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Abstract

Support vector machines are widely used for the classification of binary response
variables. In this paper, a loss function is introduced that enables support vector
machines to be more resistant against outliers. Although outliers may contain a
lot of information, it is generally not desirable that these observations play a major
role in determining the binary classification. The novel error function that is being
introduced, the absolute outlier resistant hinge error, restricts the distorting effect
of outliers by treating them differently. It attributes a decreasing marginal impact
on the loss function to a support vector as it becomes more deviant. Support vector
machines that make use of the novel hinge error have been applied to multiple data
sets, including ones that are contaminated with artificial outliers. The experiments
show signs of an increased resistance against outliers.
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1 Introduction
Modeling binary response variables is a topic that has been researched extensively. A
variety of methods has been developed that deal with this issue. Logit and probit models,
which belong to the class of logistic regression, are often used and have been around since
the 1960’s. More recently developed models, which are becoming increasingly popular,
are neural networks and support vector machines (SVM) see e.g. Steinwart & Christ-
mann (2008). This paper deals with the latter approach, SVM. More specifically, this
paper builds upon the research into majorizing the loss function associated with the pri-
mal formulation of SVM, conducted by Groenen et al. (2008). It is conventional when
implementing SVM to switch to the dual formulation and in a lot of cases, for example,
when incorporating kernels, it is more convenient or even required to do so. The primal
approach however allows for a nonstandard way of looking at SVM, which has a clear and
insightful interpretation.

In Groenen et al. (2008), the loss function associated with the primal approach is
constructed in different ways based on three different error functions and is optimized
by means of a corresponding majorization algorithm. The error function determines the
penalty imposed to the loss function as the result of a misspecified observation. The three
error functions that are dealt with by Groenen et al. (2008) are the absolute hinge error,
the quadratic hinge error, and the Huber hinge error, all three are convex. This convexity
property has benefits regarding the optimization of the loss function. However, convexity
can also lead to disproportionately large penalties in case of outliers. In this paper, a
new non-convex error function specification is proposed with the purpose of adequately
treating outliers and thereby increasing resistance against outliers. This error function will
have a negative second derivative on parts of its domain, enforcing a smaller punishment
upon the loss function for outlying observations than the three error functions mentioned
above.

Brooks (2011) also proposes a method that corrects for outliers introducing two error
function specifications. Brooks (2011) shows that SVM that incorporate one of these
adjusted error functions, in some cases, perform better than existing methods. The novel
error function that is proposed in this paper is different from the ones proposed by Brooks
(2011) in two important ways: the first difference is that the novel error function allows
for the specification of a threshold and every observation that exceeds the threshold will
be classified as an outlier, the second difference is that the magnitude of the observation
does matter for observations that are classified as an outlier.

The main question of this research is: Do linear SVM that incorporate the novel hinge
error yield better out-of-sample predictions than linear SVM that incorporate the absolute,
quadratic, or Huber hinge error, in particular when applied to datasets containing outliers?

In the course of this paper the exact function specification of the novel hinge error
will be defined and motivated, a majorization algorithm will be developed, and possible
problems that arise due to the non-convexity of the error function will be addressed. In
Section 2 the basic concept of SVM will be clarified paving the way for a more thorough
analysis of one specific aspect of SVM, the error function. Section 3 provides a careful
examination of the newly introduced error function and three existing error functions.
Finally Section 4 is dedicated to describing how the numerical optimization method ma-
jorization can be applied in the framework of SVM.
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2 Support Vector Machines
In this section, a short and intuitive explanation of SVM is presented, while introducing
the necessary notation along the way. SVM are used to explain and predict the division
of observations into two groups. SVM classify each observation i, i = 1, . . . , n, in one
of the two groups, based on the 1 × m vector of predictor variables x′i. The vectors x′i
are the rows of the n ×m matrix X. The n × 1 vector y consists of response variables
yi, which can take on the values 1 and −1 indicating the group to which observation i
belongs. The variable qi, which is used as input in the loss function, is a weighted sum of
the predictor variables and is defined as

qi = c+ x′iw, (1)

where the parameter c is an intercept and w is a vector of weights.
In Figure 1 a number of observations is plotted into an m-dimensional space, m = 2.

In this figure the plusses represent a group and the circles represent the other group.

Figure 1: Projections of the observations
in groups 1(+) and −1(o) onto the line
given by w1 and w2.

