariate normal distribution with the mean

and covariance, calibrated from monthly data of July 1963 till August 2007, of the market portfolio, Small Minus

Big (SMB) and High Minus Low (HML). The factor loadings needs to be generated from a uniform distribution of

a specific interval. These carefully chosen intervals are common in an estimated Fama-French model:

Loading for the market : βm ∼ U(0.9, 1.2)

Loading for the size : βs ∼ U(−0.3, 1.4)

Loading for the book-to-market : βbm ∼ U(−0.5, 0.9).

12
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Figure 3: The simulation results are averaged over 1000 data sets that are constructed with a Fama-French three-
factor model. The averaging takes place over the relative efficiency, where the relative efficiency equals the ratio
s(ŵPCorr

mv,d )

s(wmv) . Each panel shows the relative efficiency of a specific market size (N = 25, 100) and estimation window

(T = 60, 120, 240). All these panels iterate over the dimension of the subspace d = dim(PCorr). The gray horizontal
lines represent the average ratio of Sharpe ratio of the naive diversification over the Sharpe ratio of the true
mean-variance portfolio.

First, it is interesting to investigate for which dimension of the subspace PCorr the Sharpe ratio of the estimated

subspaceCorr mean-variance portfolio approaches the Sharpe ratio of the true Markowitz mean-variance portfolio.

This investigation is done by increasing the dimension d with step sizes of 1 to 25 (N = 25) or to 60 (N = 100).

The main goal of this investigation is to find a dimension that minimizes the summation of the estimation- and

systematic error, see Equation 14. The systematic error is simply too large for dimension d = 1, 2. So apparently, the

selected handful of options from all possible investment options, selected by the subspace PCorr of dimension one or

two, does not contain good enough investment options. For dimension d > 3, the estimation error increases rapidly

and more intense when the dimension increases. So apparently with a fixed estimation window, the estimation

results of the moment conditions (Equation 3) deteriorate more intense when the dimension increases above three.

The minimization of Equation 14 occurs for all panels in Figure 3 at dimension d = 3. The precise number of

factors K in the Data Generated Process is in an empirical example of course unknown, but it is known in a
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Figure 4: The simulation results are averaged over 1000 data sets that are constructed with a Fama-French three-
factor model. The averaging takes place over the Sharpe ratio of the true mean-variance portfolio (circles), the
estimated subspaceCorr mean-variance portfolio (triangles), the naive diversification (pluses) and the sample mean-
variance portfolio (crosses).

simulation example. The returns are generated in this simulation example with three research factors (K = 3).

Then the practical minimization of Equation 14 at dimension d = 3 in Figure 3, can also be theoretically confirmed

by Equation 18.

To get an idea of the performance of the estimated subspaceCorr mean-variance portfolio in Figure 3, the naive

diversification is also reported. There can be seen that the estimated subspaceCorr mean-variance portfolio performs

better than naive diversification for a wide range of choices for d then only dimension d = 3.

Second, it is interesting to compare the motions of different portfolio rules as the number of assets, in which can be

invested, increases. The comparison takes place over the Sharpe ratio of the true mean-variance portfolio (normally

unobserved), the estimated subspaceCorr mean-variance portfolio, the naive diversification and the sample mean-

variance portfolio. The number of factors in the DGP, knowing that this is equal to three, is still being estimated

using Equation 19. For the estimated subspaceCorr mean-variance portfolio is the dimension of the subspaceCorr

equal to K̂PCorr . It can be seen immediately, from Figure 4, that the estimated subspaceCorr mean-variance portfolio

outperforms the other portfolio rules for every estimation window and for every number of assets.
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Figure 5: The simulation results are averaged over 1000 data sets that are constructed with a Fama-French three-
factor model. Due to a simulation, with an estimation window of T = 120 and with N = 100 risky assets, is
a comparison possible. The left panel compares the holdings of the sample mean-variance portfolio (circles) and
the subspaceCorr mean-variance portfolio (crosses). The right panel compares the holdings of the mean-variance
portfolio (x-axes) and the subspaceCorr mean-variance portfolio (y-axes).

