2af s

«“ ERASMUS UNIVERSITEIT ROTTERDAM
ERASMUS SCHOOL OF ECONOMICS

Bachelor Thesis Econometrie en Operationele Research

Analyzing Different Dynasearch Algorithms for
the Single-Machine Total Weighted Tardiness
Scheduling Problem

Emiel Feitsma ® ID number: 411380
Supervisor: Thomas Breugem

Second assessor: Twan Dollevoet

In 2002, Congram, Potts and Van de Velde introduced dynasearch, a new
competitive local search algorithm for the single-machine total weighted
tardiness scheduling problem. At the time, an iterated dynasearch
algorithm outperformed the state-of-the-art tabu search algorithm of
Crauwels et al. (1998). In this thesis, we compare the basic dynasearch
algorithm of Congram et al. (2002) with both existing and new extented
versions of dynasearch, and with the breakout dynasearch algorithm of
Ding et al. (2016).

July 2, 2017

Contents

1 Introduction

2 The Tardiness Scheduling Problem
3 Literature Review

4 Dynasearch

4.1 Swap Neighborhoods
4.2 A Basic Dynasearch Algorithm
4.3 Speedups

5 Additional Dynasearch Neighborhoods
51 GPI-DS

5.2 Dependent Dynasearch
6 Iterated Algorithms

6.1 Iterated Local Search

6.2 Breakout Dynasearch
7 Results

7.1 Experimental Design

7.2 Multi-Start and Iterated Local Search

7.3 Different Dynasearch Algorithms . . .

8 Conclusion

1 Introduction

A descent algorithm is a simple and practical type of local search heuristic for solving computationally
hard optimization problems. The main idea of a descent algorithm is to use a neighborhood structure to
improve a given feasible solution, by performing a series of transformations or mowves. A neighborhood
of a current solution is defined by all the possible solutions that can be generated by a single move. The
algorithm repeatedly selects a better solution in the neighborhood to be the new current solution, until
no better solution exists.

We discuss two types of traditional descent algorithms; first-improve and best-improve. With first-
improve descent, the current solution is replaced with the first better solution found in the neighborhood,
while with best-improve descent the current solution is replaced with the best solution in the neighbor-
hood.

With a single run of traditional descent, it is unlikely that the global optimum is found. We there-
fore employ two well-known approaches for improving the solution quality, namely a multi-start and
an iterated approach. With a multi-start approach, several random starting solutions are generated, to
perform different independent runs of descent, after which the best of the resulting solutions is selected.
The second approach is known as iterated descent, which uses previous local optima to generate new
starting solutions.

First-improve and best-improve descent algorithms can be used to search neighborhoods of polyno-
mial size for a better or best solution. However, Congram et al. (2002) introduced dynasearch, an
algorithm that searches a neighborhood of exponential size, reducing the chance of getting stuck in poor
local optima. Dynamic programming in a local search algorithm is used, so that the exponential sized
neighborhood can be searched in polynomial time. A basic dynasearch algorithm uses the same type of
neighborhood as the traditional descent algorithms - a swap neighborhood - but allows several moves to
be made in a single iteration.

Dynasearch and traditional descent can be used for all problem instances where a sequence has to
be ordered, but we study the application of the algorithms to the single-machine total weighted tardiness
scheduling problem (SMTWTSP). First we show that dynasearch is better than traditional descent on
both computation time and solution quality. Subsequently, we compare the iterated dynasearch algo-
rithm of Congram et al. (2002) with other algorithms based on dynasearch.

The organization of this thesis is as follows. The single-machine total weighted tardiness scheduling
problem is briefly discussed in Section 2. In Section 3 we take a look at some literature about dynasearch
and the tardiness scheduling problem. Section 4 presents the dynasearch concept for the total weighted
tardiness problem, along with some speedups for the basic dynasearch algorithm. In Section 5, additional
dynasearch neighborhoods are described. In Section 6 we present the iterated local search algorithms
for traditional descent and dynasearch, and describe the breakout dynasearch algorithm of Ding et al.
(2016). Section 7 reports on our computational experience; the results of the local search algorithm
comparisons are given and discussed, along with the comparison of the performances of the different
dynasearch-based algorithms. Finally, a conclusion on our research is given in Section 8.

2 The Tardiness Scheduling Problem

In this section, we discuss the single-machine total weighted tardiness scheduling problem, an NP-hard
problem for which dynasearch initially was developed. The SMTWTSP can be stated as follows. A
single machine is available to process each of n jobs, one job at a time. The processing of each job o(j)
(j = 1,...,n) cannot be interrupted, and takes p,(;) time periods. The relative importance of each job
o(j) is expressed as the weight w ;). There are no restrictions on when the processing of job o(j) can
start, but each job should ideally be completed before its due date d, ;). When all jobs are scheduled, the
weighted tardiness values can be computed as w,(j)(Py(j) — dg(j))+, where Py (; is the total processing
time of the first j scheduled jobs, i.e., P,(jy = > % _; Do), and (z)T = max{xz,0} for any real x. The
problem is to minimize the total weighted tardiness TWT by finding an optimal processing order of all
n jObS, where TWT = Z?:l wg(j)(PU(j) - dg(j))Jr.

Table 1: Data for a 6-job Problem Instance

Job j 1 2 3 4 5 6
Processing timep; 3 1 1 5 1 5
Weight w; 3 5 1 1 4 4
Due date d; 1 5 3 1 3 1

6-job instance example of Congram et al. (2002).

