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Abstract

This paper compares the ability of three tail risk variables to forecast stock returns. One tail risk variable
is calculated with the Hill estimator, one with the threshold exceeding method and one is calculated with
the price of out-of-the-money European put options. The variables are calculated for two data samples, one
with small companies and one with large companies. The forecasts are evaluated using in-sample predictive
regressions and out-of-sample regressions with an expanding window. For both the large and the small
companies, the variable constructed with the price of out-of-the-money European put options is the best in
predicting future stock returns of the three tail risk variables. Some of the benchmark variables, however,
perform equally well or even better.
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1 Introduction
This article analyses the predictive power of tail risk measurements to forecast stock returns. Tail risk is the risk
of an extreme low return on the stock market. The tail of the return distribution are all returns that fall below
some negative threshold u. Kelly and Jiang (2014), found that their tail risk measurement was able to predict
future stock returns. Therefore, we suspect that tail risk variables might have predictive power in forecasting
stock returns. This paper will look at three different methods to measure tail risk and compare the forecast
performance of the variables found.

In the literature, multiple tail risk measurements have been developed and their influence on the stock re-
turns has been investigated. The variable and the methods we will focus on in this paper are from Kelly and
Jiang (2014). The authors found a new tail risk variable that estimates common fluctuations across the tail
of stock returns based on historical observations of large, negative returns. The main assumption underlying
this variable is that the the tail of the return distribution follows a power law. The shape parameter of this
power law, determining the shape of the tail, will be the first tail risk variable in this paper. The second tail
risk variable is a similar one, used by, among others, Gilli and Këllizi (2006). They assumed that the tail of
the return distribution follows a general Pareto distribution, and calculated the shape parameter of this general
Pareto distribution with maximum likelihood. This shape parameter is the second tail risk variable. The last
tail risk variable is developed by Bollerslev and Todorov (2011). Instead of the realized tail risk, it measures
investors’ expectations about the tail using option prices. This variable is constructed by comparing the prices
of out-of-the-money put options with the future price of an asset. The goal of this paper is to see which of
the three tail risk variables is the best predictor of the returns on the stock market. The research question is
therefore:

Which tail risk variable is the best predictor of returns on the stock market?

I will evaluate the ability of the variables to predict future stock returns with two different methods. The
first method are in-sample, predictive regressions, where the future stock return is regressed on a constant
and the tail risk variable. Secondly, the predictive power is analysed with out-of-sample regressions with an
expanding window, again with the future stock return on a constant and the tail risk variable. At last, this
paper evaluates the predictive power to forecast stock returns of multiple benchmark variables, not related to
tail risk, with the same methods and compares the results to the three tail risk variables.

The ability of a variable to predict stock returns depends on, among other factors, the size of the companies
in the data sample. Therefore, there are two data samples used in this paper. The first data sample contains
the assets that are part of the S&P-500 index and the options on the S&P-500 index. The S&P-500 index
contains only large companies with respect to their market capitalization. The second data sample contains
the assets that are part of, and the options on the Russell-2000 index. This index contains only small companies.

Kelly and Jiang (2014) argued that a higher tail risk will cause on average higher returns; investors usually
do not like risk, and they want to be compensated for high risk by a higher expected return. Thus, if the tail
risk in the market is high, the average return should be higher as well. The authors found that this is indeed
the case; an increase in their tail risk variable forecasts a higher stock return. The hypothesis is therefore that
this paper will find the same effect; an increase in the tail risk should have a positive effect on future stock returns.

Returns on the stock market are very important nowadays, in particular for investors and banks who want
to maximize their profit on the stock market while minimizing their risk. But stock prices also have a great
influence on the whole society, for example on the interest of a savings account, on retirement funds and during
a crisis. Some literature focused on variables that might predict the stock returns. For example, Welch and
Goyal (2007) examined the forecast power of a large number of variables suspected to predict stock returns, and
showed that finding variables that are consistent in predicting stock returns is still a difficult task. Therefore,
it is relevant to look for variables that might be better in predicting stock returns.

The conclusion of this paper is that for our data samples, the tail risk variable of Bollerslev and Todorov
(2011), calculated with the prices of out-of-the-money put options, is the best in predicting future stock returns
compared to the other two tail risk variables. This is the case for both the large companies in the S&P-500
index and the small companies in the Russell-2000 index. Some of the benchmark variables, not related to tail
risk, are equally well or even better in predicting the stock returns than our three tail risk variables, but this
depends on the data sample used and the forecast horizon.
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In the rest of this paper, I will first discuss previous literature about tail risk on stock markets in section
2. Then, the methods used to calculate the variables and to compare the ability to forecast stock returns are
discussed in section 3. In section 4, I will discuss the used data, and continue with the results in section 5.
Finally, I will perform a robustness check in section 6 and the final conclusion is in section 7.

2 Literature review
Previous literature has investigated the tail risk on the stock market and the influence of this tail risk on the
stock prices. Since observations in the tail are, per definition, rare, special methods are developed to estimate
tail risk. There are various strategies to estimate tail risk. One strategy tries to estimate the tail risk with
downside shocks in macro-economic variables. Rietz (1988) was one of the first authors using this method,
with his hypothesis that the relatively high returns on assets compared to the returns on government bonds
can be explained by the risk of market crashes. His model was extended by Barro (2006), who calculated the
probability of economic disaster from historical observations. Multiple authors, including Wachter (2013) and
Gabaix (2012), in turn extended the model of Barro (2006) to a dynamic model where the tail risk changes over
time. The tail risk variables in this paper are different from the models in those papers, since I will not use
macro-economic variables.

Other articles try to estimate the tail risk from option prices. The idea is to link option prices with (future)
stock prices through calculating the risk premia for tail risk (i.e. the compensation required by investors to
hold assets with a certain tail risk). For example, Pan (2002) calculated the tail risk premium demanded by
investors, and found that this premium is important in explaining both asset prices and option prices. Eraker
(2004) developed a model for option prices including possible jumps, and found that his model was reasonably
good in forecasting option prices. Another author working on this topic is Bates, who included tail risk in
models to estimate American option prices (Bates, 1996) and future prices (Bates, 2000).

This paper contains one tail risk variable from this strategy, developed by Bollerslev and Todorov (2011).
This estimator is calculated with the prices of out-of-the-money European put options that are close to matu-
rity. European put options give you the right to sell an asset for a certain strike price at maturity time. If a
put option is out-of-the-money, it means that the current price of the asset is higher than the strike price of
the asset. If at the maturity time, the price of the asset is still higher than the strike price, the put option is
worthless. In other words, only if the price of an asset falls, the out-of-the-money European put option has some
value at maturity. The intuition behind this variable is therefore that when a put option is out-of-the-money
and close to maturity, the put option will only be worth anything at maturity if the stock price suddenly falls,
i.e. “jumps” downwards. Consequently, the price of the put option might give you some information about the
tail risk, the risk of an extreme low return, expected by investors.

Bollerslev and Todorov have developed and analysed many variables related to variance and tail risk in stock
returns using, among other data, option prices, and often found that those variables have a high predictive power
to forecast stock returns. In Bollerslev and Todorov (2011), the article the tail risk variable in this paper comes
from, the authors developed the “Investors fear index", an index for the compensation demanded by investors
for their fears of market disasters. To develop this index, they used both intra day high-frequency data to
measure expected tail events (an extreme negative return), and option prices to calculate the compensation
required by investors for tail events. In another article from Bollerslev, Todorov, and Xu (2015), they found
a new procedure to estimate the compensation for tail risk required by investors. Including this new tail risk
measure in regressions to predict the future stock returns significantly improves the explanatory power. Another
method to estimate a tail risk measurement from option prices is developed by Andersen, Fusari, and Todorov
(2015). They conclude that their new tail risk variable captures information about the price of risk that was
not captured in other known variables related to option prices before, and is therefore an important variable to
use in forecasting stock prices.

All the literature above relied partly on models and assumptions about asset prices and option prices. How-
ever, there is also literature about tail risk in stock markets that does not use any models for option prices
or asset prices. Articles following this strategy often assume that the tail of the return distribution follows a
certain distribution, and then estimate the parameter(s) of this distribution. This is for example done by Gilli
and Këllizi (2006), Këllezi and Gilli (2003), Brodin and Klüppelberg (2008) and Longin (2000). One method
from this approach is the “threshold exceeding method”, focusing on returns that exceed/fall below a certain
threshold. This paper will use this method to estimate one tail risk variable. Other literature does not estimate
the parameters of the tail distribution, but uses Hill’s estimator (Hill, 1975), see, among others, McNeil and
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Frey (2000), Huisman, Koedijk, Kool, and Palm (2001) and Kelly and Jiang (2014). This paper estimates one
tail risk variable using Hill’s estimator as well.

The main difference between the method with the Hill estimator and the threshold exceeding method is
that the threshold exceeding method is parametric and the method with the Hill estimator is non-parametric,
as explained by Rocco (2014). For the threshold exceeding method, the main assumption is that the tail of
the return distribution of all assets in the data sample follows a general Pareto distribution. The idea of the
method is to estimate the parameters that fit this general Pareto distribution the best; hence, this method is
parametric. For the method with the Hill estimator, the underlying assumption is about the tail of individual
assets; the tail of the return distribution of each individual asset follows a power law. However, I do not try to
find the parameter that fits this power law the best. Since I do not fit a certain model to the tail, this method
is non-parametric.