Thirdly, a desirable feature of the estimated subspaceP mean-variance portfolio is stability. In the left panel of

Figure 5, are the holdings given of the sample- and estimated subspaceCorr mean-variance portfolio. The holdings

for the subspaceCorr mean-variance portfolio have exactly the same scale as the subspaceΣ mean-variance portfolio,

which is again the reason that only one of them is showed in this figure. The conclusion of this panel is, that the

scale of short and long investments of the subspaceCorr mean-variance portfolio is way smaller than the holding scale

of the sample mean-variance portfolio. The left panel compares the holdings of the unobserved true mean-variance

portfolio (with the unobserved Σ and E) and the estimated subspaceCorr mean-variance portfolio. It can be seen

that investments for the true mean-variance portfolio are from a similar scale as investments for the estimated

subspaceCorr mean-variance portfolio. This can be seen in the right panel of Figure 5, because the scatters are

around the 45 degree line.
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Figure 6: The simulation results of 1 data set that is constructed with a Fama-French three-factor model. A
simulation with an estimation window of T = 120, 240 and with N = 100 risky assets is the rebalancing cost given
over 50 years in boxplots for the subspaceCorr mean-variance portfolio and the sample mean-variance portfolio.

Fourth and lastly, the rebalancing costs are given over 50 years in a boxplots for the estimated subspaceCorr

mean-variance portfolio and the sample mean-variance portfolio. The rebalancing costs are of course highly positive

correlated with the following turnover variable:

Turnovert :=

N∑
j=1

|wt+1,j −wt,j |. (20)

Figure 6 shows that the turnover in 50 years is way larger for the sample mean-variance portfolio than for the

estimated subspaceCorr mean-variance portfolio. In other words, because of the high correlations mentioned earlier,

the rebalancing cost for the sample mean-variance portfolio is over time, on average, more expensive than the

rebalancing cost of the estimated subspaceCorr mean-variance portfolio.

5.2 Empirical illustration

In this section is represented how the subspaceP mean-variance analysis responds to a non-simulated data set.

The data set from January 1961 till December 2010 is used to do the empirical illustration, see Section 3.2 for

more explanation. A rolling-window approach is used over this data set to estimate for each window the portfolio

composition. More precise, with an estimation window T and N risky assets, the estimated subspaceP mean-

variance portfolio will be calculated for each rolling-window (rt−T , . . . , rt−1) and for each subspace. The return

of the portfolio will be recorded for each window. Finally, the Sharpe ratio can be calculated with the expectation

and standard deviation of the portfolio excess returns.
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5.2.1 The relationship between the Sharpe ratio and dim(P)

First, it is interesting to look at the relationship between the Sharpe ratio of the estimated subspaceP mean-variance

portfolio and the dimension of the subspaces PΣ and PCorr. This is done in Figure 7 by increasing the dimension

d with step sizes of 1 for different estimation windows and different numbers of risky assets.

The main goal of using two different numbers of risky assets is to compare the performs of the estimated

subspaceP mean-variance analysis in a small- and large market. The Fama-French 100 portfolios, that are formed

on size and book-to-market, represent a large market. However, six out of the 100 portfolios contain missing values.

The missing values are not randomly distributed across time but are distributed within sub-samples. Because of

the intentional separation of a simulation (Section 5.1) and empirical illustration (this section), the missing data

is not imputed/simulated but the six portfolios are removed from the data set. This is done to get no simulated

values into the empirical illustration. Namely, the goal to compare a small- and a large market is also reached with

a comparison of 25 and 94 assets.