What you see in Figure 1 is a somewhat horizontal line that ought to separate the class
1 objects from the class −1 objects as well as possible, called the separation line. The
parameter vector w determines the direction of this separation line and the intercept
c determines its location. Hence, the purpose of SVM is to determine c and w. The
parameters c and w are determined by the minimization of a loss function. The variable
qi that is defined above, is the distance between the point (xi,1, xi,2) and the separation
line multiplied by the length of vector w, ||w|| = (w′w)1/2. Parallel to the separation
line there are two dotted lines, called the margin lines. Each point that is on the wrong
side of its respective margin line is called a support vector. An error function, f(qi), takes
on positive values for qi that correspond to support vectors and takes on zero otherwise.
Hence, only support vectors contribute to the loss function defined as

LSVM =
n∑

i=1

f(qi) + λw′w. (2)

Observations that are on the right side of their respective margin line do not contribute
to the loss function.
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If the error function f is a coercive continuous function, then the loss function of (2)
has a global minimum. The values of the parameters c and w that correspond to this
global minimum are the optimal ones. The purpose of the last part of (2), λ times the inner
product of w, is to control the length of vector w. This is done by imposing a punishment
to the loss function of size λ||w||. This punishment is proportional to the length of w.
This parameterized punishment influences the number of correctly classified observations
that contribute to the loss function. Namely, a higher value of ||w|| corresponds to a higher
value of q resulting in less observations in between the margin lines and the separation
line and vice versa.

The way in which each support vector contributes to the loss function is determined by
the error function, f(qi). In the next section several existing error functions are discussed
and the novel outlier resistant error function is specified and motivated.

3 Error function specifications
The error function is a vital part of SVM as it determines how big the contribution to
the loss function of each support vector is. In this section three existing error functions
will be discussed and a new error function will be introduced. What all hinge errors that
will be discussed have in common is that the further away a support vector is from its
respective margin line the higher the corresponding punishment will be i.e. the more this
observation will contribute to the loss function. The first error function that we define
is the absolute hinge error, which is most commonly used. The absolute hinge error is
defined as

fA(qi) = max(0, 1− yiqi). (3)

The absolute hinge error imposes a punishment that is related linearly to the distance of
the support vector to its respective margin line.

Two other hinge errors, which are also discussed by Groenen et al. (2008), are the
quadratic hinge and the Huber hinge error. These two error functions are defined as

fQ(qi) = max(0, 1− yiqi)2 (4)

and

fH(qi) =

{
1/2(k + 1)−1 max(0, 1− yiqi)2 if − yiqi ≤ k
1− yiqi − (k + 1)/2 if − yiqi > k

. (5)

The quadratic hinge error is characterized by a quadratic relationship between the above
mentioned distance and the punishment imposed. The Huber hinge error is a smooth
hybrid of the absolute and the quadratic hinge error. Up to a certain pre-specified value
of k the punishment is quadratic in qi and for values of qi higher than k this relationship
becomes linear. The novel hinge error function that is introduced in this paper is named
the absolute outlier resistant (AOR) hinge error. The AOR hinge error is defined as

fAOR(qi) =

{
max(0, 1− yiqi) if − yiqi ≤ T
T + 1 + ln(1− yiqi − T ) if − yiqi > T

, (6)

where T is the threshold that separates the AOR hinge error into two parts. The threshold,
T , can take values in the interval [−1,∞). The threshold adds a certain degree of flexibility
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to the AOR hinge error. For example, if T is chosen very high approaching infinity the
AOR hinge error is equivalent to the absolute hinge error. Below in Figure 2 the hinge
error functions of (3), (4), (5), and (6) are represented by plot a, b, c, and d respectively.

An observation can be considered an outlier if it is on the wrong side of the margin line
and relatively far from the separation line. The AOR hinge error is constructed with the
aim of reducing the distorting effects of outliers. For this purpose the AOR hinge error
of (6) consists of two parts. The first part consists of observations for which −yiqi ≤ T
holds. For this part the AOR hinge error corresponds to the absolute hinge error. The
other part of the AOR hinge error consisting of the observations for which −yiqi > T
holds, is a ln(1 + x) type function which has a negative second derivative. fAOR has a
negative second derivative in −yiqi for −yiqi > T .
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Figure 2: Plots of four different hinge error functions including the AOR hinge error with
threshold T = 1 in (d). For the Huber hinge error in (c) k = 0 is chosen.
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As you can see from Figure 2 the novel error function for the case where yi = −1 is
characterized by a gradual decrease of the gradient of the error function as |qi| increases
after exceeding the threshold T . This decrease of the gradient corresponds to the negative
second derivative mentioned above. A decreasing gradient basically means that when the
distance between a support vector and its respective margin line increases, the marginal
impact of this observation as regards determining the position and the direction of the
separation line, decreases.