Example. Consider the 6-job instance that is specified in Table 1 (example of Congram et al. (2002)),
and suppose the initial sequence is Sy = (1,2,3,4,5,6). Figure 1 shows for every job of Sy when it is
being processed. The total weighted tardiness can be computed as follows. The weight of the first job
is 3, and it is completed two time units too late, so the first job contributes 2 x 3 = 6 to the total
weighted tardiness. The second job is completed before the due date, so it is not tardy. The third job
is completed two time units after the due date, and the weight is 1, so the weighted tardiness of the
third job is 2 x 1 = 2. Similarly, the fourth, fifth and sixth job contribute 9 x 1 =9, 8 x 4 = 32 and
15 x 4 = 60 to the total weighted tardiness, respectively. Hence, the initial sequence Sy corresponds to a
total weighted tardiness value of 6 +0+ 2+ 9+ 32 4 60 = 109. Naturally, a different processing order of
the jobs leads to a different total weighted tardiness value. For instance, sequence S; = (5,1,2,3,6,4), of
which the processing details are also given in Figure 1, corresponds to a total weighted tardiness value of
04+ (3%x3)+0+(3x1)+(10x4)+(15x 1) = 67. The example shows that with changing the processing
order of the jobs, a significantly lower objective value can be reached.

Moment in time: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S o« Js) 6 |
5 s] 4 |

Figure 1: Processing of jobs of different sequences

3 Literature Review

The first technical report of An iterated dynasearch algorithm for the single-machine total weighted tar-
diness scheduling problem by Congram, Potts and Van de Velde dates back to december 1998. When the
updated version of this paper, Congram et al. (2002), was published in the INFORMS Journal on Com-
puting, it was still claimed that dynasearch outperformed the state-of-the-art local search algorithms at
the time, namely the multi-start tabu search algorithm of Crauwels et al. (1998). However, Den Besten
et al. (2000) claimed that their Ant Colony System algorithm for the SMTWTSP reached a performance
similar to that of iterated dynasearch.

In the concluding remarks, Congram et al. (2002) suggest an extension for the dynasearch algorithm
which they did not implement yet. Their suggestion is to extend dynasearch so that independent swap
moves are used in combination with insert moves. This extension is implemented by Grosso et al. (2004),
and used by, among others, Ergun and Orlin (2006) and Sourd (2006), all confirming that the perfor-
mance of dynasearch improves when independent swap moves and insert moves are used in combination.
Ergun and Orlin (2006) also introduce a twist neighborhood, next to the swap and insert neighborhoods.
The twist neighborhood consists of all sequences that can be generated by taking a subset of the jobs
in the current solution, and processing them in reverse order. In addition, the algorithm of Ergun and
Orlin (2006) searches the dynasearch swap neighborhood in O(n?) time, as opposed to the O(n?) time
bound for the dynasearch algorithm of Congram et al. (2002).

Through the years, several (improvements on) new algorithms to solve NP-hard problems, such as the
SMTWTSP, have been introduced, either to solve them exact or with a heuristic approach (Gagné et
al. (2002), Gupta and Smith (2006), Valente and Alves (2008)). Gupta and Smith (2006) compare their
algorithms with the ones of Gagné et al. (2002) (who claim to have a competitive algorithm for the
SMTWTSP with sequence dependent setup times), and obtain comparable computational results. How-
ever, Della Croce et al. (2011) point out that that the standard iterated dynasearch algorithm applied
to the SMTWTSP still outperforms all the literature heuristics.

Furthermore, Tanaka et al. (2009) present an exact algorithm for the tardiness scheduling problem
that outperforms previous exact algorithms for this problem. Anghinolfi and Paolucci (2009) present a
competitive new population-based metaheuristic, called discrete particle swarm optimization. In 2010,
Koulamas compares known exact approaches as well as heuristics for the SMTWTSP. The latter men-
tiones dynasearch briefly as the algorithm that searches an exponential sized neighborhood in polynomial
time, but computational results of dynasearch are not discussed, or compared with the results of other
algorithms. Ding et al. (2016) present a breakout dynasearch algorithm (BDS) that explores the search
space by combining the dynasearch procedure with an adaptive perturbation strategy. They compare
the computational results of BDS with the exact approach of Tanaka et al. (2009), the extended dy-
nasearch approach (GPI-DS) of Grosso et al. (2004), and other metaheuristic algorithms. They conclude
that BDS and GPI-DS outperform other known heuristics for the SMTWTSP. BDS performs slightly
better than GPI-DS on large problem instances (up to 300 jobs), in terms of both solution quality and
computational time.

Literature shows that the dynasearch algorithm presented by Congram et al. (2002) was an important
breakthrough. Even though some extensions are made through the years, the state-of-the-art algorithms
for solving the SMTWTSP are still based on the dynasearch algorithm.

4 Dynasearch

In this section we describe a basic dynasearch algorithm. In Section 4.1 we explain the dynasearch
swap neighborhood and compare it with the traditional swap neighborhood. Section 4.2 describes how
dynasearch combines a dynamic programming algorithm with backtracking to find local minima. Lastly,
in Section 4.3 we describe some speedups for the dynasearch algorithm.

4.1 Swap Neighborhoods

Let the current processing order of the jobs be defined by a permutation o, where 0 = (o(1), ...,0(n)) and
o(4) is the job on position j (j = 1,...,n). Any sequence ¢’ is a swap neighbor of ¢ if with swapping two
jobs on positions ¢ and 7 ¢’ can be obtained, where 0 < i < j < n. For example, the swap neighborhood
of the permutation (1,2, 3) consists of the permutations (2,1, 3), (1,3,2) and (3,2, 1), which are obtained
by swapping 1 and 2, 2 and 3, and 1 and 3, respectively.

Any sequence ¢’ is a dynasearch swap neighbor of ¢ if o’ can be obtained by one or more swap moves,
on the condition that all moves are independent. A move that swaps the jobs on positions 7 and j
is independent with any move that swaps the jobs on positions k& and [if max{i,j} < min{k,l} or
min{i, j} > max{k,!}. The strategy of dynasearch is similar to that of best-improve descent; the current
solution is replaced with the best solution in the neighborhood.

The difference between swap and dynasearch swap moves is illustrated in Table 2. This table shows
the moves that are made by best-improve descent and dynasearch on the initial sequence of the 6-job
instance of the example in Section 2. With both approaches, the search becomes trapped in a local
minimum after executing three moves. However, as the dynasearch swaps correspond to one or more
traditional swaps, a lower objective value is reached.

