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Abstract

The Vessel Schedule Recovery Problem (VSRP) is the problem where the proforma schedule
of vessels needs to be modified because of a delay. This problem is still scarcely researched
and therefore a lot of improvements can be made. As liner shipping companies need to make
decisions fast, results must be generated such that they can be used in real-life decision
making. A MIP formulation with an underlying time-space network as stated by Brouer
et al. (2013) is used to test how the formulation reacts when varying the duration of a
shift, the number of vessels and port calls. As the original formulation is only able to
handle disruptions by means of changing the speed of a vessel, omitting port calls and
swapping port calls, the model is extended such that it can capture the cut-and-run policy
as well. This policy enables vessels to leave their port call earlier, before finishing it. The
computation times of our implementation react strongly when increasing the number of port
calls, however it is more robust when increasing the number of vessels. As there is a trade-off
between between cost reduction and time when the duration of the shift is decreased, we
advise to not take this duration too small. In general our extension gives on average a
relative large cost reduction in case the number of vessels is large.
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1 Introduction

Over the last few decades container shipping has played a tremendous role in the globalisa-
tion of the world economy. More than 80% of the total traded volume and around two third
of the total traded value is carried by sea (UNCTAD, 2016). Commercial ships are generally
divided into the following three modes: liner, industrial or tramp. Liner ships differentiate
themselves from other ships as they operate according to an iterative route (itinerary), in
which they visit ports with a certain time window. The schedule is often predetermined a
few years ahead (Christiansen et al., 2013).

Liner ships carry containers as their cargo, as containers have the advantages that they all
have the same rectangle shape. A standardized measure for the size/volume of a container
is called a TEU (twenty-foot equivalent unit) and a common container is often 1 or 2 TEU
large. Liner ships nowadays can easily carry over 14,000 TEU (MAN, 2009), where the
OOCL Hong Kong is currently the largest with 21,413 TEU1. Containers usually travel in
groups, which means that they have the same origin, destination and expected time schedule.

Companies in the liner shipping sector referred to as carriers have a need to stay competitive
as the earned return is less than 10% on assets (Stopford, 2009). A way to outperform others
is by designing a hub-and-spoke network for vessels which is as efficient as possible and
by offering short transit times to attract customers. However, offering short transit times
means that almost no buffer time is added. Small delays can then easily disrupt the whole
schedule as schedules are often intertwined. Container groups can be such delayed, that they
can not be delivered on time. Furthermore, it could also happen that a container group is
misconnected along its journey. As there often is a weekly service between two consecutive
ports on an itinerary, the container group is ultimately delayed as well. Notteboom (2006)
states that in exceptional busy periods approximately 70%–80% of the vessel round trips
experiences delays in at least one port. These disruptions are commonly caused by port
congestions, slacking off at loading/discharging, weather circumstances or on route technical
problems.

Carriers nowadays use a variety of actions to cover up for delays and misconnections caused
by those disruptions. The applied actions, as discussed by Notteboom (2006), are:

• Speed up vessel
This recovery seems to be a trivial solution, however as the bunker cost (fuel cost) is a
cubic function of speed (Alderton, 2004), altering the speed slightly would have a huge
impact on the total costs, which is about half of the total operating costs. The speed of a
vessel is also limited between a lower and upper limit, therefore speeding up a vessel does
not always necessarily imply that there will be no delay.

• Speed up port call
Using more cranes and crew to finish the call earlier. For example, Antwerp is known as
a port which can boost their productivity to bring a vessel back on schedule.

• Cut-and-run
A special case of speeding up a port call, which is often used in tide-dependent terminals,
where the loading/discharging is stopped earlier (cut) such that that the vessel can leave

1http://www.oocl.com/eng/pressandmedia/pressreleases/2017/Pages/12may17.aspx

Last accessed at: 23-June-2017.
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the port on time (run). In such a case not all appointed containers will be loaded or
unloaded to prevent unproductive port time because of the low tide.

• Omitting a port call
When a ship is severely delayed, it could decide to skip a port call. This method is very
effective and can generate a large time buffer. However, the container groups which should
have been discharged at that particular port will be delayed for their delivery in that port
or experience a misconnection.

• Swapping port calls
This is a method commonly used, where the order of port calls is slightly shuffled such
that the important container groups are delivered on time.

• Insert idle vessel
These vessels temporarily take over part of the schedule, which can be very costly as such
vessels would be idle most of the time.

Several of those actions will lead to the redirection of transport or even to the arranging of
new transport. Delayed cargo experiences economic depreciation and dissatisfied customers
could thus decide to make claims or use a different carrier in the future, which leads to lost
revenues. It is therefore important to reschedule the delayed vessels such that the carrier
will not be burdened with too much extra costs.

As it is difficult to oversee all (financial) impacts of handling a disruption in a certain way,
it is important to have a good mathematical model which can pinpoint the least costly
decision. Stakeholders can sometimes have other opinions about which decision should
be taken, therefore carriers need to have strong evidence to convince them of their own
decision. However, this model should also be able to give quick results as disruptions can
occur suddenly and many other decisions must be taken simultaneously. Therefore the
following question plays a role in this thesis:

Is it possible to have an efficient model to handle liner shipping disruptions in several ways,
which can be used for real-time decision making?

In Section 2 literature regarding the problem is presented. Section 3 formalizes the problem
and Section 4 describes the data. Section 5 describes the methodology used to solve the
problem and Section 6 discusses the results. Finally, a conclusion is presented in Section 7.
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2 Literature Review

In common literature the disruption management concerning liner shipping is a scarcely
researched topic. Only in the last couple of years the problem has been addressed. This work
is often heavily inspired by studies in the field of the Aircraft Schedule Recovery Problem
(ASRP), as disruption management of aircraft and vessels show some striking resemblances
(Christiansen et al., 2013). Therefore, a coherent review will be presented in which first the
ASRP is thoroughly discussed. For a general overview concerning the OR used in shipping
over the last 30 years, we refer to Meng et al. (2013) and to Christiansen et al. (2013) in
specific for the last decade.

When a disruption occurs, there are three kinds of problems which the aircraft company has
to deal with: aircraft recovery, crew recovery and passenger recovery. An analogy to vessels
can be drawn in which there is vessel and container recovery. Note that crew recovery does
not play a role as there is a fixed crew for each container ship.

The problems are often modelled separately. The aircraft recovery is generally considered as
the most important to model properly, as the other recoveries follow from the new proposed
schedule. Teodorović and Guberinić (1984) were the first to introduce a network model
in which the customer delay was minimized for a single fleet. The model is not realistic
enough as they only took flight delays into account. Jarrah et al. (1993) later suggested two
models, in which one minimizes the total delay cost and the other minimizes the cancellation
cost. The results were useful in practice, however the models were not linked and thus no
trade-off exists between delay and cancellation. This problem was eventually solved by Yan
and Yang (1996), whose model is based on a Lagrangian relaxation. Their model was tested
on real-life data of China Airlines.

The work of Yan and Yang (1996) has several times been extended, however Yan and Tu
(1997) made it possible to include multiple fleets, where each aircraft type is viewed as a
separate commodity. As aircraft companies often want to have reschedules that do not differ
much from the original ones, Thengvall et al. (2001) contributed to previous work with the
use of so-called protection arcs in a multi-commodity network flow. As this model is still on
fleet level instead of on aircraft level, it is more difficult to keep track of the maintenance
of a single plane. Dienst et al. (2012) presented a model on aircraft level which is able
to capture much more real-life constraints. The model uses a unit action penalty, which
punishes actions that divert from the original schedule.