The absolute hinge error increases linearly in qi and the Huber hinge error does so
too given qi > k. The quadratic hinge error increases quadratically in qi and the Huber
hinge error does so too given qi < k. It follows that for these hinge errors, outliers
will contribute substantially to the loss function as none of the second derivatives is
negative. Subsequently parameter estimates may be influenced disproportionately by
outliers. Although outliers may contain a lot of information it is not always desirable
that these observations play a major role in determining the parameter estimates as they
display characteristics that deviate from the majority of the observations.

4 Optimizing the loss function
In the previous sections the concept of SVM has been clarified and the associated loss
function of (2) is completely specified for each of the four hinge errors. The parameters
that minimize this loss function correspond to a possible choice for the separation line.

In this section a numerical optimization method will be discussed to find these param-
eters that minimize the loss function. The approach to find such parameters that will be
discussed in this section is a rather non-standard one. Whereas in existing literature it
is often suggested to switch to the dual of the loss function and using quadratic program
solvers. Here a majorization approach is presented to minimize the primal formulation of
the loss function, (2), directly. In the subsequent subsections, the concept of iterative ma-
jorization (IM) is explained briefly and it is demonstrated how this optimization methods
can be used in the context of SVM. At the end of this section the majorization algorithm,
SVM-Maj, is presented in Algorithm 1 which can be implemented using software like
matlab and R.

4.1 Majorization

Let f(q) be a function that needs to be minimized. Then Iterative Majorization (IM) is
a minimization method that makes use of an auxiliary function, say g(q, q̄), to minimize
the original function f(q). The method iterates over values of q till the minimum of f(q)
is reached. q̄ is defined as the current position at the start of an iteration, the supporting
point. Each iteration yields you a new position, q∗, for which holds that f(q∗) ≤ f(q̄).
Preferably the IM algorithm does not need a lot of iterations to converge to the minimum
of f . The new position q∗ is the minimum of the auxiliary function, g(q, q̄), called the
majorizing function. The majorizing function should be a simple one, preferably linear or
quadratic this way the minimum of g is easy to find. The fact that f(q∗) ≤ f(q̄) at each
iteration follows from the conditions that g(q, q̄) has to adhere to listed below.

The first condition is that g(q, q̄) should touch f in q̄, i.e. g′(q̄, q̄) = f ′(q̄) and g(q̄, q̄) =
f(q̄). The second condition is that the majorizing function should never be below f , i.e.
g(q, q̄) ≤ f(q). These two conditions lead to the following so-called sandwich inequality
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f(q∗) ≤ g(q∗, q̄) ≤ g(q̄, q̄) = f(q̄). (7)

From the sandwich inequality it can be seen that the update q∗ = argminqg(q, q̄) is
an appropriate update in the sense that f(q∗) ≤ f(q̄) always holds. By repeating these
iterations the loss function will continue to decrease until a local or global minimum is
reached. Majorization is more extensively discussed in De Leeuw (1994), Heiser (1995),
?, Kiers (2002) Hunter & Lange (2004), and Borg & Groenen (2005)

4.2 Majorization applied to SVM

The function that needs to be minimized by means of IM is the loss function of (2). This
loss function is a summation of error functions. A desirable property of majorization
functions is that the sum of majorization functions, is a majorization function for the
sum of the majorized functions. This leads to the insight that to find the majorization
function of (2) we only need majorization functions for the hinge errors.

It can be shown that each of the hinge errors can be quadratically majorized by

g(qi, q̄i) = aiq
2
i − 2biqi + ci. (8)

The specifications of ai, bi, and ci for each of the hinge errors are disclosed in the appendix.
A detailed derivation of the majorizing function for the AOR hinge error is to be found
in the appendix as well. For the derivation of the majorizing function for the other three
hinge errors see Groenen et al. (2008).

It follows from (8) and the desirable property about the sum of majorizing functions
that the LSVM can be majorized as

LSVM(c,w) ≤
n∑

i=1

aiq
2
i − 2

n∑
i=1

biqi +
n∑

i=1

ci + λw′w. (9)

For the sake of mathematical convenience an extra column of ones is added as the first
column of X resulting in an n× (m+1) matrix X. The vector v is defined as v′ = [c w′].
Now qi = c+ x′iwi can be expressed as q = Xv and (9) can be rewritten as

LSVM(v) ≤
n∑

i=1

ai(x
′
iv)2 − 2

n∑
i=1

bi(x
′
iv) +

n∑
i=1

ci + λw′w (10)

= v′X ′AXv − 2v′X ′b + cm + λv′Pv

= v′(X ′AX + λP )v − 2v′X ′b +
n∑

i=1

ci,

where A is a diagonal matrix with Ai,i = ai, b is a vector with elements bi and P is the
identity matrix with p1,1 = 0. The derivative of the last line of (10) is taken with respect
to v and set equal to zero obtaining

(X ′AX + λP )v = X ′b. (11)