Table 2: Swaps made by Best-Improve Descent and Dynasearch

Best-Improve Descent Dynasearch
Current Total Weighted Current Total Weighted
Iteration Sequence Tardiness Sequence Tardiness
123456 109 123456 109
1 123546 90 132546 89
2 123564 75 152364 68
3 523164 70 512364 67

4.2 A Basic Dynasearch Algorithm

Dynasearch uses a dynamic programming algorithm to find the best dynasearch neighbor of the current
sequence o. First, the total weighted tardiness of the best dynasearch neighbor is determined with a
recursion. Then, the corresponding sequence can be found by backtracking. The recursion works as
follows. Among all partial sequences that can be obtained from the first k jobs of the current sequence
o = (0(1),...,0(n)), let o, be the one with minimum total weighted tardiness. Now o(is an empty
sequence, and o1 = (0(1)). For k = 2,...,n, o is obtained from a previous partial sequence o;, where
0 < i < k. There are two possibilities for obtaining o, from o;.

The first possibility is to simply append job o(k) to the partial sequence ox_1 (so i = k —1). In
this case, job o (k) is not involved in any swap, so oy = (0k—1,0(k)). The total weighted tardiness F'(oy)
can than be computed as the sum of the objective value of partial sequence o;_; and the weighted
tardiness of job o(k):

F(oy) = F(ok-1) + Wok) (Po(r) — dox)) ™ (1)

The other possibility is to append jobs o(i 4+ 1),...,0(k) to o;, and then interchange jobs o(i 4+ 1)
and o(k), where 0 < i < k — 1. Since jobs o(k) and o(i + 1) are swapped, oy can be written as

o = (04,0(k),0(i +2),...,0(k —1),0(i + 1)), and the total weighted tardiness F(o)) can be computed
as

F(oy) = F(Uz‘) + Wo (k) (Po(i) + Pok) — do(r) "

+ Z W () (Po() + Potk) = Pati+1) = do(i)) ™ (2)
J=i+2

+ Wo(i41) (Pr(ky — do(i+) -

For the first possibility, and for all £ — 1 options in the second possibility, a candidate value for F(oy) is
computed. The recursion in the dynamic programming algorithm computes the smallest of the candidate
values for F'(oj) to find the best set of independent swaps. For the backtracking procedure, let by
represent the best candidate value for F'(oy). If the first possibility provides the best candidate value, by
is set to -1. Otherwise, by, is set to the value of 7 that provided the best candidate value. The initialization
of the dynamic programming algorithm can now be given by

F(Uo) = 0,

(3)
F(o1) = we1)(Po1) — don)) ™,

and the recursion for k = 2,...,n by

F(o—kfl) + We (k) (Pa(k) - do’(k))+7

F(Uz) + Wo (1) (P iy + Po(k) — do(i)) ™
F (o) = min

; o do)t
ogringll?fz +j§r2wa (a(])+pa(k) Po(i+1) U(]))

+Wo(i+1) (Pok) — do(itn)) T

After the optimal solution value F'(o,,) is found, the backtracking procedure can be used to find the
corresponding sequence. Starting with k = n, if by # —1, job o(k) is swapped with job o(by + 1) and &
is set to bg. If b = —1, no swap is performed, and k is set to kK — 1. This is repeated until k¥ = 0, which
means that all swaps are identified and performed.

For the first iteration, the current solution usually is obtained by some heuristic. After the first it-
eration, the best permutation in the previous neighborhood is used as current solution. The dynasearch
algorithm continues as long as improving moves can be found. If no improving moves are found in an
iteration, the algorithm terminates.

4.3 Speedups

In a basic dynasearch algorithm, for every potential swap move of jobs o(i+1) and o(k), for k =1,....,n
and i =0, ..., k—2, the weighted tardiness of all k£ —i jobs in positions ¢+ 1, ..., k has to be computed. We
describe below speedup procedures that may guarantee that the interchange of two jobs cannot reduce
the total weighted tardiness, before the weighted tardiness values of the k — i jobs in positions ¢ + 1, ..., k
are computed. Subsequently, we describe speedup procedures that avoid the values of k corresponding to
positions at the start of the sequence. For both categories, we also describe the corresponding speedups
for traditional descent.

In order to efficiently implement the speedups, some preprocessing is required. Next to the partial
sums of processing times P, (), we compute the partial sums of weighted tardiness values V, (x), and the
partial sums of weights for late jobs W (1y:

Zwa(o’(z —d, o(t))Jra

U(k Zwa(

for k =1,...,n, where U,(;) is equal to one if P, ;) > d,(;), and zero otherwise.

Also, a value A is specified. In descent, A is set as the best improvement found thus far (for first-
improve descent this means that A is always zero). Moves with an improvement smaller than A are
rejected: non-improving moves, and moves that are worse than the best move found thus far. For dy-
nasearch, all £ terms in the first minimization of the right hand side of Equation 4 provide a candidate
value for F'(0y). We set A = F(0;) + (Vo) — Vo)) — F(0y,), where F(0y,) is the best candidate value
found thus far. The candidate values that exceed F(Uk) are rejected.

Let cwtpefore(i + 1,k) and cwtqper (i + 1, k) be the combined weighted tardiness of jobs o(i + 1) and
o(k), before and after the swap respectively. Furthermore, let ub = min{V,x—_1) — Vo (i+1), (Po(i+1) —
Po(k)) (Wek—1) — Wo(is1))} be the upper bound on the reduction in the total weighted tardiness of jobs
o(i+2),...,0(k —1). The swap operator between jobs o(i + 1) and o(k) does not need to be applied if
at least one of the following conditions holds.