The papers discussed so far have only considered delaying/cancelling a flight, swapping
aircraft or using a stand-by aircraft to recover the schedule. Marla et al. (2016) also incor-
porated flight planning, which enables flight speed changes. Promising results are presented
which show that passenger disruptions were reduced by 66%–83%. The work of Marla et al.
(2016) is a generalisation of Bratu and Barnhart (2006) and Bratu (2003). The mathematical
models suggested by Dienst et al. (2012) and Marla et al. (2016) inspired Dirksen (2011) to
construct a similar formulation for the disruption problem of vessels, which he addressed
as the Vessel Schedule Recovery Problem (VSRP). The MIP model adopts the idea of the
flow-conservation and the set-partitioning constraints and uses a time-space graph as its
underlying network. The model is able to make use of the following techniques to recover
the schedule: speed up a vessel, omitting a port call or swapping a port call.
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The formulation of this model was later refined in Brouer et al. (2013) and tested on
four cases of a large carrier. The model is able to give real-time results (< 5 seconds)
and produces outcomes comparable or superior to those chosen by operations managers.
However, it is important to note that these instances are relatively small, especially as
the average number of port calls per vessel is not that large (≈ 4). They then suggested
a method to create artificial instances to show how the computational time increases
when the number of port calls and the number of vessels change. The computational
times seem in both cases to increase exponentially, especially when the number of port calls
increase. In both cases building the graph becomes much more complex and time-consuming.

Li et al. (2015) recently investigated the VSRP as well, however their method has a focus
on the catch up of a single vessel instead of multiple vessels. A NLP formulation is given for
the speeding up of vessels as a recovery possibility and a Dynamic Programming algorithm
is presented to also incorporate swapping/omitting port calls. As the aim of this thesis is
to handle disruptions, which can corrupt a whole system and multiple vessels, we suggest
an extension to the suggested model for the VSRP of Brouer et al. (2013). This extension
includes another recovery action: cut-and-run.
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3 Problem Definition

The VSRP can be defined as the problem where the proforma schedule is modified because
of a delay, such that in the end the costs of the recovery is minimized and the schedule is
still valid. Initially given is a set of vessels V and a set of ports P , where each vessel v
visits several ports according to a proforma schedule. This proforma schedule consists of an
ordered set of port calls, which is denoted by Hv ⊆ P . Of each vessel v some basic informa-
tion is known, such as its design speed, minimum and maximum speed and container capacity.

Furthermore, it is given what the origin, destination, transshipment port(s), final arrival time
and size are of each container group c ∈ C, where C is the set of all container groups. As it
is known in which port each vessel v will experience its delay, a set of alternative schedules is
suggested using several recovery actions. For each port call h ∈ Hv a set of possible sailings
(directed edges) Lh can be determined, where each sailing e represents a different speed. A
valid schedule has vessels starting at their initial port and ending at their final destination,
such that sailings are bounded by the speed of the vessel and the time. It must also have
a plan for the transportation of each container group when there is a delay or a misconnection.

To determine the cost of each reschedule, the bunker cost, port fees and costs of (possible)
delays and misconnections of cargo must be known. Define cve as the cost of using a particular
sailing e and the port fee of the sailings target port of a vessel v. Define cmc and cdc as
the total cost of a misconnection or delay of a container group c respectively. The chosen
optimal recovery schedule will be a valid schedule that minimizes the total costs of the delay
and misconnection of cargo, port fees and used sailings.
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4 Data

It is in general hard to get data from carriers to test real-life instances, as their data is
confidential and they do not want to want to risk exposure of valuable information to their
competitors. However, it is possible to generate artificial data to create some test instances.
Dirksen (2011) and Brouer et al. (2013) suggested a process to create such instances, in
which a grid of η2 ports is created. The ports on one of the diagonals are considered as
the hubs and the others as the spokes, where the distance between the ports is calculated
according to the Euclidean distance. The difference between the two kind of ports is that
hubs are more likely to be used as transshipment point for container groups.

The next step is to generate vessels, such that each is randomly assigned κ < η2 ports to
visit without replacement. The order in which the ports are drawn determines the route of
the vessel. Each ship is assigned a uniform randomly chosen capacity mv in TEU from the
set M = {mv | mv ∈ [900, 20.000],mv ∈ Z+} and a design speed sv in knots per hour from
the set S = {sv | sv ∈ [15, 22], sv ∈ R+}. When the design speed and capacity are known,
it is possible to obtain the design consumption uv. Since there are economies of scale, in
which a larger vessel is able to transport a single container cheaper than a smaller vessel,
the design consumption must be a non-linear convex function of the capacity. Moreover,
the proforma schedule of each vessel can now easily be determined by the distance between
each of two successive ports and the design speed of the selected vessel. It is assumed that
unloading/loading at each port takes 24 hours, before the vessel can continue to sail to its
next port. As the ships are randomly assigned to start their schedule during the week, the
problem is constructed without loss of generality. Figure 1 shows an example of a random
grid with η = 10 and 5 vessels, in which each vessel has 5 port calls.

P
0,0

P
0,9

P
9,0

P
9,9

Figure 1: Graphical representation of a random grid with η = 10, κ = 5 and 5 vessels. The
empty circles on the diagonal represent the hubs, whereas the other circles represent the
spokes. The route of different vessels is indicated with distinct lines.

As the ports and routes of the vessels are at this point generated, the container itineraries
can be assigned. While assigning the container itineraries, it is assumed that vessels have an
unlimited capacity. For each vessel its schedule is then selected in which for each intermediate
port with a certain probability πhOTD an arriving container group of a random number of
units is assigned. OTD stands for On Time Delivery and h is the type of port (hub or

spoke). πHubOTD is set to 1, whereas πSpokeOTD is set to 0.5. Furthermore, if another vessel would
arrive at that same port afterwards according to the proforma schedule, with a probability
πhMC a container group of random number of units is planned to transship between the
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vessels. MC stands for Miss-Connected and h is again the type of port. πHubMC is set to 1,

whereas πSpokeMC is set to 0.5. After the container group is transshipped onto the next ship,
its final destination is chosen randomly out of the remaining ports on the route. Note that
there is at most one transshipment per container group.

With a certain probability πD the first port of each vessel will then be delayed. The
exponential distribution is used to generate this delay. As larger vessels experience in general
more delay, the following linear relationship is used to determine the average delay:

dv = 9.53 + 0.00052356 ·mv,

where dv stands for the average delay and mv for the capacity of vessel v. Note that the
initial delay should not be too large, as the suggested recoveries may be infeasible because
of the way the network is generated. To cover up for this delay several discussed recovery
actions can be used.

