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Abstract

In this paper frequentist approaches to Bayesian regression are tested and
compared to methods using ordinary least squares, pooling and Ridge es-
timation. We investigate how the prior parameters of the Bayesian regres-
sion could be established by means of a frequentist approach. The resulting
estimates are evaluated based on their predictive performance. This paper
focuses on the prediction of weekly sales of different types of orange juice in-
corporating explanatory variables of competing products including price and
lagged sales. The data originates from the Dominick’s Finer Food chain in the
greater Chicago area and is provided by The Kilts Center for Marketing at the
Universtiy of Chicago’s Marketing Department. We introduce two Bayesian
inspired shrinkage methods of which one outperforms all the other methods
showing great promise to modeling cross-effects between competing products
using limited data.



1 Introduction
Accurately predicting product sales is crucial to the optimization of profit in the
field of retail. In order to minimize stock and waste, while simultaneously maximiz-
ing sales, it is necessary to have a good knowledge on the performance of individual
products. When companies predict the sales of a product accurately this prevents
under and over stocking. Especially products that are expensive to keep in stock by
taking up a lot of space and/or losing their value over time, are of interest for this
study.

The sales of products can depend on a variety of factors. Besides commonly
used explanatory variables such as price and promotions, also individual product
characteristics and brand recognition can be of great influence. When combining
many of such variables, the amount of coefficients to be estimated quickly grows
because many cross-effects need to be computed. When data is scarce, this can lead
to inaccurate results of the estimated coefficients due to the reliance on asymptotic
distribution theory.

An easy way to reduce the number of parameters would be to pool certain ex-
planatory variables by assuming equal effects across individual products. This might
however be inappropriate as not all product’s sales act in the same way leading to
less than optimal predictions. For example a product like fresh orange juice has
quite a short expiration date, which disincentives people to buy many packages at
once. Shelf-stable orange juice on the other hand can be kept easily for months and
is therefore more likely to respond to sales.

Since regular ordinary least squares is likely to fail when incorporating many cross-
effects with competing products, and pooling might not be justified, we look into
several other methods that allow for heterogeneity in both intercept and slope pa-
rameters.

The methods described above belong to the branch of frequentist regressions. In
order to find appropriate techniques to incorporate many regressors into the analysis
it is beneficial to look into a different spectrum: Bayesian. In Bayesian regression
uncertainty is modeled into the model parameters. This leads to correct estimates
even when the number of explanatory variables exceeds the number of observations.
The main disadvantage of a full Bayesian regression however is that estimation is
complicated (Rossi and Allenby, 1993). Therefore we implement several methods
closely related to Bayesian regression.

First, shrinkage methods such as the Ridge regression can be considered. The
Ridge estimator adds a small constant to the diagonal of the X ′X term of the or-
dinary least squares estimator. This solves possible problems with computing the
inverse and has proven to give reliable results. In essence, what the Ridge regression
does, is that it shrinks the estimate towards zero. The main advantage of Ridge is
that it controls for the instability associated with the ordinary least squares(Arthur
E. Hoerl, 1970). This way allowing for more regressors.

Shrinking the estimates towards zero might intuitively not make sense, we there-
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fore introduce a slight alteration of the Ridge estimate that pools towards a common
effect instead, this will be referred to as Pooled Ridge.

Lastly we introduce a similar method called Frequentist Bayes which addition-
ally incorporates the correlations of the common effect.

In this paper we investigate the predictive performance of Pooled Ridge and Fre-
quentist Bayes. The methods are compared to individual ordinary least squares,
pooling and a base-case which simply predicts the mean sales. To do this, a dataset
on sales of orange juice is used. This dataset is described in Section 2. For the pre-
diction of weekly sales the Frequentist Bayes method turns out to be highly instable
and performs worst overall. Pooled Ridge on the other hand gives very promising
results and seems to slightly improve the traditional Ridge estimator.

After the data description the aforementioned methods and their evaluation are
thoroughly explained in Section 3. Then the results are represented in Section 4
after which they are further interpreted and discussed in Section 5.
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2 Data
The data1 used in this paper is on weekly sales of orange juice from a Dominicks
Finer Food Chain store over a period of almost two years (Wedel and Zhang, 2004).