(1
(2

Po (k) > Po(i+1) and CWtafter(i + 17 k) - thbefore(i + 17 k) + (A)+ > 07
pa'(k) < pa(i+1) and cwtafter(i + 17 k) - thbefore(i + 17 k) > ub — Av

(B) doit1) < do(r)s Wo(it1) = Wok) and Po(it1) < Do(k)

)
)
)
)

(4) Po(it1) < Po(k)> Wo(it1) > Wo(k) and max{ P, ;) + Do(k)s do(k)} = do(it1)s

Conditions (1) and (2) refer to speedups described by Congram et al. (2002). If condition (1) or (2)
holds, we know that the required improvement will not be achieved. Condition (3) is a well-known
condition for the SMTWTSP but, to our best knowledge, it was not related to dynasearch before. It is
a condition based on a corollary of Rinnooy Kan (1976), who states that if this condition holds, then
only those schedules in which job o(i+ 1) precedes job o (k) need to be considered. Thus if condition (3)
holds, a sequence with o (k) before o(i+ 1) is never optimal. Condition (4) refers to a speedup described
by Grosso et al. (2004). Consider any sequence S = cirkw. Rinnooy Kan et al. (1975) proved that
condition (4) implies F(ckmiw) > F(oirkw), thus the corresponding swap is nonoptimal.

Finally, speedups can be used to avoid the values of k corresponding to positions at the start of the
sequence. For dynasearch, if a dynasearch swap move does not involve the first h jobs of the sequence,
the computation of F(oy) for k = 1,...,h will be identical in the next iteration. Therefore, we need to
perform the recursion in the next iteration only for £k = h+1,...,n. In the traditional descent algorithms,
for every potential interchange of jobs o(i + 1) and o(k), the weighted tardiness values of all jobs as a
result of the swap had to be computed. However, since the jobs in the first ¢ positions of the sequence
stay the same after such an interchange, the value of V,(;) can be used. The weighted tardiness values
of the jobs in positions i + 1,...,n have to be added to V, ;) to compute the total weighted tardiness. If
a potential swap move is executed, the values of V; () are updated for k =i +1,...,n.

5 Additional Dynasearch Neighborhoods

This section discusses two types of additional dynasearch neighborhoods. In Section 5.1 we describe the
first, which is obtained by generalized pairwise interchange (GPI) operators. In Section 5.2, we present a
new extension to the basic dynasearch neighborhood, obtained by allowing for dependent moves. In both
sections, we discuss the changes and additions of the extension with respect to the original dynasearch
(ODS) algorithm of Congram et al. (2002).

5.1 GPI-DS

In their concluding remarks, Congram et al. (2002) already suggest an extension for the dynasearch
neighborhood which they did not implement yet: to use insert moves in combination with swap moves.
Grosso et al. (2004) introduced this enhanced dynasearch neighborhood obtained by the GPI operators.
Next to the existing swap operator, the operators EBSR (extraction and backward-shifted reinsertion)
and EFSR (extraction and forward-shifted reinsertion) are defined. The different GPI operators are
depicted in Figure 2.

N N N
112]34[5]6 112]34[5]6 112]34[5]6
Y Y Y
153 4[2]6 15][2]346 134/[5][2]6

(a) Swap (b) EBSR (c) EFSR

Figure 2: Moves of GPI operators on a sequence of six jobs

The GPI-DS recursion can now be stated, for the GPI operators § = swap, § = EBSR and § = EFSR,
as

F(UO) = 07
F(Jl) = wa(l)(po(l) - da(l))+7

F(ok—1) + Wo() (Por) — do(ry) ™
{F(ai) 106+ 1,k),

(6)
F(og) = min k=2,...,n

min
0<i<k—2;0

where I9(i + 1, k) is the total weighted tardiness of the partial sequence (o(i + 1), ..., o(k)) under appli-
cation of the considered GPI operator 6. If only the swap operator is used, the recursion of Section 4.2
is obtained (Equation 3 and 4). IFPBSE(j + 1 k) and IPFSR(j + 1,k) can be stated as
k—1
IEBSR(i 41,) = won) (Poi) + Doty = do(in) ™ + D wa(i)(Potg) + Pothy — doi) ™
j=it1
) 7
TPESR(41, k) = wo(i1) (Pory — doqirn) ™ + Z Wo(j)(Pr(j) = Potit1) — do(i)) T
j=it2

Because of the larger neighborhood considered with GPI-DS, searching this neighborhood takes more
computation time. In order to speed up the search, the following speedup procedures can be used, next
to the basic dynasearch speedups described in Section 4.3. All the following GPI-DS speedups were
suggested by Grosso et al. (2004).

The swap operator between job o(i) and o(k) does not need to be applied if at least one of the fol-
lowing conditions holds.

(1) We (3) > Wo (k) do(z) < do(k) and do(k) +p0(k) > Po‘(k)a
() Py < doqry-

Consider any sequence S = girkw. Rinnooy Kan et al. (1975) proved that condition (1) and (2) sepa-
rately imply F(ckmiw) > F(omikw). Thus, sequence omikw, obtained by applying EFSR, between ¢ and
k — 1, is not worse than okmiw. Hence, the considered swap is dominated.

Additionally, the EBSR operator between o(i) and o(k) does not need to be applied if at least one
of the following conditions holds.

(1) F(okitw) < F(oiknw),

(2) Pogy < dor
Condition (1) implies that the EBSR between the jobs in positions ¢ + 1 and k is better than the one

between the jobs in positions 7 and k. If condition (2) holds, o(k) is already early, so an EBSR will be
non-improving.

5.2 Dependent Dynasearch

In this section, we present a new extension to the ODS algorithm of Congram et al. (2002): dependent
dynasearch. First, we clarify our extension with an example. Then, we describe the specific changes of
the dynamic programming algorithm with respect to the ODS algorithm.

The basic dynasearch algorithm allows only for independent swap moves to be executed. This means
that, when building the optimal sequence oy, the two options are to just append job o(k) to o;_1, or
append o (k) and execute a swap with a job on some position i +1, ¢ =0, ...,k — 2. When such a swap is
executed, the jobs o(i+2), ...,0(k—1) stay in the same position (although their weighted tardiness values
may change). Dependent dynasearch allows for dependent swap moves, by executing a single dynasearch
swap move - a best series of swaps - on the jobs o (i +2),...,0(k—1) after o(i+ 1) and o (k) are swapped.
The difference between an ODS swap and a DDS swap is depicted in Figure 3.