As it known how many containers are shipped in each container group c, the costs of a
potential misconnection cmc and delay cdc of this container group can be calculated. The
following formulas are used to determine those costs:

cmc = cmnc,

cdc = cdnc,

where cm and cd stand for the cost of a misconnection and a delay of a single container
respectively and nc for the number of containers in container group c. In a survey of Maersk
Line2, it was stated by a global retailer that 70% of his cargo loses on average 25% of its
retail value when it is a week late. Assuming that the average value of a container within one
shipment is e30,000, the cost of delay is e7,500 per container. Therefore, it is assumed that
cm = e1, 000 and cd = e1, 000 are reasonable costs to expect when having a misconnection
and/or delay of a single container. Note that the costs of a misconnection should always be
punished properly relative to the costs of a delay as a misconnection means that a container
group is delayed for at least a week (because of the way itineraries are constructed).

2http://www.maerskline.com/en-us/shipping-services/~/media/B39F084693AD4B0DAB7663DAEB477F5A.

ashx

Last accessed at: 11-June-2017.
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5 Methodology

5.1 Graph Topology

In order to represent the problem properly, a time-space network is used to generate all
possible routes a vessel could sail after experiencing an initial delay. In such a network
positions are often connected across time, which in the case of the VSRP means that a
port call h ∈ Hv for each vessel vessel v ∈ V is not only bounded to its physical location,
but also to the time in which it is visited. The time horizon consists of discrete timeslots
t ∈ T , in which it is assumed that ports are only visited at a beginning of a shift, such that
the network is reduced in size. In Figure 2a an example of such a network is shown, where
the horizontal axis depicts the time and the vertical axis the geographical position of a
vessel. This vessel can travel from port A to B with different speeds, which is shown by the
slanted lines. The steepness indicates the speed of the vessel; how steeper, how faster. The
horizontal lines indicate the port call duration.

Slowed
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Adjusting Speed

P
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 (
P
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(a) Edges connecting two ports with various
sailing speed.
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(b) Edges corresponding to applying the
cut-and-run policy
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(d) Edges corresponding to changing the
order of the port calls.

Figure 2: Implemented recovery options in the space-time network. Port call edges are
horizontal grey lines.
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More formally, a directed graphG = (N,E) consists of the node setN =
{
pt ∈ N | p ∈ P, t ∈ T

}
.

In this set every port p is linked to a time t, such that pt represents a port p at time t. Each
node n ∈ N has ingoing and outgoing edges, represented by n− and n+ respectively. Each
vessel v ∈ V has its own set of nodes it can visit, denoted by Nv ⊆ N . Nv consists of at
least a source node nvs (first port) and a sink node nvt (scheduled final destination). Other
nodes are created for each port call h ∈ Hv in a certain time window

{
ahv , b

h
v

}
, defining the

earliest and latest arrival time. This time window can, for example, be restricted by the
minimum and maximum speed of a vessel or in case of a tide-dependent harbour by the
time in which the port is opened.

There are in general two types of edges: sailings between two different ports defined by

Es =
{(
qt, pt

′
)
| qt, pt′ ∈ N, q 6= p, t ≤ t′

}
and sailings in which a vessel is being loaded

and unloaded in a particular port p, before it can embark again, defined by Eg ={(
pt, pt

′
)
| pt, pt′ ∈ N, t < t′

}
. The edge set E contains both sets and can thus be de-

fined as E = Es ∪ Eg. To reduce the number of edges in the graph and the number of
columns in the mathematical model, it is assumed that the port call duration is fixed (24
hours by construction). Therefore, edges of Eg can be included in Es such that an edge
e ∈ Es consists partly of the sailing between qt and pt and partly of the port call duration
between pt and pt

′
. In Figure 2 the grey port call edges are thus only explicitly shown to

give a better understanding of the graphical representation.

Each vessel has its own set of edges, denoted by Ev ⊆ Es. Depending on the properties of
vessel v, the cost cve of using a particular edge e ∈ Ev can be determined. This cost consists
of the bunker cost and the port fee of the target port of the sailing. As already mentioned
before, the bunker cost depends highly on the speed of a vessel. Alderton (2004) states a
formula to estimate the fuel consumption u as a function of the current speed s:

u = uv

(
s

sv

)3

,

where uv and sv stand for the design consumption and design speed of a vessel v respectively.
Multiplying u by the fuel cost, which are assumed to be e400 per ton, the sailing cost can
be calculated. Port fees generally depend on the size of the vessel’s weight. The Port of
Gdańsk in Poland charges port fees of a container vessel of 0.22 eur/gt3, where gt stands
for gross tonnage and is a measure for the vessel’s weight. These port fees are used as an
approximation for the port fees in the model, where it is roughly assumed that 1,000 gt is
proportional to 100 TEU. Therefore, it is possible to calculate the port fees for each port of
vessel v.

The final edge set Es depends on the proforma schedule of the vessel and what kind of
recovery actions are considered as a possibility to cover up for the delay. The recovery
actions used by Brouer et al. (2013) are changing the speed of the vessel, omitting a port
call and swapping port calls. Additionally to the actions suggested, the model is extended
to incorporate the cut-and-run policy as well. To illustrate the recovery actions, imagine
there are some port calls in the order A, B and C. The possible recovery actions then are:

3https://www.portgdansk.pl/shipping/port-authority-tariff

Last accessed at: 28-May-2017.
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• Speed up vessel
As the speed of a vessel v is bounded, there is a limited number of edges which may connect
A and B. Define the set of possible sailings Lh ⊂ Ev for each port call h ∈ Hv as Lh ={(
At, Bt′

)
| A,B ∈ Hv, A < B, t ≤ bBv , aBv ≤ t′ ≤ bBv , t < t′, t < t′,∀t′ = aBv +D · δB

}
,

where D is a positive integer denoting the shift and δB the duration of a shift a terminal
B. In most cases aBv is restricted by the maximum speed of v, whereas bBv is restricted by
the minimum speed. The minimum speed of v is set to sv − 5 and its maximum speed to
sv + 3. A graphical representation can be seen in Figure 2a.

• Cut-and-run
The ship leaves its current port earlier, such that not all assigned cargo is loaded and
unloaded. Proportional to the time the ship has been in the port, a number of containers is

loaded and unloaded. Determine the fraction ε =
tcut

tnormal
, where tcut and tnormal represent

the port time used in the cut-and-run policy and in the normal situation respectively.
This fraction splits the container group c each time the policy is used. When speaking of
a partial misconnection, it means that the cut-and-run policy has been used and a part of
the container group is misconnected. Depending on how many partial misconnections w
have taken place, 1− εw part of the container group is misconnected in the end. Generate
all possible sailings with the method used before, however, now tcut is used to determine{
ahv , b

h
v

}
. tnormal is 24 hours by construction and tcut is set to 12 hours. A graphical

representation can be seen in Figure 2b.

• Omitting a port call
Omitting port call B after A, coincides with having a sailing between port A and C.
Edges should be created similarly to the method proposed before, however now between
A and C. A graphical representation can be seen in Figure 2c.

• Swapping port calls
Swapping port calls would mean that port C is directly visited after A and then B is
visited after C. First, edges between A and C are created as in the case of omitting a
port call, however additional edges should be created between C and B similarly to the
method proposed before. It is assumed that port swaps are only allowed between two
consecutive ports on the route. A graphical representation can be seen in Figure 2d.