Solving (11) for v yields v+ consisting of the intercept, c, and the direction vector, w,
that minimize the majorization function. This follows from the definition of w which is
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v = [c,w]′. v+ can be retrieved by Gaussian elimination or less efficiently by multiplying
both sides of (11) by (X ′AX + λP )−1. The iterations can be computed more efficiently
for the quadratic and the Huber hinge error because for these errors it holds that ai = a
for all i and it does not depend on q̄i. This means that retrieving update v+ simplifies to

v+ = (aX ′X + λP )−1X ′b, (12)

for these two error functions. The first part of (12), S = (aX ′X + λP )−1X ′, does not
depend on qi. Hence this part does not change during the iterative process. Therefore
when carrying out the SVM-Maj algorithm, S only needs to be computed once for the
first iteration and can be stored in memory for use in all following iterations.

The SVM-Maj algorithm that is summarized in Algorithm 1 on the next page guaran-
tees the loss function to not increase and usually decrease in each iteration. The updates
of c and w will come closer to the global minimum after each iteration. At least this
is true for a convex error function specifications like the absolute, quadratic, and Huber
hinge error. However the AOR hinge error is not convex. Therefore the loss function
of (2) which constitutes to the sum of non-convex functions may contain local minima.
Note that all error functions are coercive; thus, (2) has a global minimum for every error
function. The possible presence of local minima leads to an increase in computation time
for two reasons:

1. To cope with the possible presence of local minima the SVM-Maj algortihm needs
to be carried out multiple times using a multitude of initial values for c and w.

2. because multiple starting points need to be chosen when the AOR hinge error is
used the possibility of using smart initial values is excluded. Smart initial values are
values that are already close to the values that correspond to the global minimum, such
as values from previous cross validation runs. The use of smart initial values, also referred
to as a warm start, cuts down computation time. For the SVM-Maj algorithm that is
using one of the three existing hinge errors smart initial values can be chosen.

There is another factor to consider when using the AOR hinge error. A threshold, a
value for T , needs to be determined. For different choices of t the optimal choice of λ
might change. In general the optimal choice of λ can be determined using fivefold cross-
validation. Furthermore, the number of random initial values chosen is denoted by R.
Note that R = 1 suffices for convex error functions.

In the next section experiments will be performed using different hinge errors. Among
other things the need for multiple starting points and its influence on the computation
time will be investigated.
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Algorithm 1: SVM-Maj
Input: y, X, λ, Hinge, k, T , R
Output: c, w

1 Lmin = 0;
2 Set ε to a small value;
3 if Hinge = Huber or Quadratic then
4 if Hinge = Quadratic then a = 1
5 if Hinge = Huber then a = (1/2)(k + 1)−1

6 S = (aX ′X + λP )−1X ′

7 for r = 1 : R do
8 Set w0 and c0 to random initial values;
9 Compute LSVM as in (2)

10 while t = 0 or (Lt−1 − LSVM(ct,wt))/LSVM(ct,wt) > ε do
11 t = t+ 1
12 Lt−1 = LSVM(ct−1,wt−1)
13 Comment: Compute A and b for different hinge errors
14 if Hinge = Absolute then
15 Compute ai by (13)
16 Compute bi by (14)
17 else if Hinge = AOR then
18 Compute ai by (27)
19 Compute bi by (28)
20 else if Hinge = Quadratic then
21 Compute bi by (17)
22 else if Hinge = Huber then
23 Compute bi by (20)

24 Make the diagonal matrix A with elements ai
25 Comment: Compute update
26 if Hinge = Absolute or AOR then
27 Find v that solves (11): (X ′AX + λP )v = X ′b
28 else if Hinge = Huber or Quadratic then
29 v = Sb

30 Set ct = v1 and wt,j = vj+1 for j = 1, . . . ,m

31 if r = 1 or LSVM(ct,wt) ≤ Lmin then
32 Set c = ct and w = wt

33 Lmin = LSVM(ct,wt)

34 t = 0
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5 Experiments
In this section, the results of several experiments that have been carried out are presented.
The purpose of these experiments is to determine and evaluate the properties of the novel
hinge error function, AOR. The properties of interest are the five-fold cross-validated
accuracy and the computational speed of SVM-Maj. These two properties are dealt with
in the next two subsections. Finally the last subsection of the results has as its sole purpose
the reproduction of several results from Groenen et al. (2008). For the applications three
data sets are used that are obtained from the UCI repository (Newman et al., 1998) and
the home page of LibSVM software (Chang & Lin, 2006). The properties of these data
sets are listed in Table 1 below.