3 Methods
This section first describes the three methods used to calculate the tail risk variables. Then, it explains how
the ability of the three tail risk variables to forecast future stock returns is compared.

3.1 Tail risk variables
3.1.1 Model 1: Hill’s estimator (λ)

The first method to estimate a tail risk variable comes from Kelly and Jiang (2014). The rest of the methods in
subsection 3.2 come from this article as well. Kelly and Jiang (2014) defined the tail of the return distribution
as all the returns that fall under a certain (negative) threshold ut. The authors made a few key assumptions
about the tail of the return distribution. First of all, they assumed that every asset has a different tail, and
that this tail changes over time. However, they also assumed that the tails of all assets change over time in the
same way, driven by the same process.

Another important assumption the authors made was about the shape of the tail. They assumed that the
tail of the return distribution of each individual asset follows a power law, in which the shape parameter is
depending on both the time and the characteristics of the individual asset, see equation 1. It is important to
notice that this assumption is only made for the tail of the return distribution of an individual asset, and that
no assumptions about the whole return distribution are made. Many previous researchers found that the tail
of the return distribution behaves according to (a distribution following) the power law, among others Jondeau
and Rockinger (2003), Kearns and Pagan (1997), and Gopikrishnan, Plerou, Amaral, Meyer, and Stanley (1999).

P (Ri,t+1 < r|Ri,t+1 < ut and Ft) = (
r

ut
)
−αi
λt with r < ut < 0 (1)

Here, Ri,t+1 denotes the return of asset i on time t + 1 and Ft denotes all available information about the
stock prices and returns up to time t. ut is the threshold of the tail at time t, and only returns lower than this
(negative) threshold are counted as a return in the tail. Equation 1 therefore denotes the distribution of the
probability that the return is lower than a certain return r, given that it is in the tail (i.e. that it is already
lower than ut). The shape parameter of this power law is αi

λt
and consists of two parts. The first part is the

constant αi and is different for each asset to ensure that each asset has a different tail. The second part is the
parameter λt, and is the same for all assets. This parameter is the common process that changes the shape of
the tail of each asset over time in the same way. If λt is high, the tails are more fat and the probability of very
negative returns in the tail is high. λt will be used as the tail risk variable in this paper, since it is the same for
all assets.

To estimate λt, I still follow Kelly and Jiang (2014) and use Hill’s power law estimator (Hill, 1975). Every
month, I re-estimate λt, using the daily return data of multiple individual assets of that month. Also, I have a
different threshold ut every month, defined as the fifth percentile of the daily returns of all assets in month t.
The idea is that returns under this threshold are in the tail. Hill’s power law estimator is then given by:

λt =
1

Kt

Kt∑
k=1

ln(
Rk,t
ut

) (2)
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Kt is the total number of daily returns that fall below the threshold ut (and is the same number each month
if the number of assets in the sample is constant) and Rk,t is the kth daily return that falls below ut in month t.

3.1.2 Model 2: Maximum likelihood (ξ)

The second model contains an estimator of tail risk calculated with the threshold exceeding method. Gilli and
Këllizi (2006) used this method to estimate the tails of a stock return distribution and this paper will follow their
method. A general overview of the use of this method and similar methods in finance is given by Rocco (2014).
The threshold exceeding method is similar to the method with the Hill estimator in the first model. As explained
in the literature review, the main difference is that the method with the Hill estimator is non-parametric, while
the threshold exceeding method is parametric. Also, the assumptions underlying both methods are different.
The key-assumption of the threshold exceeding model is that the tail of the return distribution of all assets
follows a generalized Pareto distribution, a distribution that satisfies the power law. The generalized Pareto
distribution is given by the following equation:

P (Ri,t − ut < r′|Ri,t < ut) =

{
1− (1 + ξt∗r′

σt
)−

1
ξt if ξt 6= 0

1− e−
r′
σt if ξt = 0

(3)

With r′ < ut. ξt is the shape parameter, also called the tail index, and is the parameter representing tail
risk this paper will use as the second tail risk variable. σ is the scale parameter, Ri,t is the return on asset i at
time t and ut is the threshold value. r′ is the excess return under the threshold. Therefore, equation 3 gives the
distribution of the probability that a return is at least r′ lower than the threshold ut, given that it is already
lower than ut. Since a strictly negative shape parameter ξt implies an upper bound to the returns, while in
finance all returns are possible, we only consider the case where ξt > 0.

The idea of this model is that all returns lower than a threshold u are an extreme return in the tail of the
return distribution. According to the extreme value theory, if this threshold goes to infinity (or in this case,
minus infinity), the distribution of the returns that exceed of u (or in this case, fall below u) follows a general
Pareto distribution (Rocco, 2014). The shape parameter of the general Pareto distribution therefore represents
the shape of the tail of the return distribution.

The parameters of the distribution are estimated with maximum likelihood. The log-likelihood function
corresponding to the generalized Pareto distribution is:

L(ξt, σt|r) =

{
−nln(σ)− ( 1

ξt
+ 1)

∑Kt
k=1(1 + ξt

σt
R′k,t) if ξt 6= 0

−nln(σt)− 1
σt

∑Kt
k=1R

′
k,t if ξt = 0

(4)

The variables are as defined in equation 3, except R′k,t. R′k,t is the kth daily excess return under the
threshold, R′k,t = Rk,t − ut, given that the return falls below the threshold. The maximum likelihood function
is re-estimated every month and the shape parameter ξt is taken as the second tail risk parameter. For the
threshold ut we again take the fifth percentile of the daily returns of all assets in month t.

3.1.3 Fama-French regression

In the first model with the Hill estimator λt, and the second model with the maximum likelihood variable ξt,
there might be a bias in the results due to the common fluctuations in stock prices. To prevent this bias, I will
follow Kelly and Jiang (2014) and not use the stock returns in the first and second model, but the residuals
of a Fama-French regression (Fama and French, 1993) instead. For each asset, I use daily data to perform an
OLS-regression of the daily return on a constant and the three Fama-French factors: Small-Minus-Big (SMB),
High-Minus-Low (HML) and the excess market return r* (the market return minus the risk-free interest rate),
see equation 5. The factors are the same for all assets, but the coefficients are different for each asset. The
residuals ek,t of asset k at time t replace the return Rk,t in equation 2 and the threshold ut is replaced by the
fifth quantile of the residuals ek,t in each month t. The excess return R′k,t in the equation 4 is replaced by the
excess residual e′k,t = ek,t − ut

Rk,t = β0,k + β1,kSMBt + β2,kHMLt + β3,kr
∗
t (5)

3.1.4 Model 3: Option prices (LT (k) and LT ′(k))

The third tail risk variable comes from Bollerslev and Todorov (2011). The models above measure the realized
tail risk with a variable that measures the realized shape of the tail of the return distribution. In contrast,
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the variable of the third model measures the shape of the tail expected by investors (ex-ante), and not the
realized shape of the tail. Furthermore, this method estimates a tail risk variable for only one asset, which
means I have to use an index to get a variable representing the tail risk in the whole stock market. Also, this
method assumes a risk-neutral world. In the risk-neutral world, investors do not need to be compensated for risk.

To measure the tail risk, Bollerslev and Todorov (2011) used the slightly adjusted version of the standard
Black-Scholes model by developed Carr and Wu (2003) in equation 6. In equation 6, St is the spot price of an
asset at time t, and St− is the spot price of an asset at time t just before a jump occurs. Therefore, dSt

St−
is

the (relative) price change of an asset just after a jump. This price change is driven by three processes. The
first term, (r− q)dt is the expected increase of the stock-price during time dt in the risk-neutral world. r is the
risk-free interest rate, and q is the dividend yield. Since investors do not need to be compensated for risk in the
risk-neutral world, the expected growth of the asset price equals (r − q). However, there is also a continuous
random element involved, σtdWt. Wt is a standard Brownian motion with mean zero and variance t. This
random variable is multiplied by σt, the volatility of the asset price at time t, to get some random variation in
the asset price change. Those first two terms form a standard Brownian motion with drift, and are the basis
of the “normal” Black-Scholes model. However, the random variable Wt usually does not make large, sudden
jumps and is therefore not suited to represent jumps in asset prices. Jumps however, are often used to model
extremely large negative returns in asset prices. If an asset prices suddenly falls, it “jumps” downwards. Tail
risk is therefore sometimes called “jump risk” instead. To include jumps, this standard model is extended with
the term

∫
R0(ex − 1)(µ(dx, dt) − υt(x)dxdt). In this jump part, µ(dx, dt) “counts” all the jumps of size x that

occur at time t. For every jump of size x, the stock price increases with (ex−1). The jumps can have every size
except 0, hence R0 (all the real numbers except zero). The term υt(x)dxdt is called the “local density” of the
jumps, and is a discontinuous process with the density (i.e. probability) of the jumps, determining the form of
the tails. It’s discontinuous, since jumps do not occur that often, while the random variation in the asset price
change from the term Wt is continuous.

dSt
St−

= (r − q)dt+ σtdWt +

∫
R0

(ex − 1)(µ(dx, dt)− υt(x)dxdt) (6)

To estimate the tail risk expected by investors, Bollerslev and Todorov (2011) used the prices of deep-out-of-
the-money European put options that are close to maturity. The authors argued that, if an option is sufficient
out-of-money and the time to maturity goes to zero in the limit (T ↓ t) small changes in the stock price due
to the variation coming from the standard Brownian motion will not change the value of the option. Those
put options will only be worth anything at maturity if the stock price suddenly makes a large fall, i.e. “jumps”
downwards. If there is no large negative jump in the stock price, the options will be worthless at maturity.
Therefore, the authors assumed that to determine the value of a close-to-maturity, deep-out-of-money put op-
tion only the expected downward jumps in the stock price are important.