Algorithm 1 shows how graph Gv with the edge set Ev and node set Nv can be constructed
for a particular vessel v according to the suggested recovery actions. A possible edge means
a sailing e ∈ Lh for time frame {ahv , bhv}, as defined before. If the earliest arrival time for this
port is later than the proforma destination time of the last port, there are no possible edges
and the algorithm returns to its while-loop. If the latest arrival for this port is later than
the proforma destination time of the last port, set the latest arrival time to the destination
time.
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Algorithm 1: Construction of directed graph Gv

Data: An ordered set of port calls Hv of vessel v
Result: Directed graph Gv, consisting of all possible recovery actions for vessel v
Initialise an empty directed graph G;
Initialise an empty set ζv consisting of nodes;
Put the first port call into ζv;
while ζv is non-empty do

Extract node nv from ζv;
if nv is the source port then

Generate all possible edges between nv and its following and subsequent port
from Hv (if they exist);

else if nv is an intermediate port then
Set mv to be the previous visited node of nv;
if mv is originally scheduled to succeed nv then

Generate all possible edges between nv and the subsequent port of its
direct successor mv from Hv;

else
if mv is the direct scheduled predecessor of nv then

Generate all possible edges between nv and its following and its
subsequent port from Hv (latter only if it exists);

else
Generate all possible edges between nv and its predecessor, its successor
and subsequent port from Hv (latter only it it exists);

end

end
For each generated edge, calculate its sailing cost and port cost cve of the
destination port of the edge;

Add the created weighted edges and nodes to G;
Add the created nodes to ζv;

else
Continue;

end

end
return G;
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5.2 Mathematical Model

As already briefly mentioned, the MIP formulation of Brouer et al. (2013) is used. First,
their formulation is discussed, which uses the three recovery actions: speed up a vessel,
omitting a port call and swapping port calls. After this formulation is presented, the model
is slightly altered and extended to incorporate the cut-and-run policy as well. For the first
formulation the following sets, parameters and decision variables are defined:

Sets:
V Vessels
P Ports
T Discrete timeslots
C Container groups
Hv Ordered set of port calls of vessel v ∈ V
Wv Origin port of vessel v ∈ V
Bc Origin port for container group c ∈ C
Tc Destination port for container group c ∈ C
Lh Feasible sailings to cover a port call h ∈ Hv

N All nodes, where n− and n+ respectively denote outgoing and
ingoing edges of node n

Nv All nodes of vessel v ∈ V , where nvs and nvt respectively are the source
and sink node

Ev Possible sailings4 of vessel v ∈ V among the nodes of Nv

Ic Ordered set
(
I1c , . . . , I

m
c

)
of intermediate transshipment points for

container group c ∈ C. Iic =
(
hiv, h

i
w

)
∈ (Hv, Hw) is a pair of calls for

different vessels (v, w ∈ V |v 6= w).
M e
c All non-connecting edges e ∈ Lh that result in misconnection of

container group c ∈ C

Parameters:
cve ∈ R+ Cost of using edge e ∈ Ev of vessel v ∈ V
cdc ∈ R+ Cost of a delay to container group c ∈ C exceeding a day of planned arrival
cmc ∈ R+ Cost of one or several misconnections to container group c ∈ C
Oce ∈ B Binary variable indicating if container group c ∈ C is delayed,

when arriving by edge e ∈ LTc
Qce ∈ B Binary variable indicating if container group c ∈ C,

when arriving by edge e ∈ LBc ,
as the ship is ready to sail before the container group is present

Snv ∈ {−1, 0, 1} Used for flow conservation constraints.
Set to −1 when n = nvs , 1 when n = nvt and 0 otherwise

Decision variables:
xe ∈ B 1 if edge e ∈ Es is used, 0 otherwise
zh ∈ B 1 if vessel v ∈ V omits port call h ∈ Hv, 0 otherwise
yc ∈ B 1 if container group c ∈ C is misconnected, 0 otherwise
oc ∈ B 1 if container group c ∈ C is delayed, 0 otherwise

4As discussed in Section 5.1
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min
∑
v∈V

∑
h∈Hv

∑
e∈Lh

cvexe +
∑
c∈C

[
cmc yc + cdcoc

]
(1)

s.t.
∑
e∈Lh

xe + zh = 1 ∀v ∈ V, h ∈ Hv \Wv (2)

zWv = 0 (3)∑
e∈n−

xe −
∑
e∈n+

xe = Snv ∀v ∈ V, n ∈ Nv (4)

yc ≤ oc ∀c ∈ C (5)∑
e∈LTc

Ocexe ≤ oc ∀c ∈ C (6)

zh ≤ yc ∀c ∈ C, h ∈ Bc ∪ Ic ∪ Tc (7)

xe +
∑
λ∈Me

c

xλ ≤ 1 + yc ∀c ∈ C, e ∈ {Lh | h ∈ Ic} (8)

∑
e∈LBc

Qcexe ≤ yc ∀c ∈ C (9)

xe ∈ B ∀e ∈ Es (10)

zh ∈ R+ ∀v ∈ V, h ∈ Hv (11)

yc, oc ∈ R+ ∀c ∈ C (12)

The objective (1) minimizes the total costs of operating all vessels and the misconnection
and/or delay costs of container groups. Set-partitioning constraints (2) guarantee that the
selected ports on the route of a vessel are either visited or omitted. As the first port has by
construction no incoming edge, Constraint (3) ensures that this port is not skipped. These
constraints in combination with the binary domain of xe and the positive real domain of zh,
ensure that zh is binary as well. Constraints (4) ensure the flow-conservation of the vessels
for each node. The combination of the Constraints (2), (3) and (4) makes sure that feasible
routes are created for each vessel.

As a misconnection automatically means that the container group is delayed, Constraints
(5) ensure this relation. Constraints (6) ensure that when a container group c is delayed
when arriving too late in his final destination port, oc is set to 1. As the container can
only be shipped to its final destination at a single edge (because of Constraints (2)), the
left-hand side will be set to 1 at most. These constraints in combination with the objective
and the positive real domain of oc, ensure that oc is binary. Constraints (7) make certain
that when a port call is omitted on the route of the vessel in which the container group
should have loaded, unloaded or transshipped, the container group is misconnected as well.
Because of the minimization, the positive real domain of yc and the forced binary domain of
zh, yc has a binary domain as well. Constraints (8) are coherence constraints, which detect
if a container group is misconnected or not. Constraints (9) guarantee that a misconnection
occurs when the vessel leaves the port before the container is even in the port and loaded
onto the vessel. It is assumed that a container group arrives in its origin port 24 hours
before it is supposed to be loaded according to the proforma schedule.
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Note that in comparison to the original formulation of Brouer et al. (2013), Constraints (2)
are slightly altered and Constraint (3) is added. It is presumably assumed by the authors
that there is an incoming edge of Wv known to enter this first port. Furthermore, the ports
in the set for which Constraints (8) hold is altered to Ic instead of Bc ∪ Ic ∪ Tc, as was
originally stated. It is outside the scope of this research whether the further transport (in
case of Tc) of the container group would be misconnected or not. Especially, when the data
is only generated and it is not known when the container group will be collected by another
means of transport at its final destination port. In the case of Bc the Constraints (9) are used.

This formulation of the VSRP is in general proven to be NP-complete by Dirksen (2011).
When it is assumed that only port omissions are allowed as a recovery action the 0–1
Knapsack Problem (KP) can be reduced to the VSRP. As this KP is a weakly NP-complete
problem, the VSRP is in this case weakly NP-complete as well. When it is assumed that
only port swaps are allowed as a recovery action the Travelling Salesman Problem (TSP)
can be reduced to the VSRP. The TSP is proven to be strongly NP-complete and thus this
instance of the VSRP is strongly NP-complete as well.