We use a sample consisting of the first 66 observations. This sample is equally
divided into an estimation sample and hold-out sample.

In total seven different brands are included. The juice can be one of three
categories: frozen, refrigerated or shelf stable. Besides that the size can vary from 6
ounces to 128. This information is summarized in Table 1. The unique combination
of brand, category and size constitute to a total of 21 different products. The set
containing these products is denoted by P .

Table 1: Overview of Unique Products
Nr. of Brand Contenta(oz) and Categoryb

Products Name 6 10 12 16 46 64 96 128

2 FloridaGold - - F - - R - -
6 Minute Maid F F F F - R R -
5 Tropicana - - F F S R R -
5 Dominick’s F - F F - R - R
1 Florida’s Natural - - - - - R - -
1 Hi C - - - - - S - -
1 Gatorade - - - - - S - -

Total 21 (F) (F) (F) (F) (S) (R,S) (R) (R)
a For frozen Orange juice it is recommended to add three times as much water therefore the
comparable size is four times what is reported(Rossi and Allenby, 1993).
b Available categories: F = Frozen, R = Refrigerated, S = Shelf Stable

Lastly information on the price and the presence of in-store non-price promotions
of each product is provided. These variables, their possible lags and the sales lags
can be part of the set of explanatory variables K. Summary statistics on the sales
and prices of all products for the different samples is given in Appendices 9 and 10.

A depiction of the sales and price over time for three products is given in Figures
1,2,3. Figure 1 shows a clear interaction between price and sales; when prices are
lowered sales increase. Figure 2 does not, due to constant prices for the largest part
of the sample. This is unique for this particular product. In the last figure (3) sales
also seem to have a one-to-one correspondence with price. Figures for the remaining
18 products can be found in Appendix B.

1The data is originally provided by The Kilts Center for Marketing at the Universtiy of Chicago’s
Marketing Department
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Figure 1: Sales FloridaGold Refrigerated 64 ounces
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Figure 2: Sales Minute Maid Frozen 6 ounces
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Figure 3: Hi C Shelf-Stable 64 ounces
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3 Methods
In this section first the pure frequentist methods are introduced (Section 3.1 and
3.2) which will be the starting point of this analysis. Then a short introduction to
Bayesian regression is given after which the shrinkage methods are introduce, but
first some general notation and phrases are explained.

In this paper the term products refers to the individual products defined by
the unique combination of brand, category and content as described in Section 2.

Vectors are indicated by bold symbols, matrices by capital letters and sets by
bold capital letters. Estimates are indicated with a hat on top.

3.1 Individual Ordinary Least Squares
For explanatory purposes it is useful to distinguish between Frequentist and Bayesian
regression. To do so it is necessary to briefly explain the basis first: in any regression
analysis you start with a set of observations belonging to an individual i for a variable
y (represented in a vector yi) that need to be modeled. To do so you have multiple
observation sets for other variables (represented as column vectors stacked alongside
each other in a matrix X). These are used to explain/model the observations of
variable y. For this research y represents sales, X includes a composition of own
and competitor’s price, sales and promotion variables, and individuals represent the
different types of orange juice products.

It is assumed that the data y comes from a specific data generating process
(DGP). This is often described using a linear functional form:

yi = Xiβi + εi ∀i ∈ P (1)

here βi represents the vector of coefficients/parameters characterizing the DGP
of product i, and εi the corresponding disturbance term generally assumed to be
normally distributed with mean zero and covariance matrix σ2

i I.

Ordinary least squares (OLS) provides an estimate β̂i for each individual i in
P , which ensures that yi is modeled with the smallest residual sum of squares.
Residuals (ei) are defined by subtracting the fitted values of yi, ŷi = Xiβ̂i, from
the observed yi. The resulting residual sum of squares is then defined as in (2).

e′iei = (yi −Xiβ̂i)
′(yi −Xiβ̂i) ∀i ∈ P (2)

The corresponding OLS estimate is shown in (3), derivations can be found in the
book by Heij et al (2004).