Y)

13]2[1][10]56 7 8 9[4] 13]2[1][10]6 59 8 7 [4]

(a) Dynasearch (b) Dependent Dynasearch

Figure 3: Dynasearch swap vs. dependent dynasearch swap

Where best-improve executes the best single swap move, ODS executes the best series of independent
swaps. So given an initial sequence o, a single ODS move on ¢ always is as least as good as a single
best-improve descent move on ¢. In the same way, because DDS allows for ’swaps within swaps’, a single
DDS move on o always is as least as good as a single ODS move on o.

Let ¢(a,b,t) be a function that returns the sequence obtained from a single dynasearch swap move
on jobs a(a),...,a(b), given that the first job of this sequence starts at time ¢t. The ODS recursion can
now be stated as

F(O’()) = 07

F(o1) = we1)(Po1) — dor)) ™,

F(O—kfl) + wo(k)(P(T(k) - do‘(k))+v (8)
F(0:) + Wo k) (Po(i) + Pok) — do(i)) ™

o Juin +F(s(i + 2,k — 1, P,y + Po(r)))

F(o) = min k=2 ..,n,

FWe (i41) (Po(k) — do(it1)) T,

So where ODS just computes the weighted tardiness of jobs o (i + 2),...,0(k — 1), DDS computes what
the weighted tardiness would be after a single dynasearch swap move on the corresponding jobs.

6 Iterated Algorithms

In this section, we describe two algorithms that use starting solutions obtained from previous local
optima. In Section 6.1 we describe the version of iterated local search (ILS) presented by Congram et al.
(2002), which we used in our computational experiments. Section 6.2 describes the breakout dynasearch
(BDS) algorithm of Ding et al. (2016).

6.1 Iterated Local Search

In the ILS algorithm, a kick is applied to a current local optimum to generate the starting solution for
the next iteration. A kick is some type of random move and the current local optimum either is the most
recently found solution, or the best solution found thus far. The algorithm terminates if a predefined
limit on computation time or number of iterations is reached, or if the optimal (or best known) solution
is found. An overview of the ILS algorithm is given in Figure 4. In this figure, Sp corresponds to the
best solution found thus far, and S¢ corresponds to the current solution.

[Generate initial solution]

(Execute kick from Sc]—{Find a local optimum S]

Set S¢ =S [Set Sc = SB] [Update Sp if necessary]

yes
o Backtrack) Stop

yes

Terminate

Figure 4: Overview of Iterated Local Search

In our implementation of ILS, the kick simply is a series of @ random swap moves on the current solu-
tion, where « is a parameter. The value of a cannot be too big, because ILS then would resemble the
multi-start approach. On the other hand, if the value of « is too small, it is unlikely for the algorithm
to escape from the current local optimum. Setting the current local optimum to the best solution found
thus far is called backtracking - not to be confused with the backtracking procedure in the dynasearch
algorithm. An iteration refers to the procedure from finding a local optimum to executing the kick.
Every f iterations, we backtrack to the best solution Sp. In the other iterations, the current solution is
set to the most recently found solution. In our computational experiments, we set « =9 and § = 5.

For generating the initial solution, we use the Apparent Urgency (AU) heuristic. The AU heuristic
starts with an empty sequence, and repeatedly fills the first unfilled position with the unscheduled job
o(7) with the smallest AU value among all unscheduled jobs, until all jobs are scheduled. The AU value

for job o(j) is given by
Wo () (dogj) =t = pam)*)
AUy 5y = —= exp (— — , 9
D= P)
where t is the total processing time of all scheduled jobs, p is the average processing time of all jobs, and

k is a parameter which value is based on the tardiness factor TF. We use k = 2.0 for TF > 0.4, k= 0.9
for TF =0.4 and k = 0.5 for TF = 0.2.

6.2 Breakout Dynasearch

Like with ILS, the next starting solution in BDS is obtained from a current local optimum. The difference
between the two algorithms lies in the perturbation phase, where BDS uses an adaptive and multi-type
perturbation mechanism as opposed to the simple kick in ILS. Also, the method of generating an initial
solution differs between the algorithms.

To generate an initial solution we start with an empty sequence, and repeatedly insert the unsched-
uled job with the smallest value of d,(;)/ws(;) among all unscheduled jobs, until all jobs are scheduled.
With probability A, the selected job is inserted in the position that gives the least increased objective
value. Otherwise, it is inserted into a randomly selected position. Where Ding et al. (2016) employ
the fast neighborhood search algorithm of Ergun and Orlin (2006), we use the dynasearch algorithm
described in Section 4 instead (both yield the exact same solutions, but the first only requires O(n?)
time to search the swap neighborhood, instead of the O(n?®) time bound for the latter).

After an initial solution S* is generated and the initial jump magnitude is set, BDS repeats the fol-
lowing procedure until a stopping criterion is reached (in our computational experiments, BDS employs
the same stopping criteria as ILS). First, the dynasearch algorithm searches for a new local optimum,
with S§* as starting solution. On the basis of this new local optimum and other history information,
the jump magnitude L and perturbation type 1" for the next perturbation are determined. The jump
magnitude is the number of perturbation moves, and the perturbation type is one of the following three
options: directed swap perturbation, random forward insert perturbation and random swap perturba-
tion. In the directed swap perturbation, all moves that reconstruct the arcs that were broken during the
last ¢ iterations are forbidden. Subsequently, the best solution found thus far S* is updated, if the new
solution is better. Lastly, the perturbation is executed on S*.

The number of perturbation moves L always is one lower, one higher or exactly the same as in the
previous perturbation, and is determined as follows. If a cycle is encountered, L is increased if the upper
bound L, is not exceeded. If no cycle has been encountered for a specific number of iterations, and L
is bigger than the lower bound L,,;y,, L is decreased. Otherwise, L does not change.