5.3 Extended Mathematical Model

In order to include the recovery action cut-and-run as well, the existing formulation has
to be extended. Define K = max

c
{|Bc|+ |Ic|+ |Tc|} as the maximum number a container

group could be split into, which by construction is 3. The following additional sets and
decision variables are defined as follows:

Set:
De
c Cut-and-run edges, which split container group c

De
c ⊂ {Lh | h ∈ Bc ∪ Ic ∪ Tc}

J Container splits, j ∈ {1, 2, . . . ,K}

Decision variables:
fc ∈ {0, 1, . . . ,K} Number indicates how many times container group c ∈ C is split
qc ∈ {0, 1, . . . , 2K + 1} Number gives an indication how many times container group

c ∈ C is split and if it supposed to misconnect as a whole

r
(j)
c ∈ B 1 if container group c ∈ C is split j times, 0 otherwise

s
(j)
c ∈ B 1 if container group c ∈ C is split j times and has a final delay,

0 otherwise

The orginal objective function (1) is slightly altered to account for partial misconnections:

min
∑
v∈V

∑
h∈Hv

∑
e∈Lh

cvexe

+
∑
c∈C

cdc
oc − K∑

j=1

(1− εj)s(j)c

+ cmc yc +
(
cmc + cdc

) K∑
j=1

(1− εj)r(j)c

 (13)

The new objective (13) still minimizes the total operating costs and the costs of the miscon-
nections and delays, but now it also minimizes the cost of split container groups. In case a
total misconnection happens and thus yc = 1, the minimization ensures that rjc = 0, ∀j ∈ J ,
therefore the misconnection cost is still only cmc . In case there is a partial misconnection and
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depending on how many partial misconnections j there are, the cost of a misconnection and
a delay is multiplied by the proportional size of the partial missed container group, which is
(1− εj). When a partial misconnection happens, the minimization ensures that yc = 0. In
case there is a delay of the whole container group and thus oc = 1 and depending on how
many partial misconnections j there have been, a certain proportion 1− εj of the size of the
container group should be subtracted from the costs. If this does not happen, the delay cost
of the partial misconnected containers would be counted twice.

Then the following additional constraints are added to the previous mathematical model:∑
e∈Dc

e

xe ≤ fc ∀c ∈ C (14)

fc + (K + 1)yc ≤ qc ∀c ∈ C (15)

qc − (K − j) ≤
K∑

i=K−j+1

(i−K + j)r(i)c +Mjyc ∀c ∈ C, j ∈ J (16)

s(j)c ≤ oc ∀c ∈ C, j ∈ J (17)

s(j)c ≤ r(j)c ∀c ∈ C, j ∈ J (18)

fc, qc ∈ R ∀c ∈ C (19)

r(j)c , s(j)c ∈ B ∀c ∈ C, j ∈ J (20)

yc ∈ B ∀c ∈ C (21)

Constraints (14) count the number of partial misconnections there have been of each con-
tainer group. As there is at most one incoming edge in each port (Constraints (2)) and
since xe has a binary domain, it is ensured that fc ∈ {0, 1, . . . ,K}. Constraints (15) keep
track what kind of misconnection has occurred, e.g. a total misconnection or a partial
misconnection of a container group c. When yc = 1 there has been a complete misconnection
and no container in this group can be delivered on time, thus qc ≥ K + 1. When yc = 0,
the number of partial misconnections qc = fc. As fc ∈ {0, 1, . . . ,K} and yc has a binary
domain, it follows that qc ∈ {0, 1, . . . , 2K + 1}.

Constraints (16) keep track of the relation between partial misconnections and a total
misconnection. In case a potential complete misconnection occurs, it does not matter
whether possible partial misconnections have occured as the complete container group is
misconnected anyhow. The constraints ensure for the case qc = Z > K − j + 1 that at

least yc = 1 and therefore Mj ≥ Z − (K − j) or r
(Z)
c = 1 and therefore the constant term

multiplied with r
(Z)
c is Z −K + j = Z − (K − j). Because of the minimization and the

way weights are given to each variable in the summation, r
(j)
c , ∀j 6= Z is then set to 0. In

the case that qc = K − j + 1, it follows that yc = 0 and as it cheaper option not to split

containers unnecessarily, only r
(K−j+1)
c is set to 1. In the case that qc = Z < K − j + 1, it

follows that yc = 0 and the left-hand side is Z − (K − j) ≤ 0. Because of the minimization,

it follows that r
(j)
c = 0, ∀j ∈ {K − j + 1,K − j + 2, . . . ,K}. The big-M notation is used to

ensure that no r
(j)
c is set to 1 in case a total misconnection occurs. As qc can be at most

2K + 1, the left-hand side can be at most 2K + 1− (K − j). As the value of the M needs
in general to be as small as possible, the optimal choice for Mj is :

Mj = 2K + 1− (K − j) = K + j + 1.
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In the case that both oc = 1 and r
(j)
c = 1, Constraints (17) and (18) and the minimization

ensure that s
(j)
c = 1.

Constraints (19) give a real domain to both fc and qc, however as already stated the model

forces the desired domain on both variables. Constraints (20) ensure the binary domain of r
(j)
c

and s
(j)
c . As the minimization does no longer enforce yc to have a binary domain, Constraints

(12) are slightly altered such that yc has a binary domain, which is stated by Constraints (21).

In Appendix A a detailed example of this formulation is given for the case where K = 3
and ε = 0.5.
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6 Results

As the aim is to obtain real-time results, the cut-off value for which it still reasonable to
obtain results is set to 5 minutes. First, we examine how the original formulation and the
extended formulation react to changes in δ. Next, we inspect how both formulations react to
changes in the number of vessels V and number of port calls κ. Finally, it is investigated in
which cases the extended formulation performs significantly better in terms of cost compared
to the original formulation. The program has been run on a Toshiba Satellite with Intel Core
i5-6200U with 2.30 GHz processor and 8 GB of memory running Windows 10 using IBM
ILOG CPLEX 12.7.1 as MIP solver. All computational results are average values based on
five runs, where K = 3 and ε = 0.5. The exact formulation needed for the extended model
in case these specific values of the two parameters are used, is presented in Appendix A.

6.1 Varying Duration of Shift

In order to investigate how the computation time reacts to changes in δ, we set up two
instances. The first one has the following specifications: η = 10, V = 5 and κ = 5. The
second instance has these specifications: η = 10, V = 10 and κ = 6. As one particular
example of an instance could be solved faster or slower because of its structure, we generate
10 cases of each instance and report the average value to give a more realistic view. As it
can happen that the extended formulation is able to give a solution, whereas the original
formulation is infeasible, only cases are used which give feasible solutions in both formulations.

In Table 1 and Table 2 the average number of edges and nodes generated, the total costs
and the computational times of the original and the extended formulation in case of the
first instance are shown. Table 3 and Table 4 present the same results for the original and
extended formulation in case of the second instance.