β̂i = (X ′iXi)
−1X ′iyi ∀i ∈ P (3)
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Problems with the OLS estimator often manifest around taking the inverse of X ′iXi.
Firstly when Xi contains highly correlated regressors the inverse of X ′iXi is likely

to become nearly singular resulting in less accurate estimates.
Secondly when (due to this high correlation for example) X ′iXi is not of full rank

the inverse even gets infeasible according to the Invertible Matrix Theorem (Poole,
2014). This often occurs when the amount of explanatory variables (the number of
columns in Xi) is large with respect to the amount of observations (the number of
rows in Xi).

3.2 Pooling
One possible solution to overcome the inverse problems encountered with the OLS
estimate is to use more data. This can be done by estimating one model for all
different products at the same time resulting in a pooled estimate. In order to
perform such a pooled regression it is necessary to properly structure the explanatory
matrix, therefore first the structure of the explanatory matrix X is described. The
construction of the explanatory matrix will be consistent across all methods.

Cross-effects between competing products are included in the explanatory matrix
in the following way:

X = [X1 ... X|K|]

Xj = [xj,1 ... xj,p] ∀j ∈K
(4)

where p is the total number of unique products (which equals 21 in this analysis), and
xj,i is the vector containing T observations of explanatory variable j for product i.
This means that for each product the own-effect is located differently, but therefore
all products have identical explanatory matrices which allows us to substitute Xi by
X in (1), (2) and (3).

In order to perform a pooled regression that incorporates cross-effects between
different competing products, it is necessary to pool over two dimensions: products
and categories. Pooling over categories is necessary to insure compatibility of the
coefficients. Here compatibility involves that the meaning of the coefficients is equal
for all products. This is achieved by declaring a new coefficient vector δ. This
vector contains the effects between categories instead of between all products and is
therefore smaller than the beta vector. The structure of δ is as follows:

δ = [δ′1 ... δ′|K|]

δj = [δj,0 δj,R,R δj,R,F δj,R,S δj,F,R δj,F,F δj,F,S δj,S,R δj,S,R δj,S,S]

∀j ∈K
(5)

where R,F,S refer to categories refrigerated, frozen and shelf-stable respectively.
Here δj,0 is the estimator for the own-effect of explanatory variable j, δj,A,B the
cross-effect between category A and B for explanatory variable j. Table 2 gives a
schematic description of the entries of δ.
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Table 2: Schematic Description of Cross-Effects between Categories
Explanatory variables (X)

Frozen Refrigerated Shelf-Stable

Dependent variable (y)
Frozen δj,F,F δj,F,R δj,F,S

Refrigerated δj,R,F δj,R,R δj,R,S

Shelf-Stable δj,S,F δj,S,R δj,S,S
This table should be read as follows: δj,A,B is the cross-effect of explanatory variables j
(e.g. price) of a product from category B on a product of category A

The resulting pooled regression is as follows:

yi = XWiδ + ε ∀i ∈ P (6)

here Wi is the indicator matrix transforming δ such that it matches the dimensions
of X. Each column in Wi is linked to a δj,A,B and each row is linked to a product i.

The pooled regression results in the OLS estimate of δ as follows:

δ̂ =

(∑
i∈P

WiX
′XW ′

i

)−1(∑
i∈P

W ′
iX
′yi

)
(7)

3.3 Bayesian and Shrinkage Methods
In order to introduce Bayesian regression it is important to highlight the main
difference with frequentist regression. Frequentist approaches are characterized by
the assumption of data generating process (DGP) as for example in (1). Here it is
assumed that the betas are the true parameters, and the disturbance terms account
for uncertainty in the data. The aim of frequentist approaches is to get estimates for
these betas. The most common methods of frequentist estimation are ordinary least
squares (OLS) and maximum likelihood of which the first is described in Section
3.1.

Bayesian regression also uses the DGP, however now you do not assume there
exist unique true values for beta. Instead you treat the betas as random variables
with a specific distribution. General explanation of how this works (for a single
product) is given in the following paragraphs.

Bayesian regression first generates a prior : π(β). The prior is the assumed
distribution of the betas before obtaining the data. Often a normal distribution is
chosen as appropriate representation.