On average, for most subspace dimensions with a given T and N , the estimated subspaceΣ mean-variance

portfolio gives better Sharpe ratios then the estimated subspaceCorr mean-variance portfolio. So clearly, the handful

of investment options captured by the subspace PΣ contains on average better portfolio compositions than the

handful of investment options captured by the subspace PCorr.
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Figure 7: The empirical Sharpe ratios of the estimated subspaceΣ mean-variance portfolio (circles) and the estimated
subspaceCorr mean-variance portfolio (triangles). There is an iteration over the dimension of the subspace P for
the estimation windows T = 60, 20, 240 and the market sizes N = 25, 94. The gray horizontal line represent the
Sharpe ratio of the estimated subspaceΣ mean-variance portfolio, with the dimension estimated using Equation 19.
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5.2.2 The efficient frontier

To confirm the statement in Section 5.2.1, that the subspaceΣ performs better in the subspaceP mean-variance

analysis than the subspaceCorr, the efficient frontier is estimated in Figure 8. The efficient portfolios in a risk-

return framework are showed in this figure. These efficient portfolios are defined as the portfolios that minimize

the risk subject to a given expected return for both subspaces, so to minimize Equation 5 with E and Σ the mean

and variance of the return respectively. For multiple values of gamma, the gamma in the risk tolerance factor,

the efficient portfolio will be estimated. This gamma increases from 0.7 to 6, using step sizes of 0.02, with a fixed

estimation window T and number of risky assets N. The most common tolerance factors (Best and Grauer, 1991)

are in the chosen interval of gamma.

Immediately visible from Figure 8, is that the lowest risk for a specific level of expected return is achieved by

the estimated subspaceΣ mean-variance. So these data confirmed that the subspaceΣ gives higher Sharpe ratios in

the Markowitz subspaceP mean-variance analysis than the subspaceCorr.
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Figure 8: The estimated subspaceP mean-variance portfolio, for each given γ ∈ [0.7, 6] and each subspace PΣ

(squares) and PCorr (circles), gives an indication of the efficient frontier.

5.2.3 Outperformance due to a specific investment option

Theoretically, the subspaceΣ mean-variance portfolio should give higher Sharpe ratios than the subspaceCorr mean-

variance portfolio. However, when a specific investment option is added to the investment market, the subspace

PCorr outperforms PΣ in the subspaceP mean-variance analysis. This is caused by a simulated investment option

with a significantly smaller standard deviation than the other portfolio options. The left panel of Figure 9 shows

the motions of the subspaceP mean-variance portfolios as the number of investment options increases, without the

simulated option. The right panel shows the motions of the subspaceP mean-variance portfolios with a simulated

option. This simulated investment option, the 61 added investment option, has a significantly smaller standard

deviation than the other investment options. The closer the standard deviation of the investment option approaches

zero, the larger the outperformance of s
(
ŵPCorr

mv,d

)
relative to s

(
ŵPΣ

mv,d

)
!
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The occurrence of the overall fall of the Sharpe ratio by adding an additional investment option in Figure 9, is

explained in Section 4.2. Because logically, by adding an additional investment opportunity, the Sharpe ratio should

increase or remain equal due to diversification. Apparently this is not the case for the subspaceP mean-variance

analysis (see Section 4.2).

The large outperformance of the subspaceCorr mean-variance portfolio at the 61th addition, is especially due

to the relative differences of the fourth leading eigenvector of the correlation- and covariance matrix. This fourth

eigenvector can be roughly interpreted as the return differences between the portfolios with an extreme market

equity- and ratio of book equity to market equity score and the portfolios with an average market equity- and

ratio of book equity to market equity score. The value at the 61th position of the fourth leading eigenvector of the

correlation matrix differs strongly compared with the other values of the eigenvector. This phenomenon does not

occur at the 61th position of the fourth leading eigenvector of the covariance matrix. The large 61th value of the

fourth eigenvector of the correlation matrix has a large impact on the holding for the 61th investment option of the

subspaceCorr mean-variance portfolio. The result of this large value is a large holding for this investment option,

that is calculated via Equation 12 with the subspace PCorr, whereas the 61th holding for the covariance matrix is

almost zero. To observe the big differences between the two subspaces, the dimension of the subspace needs to be

larger or equal to four.
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Figure 9: The empirical Sharpe ratios of the estimated subspaceΣ mean-variance portfolio (circles) and the estimate
subspaceCorr mean-variance portfolio (triangles). There is an iteration over the number of investment options for
a random selected estimation window T = 120.