In general when observing all four tables, it seems that when the duration of a shift δ is
decreased, the formulations become slower. When looking at the edges and nodes generated,
it is clear why the formulations become so much slower. Especially when δ in Table 1
changes from 0.5 to 0.1677, the number of nodes increases from 3,930 to 43,248, which could
partially explain why the total computation time increases from 0.94 to 8.65 seconds. A
similar effect for the same decrease in δ is seen for the extension in Table 2, where the
number of nodes increases from 6,453 to 85,183 and the total computation time from 4.65
to 101.66 seconds.

Moreover, the extended formulation is in both instances significantly slower than the original.
To a certain extent this could be explained by the fact that the average number of generated
edges and nodes in the extended formulation is about twice as much as in the original
formulation for each value of δ. As its underlying graph is much larger than in the original
formulation, it is prone to give memory exceptions more quickly when generating the graph.

Comparing both instances, it also seems that the second instance is in general much slower
than the first instance. Again it seems reasonable that the average number of generated
edges and nodes are the main cause of this.

Furthermore, it seems that decreasing δ leads to lesser costs. However, this only seems
profitable till a certain point, considering the trade-off between the computation time and
costs. Especially when looking at the change of δ = 1 to δ = 0.5 in Table 1 and Table
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2, as the decrease in cost seems at this point to converge a bit, whereas the computa-
tion time increases rapidly. For δ = 0.1666 the cost even went up a bit compared to
δ = 0.5, but this could be explained as certain cheaper sailings were possibly not available in
this graph. This seems reasonable as the other values of δ are not an exact multiple of 0.1666.

When comparing the decrease in cost for each value of δ for both the normal and extended
formulation in both instances, it seems that the extended formulation only provides a relative
large decrease in costs in the first instance. In the first instance a general decrease of 7% in
the costs is established, whereas the second instance only has a decrease of less than 2%.
To see whether the extended formulation provides a large decrease in cost in general, the
efficiency of the extended formulation is examined in more detail in Section 6.3.

Table 1: Influence on number of edges and nodes generated, the cost and the computation
time in seconds of the original formulation when varying δ in the first instance. All given
values are averages of 10 cases. Time (max) denotes the maximum total computation time
of the 10 cases. The computation time to load the data is not given as it could easily be
determined by the other computation times.

Original

δ (h) E N Cost Building Running Time Time
(106 euro) graph Cplex (total) (max)

30 77 82 8.353 0.01 0.03 0.04 0.17
10 278 207 7.903 0.01 0.03 0.05 0.20
5 5,846 405 7.796 0.01 0.04 0.05 0.22
2 4,438 1,003 7.743 0.02 0.10 0.12 0.32
1 16,567 1,988 7.732 0.03 0.44 0.47 0.77

0.5 32,937 3,930 7.729 0.04 0.89 0.94 2.89
0.1666 97,789 43,248 7.735 0.35 8.29 8.65 33.68
0.0833 196,854 76,271 7.733 1.15 42.88 44.06 202.54

Table 2: Influence on number of edges and nodes generated, the cost and the computation
time in seconds of the extended formulation when varying δ in the first instance. All given
values are averages of 10 cases. Time (max) denotes the maximum total computation time
of the 10 cases. The computation time to load the data is not given as it could easily be
determined by the other computation times. In case a value could not be generated because
of a memory exception, it is denoted by: –.

Extended

δ (h) E N Cost Building Running Time Time
(106 euro) graph Cplex (total) (max)

30 218 198 7,760 0.01 0.05 0.06 0.22
10 846 535 7.320 0.01 0.09 0.10 0.23
5 2,668 1,072 7.225 0.01 0.15 0.16 0.38
2 9,454 1,612 7.152 0.02 0.40 0.43 0.76
1 35,420 3,256 7.151 0.05 1.83 1.89 8.13

0.5 70,354 6,453 7.149 0.12 4.53 4.65 15.14
0.1666 227,061 85,183 7.165 1.74 99.92 101.66 568.62
0.0833 – – – – – – –
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Table 3: Influence on number of edges and nodes generated, the cost and the computation time
in seconds of the original formulation when varying δ in the second instance. All given values
are averages of 10 cases. Time (max) denotes the maximum total computation time of the 10
cases. The computation time to load the data is not given as it could easily be determined
by the other computation times. In case a value could not be generated because of a memory
exception, it is denoted by: –.

Original

δ (h) E N Cost Building Running Time Time
(107 euro) graph Cplex (total) (max)

30 336 344 1.636 0.01 0.05 0.07 0.24
10 1,395 998 1.563 0.01 0.07 0.08 0.21
5 4,702 2,082 1.555 0.01 0.16 0.17 0.32
2 25,889 5,283 1.548 0.04 0.73 0.77 1.67
1 97,208 10,470 1.538 0.12 4.07 4.30 18.64

0.5 192,650 20,762 1.516 0.30 12.52 12.83 64.68
0.1666 – – – – – – –

Table 4: Influence on number of edges and nodes generated, the cost and the computation
time in seconds of the extended formulation when varying δ in the second instance. All given
values are averages of 10 cases. Time (max) denotes the maximum total computation time
of the 10 cases. The computation time to load the data is not given as it could easily be
determined by the other computation times. In case a value could not be generated because
of a memory exception, it is denoted by: –.

Extended

δ (h) E N Cost Building Running Time Time
(107 euro) graph Cplex (total) (max)

30 1,155 986 1.602 0.01 0.17 0.18 0.42
10 5,416 3,316 1.528 0.02 0.46 0.48 0.78
5 18,491 6,600 1.519 0.03 1.23 1.26 2.49
2 56,813 8,815 1.517 0.08 5.39 5.48 20.21
1 210,500 17,188 1.512 0.24 59.71 59.95 327.92

0.5 – – – – – – –
0.1666 – – – – – – –
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6.2 Varying Number of Vessels and Port Calls

To investigate what happens to the computation time when varying the number of vessels and
the number of port calls, several instances are created in which η = 10 and δ = 1.0. Again
we generate 10 cases of each instance and report the average value to give a more realistic
view. The used cases give feasible solutions for both formulations. Table 5 shows how the
computation time reacts when changing the number of vessels or the number of port calls
respectively. The top value in a cell represents the computation time in the original formula-
tion, whereas the bottom value represents the computation time in the extended formulation.

In general it seems that the computation time strongly reacts to changes in the number of
port calls in both formulations. For example, when κ is increased from 6 to 7 for V = 5 the
computation time of the original formulation increases from 1.14 to 14.96 seconds. Moreover,
increasing κ increases the chance to obtain memory exceptions in Cplex, as the number of
nodes and edges grow rapidly. This growth can be explained since the recovery horizon
becomes larger and the number of all possible recoveries in the graph grow exponentially.
Both formulations are, however, more robust when changing the number of vessels, as the
underlying graph does not increase rapidly. For example, when increasing the number of
vessels from 20 to 40 for κ = 4 the computation time in the original formulation increases
from 0.55 to 0.93 seconds. Overall, the behaviour of the total computation time in case the
number of port calls or the number of vessels increases, seems in line with the findings of
Brouer et al. (2013).

Table 5: Total computation time in seconds when varying the number of vessels and number
of port calls. All given computation times are averages of 10 cases. The top value in a cell
represents the original formulation (Org) and the bottom value the extended formulation
(Ext). In case a value could not be generated because of a memory exception, it is denoted
by: –.