Table 1: The properties of the data sets

Dataset Source n n1 n−1 m Sparsity
Australian LibSVM 690 307 308 14 20.04
Breast_cancer_w LibSVM/UCI 699 458 241 9 0.00
Heart_statlog UCI 270 120 150 13 0.00

5.1 Predictive performance

The main concern of this paper is to find out how well SVM that use the AOR hinge error
predict out-of-sample compared to SVM that use existing hinge errors. In particular it
is of interest how the predictive performance of the AOR compares when applied to a
dataset that contains outliers. Hence an experiment has been set-up in which SVM that
use the AOR hinge error, with different threshold values, and SVM that use the absolute
hinger error are applied to eight datasets. Six of these datasets are contaminated with
artificial outliers. The reason that only the predictive performance of the absolute and
AOR hinge errors is compared is that according to Groenen et al. (2008) the predictive
performance of the absolute, quadratic and Huber hinge errors is quite similar. Therefore
it does not seem of added value to include the quadratic and the Huber hinge errors in
the comparison.

The four contaminated datasets have been constructed from two original datasets by
multiplying the predictor variables of 10% of the observations by either 100, 10, or 5
creating artificial outliers in the data. The predictive performance is measured in terms
of accuracy, defined as the total number of correctly predicted observations divided by
the total number of predicted observations in fivefold cross-validation. The unknown
parameters c and w, that determine the classification of observations into the two groups,
are estimated fixing λ = 2p at its optimal value. The optimal value for λ is chosen as
the λ that yields the highest fivefold cross-validation accuracy, where p can take any
of the values 15, 14.5, 13, . . . ,−7,−7.5,−8. This means that λ can take values in the
interval [32768, 0.00391]. In all the experiments ε = 3 × 10−7 is used as the stopping
criterion, unless it is explicitly stated differently. For the applications with the AOR
hinge error the threshold takes values T = 0, 0.5, and 1. Furthermore, when using the
AOR hinge error, a single iteration of the SVM-Maj algorithm may yield estimates for
c and w that correspond to a local minimum. Therefore the values for c and w that
minimize the loss function of 2, LSVM, are estimated by performing 20 repetitions of the
SVM-Maj algorithm with different initial values for c and w. The resulting comparison
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Table 2: A comparison of the accuracy of SVM using the absolute and AOR hinge errors.

optimal p accuracy
Dataset Outlier type Absolute AOR Absolute AOR

T = 1 T = 0.5 T = 0 T = 1 T = 0.5 T = 0

Australian

no *4.5 3.5 -3.5 -7.5 85.5 85.1 84.9 85.5
10% × -1 4.0 4.5 4.5 3.0 83.9 83.7 83.7 85.5
10% × 5 4.0 4.0 3.5 4.0 85.5 85.0 85.7 85.3
10% × -5 -5.5 2.5 3.5 3.0 77.8 83.5 83.5 83.5
10% × 10 2.0 3.5 -4.0 4.0 84.8 84.8 84.7 84.5
10% × -10 -0.5 2.5 3.0 3.0 67.4 83.5 83.5 83.5
10% × 100 3.0 -6.5 -1.0 2.0 77.9 85.4 85.5 85.7

Breast_
cancer_w

no *6.5 7.0 7.0 7.0 97.0 97.0 97.3 97.0
10% × -1 9.0 5.0 4.5 6.0 92.2 92.9 93.2 93.2
10% × 5 -0.5 -2.0 0.0 1.5 93.7 93.7 94.1 94.1
10% × -5 10 -3.5 3.0 6.0 88.7 92.9 92.9 93.2
10% × 10 5.5 5.5 7.0 5.5 93.4 93.1 93.0 93.1
10% × -10 5.5 6.0 4.0 6.0 87.1 92.8 92.9 93.2
10% × 100 -1.0 2.5 -1.0 2.5 91.1 92.6 93.1 92.8

10% × -1, 5, -5, 10, -10, or 100 means that 10 percent of the data has been multiplied by 5, 10,
-10, or 100 respectively. The highest accuracy for a specific data set is displayed in itallics.

of the predictive performance of SVM using either of both hinge errors is summarized in
table 2.

From table 2 it can be seen that there is only one data set for which the absolute hinge
error yields a better accuracy than the AOR hinge error. This is the Australian data set
with 10%× 10 type outliers. The accuracies of both hinge errors suffers in varying degrees
from outliers. The best performance of the AOR hinge error relative to the absolute hinge
error is recorded for the Australian dataset with 10% × 100 type outliers. In this case
the performance of the SVM with the absolute hinge suffers a lot whereas the AOR hinge
error seems to effectively ignore the outliers. Furthermore it can be seen that for the AOR
hinge error with different thresholds, different values for λ prove to be optimal.