Carr and Wu (2003) divided the risk-neutral valuation of an European option into two parts; one part
related to the expected variation from the Brownian motion and one part related to the expected jumps. Since
Bollerslev and Todorov (2011) assumed that the (small) changes in the stock price due to the Brownian motion
will not influence the value of the close-to-maturity, deep-out-of-money European put options, they only used
the part related to the expected jumps in the valuation of options. Under this assumption, the price of a
close-to-maturity, out-of-money put option with strike price K at time t (Pt(K)) in the risk neutral world can
be calculated with the following formula:

Pt(K) ≈ e−r(t,T ]

∫ T

t

EQ
t

∫
R

((K − Fs−ex)+(υQs (x)dx))ds if K < Fs− and T ↓ t (7)

Here, K is the strike price, T is the time at maturity , t is the current time, Fs− is the forward price just
before the jump, EQ

t is the risk-neutral expectation and r(t,T ] denotes the risk-free interest rate at the current
time t towards the maturity date T . The right hand side of equation 7 can be seen as the discounted expectation
of the pay-off of the option, conditional on the value of K and on T ↓ t. Intuitively, υQs (dx) is the probability of
a jump of size x from the density function. For every jump of size x (

∫
R), one calculates the pay-off of the option

if this jump occurs ((K −Fs−ex)+) and multiplies this with the probability that the jump occurs to get the ex-
pected value of the pay-off of the option at time t. Then, this is integrated over the time to maturity T − t (

∫ T
t
),

since the jump may occur at every time, and discounted (e−r(t,T ]) to the present. The term µ(dx, dt) from equa-
tion 6 does not occur in equation 7, since Bollerslev and Todorov assumed that only one jump can occur if T ↓ t.
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From equation 7, Bollerslev and Todorov (2011) derived a variable related to the density of the (left) tail of
the return distribution, LTt(k):

LTt(k) =
1

T − t

∫ T

t

∫
R

(ex − K

Ft−
)+(EQ

t (υQs (x)dx)ds ≈ er(T−t) ∗ Pt(k)

(T − t)Ft−
(8)

given that T ↓ t. In those equations, k is the moneyness of the option, (k = K
Ft
, the strike price divided

by the future price) and LTt(k) is the variable related to the density of the tail of the return distribution as
expected by the investors. Intuitively, LTt(k) is the expected value of the pay-off of the put option, conditional
on the value of k and on T ↓ t, per day (since it is multiplied by 1

T−t ) and scaled by the current future price
Ft− to get a variable measuring the tail independent of the current future price.

Time to maturity and moneyness Bollerslev and Todorov (2011) fixed the moneyness k on 0.9 to use the
variable LT (k) in the rest of their article. To test which level of moneyness delivers the best results with respect
to the forecasting of stock returns, I will fix the moneyness at different levels k, namely at k=0,6, 0.65, 0.7, 0.75,
0.8,0.85, 0.9 and 0.95. Furthermore, I will combine multiple estimations of LT (k) by taking the mean, LT (k̄).

Unfortunately, on most days there is no option with the exact moneyness k. To overcome this problem,
Bollerslev and Todorov (2011) calculate the option price themselves with the Black-Scholes model. In the data
there is for each option toe corresponding implied volatility, calculated with the standard Black-Scholes model.
If there is no option with exactly moneyness k, I take the implied volatility σ1 of the option with a moneyness
k1 lower than, but closest to k, and the implied volatility σ2 of the option with a moneyness k2 higher than,
but closest to k. If, for example, k equals 0.75, and the levels of moneyness of the available options are 0.62,
0.73, 0.78 and 0.84, I take the implied volatility belonging to the option with moneyness 0.73 and the implied
volatility belonging to the option with moneyness 0.78. Then, one can estimate the implied volatility of an
option with moneyness k, σ, by linear interpolation:

σ = σ1 +
σ2 − σ1
k2 − k1

∗ k (9)

If there is no option with a lower/higher moneyness than k, I take the implied volatility of the option with
the lowest/highest moneyness available. With the estimated implied volatility, the option price is estimated
using the Black-Scholes formula:

Pt(k) = N(−d2)Ke−r(T−t) −N(−d1)St (10)

with

d1 =
1

σ
√
T − t

(ln(
St
K

) + (r +
σ2

2
)(T − t)) (11)

and

d2 = d1 − σ
√
T − t (12)

N() is the CDF of the standard normal distribution, and σ the implied volatility of the returns of the asset,
as estimated in equation 9. The other variables are as defined above.

Furthermore, this paper looks at two different kind of maturities. For the first kind of maturity, I follow
Bollerslev and Todorov (2011) and take the shortest time-to-maturity option available to estimate LTt(k), with
the restriction that the time-to-maturity is at least 8 days. I will also use only options with exactly 30 days to
maturity, since I am looking for a monthly estimator, LT ′t (k).

3.2 Predictive power in forecasting stock returns
3.2.1 Predictive regressions

To compare the forecast performance of λt, LTt(k) and ξt, I use the methods from Kelly and Jiang (2014). They
calculated the predictive power in forecasting stock returns of an independent variable with a linear regression
of the return in the next month on a constant and the independent variable in month t. They did the same
for three other forecast horizons; the return in the next year, three years and five years. This paper will do the
same for all variables.
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Since I calculate the independent variable at a monthly frequency, there are overlapping observations for the
forecast horizon of one year and longer. Therefore, I will follow Kelly and Jiang (2014) and use Hodrick’s stan-
dard error correction for overlapping data (Hodrick, 1992) to calculate the variance and thereby the t-statistic
of the coefficients.

There is one last complication in comparing the predictive power in forecasting stock returns of the three
models; while λt and ξt change every month, LTt(k) is re-estimated every day. For a fair comparison, I will
calculate the monthly average of LTt(k) and LT ′t (k) and use this average in the regressions. Something similar
is done by Gao, Gao, and Song (2016). They directly estimated the compensation for tail risk demanded by
investors based on daily option prices, and then take the monthly average.

3.2.2 Out-of-sample regressions

Another way to compare the ability to forecast stock returns of the variables is by looking at their out-of-sample
performance. Following Kelly and Jiang (2014), the out-of-sample performance of the variables is evaluated
with an expanding window estimation. First, I perform an OLS-regression of the return on a constant and
an independent variable, with an initial period of 120 months. With the coefficients from this regression, the
expected return during the next forecast horizon is estimated. Afterwards, the sample period is extended with
one extra month, and I re-estimate the coefficients and estimate the expected return during the next forecast
horizon. This continues until the end of the sample period. The R2 is calculated by comparing the errors of the
forecasts from the regressions to the errors of a forecast that equals the mean return:

R2 = 1−
∑
t(R̂m,t+1|t −Rm,t+1)2∑
t(R̄m,t −Rm,t+1)2

(13)

In this equation, R̂m,t+1|t is the estimation of the return on time t + 1 (during one month, one year, three
years or five years), made on time t, Rm,t+1 is the actual return of the forecast horizon on time t+ 1, and R̄m,t
is the average return on time t. If this R2 is negative, the mean return is better in forecasting future stock
returns than the estimations from the OLS-regression. If the R2 is positive, the OLS-regression gives a better
prediction for future stock returns than the average return. I calculate the significance of the R2 (i.e. if R2 is
significantly different from zero) with the ENC-New test (Clark and McCracken, 2001).

For this test, I make two regressions. First, I regress the future return Rm,t+1 at time t+1 on only a constant,
which gives the mean return R̄m,t, and calculate the error term û1t+1 = Rm,t+1 − R̄m,t. Secondly, I regress the
future return on a constant and the independent variable. This gives the error term û2t+1 = Rm,t+1 − R̂m,t+1|t.
The ENC-New test statistic is then calculated by

ENC −New = P

∑
t(û

1
t+1 − û1t+1û

2
t+1)∑

t(û
2
t+1)2

(14)

In this equation, P is the total number of out-of-sample observations. The critical values depend on the
fraction π = P

R , where R equals the number of observations in the initialization period. I will use the critical
values that were estimated in a simulation by Clark and McCracken (2001).

3.3 Benchmark parameters
I want to know if the tail risk variables are better or worse in predicting the future stock returns than other
variables often used in the literature to predict stock returns. Therefore, the results of the three tail risk
variables are compared to nearly all of the benchmark parameters used by Kelly and Jiang (2014). They used
the variables from the article of Welch and Goyal (2007), who compared the ability of many standard variables to
forecast stock returns, and the variance-risk-premium from the article of Bollerslev, Tauchen, and Zhou (2009).
The ability of those benchmark variables to forecast stock returns is calculated with the same two methods as
above; predictive regressions and out-of-sample regressions.

4 Data
For comparison reasons, I would like to use the same data in all three models. However, the kind of data needed
for each model is different. The first model with the Hill estimator and the second model with the maximum
likelihood estimator use data of individual assets on a daily basis. However, for the third model with the option
prices, I cannot use the data of individual assets. Equation 8 only gives a variable for the tail of one option. To
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obtain a tail risk variable representing the whole market from this model, I need to use an option on an index
representing the whole market.