V

κ 5 10 15 20 30 40 60 80 100

4 Org 0.07 0.17 0.50 0.55 0.67 0.93 1.04 3.20 3.44
Ext 0.28 0.61 1.94 2.13 2.65 9.79 18.27 56.06 259.41

5 Org 0.21 0.97 1.25 1.88 3.07 7.16 43.53 – –
Ext 0.80 16.15 11.97 25.21 97.79 272.95 – – –

6 Org 1.14 5.39 18.31 22.61 183.26 194.25 – – –
Ext 9.25 156.85 300.85 – – – – – –

7 Org 14.96 49.98 125.48 – – – – – –
Ext 17.04 – – – – – – – –

8 Org 44.91 – – – – – – – –
Ext – – – – – – – – –

9 Org 63.73 – – – – – – – –
Ext – – – – – – – – –

10 Org – – – – – – – – –
Ext – – – – – – – – –
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When comparing both formulations, it is clear that the extended formulation is slower than
the original. This is as expected, as the extended formulation contains the nodes and edges
of the original formulation. Especially in instances where the number of vessels is relatively
large for the number of port calls, does the computation time between both formulations
diverge a lot. For example, the computation time in the original formulation is 3.44 seconds
when κ = 4 and V = 100, whereas the extended formulation is solved in 259.41 seconds.
This is almost 75 times slower.

6.3 Performance Extended Formulation

From Table 5 it is clear that the extended formulation is much slower than the original for-
mulation for each instance. In some cases the extended formulation is up to 75 times slower
than the original formulation. It is interesting to know whether the extended formulation
performs much better in terms of costs in these cases, such that it is profitable to wait a bit
longer to get a much better solution. Table 6 shows how the total costs react when varying
the number of vessels and the number of port calls for the same instances as in Table 5.
The top value in a cell represents again the original formulation, whereas the bottom value
represents the extended formulation.

It appears that when the number of vessels is increased, the extended formulation gives a
relative larger reduction of costs compared to the original formulation. The same statement
is not necessarily true when increasing κ. There certainly are reductions in costs, but these
are relatively decreasing. However, it is not clear whether this is a systematic effect, as
there are less results when increasing κ. On average there is a cost reduction of 9.4% when
using the extended formulation.

Table 6: Total costs (106 euro) when varying the number of vessels and number of port
calls. All given costs are averages of 10 cases. The top value in a cell represents the original
formulation (Org) and the bottom value the extended formulation (Ext). In case a value
could not be generated because of a memory exception, it is denoted by: –.

V

κ 5 10 15 20 30 40 60 80 100

4 Org 7.25 11.88 18.56 39.99 69.79 74.00 155.43 225.90 330.94
Ext 6.81 11.10 18.19 38.61 58.13 66.48 127.90 180.66 268.59

5 Org 9.66 22.14 30.70 40.74 69.18 99.75 158.64 – –
Ext 8.51 20.42 28.50 37.10 61.25 88.97 – – –

6 Org 7.82 13.82 29.45 37.62 67.50 83.74 – – –
Ext 7.31 13.27 28.49 – – – – – –

7 Org 9.85 20.04 32.14 – – – – – –
Ext 9.45 – – – – – – – –

8 Org 10.66 – – – – – – – –
Ext – – – – – – – – –

9 Org 13.60 – – – – – – – –
Ext – – – – – – – – –

10 Org – – – – – – – – –
Ext – – – – – – – – –
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6.3.1 Example

In order to see in what kind of situations the extended formulation performs much better
than the original, we constructed a specific example, where κ = 4, V = 1, η = 10, K = 3
and ε = 0.5. This single vessel picks up three container groups at its origin port A and it
delivers one container group at each port call. Its proforma schedule is in the order A, B, C
and D. At port B it has to deliver 1,000 containers, at port C 200 containers and at D 4,000
containers. Originally the vessel was supposed to arrive at A at 96 hours, however there has
been a delay of 10 hours. In Table 7 and Table 8 it is shown how the example performs in
both formulations. Figure 3 shows a time-space representation of the problem.

Table 7: Overview of some aspects of the example, where E are the number of edges and N
the number of nodes. The costs are reported in euros and the computation time in seconds.

E N Constraints Total cost Sailing cost Time (total)

Original 580 113 82 1,478,229 139,432 0.05
Extended 3,170 301 186 1,139,432 78,229 0.23

Table 8: Overview of some aspects of the example. Container impact is reported in units.
Split indicates how many times there has been a partial misconnection.

Delay Misconnection

Total Split Total Split

Original 1,200 - 200 -
Extended 500 1 500 1
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(a) All possible sailings when using the
original formulation.
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(b) All possible sailings when using the
extended formulation.

Figure 3: Time-space network representation of the example.
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From Table 7 it is clear that the extended formulation performs much better than the
original formulation, as the cost reduction is almost 23%. Table 8 and Figure 3 give more
insight in the final solution. In the extended formulation the container group with 1,000
containers has been split into two groups at port B. Because of the time savings it potentially
gained at this port, it could deliver the other two container groups on time. The original
formulation was not able to go to port C at all, as the cost of a delay of the container group
with 4,000 units at port D is too high. However, in both formulations the vessel is not able
to deliver the first container group in time. Therefore, in this situation it is the best choice
to have a partial misconnection there, as delay costs are already inflicted. With the time it
gained, the vessel did not need to sail on its maximum speed as in the original formulation,
what caused the sailing costs to decrease as well.

The figure also gives an idea how the number of nodes and edges behave when implementing
the extended formulation. In comparison to Figure 3a is the number of possible sailings
much higher in Figure 3b.

The reason why there is such a large cost reduction in this particular example, is because it
would have experienced a delay of its first delivery anyway and because it needs to deliver a
large container group somewhere else on its itinerary. In such cases the use of the extended
formulation seems especially profitable.
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7 Conclusion

In this thesis it was investigated whether it is possible to have a model which is able to
handle liner shipping disruptions in real-time decision making. To test this, a formulation
of Brouer et al. (2013) was used, such that disruptions could be handled by speeding up
vessels, omitting port calls or swapping port calls. The original model was extended in this
thesis to also handle disruptions by means of the cut-and-run method, such that a vessel
does not finish its entire port call before embarking again. To answer how both formulations
perform in several instances, it was researched how they react when varying the duration of
the shift, the number of vessels and the number of port calls.

It seems that decreasing the duration of the shift, such that there are more timeslots for
the vessel to arrive at its next destination, is profitable till a certain point. Considering
the trade-off between time and cost decrease, we advise to use δ = 1 or δ = 0.5. Further-
more, when the number of port calls in which a vessel is allowed to recover is too large,
both formulations have memory issues. For a large number of vessels (20) the extended
formulation is already not able to give results when the number of port calls is 6, whereas
the original formulation still gives results for cases which include 40 vessels. In case the
number of port calls is 8 or 9, only the original formulation is able to perform, however
for a relative small number of vessels (5). The model is more robust when increasing the
number of vessels. In case the number of port calls is only 4, both formulations are able to
give results in an instance with 100 vessels in still a reasonable amount of time (< 5 minutes).