The perturbation type is determined as follows. The random forward insert perturbation is selected
if the best found solution has not been improved for more than Tj iterations, where T} is a parameter.
Because the dynasearch procedure employs only the swap operator, a forward insert perturbation is
much stronger than a perturbation with swap moves. Otherwise, either the directed swap perturbation
or the random swap perturbation is employed, based on the following statistic:

1 —exp(—-—"%—) if no cycle was encountered,
p= - (10)

iter cb)

v+ exp(—m otherwise,

where nc is the current number of consecutive iterations where no cycle was encountered, max__inc is the
maximum number of consecutive iterations where no cycle was encountered, iter _cb is the last iteration
number of when the current solution was visited before, num opt is the total number of unique local
optima that were visited, and + is a coefficient between 0 and 1. The directed swap perturbation is now
selected with probability p (and thus the random swap perturbation is selected with probability 1 — p).
For pseudo-code of the algorithm, and for specific values of the parameters used in BDS, we refer to the
appendix.

10

7 Results

In this section, we present our computational results of the comparison of the various local search
algorithms. In Section 7.1 we discuss the design of the computational experiments. In Section 7.2 we
compare the performance of both multi-start and iterated versions of traditional descent and dynasearch.
Section 7.3 compares the different dynasearch algorithms discussed in this thesis.

7.1 Experimental Design

For n = 40, n = 50 and n = 100 jobs, we use the 125 benchmark instances that are available online at
the OR-Library (http://people.brunel.ac.uk/ mastjjb/jeb/orlib/wtinfo.html), along with the
specifics of how the instances were generated. We compare our solution values with the best known
solution values available at the OR-Library. All of our algorithms were coded in Java and run on a
Toshiba laptop with an Intel Core i3 CPU. Following past researchers, we compare the performance of
the various local search algorithms on basis of the following statistics:

NI The average number of iterations per instance, where an iteration refers to descending to a
local minimum.

PD The percentage deviation of the solution value f,; found by the local search algorithm from
the optimal (or best known) solution value OPT, i.e., PD = 100(fs - OPT)/OPT. (When
OPT = 0, PD = [, is alternatively used);

APD The average PD value for a sample of 125 instances;

MPD The maximum PD value out of a sample of 125 instances;

NO The number of optimal (or best known) solution values found out of 125;

ACT:i3 The average computation time per instance in seconds on our Toshiba with Intel Core i3.

Because of the way we computed the PD values, they sometimes turn out to be very high. For example,
if OPT = 8 and fs = 58, the difference between OPT and fs is 50, but the corresponding PD value is
625. However, if OPT = 16,008 and f; = 16,058, the difference between OPT and f; is also 50, but
the corresponding PD value is only 0.31. The APD and MPD values are good performance measures to
compare the different algorithms, but they do not give very useful information on single algorithms if
the OPT and f, values of each separate instance are not considered.

7.2 Multi-Start and Iterated Local Search

In this section we compare the performance of both multi-start and iterated versions of traditional descent
and dynasearch. All multi-start algorithms are run for 0.2, 0.4 and 2.0 seconds per instance, for n =
40, 50 and 100, respectively. Because the next starting solution in the iterated algorithms is relatively
close to a previous local optimum, less moves are required to reach a next local optimum. Therefore, the
iterated algorithms are run for 0.1, 0.2 and 1.0 seconds per instance, for n = 40, 50 and 100, respectively.
In Table 3, the computational results are given for multi-start and iterated first-improve descent, best-
improve descent and dynasearch. All results in this table are averages of the results of ten independent
runs.

Table 3: Computational Results for Multi-Start and Iterated Local Search Algorithms

First-Improve Descent Best-Improve Descent Dynasearch
n NI APD MPD NO NI APD MPD NO NI APD MPD NO
Multi- 40 68.4 0.601 15.891 64.0 201.2 0.279 11.120 109.4 868.8 0.061 5.284 121.2
Start 50 53.4 0.637 11.744 585 200.6 0.546 20.718 89.2 908.9 0.157 6.908 110.2

100 14.1 1.340 26.660 30.7 120.1 2.130 100.76 43.2 649.9 1.707 97.321 63.6

40 133.5 0.357 14.387 80.1 375.0 0.163 7.519 116.3 1289.7 0.018 2.011 124.6
Iterated 50 132.1 0.478 20.002 68.5 447.0 0.386 15.600 90.1 1613.2 0.013 1.454 123.0
100 80.4 0.903 33.907 32.5 4153 4.744 167.69 39.8 1683.6 0.069 5.275 119.0

11

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html

From the results of Table 3 it is clearly visible that dynasearch outperforms the traditional descent algo-
rithms on all performance measures. Despite the identical running times for all algorithms, dynasearch
reaches much higher NI values, indicating the speed of the algorithm. The APD and MPD values are
much lower for dynasearch, so for the instances where the optimal (or best known) solution was not
found, dynasearch finds values much closer to this optimal (or best known) value than traditional de-
scent. Finally, the NO values of dynasearch significantly improve over those of traditional descent.

The dynasearch swap neighborhood is much larger than the traditional swap neighborhood, increas-
ing the chance of finding new local optima. However, this neighborhood is searched even faster than
the traditional swap neighborhood in traditional descent. Lastly, it is shown that with the use of new
starting solutions close to previous local optima, the performance of iterated local search improves over
the multi-start local search performance, in almost every case.

7.3 Different Dynasearch Algorithms

In this section we compare the performance of the different dynasearch-based algorithms that are dis-
cussed in this thesis; breakout dynasearch (BDS), and iterated versions of dependent dynasearch (DDS),
dynasearch (ODS) and GPI-based dynasearch (GPI-DS). First, for an initial evaluation of the contribu-
tion of DDS, we compare the DDS neighborhood search with the ODS neighborhood search. Then, we
compare all four algorithms on solution quality and computation time.

Because a DDS swap move always is as least as good as an ODS swap move (if performed on the
same sequence), DDS is expected to find local optima in less iterations than ODS. Figure 5 depicts a
single iteration of ODS and DDS, performed on the same sequence of 40 jobs.