Hence, I will use data of the option on an index for the third model, and I will use data of the individual
assets that are part of this index for the first and second model. I will use two indices; the first index is the
S&P-500 index. This index contains the 500 largest companies of the United States with respect to their market
capitalization. However, smaller firms might have different tail risk than large firms. Therefore, I will also use
the Russell-2000 index. This index contains around 2000 assets of companies with a relatively small market
capitalization. It is made by taking the 2000 smallest companies from the Russell-3000 index.

For the first and second model, I need the data of individual assets. For the S&P-500 index, the list with
the assets in the S&P-500 index and the period they belonged to this index comes from “Compustat- Capital
IQ from Standard & Poor”. As Kelly and Jiang (2014), I use this list to get the data of the individual assets
in the S&P-500 index from “The Centre for Research in Security Prices” (CRSP). Also the return of the S&P-
500 index comes from CRSP. For the Russell-2000 index, the individual assets that are part of this index and
their return data come from “Bloomberg Finance”. Finally, the daily Fama-French factors are downloaded from
“Fama-French Portfolios and Factors”.

For the third model with the option prices, the data about the option price, the dividend yield and the
current price of the S&P-500 index and the Russell-2000 index are from OptionMetrics. Also the return on the
Russell-2000 index and the risk-free interest rate come from OptionMetrics. When there is no risk-free interest
rate with exactly the same time-to-maturity as the option, I use the closest risk-free interest rate available (and
interpolate this interest rate for the time-to-maturity of our own option). Since OptionMetrics only has option
data from January 1996 until April 2016, our sample period is from 1996 to 04-2016.

The benchmark variables from Welch and Goyal (2007) are downloaded from the website of Amit Goyal,
and the variance risk premium of Bollerslev et al. (2009) is downloaded from the website of Hao Zhou.

5 Results

5.1 Model 1: Hill’s estimator (λ)
The first model estimated the Hill estimator λ representing the shape of the tail with all returns below the
threshold value ut. The Hill estimators for the large companies in the S&P-500 index, λSP , and for the small
companies in the Russell-2000 index, λRus and their threshold values ut are plotted in figure 1b and 1a respec-
tively. From figure 1a it appears that the threshold values of the Russell-2000 index and the S&P-500 index
follow the same pattern. This is confirmed by the correlation of 96% between those two threshold values. The
threshold of the S&P-500 index, however, is nearly always higher than the threshold of the Russell-2000 index.
Figure 1b plots λSP and λRus, both scaled to have a mean of zero and a standard deviation of 1. Both esti-
mators look quite “messy", with many ups and downs . The general pattern of λSP and λRus seems to be the
same, though it is less clear than with the thresholds. The correlation between λSP and λRus is indeed only 35%.

In figure 2a is the scaled three-year return (recalculated every month) of the S&P-500 index plotted together
with the scaled λSP . The returns are less volatile and “spiky” than λSP . For λRus and the return on the
Russell-2000 index, the graph is quite similar. In figure 2b is a plot of the scaled absolute value of uRus and
the scaled, monthly realized volatility of the returns on the Russell-2000 index. uRus and the volatility appear
to follow the same pattern. If the volatility peaks, the absolute threshold value peaks as well.

The results of the in-sample predictive regression and the out-of-sample regressions are in table 1 and table
2 respectively. Both λSP and λRus appear to be not that good in predicting the future stock returns. For the
out-of-sample regressions the R2 is usually negative. This means the the average return is better in predicting
future stock returns than λSP and λRus. In the article of Kelly and Jiang (2014), the Hill estimator λ was
much better in predicting the stock returns. There are three possible reasons that our λ’s perform worse in
predicting the stock returns; it might be due to the data period, to the size of the data sample or to the company
characteristics in the data sample.

In section 6, I evaluate whether the data period and the size of the data sample might explain the difference
between the results in this paper and the results found by Kelly and Jiang (2014). The difference in the results
might also be due to the different kind of assets in the data samples. The two data samples of this paper contain

8



Figure 1: The scaled Hill estimator λ and the corresponding threshold ut for the S&P-500 index and the
Russell-2000 index

(a) uSP and uRus (b) λSP and λRus

Figure 2

(a) λSP and the three year return on the S&P-500
index, both scaled

(b) Absolute value of uRus and the monthly realized
volatility of the returns on the Russell-2000 index, both
scaled

only large companies (S&P-500) or small companies (Russell-2000), while the original data sample used by Kelly
and Jiang (2014) (with all the assets from NYSE,AMEX or NASDAQ with share code 10 or 11) contains both
large, small and middle-sized companies.

Table 1: Predictive regression results for λ

Variable One month One year Three years Five years
β T-stat. R2 β T-stat. R2 β T-stat. R2 β T-stat. R2

λ1SP -0.079 -2.35 2.24 -0.015 -0.68 0.70 0.002 0.16 0.03 0.003 0.23 0.08
λ2Rus -0.020 -0.45 0.08 -0.021 -0.57 1.02 0.00 -0.08 0.06 0.00 -0.029 0.00
1. This Hill estimator is made with the data from the S&P-500 index and the dependent variable is the return on the
S&P-500 index
2. This Hill estimator is made with the data from the Russell-2000 index and the dependent variable is the return on
the Russell-2000 index
All the coefficients β in this table are scaled so that they represent the expected increase (in numeric values) in the
annualized future stock returns when the independent variable increases with one standard deviation.
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Table 2: Out-of-sample results for λ

Variable One month One year Three years Five years
π 1.03 0.93 0.73 0.53
Crit. value1 1.584 1.584 1.584 1.079

R2 ENC-New R2 ENC-New R2 ENC-New R2 ENC-New
λ2SP 0.14 0.17 -1.29 -0.62 -0.63 -0.26 -2.89 -0.76
λ3Rus -1.91 -0.97 0.39 0.68 -1.30 0.30 -17.19 -3.11
1. The approximate critical value comes from Clark and McCracken (2001) at a 5% significance level
2. This Hill estimator is made with the data from the S&P-500 index and the dependent variable is the
return on the S&P-500 index
3. This Hill estimator is made with the data from the Russell-2000 index and the dependent variable is
the return on the Russell-2000 index

5.2 Model 2: Maximum likelihood (ξ)
For the second model, I estimated the tail risk parameter ξ with maximum likelihood and the threshold ex-
ceeding method. Figure 3a plots ξRus, estimated with the assets of the Russell-2000 index, and ξSP , estimated
with the assets of the S&P-500 index, both scaled to have a mean of zero and a standard deviation of 1. ξRus
and ξSP seem to roughly follow the same pattern, which is confirmed by the correlation of 47%, though ξSP
is much more “spiky" than ξRus. Figure 3b plots ξSP and the scaled three year return on the S&P-500 index.
The maximum likelihood estimator ξSP is much more volatile than the returns, and there is no clear relation
between the returns and ξSP from the plot.

Figure 3

(a) ξSP and ξRus, both scaled (b) ξSP and the three year return on the S&P-500
index, both scaled

In table 3 and 4 are the results for the predictive regression and the out-of-sample regression of ξ respectively.
The maximum likelihood estimator appears to be quite good in forecasting the returns in the next three and
especially five years. The R2 in the predictive regression is relatively high for this horizon (compared to the
other time horizons), and moreover, the out-of-sample results indicate that ξ is significantly better at predicting
the stock returns three or five years forward than the mean return. ξRus seems to be a bit better in predicting
the returns on the Russell-2000 index than ξSP in predicting the returns of the S&P-500 index.
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Table 3: Predictive regression results for ξ

Variable One month One year Three years Five years
β T-stat. R2 β T-stat. R2 β T-stat. R2 β T-stat. R2

ξ1SP -0.035 -1.02 0.43 0.00 0.19 0.04 -0.017 -1.09 1.83 -0.035 2.83 17.95
ξ2Rus -0.045 -1.01 0.42 -0.055 -1.34 8.15 -0.046 -1.43 21.82 -0.040 -1.61 26.46
1. This maximum likelihood estimator is made with the data from the S&P-500 index and the dependent variable is the
return on the S&P-500 index
2. This maximum likelihood estimator is made with the data from the Russell-2000 index and the dependent variable is
the return on the Russell-2000 index
All the coefficients β in this table are scaled so that they represent the expected increase (in numeric values) in the annualized
future stock returns when the independent variable increases with one standard deviation.

Table 4: Out-of-sample results for ξ

Variable One month One year Three years Five years
π 1.03 0.93 0.73 0.53
Cric. value1 1.584 1.584 1.584 1.079

R2 ENC-New R2 ENC-New R2 ENC-New R2 ENC-New
ξ2SP 0.03 0.20 -2.13 -0.67 5.12 2.91 23.34 12.00
ξ3Rus -2.16 -0.97 -2.09 3.63 18.15 16.93 37.77 24.11
1. The approximate critical value comes from Clark and McCracken (2001) at a 5% significance level
2. This maximum likelihood estimator is made with the data from the S&P-500 index and the dependent
variable is the return on the S&P-500 index
3. This maximum likelihood estimator is made with the data from the Russell-2000 index and the
dependent variable is the return on the Russell-2000 index

5.3 Model 3: Option prices
5.3.1 Minimum time-to-maturity (LT (k))

In the third model, I estimated a tail risk variable from the option prices for different levels of moneyness
k and for different maturity times; one with the shortest time-to-maturity available, LT (k), and one with a
time-to-maturity of 30 days, LT ′(k). In this paragraph, I will focus on the variable LT (k) with the minimum
time-to-maturity. Figure 4a is a plot of LT (k) for all levels of moneyness k from the S&P-500 index, all scaled
to have a mean of zero and a standard deviation of 1. All variables LT (k)SP appear to follow the same pattern.
This is confirmed by the correlation between the variables. The lowest correlation between LT (0.6)SP and
LT (0.95)SP is still 72%. For the Russell-2000 index, the variables move together very closely as well; the lowest
correlation for the Russell-2000 index between LT (0.6)Rus and LT (0.95)Rus is 72 % as well.