Then the data is used to update the prior distribution and obtain the so called
posterior (Greenberg, 2008).

posterior(β|y) =
p(β,y)

p(y)
(8)
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The posterior can be rewritten by using Bayes Rule (Greenberg, 2008) as follows:

posterior(β|y) =
π(β)l(y|β)

p(y)
∝ π(β)l(y|β) (9)

here l(y|β) equals the likelihood function of the data y, and p(y) can be disregarded
from the analysis as a constant.

When the prior is of the same form (yet possibly different parameters) as the
posterior it is called a conjugate prior (Greenberg, 2008). If the DGP has a linear
functional form as described in (1), and assumes a normal distribution for the dis-
turbances then in order to get a conjugate prior for β you need a normal distribution
with mean b and covariance σ2

iB.
A common estimator to update β̂ is the mean of the posterior. For the case as

discussed above the formula is given by (10). Derivations of this can be found in
the book by Greenberg (2008).

β̂ = (X ′X +B−1)−1(X ′y +B−1b) (10)

When fully implemented the Bayesian approach gives reliable estimates for the
betas even in small samples. This is because inference is done on the betas con-
ditional on a single observation, and therefore no asymptotic distribution theory is
required.

One of the main difficulties in Bayesian regression however, is that the param-
eters of the prior are difficult to obtain. Next, three methods are discussed, which
all choose these parameters differently.

3.3.1 Ridge
As mentioned before the OLS estimator can encounter problems when computing
the inverse of X ′X. One possible solution for this is to add a small constant λ to
the diagonal of X ′X. This results in the definition of the Ridge estimate (Arthur
E. Hoerl, 1970) as shown here:

β̂i = (X ′X + λI)−1X ′yi ∀i ∈ P (11)

This formula can be derived from the Bayesian estimate (10) by setting the param-
eters B equal to the identity matrix multiplied by λ, and b by zero. A common
interpretation of Ridge is to say that it shrinks the estimates towards zero. This
becomes clear when looking at the corresponding residual sum of squares (Gruber,
1998) as shown here:

e′iei = (yi −Xβ̂i)
′(yi −Xβ̂i) + λβ̂

′
iβ̂i ∀i ∈ P (12)

When minimizing e′iei for some product i two components are involved. Firstly the
fitted value of yi is driven towards the real value of yi, just as in the OLS estima-
tor. In ridge however λβ′iβi is minimized at the same time. Since λ is a predefined
constant this results into a shrinkage of βi towards zero.
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3.3.2 Pooled Ridge

Since the shrinkage to zero used in Ridge might not give the best intuitive expla-
nation, we propose to shrink the estimate towards a common effect instead. This
is done by setting the parameter b of the Bayesian estimator equal to the pooled
estimate. For each product i in P the pooled estimate is obtained by multiplying
the indicator matrix with the estimate of delta: Wiδ̂. This results in the following:

β̂i = (X ′X + λI)−1
(
X ′yi + λWiδ̂

)
∀i ∈ P (13)

In order to show how this method forces the estimates towards the pooled value the
residual sum of squares is presented:

e′iei = (yi −Xβ̂i)
′(yi −Xβ̂i) + λ(β̂i −Wiδi)

′(β̂i −Wiδi) ∀i ∈ P (14)

In order to minimize the λ-term, β̂i needs to be as close as possible to Wiδ resulting
in a shrinkage towards the pooled estimates.

3.3.3 Frequentist Bayes

The last shrinkage method this paper introduces is Frequentist Bayes, which is in-
spired by the research of Rossi and Allenby (1993), who propose to construct the
Bayesian prior from a pooled estimation. Besides determining the mean of the prior
(b) by pooling (as in Pooled Ridge), also the covariance matrix (B) is chosen based
on the pooled estimation. So again the estimate of Bayes (10) is used, where b is set
equal to the extended delta estimator. However, now B−1 is not merely a diagonal
matrix. Instead we set B−1 equal to the extended inverted covariance matrix of the
delta estimator multiplied by λ. This is defined as follows:

B−1 = λWiCov(δ̂)−1W ′
i = λW ′

i

(
σ̂2
∑
j∈P

W ′
jX
′XWj

)−1
Wi (15)

where σ̂2 is the estimate of the variance of the disturbance term (Heij et al., 2004):

σ̂2 =
1

n2 − |δ|
∑
i∈P

(
yi −XWiδ̂

)
(16)

here n is the total number of observations for all individuals together.