The accuracies and the optimal values for λ reported in table 2 depend on how the
dataset is divided into five groups to perform the fivefold cross validation. In this case a
random vector is generated that assigns an equal number of observations to each group,
(some groups may contain one observation less than the others in case n

5
/∈ Z). This

explains why in (Groenen et al., 2008) different optimal values for p are found for the
absolute hinge error when applied to the Australian and the Breast_cancer_w datasets,
these two results are marked with an asterisk in Table 2. Furthermore note that some
of the accuracies might be suboptimal as the SVM-Maj algorithm using the AOR hinge
error does not guarantee to find a global optimum.

5.2 Computational speed and multiple starting points

It turns out that performing the SVM-Maj algorithm is more time consuming with the
AOR hinge error than with the absolute hinge error. In this subsection the results of two
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Figure 3: Histogram of the LSVM loss function values for 1000 random starting points
using the AOR hinge error. plot a.: Australian 10% × 5 outlier type, threshold T = 0.5,
and p fixed at its optimal value of 3.5. Plot b.: Breast_cancer_w 10% × 10 outlier type,
threshold T = 1 and p fixed at its optimal value of 5.5.

experiments will be discussed which show that and explain why the computation time is
higher. These experiments show two factors that contribute to the increased computation
time. The first factor being that one needs to go through the iterative majorization (IM)
process multiple times to minimize the loss function instead of just one time. The second
factor being that no smart initial values for c and w can be used when performing a
majorization, which may require the algorithm to perform a higher number of iterations
until convergence.

The first experiment is done to investigate whether or not the global minimum of the
loss function of (2) with f = fAOR, will always be found when minimizing by means of IM.
To do so IM is applied 1000 times on two different datasets starting from random initial
values for c and w. The resulting loss function values have been recorded for all of the
1000 replications and all these recordings are summarized in the histograms of Figure 3.

From these two histograms it is clear that local minima are present and that multiple
starting points are required when implementing the AOR hinge error. In the histogram
of Figure 3a two spikes can be observed. The lowest spike is around 255.07 and the other
spike is around 255.59. The lowest 96 out of 1000 observations have a loss function value
that is within 0.4× 10−2 of the observed minimum.

For the histogram of Figure 3b a spike is observed around 136.5. The lowest value
observed for LSVM is 136.4141, around five percent of the observations are within 0.2×10−3

from this observed minimum. In the panel of Figure 3b, 786 out of 1000 observations are
included, the other 224 observations are higher than 140 and are not displayed. The
highest 50 observations are between 360 and 600.

The second experiment is designed to test whether or not the fact that smart initial
values cannot be used, has an effect on the number of iterations needed to converge. In the
experiment the SVM-Maj algorithm is applied to each of the 5 cross-validation samples
recording the number of iterations needed to converge and the CPU time need to perform
these iterations. For the instances where the AOR hinge error is used, IM is performed
starting from random initial values. For the instances where the absolute hinge error is
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used, IM is performed starting from smart initial values.
In the two tables below Table 3 and Table 4 the number of iterations needed to

converge in a single majorization run are presented for the absolute and the AOR hinge
error. For the instance presented in Table 3 it holds that for each cross-validation sample
more iterations are needed to converge in case of the AOR hinge compared to the absolute
hinge. However the same result does not hold for the instance displayed in Table 4. It can
be seen from dividing any of the CPU times by its corresponding number of iterations that
an iteration takes about 0.0029 seconds which means that increases (decreases) in CPU
time are proportional to increases (decreases) in iterations. For the interpretation of the
table entries two circumstances are important to consider. The first is that the number of
iterations needed and the CPU time needed are highly dependent on the starting points
and for the AOR hinge error these are random. The second is that a different values for
p which amount to a different values for λ can amount to differences in the number of
iterations needed to converge.

Table 3: Iteration comparison between the absolute and AOR hinge error applied to the
Australian dataset without outliers.

Absolute AOR
p = 4.5 p = −3.5

cvSample 1 2 3 4 5 1 2 3 4 5
CPU time 0.178 0.151 0.295 0.208 0.215 1.125 0.592 0.920 4.950 0.983
Iterations 66 56 109 77 76 394 207 312 1675 349

The displayed CPU time is measured in seconds and the threshold for the AOR is chosen
to be T = 0.5. cvSample stands for cross-validation sample.

Table 4: Iteration comparison between the absolute and AOR hinge error applied to the
Breast_cancer_w dataset without outliers.

Absolute AOR
p = 6.5 p = 7.0

cvSample 1 2 3 4 5 1 2 3 4 5
CPU time 0.283 0.134 0.254 0.148 0.128 0.179 0.173 0.162 0.193 0.237
Iterations 151 71 128 78 51 87 83 79 93 120

The displayed CPU time is measured in seconds and the threshold for the AOR is chosen
to be T = 1. cvSample stands for cross-validation sample.