Figure 4b is the plot of LT (k̄)Rus, LT (k̄)SP , and the three year returns on the S&P-500 and the Russell-2000
index, all scaled. In this figure the two tail risk variables estimated with the Russell-2000 index and the S&P -500
index appear to be quite close together; the correlation is 94%. Also the three year returns of the S&P-500
index and the Russell-2000 index are quite close together in the graph. Furthermore, there is one large peak for
both LT (k̄)SP and LT (k̄)Rus in October 2008, during the financial crisis. This peak was also visible in figure 4a.

In table 5 and 6 are the results of the in-sample predictive regressions and the out-of-sample regressions
respectively. For both the large companies of the S&P-500 index and the small companies of the Russell-2000
index, the highest level of moneyness (k=0.95) is the best in predicting the stock returns in the next five years.
Unfortunately, since I need to use out-of-the-money options, we cannot calculate LT (k) for a higher level of
moneyness. For the other time horizons the results are less straight forward. The highest level of moneyness
still performs quite well, but for the in-sample regressions, the lowest level of moneyness (k=0.6) seems to be
better. For the out-of-sample regressions, medium levels of moneyness like k=0.8 are the best. Taking the mean
of LT (k) does not improve the results.

LT (k) is not a good variable to estimate the stock returns one month forward; for both the large and the
small companies, and for all levels of moneyness, the mean return is better in predicting the stock returns the
next month than LT (k). For the other time horizons LT (k) is better in predicting the stock returns than the
mean return. Furthermore, for all time horizons LT (k) is better in predicting the stock returns of the small
companies than the stock returns of the large companies.
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Figure 4

(a) LT (k) (scaled) for the S&P-500 index and all levels
of moneyness k

(b) LT (k̄)SP , LT (k̄)Rus, the three year return on the
S&P-500 and the Russell-2000 index, all scaled

Table 5: Predictive regression results for LT (k)

Variable One month One year Three years Five years
β T-stat. R2 β T-stat. R2 β T-stat. R2 β T-stat. R2

Return on the S&P-500 index
LT (0.6)SP -0.23 -0.67 0.19 0.041 1.55 5.45 0.019 1.36 2.64 0.018 2.40 5.61
LT (0.65)SP -0.025 -0.73 0.22 0.036 1.38 4.13 0.019 1.41 2.62 0.023 3.05 9.60
LT (0.7)SP -0.030 -0.89 0.32 0.031 1.23 3.05 0.016 1.28 1.96 0.026 3.39 11.76
LT (0.75)SP -0.031 -0.90 0.33 0.029 1.16 2.65 0.015 1.17 1.68 0.028 3.52 13.41
L(0.8)SP -0.029 -0.86 0.30 0.028 1.15 2.62 0.015 1.12 1.56 0.029 3.51 14.47
LT (0.85)SP -0.026 -0.77 0.25 0.029 1.15 2.68 0.015 1.15 1.73 0.030 3.45 15.51
LT (0.9)SP -0.018 -0.54 0.12 0.028 1.11 2.55 0.016 1.16 1.94 0.032 3.28 17.14
LT (0.95)SP 0.00 -0.14 0.00 0.021 0.82 1.48 0.017 1.09 2.13 0.035 2.93 19.29
LT (k̄)1SP -0.017 -0.48 0.10 0.026 1.03 2.26 0.017 1.16 2.05 0.032 3.24 17.42
LT (k)2SP -0.024 -0.72 0.21 0.029 1.17 2.82 0.016 1.19 1.90 0.030 3.43 15.44

Return on the Russell-2000 index
LT (0.6)Rus 0.016 0.36 0.05 0.043 1.26 5.04 0.033 1.39 11.21 0.039 2.49 26.13
LT (0.65)Rus 0.013 0.28 0.03 0.034 1.03 3.16 0.026 1.27 7.44 0.035 2.63 21.20
LT (0.7)Rus 0.018 0.40 0.06 0.025 0.75 1.75 0.022 1.11 5.22 0.034 2.75 19.90
LT (0.75)Rus 0.011 0.26 0.03 0.026 0.77 1.80 0.022 1.15 5.13 0.035 3.07 21.67
L(0.8)Rus 0.010 0.23 0.02 0.029 0.86 2.26 0.024 1.20 5.96 0.039 3.26 25.57
LT (0.85)Rus 0.020 0.44 0.08 0.032 0.93 2.74 0.027 1.31 7.71 0.043 3.39 30.81
LT (0.9)Rus 0.030 0.68 0.19 0.033 0.95 2.94 0.030 1.37 9.30 0.047 3.42 35.24
LT (0.95)Rus 0.040 0.91 0.34 0.032 0.90 2.78 0.033 1.42 11.08 0.051 3.39 38.98
LT (k̄)1Rus 0.030 0.67 0.19 0.033 0.92 2.86 0.030 1.36 9.49 0.047 3.37 35.02
1. LT (k̄) is the mean of the LT(k) for all levels of moneyness k.
2. This LT (k) is made with the mean of LT (k) for all levels of moneyness k, except k=0.95, based on the in-sample performance
All the coefficients β in this table are scaled so that they represent the expected increase (in numeric values) in the annualized
future stock returns when the independent variable increases with one standard deviation. In each column, the highest R2 is blue
and bold.
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Table 6: Out-of-sample results for LT (k)

Variable One month One year Three years Five years
π 1.03 0.93 0.73 0.53
Crit. value1 1.584 1.584 1.584 1.079

R2 ENC-New R2 ENC-New R2 ENC-New R2 ENC-New
Return on the S&P-500 index

LT (0.6)SP -11.84 -4.05 -9.29 8.38 2.28 5.59 2.45 1.67
LT (0.65)SP -40.96 7.00 -22.91 9.60 -8.73 7.59 14.39 6.79
LT (0.7)SP -71.39 -8.36 -17.9 10.51 -71.39 -8.36 22.27 13.20
LT (0.75)SP -47.44 -7.39 4.94 8.84 3.73 2.43 24.56 16.12
LT (0.8)SP -24.46 -6.03 7.36 7.94 0.28 0.70 26.68 17.31
LT (0.85)SP -14.62 -4.81 7.93 7.37 1.16 1.11 28.44 18.50
LT (0.9)SP -9.92 -3.97 6.79 5.73 2.01 1.65 30.46 20.29
LT (0.95)SP -6.39 -3.00 2.02 2.16 1.58 1.66 33.10 22.37
LT (k̄)2SP -10.67 -4.19 5.61 4.63 2.55 2.00 30.98 21.06
LT (k)3SP -17.73 -5.37 7.64 7.73 3.31 2.27 28.15 18.59

Return on the Russell-2000 index
LT(0.6)Rus -2.73 2.23 5.37 10.71 -8.81 17.58 45.18 33.56
LT(0.65)Rus -2.03 5.19 7.31 7.37 8.50 12.59 38.81 26.30
LT(0.7)Rus -3.57 8.28 4.52 4.03 12.87 8.61 38.11 25.49
LT (0.75)Rus -2.04 5.64 5.74 4.56 12.96 8.89 41.47 34.12
LT (0.8)Rus -1.95 1.21 5.47 4.66 14.13 11.20 41.69 45.25
LT (0.85)Rus -3.80 -0.74 7.55 6.12 17.78 16.31 46.73 57.09
LT (0.9)Rus -4.83 -1.89 7.07 6.05 21.30 18.85 54.46 68.20
LT (0.95)Rus -4.43 -1.99 5.39 5.05 24.33 21.92 59.05 75.43
LT (k̄)2Rus -4.56 -1.41 6.54 5.81 21.09 19.83 52.25 67.48
1. The approximate critical value comes from Clark and McCracken (2001) at a 5% significance level
2. LT (k̄) is the mean of LT (k) for all levels of moneyness k
3. This LT (k) is made with the mean of LT (k) for all levels of moneyness k, except k=0.95, based on the
in-sample performance.
In each column, the highest R2 is blue and bold.

5.3.2 Time-to-maturity of 30 days (LT ′(k))

I also estimated the tail risk variable LT ′(k) with a time-to-maturity of exactly 30 days (or 29 days when there
is no option with a time-to-maturity of 30 days in a month). In figure 5) is a plot of the scaled LT ′(k)Rus,
estimated with the data from the Russell-2000 index. All variables LT ′(k)Rus appear to be quite close together,
which was the same in figure 4a. The smallest correlation between LT ′(0.6)Rus and LT ′(0.95)Rus is now 73 %.