5.2.4 Performance comparison

To demonstrate the performance of the estimated subspaceP mean-variance portfolio, several other portfolio rules

are applied to these data. Firstly, more than 40% of all estimated K̂PΣ , via Equation 19, are smaller than or
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equal to four and even more than 50% for K̂PCorr . Because of these low estimated values, not all information

needed to make a good composition, will be caught by the first three or four leading eigenvectors. This is why the

last two columns are added where the dimension of the two subspaces, for the estimated subspaceP mean-variance

portfolios, are equal to kmax (kmax = 8). Secondly, other added columns to table 1 are the portfolio rule of Jorion

(PJ), the rule of Kan and Zhou (KZ), the combination rule based on the sample mean-variance portfolio and naive

diversification of Tu and Zhou (S&N) and the combination rule based on KZ and naive diversification of Tu and

Zhou (KZ&N). To compare the performance of the different portfolio rules, the Sharpe ratio is given in Table 1

with different estimation windows T and different numbers of assets N. The number of assets needs to be smaller

than the estimation window (N < T ) for the portfolio rules mentioned above. Clearly, the estimated subspaceP

mean-variance analysis outperforms the other portfolio rules in a large market with a big enough estimation window.

Table 1: The comparison of the Sharpe ratio between the estimated subspaceP mean-variance portfolio and several
other portfolio rules over a period of 50 years.

Data T Naive PJ S&N KZ KZ&N ŵmv ŵPΣ

mv,d=K̂PΣ
ŵPCorr

mv,d=K̂PCorr
ŵPΣ

mv,d=kmax
ŵPCorr

mv,d=kmax

25 Portf. 60 0.13 0.29 0.28 0.29 0.29 0.28 0.17 0.14 0.23 0.18
120 0.14 0.38 0.37 0.38 0.37 0.37 0.20 0.21 0.27 0.22
240 0.15 0.38 0.39 0.38 0.38 0.38 0.33 0.28 0.39 0.39

94 Portf. 60 0.13 - - - - 0.16 0.13 0.14 0.16 0.15
120 0.14 0.22 0.23 0.21 0.22 0.21 0.20 0.18 0.19 0.21
240 0.15 0.20 0.17 0.19 0.20 0.17 0.24 0.23 0.27 0.26

6 Conclusion

The number and properties of risky assets determine which portfolio rules are optimal to use. Most portfolio rules

can be used properly in a small market. However, the performance of these portfolio rules worsens when the size

of the market increases due to the large number of estimated parameters. A reduction of the estimated parameters

forms a portfolio rule that even can be used in a large market. This portfolio rule is the Markowitz subspaceP

mean-variance analysis. The properties of these risky assets determine which subspace is optimal to use for this

portfolio rule, a subspace spanned by the leading eigenvectors of the correlation matrix (PCorr) or of the covariance

matrix (PΣ). However, a criticism on this rule is that an extra investment opportunity not necessarily results in a

better or equivalent Sharpe ratio, this phenomenon occurs due to the selected subspace. Also a reliable method that

obtains a consistent estimation of the number of factors in the DGP is needed for this rule, which simultaneously

also determines the number of estimated parameters in the subspaceP mean-variance analysis. Thus, even in a

large market, the Markowitz subspaceP mean-variance analysis is a reliable portfolio rule if a large, but realistic,

amount of historical data is available and a well-chosen subspace is used, which is dependent on the properties of

the risky assets.
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Appendices

A Assumption factor model

The following assumptions are also made in Chen and Yuan (2016), and the proofs are found in the in the appendix

of Chen and Yuan (2016).

Assumption A (Factors): The factors have finite fourth moments such that there exist a positive constant C1 <∞

satisfying

max
1≤k≤K

E
(
f4
kt

)
≤ C1.

Assumption B (Factors Loadings): There is a strictly positive matrix ΣB such that

BTB

N
→ ΣB as N →∞.

Assumption C (Idiosyncratic Risks): The covariance matrix of εt = [ε1t, . . . , εNt]
T

, Σε has eigenvalues bounded

away from both zero and infinity. Moreover, the idiosyncratic risks have finite fourth moments such that there

exists a positive constant C2 <∞ satisfying

max
1≤j≤N

E
[
ε4jt
]
≤ C2.