5.3 Reproduction

The purpose of this section is reproducing results of Groenen et al. (2008). The re-
sults of two different experiments are presented. In the first experiment the predictive
performance of the absolute, Huber, and quadratic hinge error is evaluated fixing λ at
its optimal value as established in Groenen et al. (2008). The obtained five-fold cross
validation accuracies are reported in Table 5.

The second experiment is a minimization of the loss function under different values of
the stopping criterion ε by by means of SVM-Maj with the absolute hinge error. This is
done for three different data sets and the results are displayed in Table 6.
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Table 5: Performance of SVM for the absolute (Abs.), Huber (Hub.), and Quadratic
(Quad.) hinge error

Data set Optimal p Five-fold CV accuracy
Abs. Hub. Quad. Abs. Hub. Quad.

Australian -0.5 2.0 3.0 85.5 86.1 86.4
Breast_cancer_w 7.5 6.0 8.0 96.7 96.5 96.7
Heart_statlog 0.0 5.5 7.0 83.5 83.7 83.8

The optimal value for p (λ = 2p) has been determined by five-fold cross validation. The
predictive performance measured as accuracy (in %) is obtained for 3 different test

datasets.

Table 6: Minimal loss function values under different stopping criterion

Dataset p LSVM

10−4 10−5 10−6

Australian 0 202.78 202.73 202.66
Breast_cancer_w 6 58.16 58.04 58.03
Heart_statlog 0 91.52 91.48 91.48

The value for p (λ = 2p) is fixed at a level close to the optimal one of Table 5.

6 Conclusion and discussion
This research is conducted with the aim of finding an error function that enables SVM
to be resistant to outliers. The absolute outlier resistant (AOR) hinge error is introduced
in this paper as a candidate for such an error function. It turns out that SVM that
incorporate the AOR hinge error have an equal or better forecasting performance for five
out of the six data sets that have been included in the experiments. Four of these datasets
have been contaminated with artificial outliers. The SVM that use the AOR hinge error
show increased resistance to outliers in multiple contaminated data sets. An idea would
be to create other types of outliers in the data, outliers that harm the performance of
the absolute hinge error and they should be mimicking realistic situations. It would be
interesting to see how the AOR hinge error performs on those datasets. Ultimately, it
would be beneficial to know which outliers the AOR hinge error is resistant to.

On the other hand, in the shadow of a potential better forecasting performance of
the AOR hinge error lies a time consuming optimization process. The presence of local
minima in the loss function requires multiple repetitions of the SVM-Maj algorithm to
be performed instead of just one. For each of these repetitions, warm starts are not an
option. The computation time adds up accordingly. It might be worth considering an
alternative optimization method.

There is plenty of further research that could be done into the AOR hinge error. For
example, it would be helpful for researchers and practitioners to know how many random
starting points, i.e. repetitions, is economical to choose. Besides that, an efficient method
to simultaneously optimize over λ and the threshold t is desirable.
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Appendix: Majorizing the hinge errors
Below the specifications of the quadratic majorizing functions for the absolute, quadratic,
and Huber hinge errors i.e. expressions for a, b, and c in (8) are presented. These expres-
sions are obtained from Groenen et al. (2008) in which they are derived. Furthermore,
the majorizing function of the novel error function fAOR (6) is derived and specified. For
convenience of notation yi and qi from here onwards will be denoted as y and q dropping
the subscript i.

A.1 Majorizing the absolute hinge error

a =
1

4
|1− yq̄|−1 (13)

b = y(a+
1

4
) (14)

c = a+
1

2
+

1

4
|1− yq̄| (15)

A.2 Majorizing the quadratic hinge error

a = 1 (16)

b =

{
q̄ if yq̄ ≥ 1
y if yq̄ < 1

(17)

c =

{
1− 2(1− yq̄) + (1− yq̄)2 if yq̄ ≥ 1
1 if yq̄ < 1

(18)

A.3 Majorizing the Huber hinge error

a = (1/2)(k + 1)−1 (19)

b =


aq̄ if yq̄ ≥ 1
ya if − k < yq̄ < 1
aq̄ + 1

2
y if yq̄ ≤ −k

(20)

c =


aq̄2 if yq̄ ≥ 1
a if − k < yq̄ < 1
1− (k + 1)/2 + aq̄2 if yq̄ ≤ −k

(21)
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A.4 Majorizing the AOR hinge error

In this section of the appendix a majorizing function for the absolute outlier resistant
hinge error will be derived. On the part of the domain of fAOR for which −yq ≤ T
, the majorizing function for the AOR hinge error can be chosen to be the same as
the majorizing function of the absolute hinge error. This follows from the fact that
fa ≤ fAOR for q ∈ {−∞,∞} and fa = fAOR for − yq < T , see Figure 4.