From the results in table 7 and 8, it is clear that LT (k) (estimated with the minimum time-to-maturity)
is better in forecasting the stock returns than LT ′(k) (estimated with 30 days to maturity) for both the large
and the small companies. The only exception is the time horizon of one month; then, LT ′(k) is much better
in forecasting the returns than LT (k). The prices of put options reflect the expectations of investors about the
development of the stock prices during the time to maturity. For LT ′(k), this period is 30 days, and therefore
part of the time-to-maturity falls into the next month. For LT (k), the mean time-to-maturity is only ten trading
days. Therefore, many observations of options in the beginning of the month do not have any days during the
time-to-maturity in the next month. This might explain why LT (k) is worse in predicting the stock returns in
the next month than the mean return, while many LT ′(k)’s are better.

The reason LT (k) is so much better than LT ′(k) in predicting returns more than one month ahead might
be due to the number of observation used while estimating LT (k) and LT ′(k). In both data samples, there
are not that many options with a time-to-maturity of exactly 30 days. In the beginning of the sample, there is
often only one day each month with an option with a time to maturity of 30 days. In contrast, for LT (k), we
have a data point on (nearly) every trading day of the month. More data points might increase the reliability
and the predictive power with respect to forecasting stock returns of LT (k) compared to LT ′(k).
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Figure 5: LT ′(k) (with a time-to-maturity of 30 days) for the Russell-2000 index and all levels of moneyness k,
all scaled

Table 7: Predictive regression results for LT ′(k)

Variable One month One year Three years Five years
β T-stat. R2 β T-stat. R2 β T-stat. R2 β T-stat. R2

Return on the S&P-500 index
LT ′(0.6) -0.055 -1.63 1.11 0.030 1.21 2.85 0.016 1.24 1.77 0.022 2.97 8.26
LT ′(0.65) -0.049 -1.43 0.85 0.028 1.14 2.49 0.017 1.31 2.02 0.024 3.16 10.18
LT ′(0.7) -0.040 -1.19 0.58 0.025 1.05 2.03 0.015 1.22 1.68 0.025 3.35 11.19
LT ′(0.75) -0.033 -0.97 0.39 0.026 1.09 2.18 0.014 1.17 1.47 0.026 3.52 11.95
LT ′(0.8) -0.029 -0.87 0.31 0.027 1.12 2.32 0.014 1.18 1.52 0.027 3.54 12.84
LT ′(0.85) -0.022 -0.66 0.18 0.026 1.07 2.19 0.014 1.14 1.50 0.028 3.45 13.65
LT ′(0.9) -0.018 -0.54 0.12 0.024 0.95 1.81 0.015 1.07 1.52 0.030 3.22 14.70
LT ′(0.95) -0.013 -0.38 0.06 0.018 0.69 1.01 0.015 0.98 1.57 0.031 2.81 15.74
LT ′(k̄)1 -0.023 -0.66 0.18 0.024 0.93 1.76 0.015 1.10 1.62 0.030 3.26 14.55

Return on the Russell-2000 index
LT ′(0.6) -0.015 -0.33 0.05 0.026 0.84 1.76 0.020 1.15 4.54 0.028 2.57 14.67
LT ′(0.65) 0.00 -0.17 0.01 0.025 0.81 1.65 0.020 1.13 4.35 0.029 2.56 14.58
LT ′(0.7) 0.00 -0.03 0.00 0.026 0.83 1.80 0.021 1.16 4.82 0.031 2.66 16.67
LT ′(0.75) 0.00 0.05 0.00 0.028 0.89 2.08 0.022 1.23 5.43 0.034 2.88 19.35
LT ′(0.8) 0.017 0.38 0.06 0.030 0.95 2.40 0.024 1.30 6.12 0.037 3.18 22.70
LT ′(0.85) 0.025 0.56 0.13 0.030 0.95 2.48 0.027 1.40 7.61 0.040 3.38 26.68
LT ′(0.9) 0.033 0.75 0.23 0.030 0.93 2.48 0.030 1.49 9.41 0.044 3.46 30.47
LT ′(0.95) 0.041 0.93 0.36 0.030 0.87 2.37 0.032 1.49 10.68 0.046 3.46 33.07
LT ′(k̄)1 0.030 0.67 0.19 0.031 0.93 2.57 0.030 1.45 9.50 0.044 3.31 30.45
1.LT ′(k̄) is the mean of the LT ′(k) for all levels of moneyness k
All the coefficients β in this table are scaled so that they represent the expected increase (in numeric value) in the annualized
future stock returns when the independent variable increases with one standard deviation. In each column, the highest R2 is
blue and bold.

5.4 Overall comparison of all variables
In this section, I will compare all three tail risk variables with each other. In figure 6 is a plot of λ, ξ and
LT (0.95) for both the Russell-index and the S&P-500 index, all scaled to have a mean of zero and a standard
deviation of 1. LT (0.95) differs the most from the other two variables, mainly due to its peak in 2008 and since
it’s less “spiky” than the other two tail risk variables. λ and ξ are closer together. The reason might be that
λ and ξ have both been constructed with the same, changing threshold ut, while LT (0.95) has been estimated
with a fixed level of moneyness k=0.95. This is in line with the results of Almeida, Ardison, Garcia, and Vicente
(2017), who compared their tail risk variable to the variable of Kelly and Jiang (2014) and found that their tail
risk variable is quite different from λ as well, especially when there is a shock in the stock market.
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Table 8: Out-of-sample results for LT ′(k)

Variable One month One year Three years Five years
π 1.03 0.93 0.73 0.53
Crit. value1 1.584 1.584 1.584 1.079

R2 ENC-New R2 ENC-New R2 ENC-New R2 ENC-New
Return on the S&P-500 index

LT ′(0.6)SP -7.16 3.08 -109.02 -3.16 -33.87 -0.27 0.98 1.22
LT ′(0.65)SP -14.67 3.14 -76.19 -3.71 -37.32 -0.10 8.73 4.07
LT ′(0.7)SP -7.79 5.18 -12.24 -1.80 -4.00 -0.43 6.37 5.83
LT (′(0.75)SP 8.79 11.83 -2.68 -0.54 -2.33 -0.81 8.95 6.41
LT ′(0.8)SP 12.89 14.60 -1.59 -0.25 -3.37 -1.06 10.67 7.20
LT ′(0.85)SP 14.23 15.45 -0.26 0.07 -3.94 -1.29 13.07 7.75
LT ′(0.9)SP 15.67 17.13 -0.28 0.23 -3.97 -1.38 15.38 8.84
LT ′(0.95)SP 16.54 18.46 -1.13 0.39 -4.05 -1.44 18.55 10.26
LT ′(k̄)2SP 16.52 18.27 -0.39 0.25 -3.65 -1.29 14.74 8.81

Return on the Russell-2000 index
LT ′(0.6)Rus -284.00 -5.21 -64.87 -3.87 -199.67 -2.45 -2.31 5.71
LT ′(0.65)Rus -115.05 -4.26 -2.28 0.90 -13.76 -1.66 3.43 5.50
LT ′(0.7)Rus -35.01 -0.59 -15.71 3.74 0.55 0.68 -12.19 6.95
LT (′(0.75)Rus 0.78 5.83 -2.71 1.85 -0.00 0.50 -12.70 9.04
LT ′(0.8)Rus 9.04 10.24 -0.25 0.47 0.71 1.28 7.02 13.09
LT ′(0.85)Rus 10.45 12.29 0.18 0.59 3.08 3.39 17.53 17.57
LT ′(0.9)Rus 10.84 13.59 0.58 0.78 6.82 6.07 26.89 22.58
LT ′(0.95)Rus 11.05 14.78 0.58 0.83 9.87 8.11 33.46 26.76
LT ′(k̄)2Rus 10.85 13.69 0.34 0.91 4.57 6.15 22.15 21.34
1. The approximate critical value comes from Clark and McCracken (2001) at a 5% significance level
2. LT ′(k̄) is the mean of LT ′(k) for all levels of moneyness k
In each column, the highest R2 is blue and bold.

Figure 6: λ, ξ and LT (0.95) for the S&P-500 index and the Russell-2000 index, all scaled

(a) S&P-500 index (b) Russell-2000 index

For the predictive regressions, there is often a negative coefficient when I regress the return in the next
month on a tail risk variable. This is only the case for the time-horizon of one month, and not for (most)
LT (k)Rus and LT ′(k)Rus. Furthermore, only one coefficient is significantly different from zero and negative,
namely the coefficient of λSP . All the other negative coefficients are not significantly different from zero. Still,
those results are quite strange; I expected positive coefficients. As explained in the introduction, if the tail risk
is high, investors want to be compensated for the risk with a higher expected return. Kelly and Jiang (2014)
indeed found only positive coefficients when they used their tail risk variable λ in the predictive regressions.
However, similar results with a negative, and only sometimes significant coefficient when regressing the return in
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the next month on a tail risk variable were found by Bali, Cakici, and Whitelaw (2014). In appendix A, I looked
whether the coefficient of λSP is still significantly negative if I estimate λSP for the period 1963-2010, and I
found that the coefficient is still negative, but not significantly different from zero any more. I also re-estimated
the original results of Kelly and Jiang (2014) in this appendix, and found indeed only positive coefficients. In
appendix B, I analysed what would happen if I used the value-weighted return of CRSP (as done by Kelly and
Jiang, 2014). All coefficients that were negative before, are still negative in those regressions.