The final estimate for Frequentist Bayes is now defined as follows:

β̂i = (X ′X + λWiCov(δ̂)−1W ′
i )
−1(X ′y + λWiCov(δ̂)−1W ′

iWiδ̂) ∀i ∈ P (17)
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3.4 Evaluation
In this section the evaluation of the different methods is explained in detail. For all
methods predictive performance is measured using the root mean squared prediction
error for each product (RMSPE). The RMSPE for each product i in P is defined as
follows:

RMSPEi =
1

|H|
∑
t∈H

(yi,t − ŷi,t)2 (18)

here yi,t corresponds to observation t of product i and H refers to the set of obser-
vations in the hold-out-sample.

The different methods are evaluated based on one store. The summary statistic
for this store are displayed in Section 2 and the Appendix.

All shrinkage methods depend on the λ-term, which indicates to which extend
the pooled data contributes to the estimate. Since the pooled data contains 21 times
as many observations as the individual data, a reasonable value for λ would be 1

21
.

This theoretically ensures that the individual and the pooled data count with the
same weight. We also test the methods for higher and lower values of λ since it is
not necessarily optimal to weigh the pooled and individual data equally.

As a base-case prediction we predict all sales by the average sales of the estimation-
sample.

4 Results
The results of the before discussed regression methods are displayed in Figure 3 and
4. Here only current price of all products are used as explanatory variables. Includ-
ing more explanatory variables led to instable results for all shrinkage methods.

4.1 Out-of-Sample Performance
OLS
The ordinary least squares estimate performs worst than the base-case prediction
for 18 out of 21 products.

Pooled
The RMSPEs of the pooled estimates are lower for 14 out of 21 products with respect
to the base-case prediction. On average the pooled estimates improve the RMSPEs
by 1,280 per product.

Ridge
For most products the best results for Ridge are obtained for λ equal to 1

21
. For this

value of λ, 18 out of 21 products are estimated more accurately than the base-case,
however only for 11 products Ridge outperformed the simple pooling method.
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Pooled Ridge
On average Pooled Ridge obtained the lowest RMSPEs for λ equal to 1. Here for
18 out of 21 products Pooled Ridge outperforms the base-case prediction and for 17
products it also predicted better than Ridge.

Frequentist Bayes
After OLS the Frequentist Bayes method performs the worst leading to RMSPEs
higher than the base-case prediction for (more than) half of the products for all
values of λ.

Table 3: Out-of-Sample Results OLS and Pooled
Product
Numbera

Mean OLS Pooled

1 0.29 4.16 0.55
2 4.58 4.77 4.39
3 0.20 0.36 0.23
4 7.09 8.29 5.72
5 1.24 1.44 1.31
6 2.83 9.14 2.36
7 0.67 1.96 0.67
8 0.40 0.55 0.38
9 0.40 0.82 0.33
10 0.01 0.02 0.01
11 0.04 0.04 0.02
12 1.44 1.66 1.06
13 0.04 0.05 0.05
14 1.17 0.72 0.97
15 0.06 3.48 0.04
16 0.14 0.64 0.07
17 0.63 1.17E+02 0.42
18 0.12 0.16 0.13
19 0.06 0.05 0.05
20 0.09 0.09 0.06
21 0.14 0.20 0.12

This table shows the RMSPE(1E+4) in sam-
ple S2
a Product numbering can be found in Ap-
pendix A

Compared to OLS the basic pooling method and Ridge turn out to give good pre-
dictive results. However Pooled Ridge seems to improve the predictive quality even
more. Frequentist Bayes turns out to perform worst of all shrinkage methods.
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Table 4: Out-of-Sample Results Shrinkage Methods
Ridge Pooled Ridge Frequentist Bayes