40000; '
—+DDs
% - 0DS
35000 E
30000 1
3
2 25000 1
>
[
=
g
8.
o 2
8 20000
15000 R
10000 1
X- == =X
5000 1 1 1 1 1
0 2 4 6 8 10 12

Descent Moves

Figure 5: One iteration of ODS and DDS

Figure 5 shows that DDS finds a local optimum in only seven descent moves, while ODS needs eleven
descent moves to find a local optimum. This difference is reached because DDS decreases the objective
value faster than ODS, especially with the first few descent moves. Also, DDS finds a slightly better
objective value than ODS. Figure 5 only shows the comparison of DDS and ODS on a single sequence
of 40 jobs. However, a similar pattern is observed for almost all instances of 40, 50 and 100 jobs. On
average, DDS requires less descent moves per iteration to find a local optimum.

A further comparison of DDS and ODS is given in Table 4, where also computational results of BDS

12

and GPI-DS are given. The results in this table are averages of the results of ten independent runs.

Table 4: Computational Results for Different Dynasearch Algorithms

n Algorithm NI APD MPD NO ACT:i3

BDS 160.44 0.0236 2.9381 124.0 0.0452
40 DDS 12.87 0.0 0.0 125.0 0.0206
ODS 28.33 0.0 0.0 125.0 0.0036
GPI-DS 4.25 0.0 0.0 125.0 0.0028
BDS 764.24 0.0407 2.4126 118.5 0.3584
50 DDS 49.43 0.0 0.0 125.0 0.1033
ODS 135.79 0.0007 0.0808 124.5 0.0267
GPI-DS 8.15 0.0 0.0 125.0 0.0082
BDS 3618.44 0.5834 25.8909 86.1 13.4024
100 DDS 123.11 0.0 0.0 125.0 4.6670
ODS 255.36 0.0053 0.6643 124.4 0.2301
GPI-DS 14.86 0.0 0.0 125.0 0.1197

All algorithms are run until the optimal (or best known) solution value is found, or the maximum number
of 10,000 iterations is reached. We call a job instance ’difficult’ to solve for an algorithm if on average
more than 10,000 iterations are needed to find the optimal (or best known) solution. The computational
results show that BDS is outperformed by the other algorithms on both solution quality and computa-
tion time. For the 40-job instances, there seems to be only one ’difficult’ instance for BDS (instance 85).
Without the upper bound of 10,000 iterations, the NI value increases from 160.44 to 379.56, and the
ACT:i3 value increases from 0.0452 to 0.1033 to solve all 40-job instances. For the 50-job and 100-job
instances the number of ’difficult’ instances is much higher, so not all 125 instances can be solved within
a reasonable amount of time.

For ODS, one 50-job instance and one 100-job instance are ’difficult’ (instances 109 and 81, respec-
tively). However, all 125 instances can be solved with an average computation time of 0.0858 seconds
for the 50-job instances, and 0.3758 seconds for the 100-job instances. Thus, ODS still outperforms DDS
on computation time if no maximum number of iterations is set. The average number of iterations over
125 instances increases to 445.14 and 447.38 for the 50-job and 100-job instances, respectively.

The neighborhood searched with GPI-DS is much larger than the one searched with ODS, so executing
a single move takes more time with GPI-DS. Also, one iteration (descending to a local minimum) takes
more time with GPI-DS. However, as GPI-DS requires significantly less iterations, the average time to
find all optimal (or best known) solutions is lower.

13

8 Conclusion

In our research, we first implemented the iterated and multi-start versions of the dynasearch algorithm as
described by Congram et al. (2002), along with the traditional descent algorithms. Iterated (multi-start)
dynasearch is shown to outperform the iterated (multi-start) traditional descent algorithms. Next, we
implemented BDS, DDS and GPI-DS to run all algorithms on the same CPU, for a fair comparison of
the results.

In the BDS algorithm, we employ the dynasearch algorithm of Congram et al. (2002), instead of the fast
neighborhood dynasearch algorithm of Ergun and Orlin (2006). But where our results show that BDS
performs significantly worse than GPI-DS, Ding et al. (2016) obtained results with BDS slightly better
than those of GPI-DS. Because the description of Ding et al. (2016) is not very clear on every part of
the algorithm, and their results differ so much from ours, it is very plausible that our implementation
differs on more points than just the dynasearch phase from the original one of Ding et al. (2016). For
example, from the description of the DetermineJumpMagnitude (given in the appendix), it looks like
updating the variables wc and num__nc in the if statement on lines 10-14 is useless, because they always
get assigned to the same value at the start of DetermineJumpMagnitude. After the values are updated
in the if statement, they are not used.

In this thesis we introduced dependent dynasearch, an extension to the original dynasearch algorithm,
which allows for dependent moves. Although DDS requires significantly less iterations than ODS to find
optimal (or best known) solutions, more computation time is required because a single iteration takes
much more time. A topic of further research could be to speed up the DDS neighborhood search. If this
can be done efficiently, DDS could eventually outperform ODS. Also, the principle of dependent moves
could be investigated for the GPI-DS algorithm, which is shown to outperform BDS, DDS and ODS.

14

References

[1] D. Anghinolfi, M. Paolucci. A new discrete particle swarm optimization approach for the single-
machine total weighted tardiness scheduling problem with sequence dependent setup times. Euro-
pean Journal of Operational Research 193 (2009) 73-85.

[2] J. E. Beasley. OR library: distributing test problems by electronic mail. Journal of the Operational
Research Society 41 (1990) 1069-1072.

[3] U. Bilge, M. Kurtulan, F. Kirac. A tabu search algorithm for the single machine total weighted
tardiness problem. European Journal of Operational Research 176(3) (2007) 1423-1435.

[4] M. den Besten, T. Stiitzle, M. Dorigo. Ant Colony Optimization for the Total Weighted Tardiness
Problem. In: Schoenauer M. et al. (eds) Parallel Problem Solving from Nature PPSN VI. PPSN
2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg

[5] R. K. Congram, C. N. Potts, S. L. Van de Velde. An iterated dynasearch algorithm for the single-
machine total weighted tardiness scheduling problem. INFORMS Journal on Computing 14 (2002)
52-67.