In general the extended formulation is slower than the original formulation. In some cases
the extended formulation is up to 75 times slower than the original. However, on average it
can give cost reductions of around 9% compared to the original formulation. Especially in
instances where the number of vessels (> 40) is large and the number of port calls not too
large (< 6), does the extended formulation on average give a relative large cost reduction.
As in those instances the extended formulation is still solvable in reasonable time, we advise
to use the extended formulation in case the number of port calls is not too large (< 6),
whereas we recommend to use the original formulation when the number of port calls is
larger. Next, we advise to use the extended formulation in case there is a real severe delay.
In this case the original formulation is more likely to not be able to give a feasible solution
because of the way the graph is constructed.

However, there are some remarks regarding both models. The considered sailing costs
possibly do not capture all costs. It is generally known that the engine of a vessel performs
best when it sails on its design speed. In case it sails slower than its design speed, it gives
strain on the machinery. This could give rise to bigger engine claims and maintenance costs
(Meyer et al., 2012). Another remark is that the current formulation as used in this thesis
only allows port swaps with a direct successor. This may not be the most effective option,
as it is generated data and the swapped ports are not within a designated geographical area.
However, in cases where real data is used, this could be a better option, as itineraries are
created such that a successor of a certain port is in its designated geographical area.

For future research we would recommend to try to reduce the size of the underlying time-
space network without changing its optimal solution. Reducing its size would certainly
decrease the computation time significantly.
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A Appendix

This appendix describes an example of the extended formulation in which the cut-and-run
policy is considered a recovery option as well. In this example, we set K = 3 and ε = 0.5.
The set J is not explicitly mentioned in this case, as all decision variables and constraints
are written down. The following formulation is used to generate the results as discussed in
Section 6.

Set:
De
c Cut-and-run edges, which split container group c.

De
c ⊂ {Lh | h ∈ Bc ∪ Ic ∪ Tc}

Decision variables:
fc ∈ {0, 1, 2, 3} Number indicates how many times container group c ∈ C is split
qc ∈ {0, 1, . . . , 7} Number gives an indication how many times container group c ∈ C

is split and if it supposed to misconnect as a whole

r
(1)
c ∈ B 1 if container group c ∈ C is split once, 0 otherwise

r
(2)
c ∈ B 1 if container group c ∈ C is split twice, 0 otherwise

r
(3)
c ∈ B 1 if container group c ∈ C is split thrice, 0 otherwise

s
(1)
c ∈ B 1 if container group c ∈ C is split once and has a final delay,

0 otherwise

s
(2)
c ∈ B 1 if container group c ∈ C is split twice and has a final delay,

0 otherwise

s
(3)
c ∈ B 1 if container group c ∈ C is split thrice and has a final delay,

0 otherwise

The original objective (1) is reformulated to account for partial misconnections:

min
∑
v∈V

∑
h∈Hv

∑
e∈Lh

cvexe (22)

+
∑
c∈C

[
cdc

(
oc −

1

2
s(1)c −

3

4
s(2)c −

7

8
s(3)c

)
+ cmc yc +

(
cmc + cdc

)(1

2
r(1)c +

3

4
r(2)c +

7

8
r(3)c

)]
The new objective (22) minimizes once more the total operating costs and the costs of the
misconnections and delays, however now it also minimizes the cost of split container groups.

In case a total misconnection happens and thus yc = 1, the minimzation ensures that r
(1)
c ,

r
(2)
c and r

(3)
c are 0. Therefore, the misconnection cost is still only cmc . In case there is a

partial misconnection and depending on how many partial misconnections there are, the
cost of a misconnection and a delay is multiplied by the size of the partial missed container
group. In case there is a delay of (what is left of) a container group is, and thus oc = 1,
and depending on how many times the container group has been partially misconnected,
a certain proportion should be subtracted from oc otherwise the delay cost of the partial
misconnected containers would be counted twice.
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The following additional constraints are added to the original mathematical model:∑
e∈Dc

e

xe ≤ fc ∀c ∈ C (23)

fc + 4yc ≤ qc ∀c ∈ C (24)

qc − 2 ≤ r(3)c + 5yc ∀c ∈ C (25)

qc − 1 ≤ r(2)c + 2r(3)c + 6yc ∀c ∈ C (26)

qc ≤ r(1)c + 2r(2)c + 3r(3)c + 7yc ∀c ∈ C (27)

s(1)c ≤ oc ∀c ∈ C (28)

s(1)c ≤ r(1)c ∀c ∈ C (29)

s(2)c ≤ oc ∀c ∈ C (30)

s(2)c ≤ r(2)c ∀c ∈ C (31)

s(3)c ≤ oc ∀c ∈ C (32)

s(3)c ≤ r(3)c ∀c ∈ C (33)

fc, qc ∈ R ∀c ∈ C (34)

r(1)c , r(2)c , r(3)c , s(1)c , s(2)c , s(3)c ∈ B ∀c ∈ C (35)

yc ∈ B ∀c ∈ C (36)

Constraints (23) count the number of misconnections there have been of each container
group. As there is at most one incoming edge in each port (Constraints (2)) and since xe has
a binary domain, it is ensured that fc ∈ {0, 1, 2, 3}. Constraints (24) keep track what kind
of misconnection has occurred, e.g. a total misconnection or a partial misconnection of a
container group c. When fc ≥ 4 there has been a complete misconnection and no container in
this group can be delivered on time. When fc = 3 the container group is three times partially
misconnected, therefore only 12.5% of the cargo can be delivered without experiencing a
misconnection. When fc = 2 the container group has been split twice, thus only 25% of the
group can be delivered without experiencing a misconnection. When fc = 1 the container
group is split once, such that half of the cargo does not experience a misconnection. In the
case that fc = 0, no misconnection has occurred at all. As fc ∈ {0, 1, 2, 3} and yc has a
binary domain, qc ∈ {0, 1, . . . , 7}.

Constraints (25) ensure that when there are three partial misconnections (qc = 3), the

variable r
(3)
c is set to 1. In case qc ≥ 4, r

(3)
c is set to 0 as yc = 1 and since there is a

minimization. The general idea of these constraints is also applied to the Constraints
(26) and (27). Constraints (26) ensure that when there are two partial misconnections

(qc = 2), the variable r
(2)
c is set to 1. The case of qc ≥ 4 is similar to the one above and

thus r
(2)
c is set to 0. In case qc = 3, r

(2)
c is set to 0 as well, as it is cheaper to only set

r
(3)
c to 1. Constraints (27) ensure that when there is one partial misconnection (qc = 1),

the variable r
(1)
c is set to 1. The case of qc ≥ 4 and qc = 3 are similar to the ones above,

thus r
(1)
c is set to 0. In case qc = 2, r

(1)
c is set to 0 as well, as it is cheaper to only set r

(2)
c to 1.

Constraints (28) & (29), (30) & (31) and (32) & (33) apply all the same idea, therefore only
the first pair is explained in more detail. Only in the case there is a supposed delay of the

whole container group oc = 1 and the container group is split once r
(1)
c = 1, s

(1)
c is able to be

1. Because of the minimization s
(1)
c is then set to 1. Constraints (34) give a real domain to fc
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and qc, however as already discusses the model forces the desired domain on both variables.

Constraints (35) force a binary domain on r
(1)
c , r

(2)
c , r

(3)
c , s

(1)
c , s

(2)
c and s

(3)
c . As the structure

of the minimization is changed, yc is no longer forced to be binary, therefore Constraints
(12) are slightly altered such that yc has a binary domain, which is stated by Constraints (36).
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