−6 −4 −2 0 2 4 6
0

2

4

6

8

qi

f A
O

R
(q

i)

Figure 4: The absolute outlier resistant hinge error function with threshold T = 1 and
the absolute hinge error function plotted simultaneously.

We are left to define a majorizing function for the part of the domain of fAOR for
which −yq ≥ T . This part of the hinge error functions is defined as

e(q) = fAOR(T ) + ln(1− yq − T ) = T + 1 + ln(1− yq − T ) (22)

and is the represented by the red line in figure 4. To construct a majorizing function the
following idea is used. The parabola

h(x, x̄) =
α

4x̄
x2 +

α

2
x+

1

4
αx̄ (23)

is a majorizing function for the hinged line

l(x) = max(0, α) (24)

and touches the function l(x) at the points x̄ and −x̄. This concept is illustrated in Figure
5.

The above stated idea that (23) is a majorizing function of (24) touching at x̄ and −x̄
holds for the following reasons:
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• h(x̄, x̄) = l(x̄) = αx̄

• h′(x̄, x̄) = l′(x̄) = α

• h(−x̄, x̄) = l(−x̄) = 0

• h′(−x̄, x̄) = l′(−x̄) = 0

• h(x, x̄) ≥ l(x) which follows from the two observations:

1. The minimum of the parabola h(x, x̄) that opens opens upward is zero by
construction, so h(x, x̄) ≥ 0.

2. The convex function h(x, x̄) touches the concave function αx at x̄, so h(x, x̄) ≥
αx.

h(x, x)

x̄−x̄

l(x)

Figure 5: h(x, x̄) majorizes l(x), touching l(x) at x̄ and −x̄.

Note that α and x̄ can be smaller than zero in which case the parabola, h(x, x̄), and
the hinged line, l(x) in Figure 5 would be mirrored in the y-axis.

The idea of majorizing (24) by (23) as illustrated in Figure 5 is used to construct
the quadratic majorizing function for fAOR(q). A tangent line is drawn at q̄ creating a
similar situation as in Figure 5. From there it is intuitively straightforward to see that the
majorization function of fAOR(q), gAOR(q, q̄), corresponds to the the parabola in Figure 6.

To find gAOR(q, q̄), the quadratic majorizing function, we substitute expressions for α
and x̄ in (23) and perform a horizontal transformation on the obtained function. α in (23)
is substituted by the derivative of the error function at supporting point q̄, f ′AOR(q̄). x̄
is substituted by fAOR(q̄)

f ′
AOR(q̄)

representing the distance from q̄ to the point where the tangent
line crosses the x-axis. This leaves us with parabola

g∗(q, q̄) =a∗q2 − 2b∗q + c∗ (25)
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Figure 6: The quadratic majorizing function of fAOR constructed using a tangent line. In
this figure q̄ = 3, y = −1 and threshold T = 0.5.

where a∗ =
f ′
AOR(q̄)2

4fAOR(q̄)
, b∗ = −f ′

AOR(q̄)

4
, and c∗ = 1

4
fAOR(q̄). Finally g∗ is shifted along the

x-axis to obtain gAOR. More precisely g∗ is shifted d = q̄ − fAOR(q̄)
f ′
AOR(q̄)

to the right such that
gAOR(q̄, q̄) = fAOR(q̄). We obtain

gAOR(q, q̄) = aq2 − 2bq + c = g∗ (q − d, q̄) = a∗(q − d)2 − 2b∗(q − d) + c∗. (26)

From (26) it follows that a = a∗, b = a∗d+ b∗, and c = a∗d2 + 2b∗d+ c∗. All of the above
leads to the result that the majorizing function for fAOR denoted by gAOR is obtained by
substituting the below defined a, b, and c into (8).

a =

{
1
4
|q̄ + 1|−1 if − yq̄ ≤ T

1
4

f ′
AOR(q̄)2

fAOR(q̄)
if − yq̄ > T

(27)

b =

{
y(a+ 1

4
) if − yq̄ ≤ T

a
(
q̄ − fAOR(q̄)

f ′
AOR(q̄)

)
− 1

4
f ′AOR(q̄) if − yq̄ > T

(28)

c =

{
a+ 1

2
+ 1

4
|1− yq̄| if − yq̄ ≤ T

a
(
q̄ − fAOR(q̄)

f ′
AOR(q̄)

)2

− 2
(
q̄ − fAOR(q̄)

f ′
AOR(q̄)

)
f ′
AOR(q̄)

4
+ 1

4
fAOR(q̄) if − yq̄ > T

(29)
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