When comparing the ability of the three tail risk variables to predict future stock returns, LT (k) (estimated
with the minimum time-to-maturity), LT (0.95), LT (0.85) and LT (0.75) in particular, has the best results in
both data samples. The R2 in both the predictive and the out-of-sample regressions is usually the highest
for this variable compared to the other variables, for both the large companies in the S&P-500 index and the
small companies in the Russell-2000 index. Furthermore, the results for predicting the stock returns of the
Russell-2000 index are better than the results for predicting the stock returns of the S&P-500 index when using
LT (k). This is probably due to the differences in the size of the firms in both indices. One exception is the
prediction of the stock returns in the next month. LT ′(k) (estimated with a time-to-maturity of 30 days),
LT ′(0.95) in particular, is the best in forecasting the stock returns in the next month. Moreover, LT ′(k) is
better in forecasting the returns of the S&P-500 index in the next month than the returns of the Russell-2000
index.

5.5 Benchmark variables
In this section, I test whether the tail risk variables are better in predicting the future stock returns than
the benchmark variables used by Welch and Goyal (2007) and the variance risk premium used by Bollerslev
et al. (2009). In table 9 and 10 are the results for the predictive regressions and the out-of-sample regressions
on the return of the S&P-500 index and of the Russell-2000 index. For predicting the stock-market return
in the next month, LT ′(k) with a high level of moneyness k is still a good choice; the out-of-sample results
for this variable are better than the out-of-sample results for the benchmark variables, though this is not the
same for the predictive regressions. For longer forecast horizons, however, the tail-risk related variable LT (k)
is not necessarily the best choice. The dividend pay-out ratio and the dividend yield spread have a consid-
erably higher R2 for the predictive, in-sample regressions. For the out-of-sample forecasts, the variance risk
premium, the treasury-bill rate and the term spread have a higher R2 during at least one forecast horizon than
LT (k). However, for the out-of-sample regressions, this result depends on the forecast horizon and the index
used. Sometimes LT (k) still gives the best results, i.e. the highest R2, compared to all the benchmark variables.

The R2 of the regressions in table 9 and 10 are usually higher than the R2 found by Kelly and Jiang
(2014) when they used the same benchmark variables. There are two possible explanations. First of all, I
use a different sample period than Kelly and Jiang (2014), which might influence the results. Since our initial
estimation window is ten years, the out-of-sample regressions are performed over the short period 2006-2016
(2006-2011 for the five year returns). Furthermore, I also regress on a different return. Kelly and Jiang used
the value-weighted return of CRSP, while I use the return on the S&P-500 index and the Russell-2000 index.
Since many benchmark variables (namely the dividend pay-out ratio, the dividend price ratio, the earnings price
ratio, the stock variance and the variance risk premium) are constructed with data from the S&P-500 index,
it is not surprising that the predictive regressions on the return of the S&P-500 index have a higher R2 than
found by Kelly and Jiang (2014).

6 Robustness check: different performance of λ
The results of section 5.1 indicated that the Hill estimators λSP and λRus of the first model were not that
good in predicting future stock returns. In contrast, Kelly and Jiang (2014) found that the Hill estimator λ of
their data sample outperformed many benchmark variables in predicting future stock returns. As explained in
section 5.1, there are three possible explanations for this difference.

First of all, it might be that the results of this paper and of Kelly and Jiang (2014) are so different because
of the different data period; our data period starts in 1996 and ends in April 2016. The data period of Kelly
and Jiang (2014) goes from 1963 to 2010. To analyse the difference in the data period, I estimated λoriginal; the
Hill estimator with the original data sample of Kelly and Jiang (2014), but with the data period from 1996 to
04-2016. The data sample of Kelly and Jiang (2014) contains all the assets from NYSE, AMEX and NASDAQ
with share code 10 or 11, and I download this data sample from CRSP. Furthermore, as the return they took
the value-weighted returns from CRSP as well.
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In table 11 and 12 are the results, and λoriginal is indeed worse in predicting the stock returns than the vari-
able of Kelly and Jiang (2014), especially for the out-of-sample regressions. Therefore, the difference between
the results might be due to the different data period.

To test if the size of the data sample influences the results in this paper, I also take a random sample of
500 respectively 2000 assets of the original data sample used by Kelly and Jiang (2014) each month and use
this random sample to estimate λ500 and λ2000. The original data sample contains around 2000 assets in 1963
to roughly 6000 assets around 2010. For the sample size of 500 assets, I indeed see that λ500 performs usually
a bit worse than λoriginal in the predictive regressions (thought better in the out-of-sample regressions). So
for the S&P-500 index, the smaller sample size might partly explain why our Hill estimator λSP is worse in
predicting the stock returns than the estimator of Kelly and Jiang (2014). One objection, however, is that by
randomly selecting a number of companies each month, most companies are only in the data sample for one
month. Consequently, there are less observations per asset for the Fama-French regression, which makes this
regression less reliable.

I also estimated ξ for the original data sample of Kelly and Jiang (2014), with all the assets from NYSE,
AMEX or NASDAQ with share code 10 or 11, and with a random selection of 500 or 2000 assets each month
from this original data sample. If I predict the returns in the next five years, the maximum likelihood estimator
ξ still performs better in the out-of-sample regressions than the mean return, which was the same for ξSP and
ξRus. Furthermore, for this time horizon ξoriginal performs better than ξ2000, and ξ2000 in turn performs better
than ξ500. However, in contrast with ξSP and ξRus, ξoriginal and ξ2000 are not always better in predicting the
stock returns in the next three years than the mean return, while ξ500 does perform better than the mean return.

Table 11: Predictive regression results for λ and ξ

Variable One month One year Three years Five years
β T-stat. R2 β T-stat. R2 β T-stat. R2 β T-stat. R2

λ1original 0.025 0.69 0.198 0.050 1.45 7.35 0.057 2.39 23.11 0.012 0.93 2.14
λ2500 -0.031 0.87 0.31 0.017 0.88 0.89 0.148 1.18 1.94 -0.061 -0.25 0.09
λ22000 +0.00 0.01 0.00 0.040 3.30 4.52 0.481 7.01 19.27 0.308 2.03 2.22
ξ1original 0.015 0.42 0.07 0.01 0.19 0.11 -0.00 -0.01 0.00 -0.03 -1.25 14.81
ξ2500 0.016 0.44 0.08 0.00 -0.58 0.19 -0.016 -1.46 1.97 -0.016 -1.59 4.48
ξ22000 0.00 0.09 0.00 0.00 0.07 0.01 -0.00 -0.12 0.07 -0.025 -1.09 10.22
1. Those variables are made with all the assets from NYSE, AMEX and NASDAQ with share code 10 or 11 and the
dependent variable is the value-weighted return of CRSP
2. Those variables are made with a random selection of 500/2000 assets each month from all the assets from NYSE, AMEX
and NASDAQ with share code 10 or 11 and the dependent variable is the value-weighted return of CRSP
All the coefficients β in this table are scaled so that they represent the expected increase (in numeric value) in the annualized
future stock returns when the independent variable increases with one standard deviation. For the whole table, the data
period is from 1996 to 04-2016.

Table 12: Out-of-sample results for λ and ξ

Variable One month One year Three years Five years
π 1.03 0.93 0.73 0.53
Crit. value1 1.584 1.584 1.584 1.079

R2 ENC-New R2 ENC-New R2 ENC-New R2 ENC-New
λ2original -0.42 0.01 -12.17 -0.91 -22.35 -0.17 -12.69 -3.07
λ3500 0.75 0.71 0.78 0.64 -0.16 0.04 -0.76 -0.14
λ32000 -0.69 -0.35 -14.68 -2.74 -19.95 0.02 -8.88 -2.05
ξ2original -0.44 -0.24 -14.65 -4.94 -19.40 -6.35 23.33 11.95
ξ3500 -0.53 -0.28 0.28 0.81 6.32 4.86 1.74 1.66
ξ32000 -0.48 -0.29 -11.16 -3.81 -10.59 -3.56 12.79 6.76
1.The approximate critical value comes from Clark and McCracken (2001)
1. Those variables are made with all the assets from NYSE, AMEX and NASDAQ with share code 10 or
11 and the dependent variable is the value-weighted return of CRSP
2. Those variables are made with a random selection of 500/2000 assets each month from all the assets from
NYSE, AMEX and NASDAQ with share code 10 or 11 and the dependent variable is the value-weighted
return of CRSP. For the whole table, the data period is from 1996 to 04-2016.
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7 Conclusion and discussion
The research question in the beginning of the paper was:

Which tail risk variable is the best predictor of returns on the stock market?

From the three tail risk variables, LT (k) is the best in forecasting stock returns in both data samples. This
tail risk variable is calculated with the option prices of out-of-the-money put options and the smallest time-to-
maturity available in the data sample. The level of moneyness of the option is denoted by k in the brackets.
In particular, for both large and small companies, LT (0.95), LT (0.85) and LT (0.75) are the best in forecasting
the returns one year or longer ahead. LT ′(0.95) is the best in forecasting the stock returns in the next month.
This variable is, just like LT (k), calculated with the option prices of out-of-the-money put options, but then
with a time-to-maturity of 30 days. The results for all the tail risk variables were quite similar in both data
samples, which makes the results more reliable. While LT (k) was better in predicting the stock returns of the
small companies than the ones of the large companies, LT ′(k) was better in predicting the returns (one month
forward) for the large companies than for the small companies.