[6] H. A. J. Crauwels, C. N. Potts, L. N. Van Wassenhove. Local search heuristics for the single machine
total weighted tardiness scheduling problem. INFORMS Journal on Computing 10 (1998) 341-350.

[7] F. Della Croce, E. Desmier, T. Garaix. A note on "Beam search heuristics for the single machine

early /tardy scheduling problem with no machine idle time". Computers & Industrial Engineering
60 (2011) 183-186.

[8] J. Ding, Z. Lii, T. C. E. Cheng, L. Xu. Breakout dynasearch for the single-machine total weighted
tardiness problem. Computers & Industrial Engineering 98 (2016) 1-10.

[9] O. Ergun, J. B. Orlin. Fast neighborhood search for the single machine total weighted tardiness
problem. Operations Research Letters 34 (2006) 41-45.

[10] C. Gagné, W. Price, M. Gravel, Comparing an aco algorithm with other heuristics for the sin-
gle machine scheduling problem with sequence-dependent setup times, Journal of the Operational
Research Society 53 (2002) 895-906.

[11] S. R. Gupta, J. S. Smith. Algorithms for single machine total tardiness scheduling with sequence
dependent setups. European Journal of Operational Research 175 (2006) 722-739.

[12] A. Grosso, F. Della Croce, R. Tadei. An enhanced dynasearch neighborhood for the single-machine
total weighted tardiness scheduling problem. Operations Research Letters 32 (2004) 68-72.

[13] C. Koulamas. The single-machine total tardiness scheduling problem: Review and extensions. Eu-
ropean Journal of Operational Research 202 (2010) 1-7.

[14] A. H. G. Rinnooy Kan. Machine Scheduling Problems Classification, Complexity and Computations.
Martinus Nijhoff, The Hague (1976).

[15] A.H.G. Rinnooy Kan, B.J. Lageweg, J.K. Lenstra. Minimizing total costs in one-machine scheduling.
Oper. Res. 23 (1975) 908-927.

[16] F. Sourd. Dynasearch for the earliness-tardiness scheduling problem with release dates and setup
constraints. Operations Research Letters 34 (2006) 591-598.

[17] S. Tanaka, S. Fujikuma, M. Araki. An exact algorithm for single-machine scheduling without ma-
chine idle time. J Sched (2009) 12: 575-593. doi:10.1007/s10951-008-0093-5.

[18] J. M. S. Valente, R. A. F. S. Alves. Beam search algorithms for the single machine total weighted
tardiness scheduling problem with sequence-dependent setups. Computers & Operations Research
35 (2008) 2388-2405.

15

Appendix
BDS

This section presents the pseudo-code and parameter values of BDS. The pseudo-code of BDS is given
in Algorithm 1.

Algorithm 1 Pseudo-code of BDS for the SMTWTSP

Input: Processing time, weight and due time of each job in an unscheduled job sequence
Output: The best scheduled sequence S* found so far
S* « Generatelnitial Solution()
L+ Ly
while stopping condition not reached do

S’ + Dynasearch(S*)

L < DetermineJumpMagnitude(L, S’ history)

T « DeterminePerturbationType(S’, history)

if F(S") < F(S*) then

S* =9
end if
S* < Perturbation(L, T, S*, history)

end while

_ = e
M 22

—
o

For determining the jump magnitude and perturbation type, the following statistics are used.

HT A hash table with all previous encounterd local optima, along with the iteration number
of when they were visited.

lc The number of the iteration of when the last cycle was encountered.

itercur The current iteration number.

w The number of consecutive iterations at which no improvement on the best solution was
found.

prev_wvisit The iteration number of when the current local optimum was previously visited (prev_visit =
—1 if the current local optimum was not visited before).

The pseudo-code of DetermineJumpMagnitude is given in Algorithm 2. The algorithm shows that
L is decreased if the no cycle has been encountered for more than (we/num_nc)u iterations, where
(we/num_nc) is supposed to be the average number of iterations between two consecutive cycles, and
u is a coefficient. The parameter settings for BDS are given in Table 5. The values are based on initial
experiments of Ding et al. (2016).

16

Algorithm 2 Pseudo-code of DetermineJumpM agnitude

1: Input: Local optimum S returned by dynasearch, current jump magnitude L and history information
including HT, lc, itercy, and w

2: Output: Jump magnitude L for the next perturbation phase
3 we + 10,num_nc <+ 1
4: prev_wisit < PreviousEncounter(HT, F(S))
5. if F(S) < F(S*)||lw > Tp then
6: w <0
7. else
8: w—w+1
9: end if
10: if prev_wisit # —1 then
11: wWe < we + iterqy,, — le
12: num_nc <4 num_nc+1
13: lc < iterqy,
14: L+~ L+1
15: else if (itercy, —lc) > (we/num_nc) - p then
16: L+—L-1
17: end if
18: if L > L4, then
19: L <+ Lyax
20: else if L < L,,;, then
21: L <+ Lyin
22: end if
Table 5: Parameter settings for BDS for different problem sizes
Parameter Description Value
A Parameter used for the initial solution 0.8
o Coeflicient for determining jump magnitude 2
~ Coefficient for determining perturbation type 0.3
10} Tabu tenure in directed perturbation n/4
To Coefficient for strong perturbation 500 + n
Linin Minimum number of jump magnitude 4
Linax Maximum number of jump magnitude 10 + n/100

17

	Introduction
	The Tardiness Scheduling Problem
	Literature Review
	Dynasearch
	Swap Neighborhoods
	A Basic Dynasearch Algorithm
	Speedups

	Additional Dynasearch Neighborhoods
	GPI-DS
	Dependent Dynasearch

	Iterated Algorithms
	Iterated Local Search
	Breakout Dynasearch

	Results
	Experimental Design
	Multi-Start and Iterated Local Search
	Different Dynasearch Algorithms

	Conclusion