Assumption D: The factors f1, . . . ,fT are weakly dependent in that there exist a positive constant C3 < ∞

satisfying

max
1≤k1, k2≤K

E

{
T∑
t=1

(fk1tfk2t − Σfk1k2
)2

}
≤ C3T where Σfk1k2

is the (k1, k2)th entry of Σf .

Assumption E: The idiosyncratic risks ε1, . . . , εT are weakly dependent in that there exists a positive constant

C4 <∞ satisfying

max
1≤j1, j2≤K

E

{
T∑
t=1

(εj1tεj2t − Σεj1j2)2

}
≤ C4T where Σεj1j2 is the (j1, j2)th entry of Σε.
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Assumption F: The factors and idiosyncratic risks are jointly weakly dependent in that there exists a positive

constant C5 <∞ satisfying

max
1≤j≤N, 1≤k≤K

E

{
T∑
t=1

ε2jtf
2
kt

}
≤ C5T.

B Proof Equation 7

The portfolio composition with a constraint is given as the solution to the Markowitz mean-variance analysis subject

to one constraint:

min
w∗∈RN

{γ
2

w∗TΣw∗ −w∗TE
}

s.t. w∗T ι = 1

To incorporate this restriction into one equation, the auxiliary function will be introduced and the respective

gradient:

L(w∗, λ) =
γ

2
w∗TΣw∗ −w∗TE − λ

(
w∗T ι− 1

)
∇w∗,λL(w∗, λ) = 0⇒


∂L
∂w∗ = γΣw∗ − E − λι = 0 (1)

∂L
∂λ = −w∗

T

ι+ 1 = 0 (2)

So the solution of the minimization is given by:

(1) : w∗ =
1

γ
Σ−1E +

λ

γ
Σ−1ι

Substitute (1) into (2) :
1

γ
ETΣ−1ι+

λ

γ
ιTΣ−1ι = 1

⇔ λ =
γ − ETΣ−1ι

ιTΣ−1ι

Substitute λ into (1) : w∗ =
1

γ
Σ−1E +

1

γ

γ − ETΣ−1ι

ιTΣ−1ι
Σ−1ι

⇒ w∗mv := wmv +
1

γ

(
γ − ETΣ−1ι

ιTΣ−1ι

)
Σ−1ι
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C Proof Equation 8

The portfolio composition, within a subspace and with a constraint, is given as the solution to the Markowitz

subspace mean-variance analysis subject to one constraint:

min
wPd
∗∈P

{γ
2

wPd
∗T

ΣwPd
∗ −wPd

∗T
E
}

where P ∈ {PΣ,PCorr}

s.t. wPd
∗T
ι = 1

To give the solution of the Markowitz subspace mean-variance portfolio subject to this constraint, some notation

needs to be introduced as PP is a N × d matrix whose columns are an orthonormal basis of P . Additional, for

xP ∈ Rd and PPxP ∈ P, the map Rd → P : xP 7→ PPxP = wPd
∗

is injective and surjective. To incorporate this

restriction into one equation, the auxiliary function will be introduced and the respective gradient:

L(xP , λ) =
γ

2
(PPxP)

T
Σ (PPxP)− (PPxP)

T
E − λ

(
(PPxP)

T
ι− 1

)
∇xP ,λL(xP , λ) = 0⇒


∂L
∂xP = γPTPΣPPxP − PTPE − λPTP ι = 0 (1)

∂L
∂λ = −xTPP

T
P ι+ 1 = 0 (2)

So the solution of the minimization is given by:

(1) : xP =
1

γ

(
PTPΣPP

)−1
PTPE +

λ

γ

(
PTPΣPP

)−1
PTP ι

Substitute (1) into (2) :
1

γ
ETPP

[(
PTPΣPP

)−1
]T
PTP ι+

λ

γ
ιTPP

[(
PTPΣPP

)−1
]T
PTP ι = 1

⇔ λ =
γ − ETPP

[(
PTPΣPP

)−1
]T
PTP ι

ιTPP

[(
PTPΣPP

)−1
]T
PTP ι

Substitute λ into (1) : xP =
1

γ

(
PTPΣPP

)−1
PTPE +

1− 1
γE

TPP

[(
PTPΣPP

)−1
]T
PTP ι

ιTPP

[(
PTPΣPP

)−1
]T
PTP ι

(
PTPΣPP

)−1
PTP ι

Thus:

wPmv,d

∗
:= PPxP =

1

γ
PP
(
PTPΣPP

)−1
PTPE +

1− 1
γE

TPP
(
PTPΣPP

)−1
PTP ι

ιTPP
(
PTPΣPP

)−1
PTP ι

PP
(
PTPΣPP

)−1
PTP ι

⇒ wPmv,d

∗
:= wPmv,d +

1− 1
γ ι
TPP

(
PTPΣPP

)−1
PTPE

ιTPP
(
PTPΣPP

)−1
PTP ι

PP
(
PTPΣPP

)−1
PTP ι
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D Proof Equation 11

Knowing that Dσ =
[
eσ1

· · · eσN

]
=


eTσ1

...

eTσN

, the invertible matrix I can be written as:

I = PTPCorr
Dσ PCorr DCorr P

T
Corr Dσ PPCorr

=


ηT1
...

ηTd

[eσ1 · · · eσN

]
PCorrDCorrP

T
Corr


eTσ1

...

eTσN

[η1 · · · ηd

]

=


ηT1 eσ1

· · · ηT1 eσN

...
...

ηTd eσ1
· · · ηTd eσN

PCorrDCorrP
T
Corr


eTσ1

η1 · · · eTσ1
ηd

...
...

eTσN
η1 · · · eTσN

ηd



=


ηT1 eσ1

· · · ηT1 eσN

...
...

ηTd eσ1
· · · ηTd eσN

[η1 · · · ηN

]
DCorr


ηT1
...

ηTN



eTσ1

η1 · · · eTσ1
ηd

...
...

eTσN
η1 · · · eTσN

ηd



=


[
ηT1 eσ1 · · · ηT1 eσN

]
η1 · · ·

[
ηT1 eσ1 · · · ηT1 eσN

]
ηN

...
...[

ηTd eσ1
· · · ηTd eσN

]
η1 · · ·

[
ηTd eσ1

· · · ηTd eσN

]
ηN

DCorr



ηT1


eTσ1

η1

...

eTσN
η1

 · · · ηT1


eTσ1

ηd
...

eTσN
ηd


...

...

ηTN


eTσ1

η1

...

eTσN
η1

 · · · ηTN


eTσ1

ηd
...

eTσN
ηd





=


θ1

[
ηT1 eσ1

· · · ηT1 eσN

]
η1 · · · θN

[
ηT1 eσ1

· · · ηT1 eσN

]
ηN

...
...

θ1

[
ηTd eσ1

· · · ηTd eσN

]
η1 · · · θN

[
ηTd eσ1

· · · ηTd eσN

]
ηN





ηT1


eTσ1

η1

...

eTσN
η1

 · · · ηT1


eTσ1

ηd
...

eTσN
ηd


...

...

ηTN


eTσ1

η1

...

eTσN
η1

 · · · ηTN


eTσ1

ηd
...

eTσN
ηd





=


I(1, 1) · · · I(1, d)

...
...

I(d, 1) · · · I(d, d)


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with I(i, j) =

N∑
k=1

θk

([
ηTi eσ1

ηTi eσ2
· · · ηTi eσN

]
ηk

)
η

T
k


eTσ1

ηj

eTσ2
ηj

...

eTσN
ηj





=

N∑
k=1

θk

([
ηTi eσ1 ηTi eσ2 · · · ηTi eσN

]
ηk

)
η

T
k


ηTj eσ1

ηTj eσ2

...

ηTj eσN




=

N∑
k=1

θk

([
ηTi eσ1 ηTi eσ2 · · · ηTi eσN

]
ηk

)([
ηTj eσ1 ηTj eσ2 · · · ηTj eσN

]
ηk

)
for i, j = 1, . . . , d
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