I also compared the tail risk variables to the benchmark variables of Welch and Goyal (2007) and the variance
risk premium used by Bollerslev et al. (2009). LT ′(0.95) is still a good choice when predicting the stock returns
in the next month. For the out-of-sample regressions, the R2 is higher than the R2 of the benchmark variables.
For the prediction of the returns more than one month forward, the results are less clear. Sometimes LT (k) is
still the best in the out-of-sample predictions, but sometimes a benchmark variable has a higher R2. For the
in-sample, predictive regressions, there is always a benchmark variable that performs better than LT (k) (i.e.
has a higher R2).

There are several reasons why I should be careful to generalize the results. First of all, the sample period
covers only 20 years, 244 months in total. For the out-of-sample regressions, I used 120 months of those 244
months for the initialization period, leaving us with an even smaller sample. And when I predict the stock
returns one year or longer ahead, the data sample becomes even smaller. Such a small sample makes the results
less reliable. In future research, when more data are available, one could (partly) repeat this research to see if the
results still holds. Future research can also test if the results holds in other (not necessarily longer) data samples.

Another reason to be careful to generalize the results are the different results found by Kelly and Jiang
(2014). In their data sample, the variable λ was quite good in forecasting stock returns and outperformed
many of the benchmark variables I used as well. That our results are so different indicates that the perfor-
mance of λ is very sensitive to the data sample and period. In general, this could be an indication that the
ability of variables to forecast stock returns is sensitive to the data sample and the sample period used, and
that one cannot just generalize the results to other data samples. Moreover, I rejected the hypothesis that
a higher tail risk forecasts a higher return in the next month for most variables. Since most other articles
do not reject this hypothesis, the result is quite strange and it might also be an indication that you cannot
just generalize the results to other situations. This is not the case for LT (k)Rus and LT ′(k)Rus (the tail risk
variable derived from option prices, calculated with the Russell-2000 index) and the higher levels of moneyness k.

Future research could also look at the ability of other variables to forecast stock returns. This article only
looked at three tail risk variables and some standard benchmark variables. It would be interesting to compare
those variables with all the other tail risk variables found in the literature, to see which one is really the best
in forecasting the stock returns. Furthermore, this paper only looked at the linear regression from the return
on a constant and one variable. Other articles often include two variables in the regressions, which would be
interesting to evaluate as well.
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Appendix

Appendix A: λ estimated for 1963-2010
When I estimated the predictive regression of the return of the S&P-500 index in the next month on λSP , I
found a significantly negative coefficient. In other words, this result suggests that if the tail risk is higher, the
return in the next month will be on average lower. This is not in line with the results of Kelly and Jiang (2014)
and with the hypothesis in the introduction. Therefore, this part of the appendix will analyse whether the same
result holds if I estimate λSP for the whole data period used by Kelly and Jiang (2014), namely from 1963 to
2010. Also, I will replicate the results of Kelly and Jiang (2014) to test whether the coefficients are positive.
In figure 7 is a plot of the threshold uSP used to calculate λSP and the threshold uoriginal. I used uoriginal to
estimate λoriginal for the period 1963-2010 with all assets from NYSE, AMEX and NASDAQ with share code
10 or 11, i.e. to estimate the Hill estimator λ for exactly the same data sample and data period as used by Kelly
and Jiang (2014). From figure 7 it appears that the threshold of λSP is always higher than the threshold of
λoriginal, which is probably due to the size of the firms in both samples. It also appears that although uoriginal
is lower than uSP , they both follow the same pattern.

Figure 8 is a plot of λoriginal and λSP from 1963 to 2010. λSP appears to be more “spiky” than λoriginal,
and follows a less clear pattern than λoriginal.

Figure 7: Thresholds for λKellyandJian and λSP of the whole data period (1963 to 2010)

Figure 8: λoriginal and λSP from 1963 to 2010, both scaled

(a) λoriginal (b) λSP

In table 13 are the results of the predictive regression of λSP on the return of the S&P-500 index and on
the value-weighted return of CRSP. To emphasize the comparison with the results of Kelly and Jiang (2014),

21



the coefficients are now scaled to be the percentage increase in the annualized future stock returns instead of
the numeric increase in the annualized future stock returns. In other words, they are a factor 100 larger than
the coefficients in the previous tables. There is still a negative coefficient in the regressions on the return in the
next month, but the result is not significantly different from zero any more. Furthermore, the R2 is in both
regressions quite low compared to the R2 of the other variables in this article and to the R2 of λoriginal. This
means that λSP is probably not a good variable to use to predict future stock returns, even if I extend the data
period.

I also estimated the coefficients of the original regressions of Kelly and Jiang (2014) in table 13. For the
return one month ahead, the coefficient and the R2 are exactly the same and moreover, positive. This means
that the negative coefficient of the regression with λSP is due to the data sample and not the data period.
Furthermore, it indicates that λoriginal is (nearly) exactly the same as the λ found by Kelly and Jiang (2014).
For the return of one year ahead or more, both the coefficients and the R2 are higher than found by Kelly and
Jiang (2014). A possible explanation is that I might have calculated the returns more than one year ahead
differently. I took the simple returns of the value-weighted index including dividends, and calculated the return
of more than one month ahead by the standard rule for calculating multi-period returns. Kelly and Jiang (2014)
might have used the log of the returns instead, the value-weighted return without dividends or they might have
directly calculated the return from the level of value-weighted index.

Table 13: Result for λSP and λ for 1963-2010

Variable One month One year Three years Five years
β T-stat. R2 β T-stat. R2 β T-stat. R2 β T-stat. R2

On the return of the S&P-500 index
λSP -1.52 -0.66 0.08 0.27 0.15 0.02 0.67 0.47 0.35 0.36 0.24 0.11

On the value-weighted return of CRSP
λSP -2.01 -0.84 0.12 -0.11 -0.06 0.00 0.29 0.19 0.06 -0.12 -0.08 0.01
λoriginal 4.54 2.09 0.7 5.00 2.40 8.21 5.86 2.85 29.00 5.91 3.04 32.04
All the coefficients β in this table are scaled so that they represent the expected increase in percentages in the
annualized future stock returns when the independent variable increases with one standard deviation. For the whole
table, the data period is from 1963 to 2010.
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Appendix B: Results for the value-weighted return of CRSP
In the paper, I found that the coefficient in the predictive regressions of the future monthly return on a tail
risk variable is often negative. In this section, I test whether the negative coefficients are also negative when
I regress the tail risk variables on the value-weighted return of CRSP, as used by Kelly and Jiang (2014). I
did not include LT (K)Rus and LT ′(k)Rus, since those variables usually had positive coefficients, also for the
regression on the return in the next month. The results of this regression are in table 14. However, for the
regression on the return in the next month, the coefficients are still negative. The regression for the return in
the next year gives (nearly always) a positive coefficient, which is in line with the results in the paper.

Table 14: Result for the predictive regression with the value-weighted
return of CRSP

Variable One month One year
β T-stat. R2 β T-stat. R2

Hill’s estimator λ
λSP -0.09 -2.43 2.39 -0.88 -0.40 0.22
λRus -0.035 -1.00 0.41 -0.029 -1.21 2.31

Maximum likelihood estimator ξ
ξSP -0.040 -1.24 0.64 -0.001 -0.04 0.00
ξRus -0.024 -0.67 0.19 -0.033 -0.73 3.36
Option price estimator LT(k) with a minimum time-to-maturity
LT (0.6)SP -0.024 -0.68 0.19 0.045 1.61 6.10
LT (0.65)SP -0.024 -0.68 0.19 0.041 1.50 5.10
LT (0.7)SP -0.028 -0.79 0.25 0.038 1.43 4.34
LT (0.75)SP -0.028 -0.78 0.25 0.036 1.40 4.06
LT (0.8)SP -0.027 -0.76 0.24 0.037 1.39 4.07
LT (0.85)SP -0.024 -0.68 0.19 0.037 1.41 4.22
LT (0.9)SP -0.016 -0.44 0.08 0.037 1.38 4.12
LT (0.95)SP -0.002 -0.05 0.00 0.030 1.10 2.78
LT (k̄)SP -0.015 -0.42 0.07 0.034 1.25 3.64
LT (k)2SP -0.024 -0.66 0.18 0.036 1.37 4.21
Option price estimator LT′(k) with a time-to-maturity of 30 days
LT ′(0.6)SP -0.057 -1.63 1.10 0.034 1.30 3.56
LT ′(0.65)SP -0.046 -1.32 0.7 0.033 1.26 3.28
LT ′(0.7)SP -0.038 -1.06 0.47 0.031 1.21 2.94
LT ′(0.75)SP -0.30 -0.85 0.30 0.033 1.29 3.28
LT ′(0.8)SP -0.027 -0.77 0.25 0.034 1.33 3.48
LT ′(0.85)SP -0.020 -0.58 0.14 0.034 1.30 3.46
LT ′(0.9)SP -0.017 -0.47 0.09 0.032 1.20 3.08
LT ′(0.95)SP -0.011 -0.32 0.04 0.026 0.95 2.06
LT ′(k̄)SP -0.021 -0.58 0.14 0.031 1.17 2.95
1. LT (k̄)/LT ′(k̄) is the mean of LT (k)/LT ′(k) for all levels of moneyness k
3. This LT (k) is made with the mean of LT (k) for all levels of moneyness k, except
k=0.95, based on the in-sample performance.
All the coefficients β in this table are scaled so that they represent the expected
increase (in numeric value) in the annualized future stock returns when the indepen-
dent variable increases with one standard deviation. For the whole table, the data
period is from 1996 to 04-2016.
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