λ 1E-4 1
21

1 1E-4 1
21

1 1E-4 1
21

1

Product
Numbera

1 1.38 0.16 0.17 1.38 0.16 0.17 0.36 0.21 0.21
2 4.73 4.55 4.63 4.73 4.44 4.36 4.51 5.21 5.24
3 0.30 0.19 0.20 0.30 0.21 0.21 0.29 0.39 0.39
4 10.00 3.38 6.33 10.07 5.76 4.12 10.49 7.71 7.74
5 1.41 1.49 1.42 1.40 1.29 1.27 1.24 1.31 1.31
6 9.07 2.13 2.60 9.07 2.10 2.37 5.22 11.14 10.87
7 1.70 0.72 0.65 1.70 0.83 0.67 1.59 0.97 0.96
8 0.48 0.38 0.39 0.48 0.30 0.32 0.27 0.26 0.26
9 0.86 0.32 0.32 0.86 0.33 0.28 0.64 0.56 0.58
10 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01
11 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.04 0.04
12 1.53 1.17 1.19 1.53 1.16 1.09 1.33 1.39 1.39
13 0.04 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03
14 0.64 0.55 0.89 0.64 0.53 0.72 0.64 1.13 1.23
15 1.22 0.05 0.04 1.22 0.05 0.04 0.24 0.15 0.15
16 0.38 0.05 0.11 0.38 0.05 0.07 0.06 0.05 0.05
17 8.78 0.43 0.50 8.79 0.43 0.41 1.40 1.44 1.47
18 0.14 0.10 0.12 0.14 0.10 0.10 0.13 0.12 0.12
19 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.06
20 0.08 0.08 0.06 0.08 0.08 0.07 0.08 0.09 0.09
21 0.15 0.13 0.12 0.15 0.12 0.10 0.14 0.14 0.14

This table shows the RMSPE(1E+4) in sample S2
a Product numbering can be found in Appendix A

4.2 In-Sample Fit
Insight into the relation between the in- and out-of-sample performance of the meth-
ods is informative because good in-sample fit combined with bad out-of-sample per-
formance can indicate that a method has a problem with over-fitting. This means
that the model is tailored too specifically to the values of the explanatory variables
in the estimation sample. Consequently, this results in bad predictions for slightly
different values of the explanatory variables.

The results of the fit in the estimation sample for all methods are given in Tables
5 and 6.
Here we see that the OLS estimates give a better in-sample fit than the base-case
prediction. On average it decreases the MSE’s by 1,699. Also for 18 out of 21 prod-
ucts it has a lower RMSE than the pooled estimates.

Frequentist Bayes performs slightly better for products 6 and 16 for λ equal to 1
21

and 1. However this does not compare to the decrease in fit for all other products.
None of the other shrinkage methods have a better in-sample fit than OLS.
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The results of the in-sample fit of the different methods show a completely dif-
ferent picture than the out-of-sample behavior. OLS was the worst method for pre-
dicting, but turned out to be the best method for in-sample fitting. This indicates
that OLS struggles with over-fitting.

Table 5: In-of-Sample Results OLS and Pooled
Product
Numbera

Mean OLS Pooled

1 0.76 0.45 0.81
2 3.80 1.39 3.21
3 0.14 0.06 0.14
4 4.27 2.24 3.93
5 0.51 0.16 0.33
6 4.34 1.60 3.34
7 0.41 0.12 0.28
8 0.26 0.11 0.24
9 0.70 0.11 0.54
10 0.01 0.00 0.01
11 0.03 0.01 0.01
12 0.99 0.12 0.49
13 0.03 0.01 0.04
14 0.72 0.20 0.52
15 0.05 0.01 0.03
16 0.33 0.03 0.17
17 0.75 0.25 0.55
18 0.06 0.02 0.06
19 0.12 0.03 0.06
20 0.17 0.04 0.14
21 0.13 0.04 0.14

This table show the RMSPEs(1E+4)
a Product numbering can be found in
Appendix A
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Table 6: In-Sample Results Shrinkage Methods
Ridge Pooled Ridge Frequentist Bayes

λ 1E-4 1
21

1 1E-4 1
21

1 1E-4 1
21

1

Product
Numbera

1 0.46 0.53 0.66 0.46 0.53 0.62 0.48 0.50 0.50
2 1.41 2.00 3.48 1.41 1.81 2.91 1.60 2.38 2.40
3 0.06 0.07 0.10 0.06 0.07 0.11 0.07 0.08 0.08
4 2.25 2.54 3.67 2.25 2.41 3.19 2.31 2.57 2.58
5 0.16 0.24 0.35 0.16 0.21 0.28 0.17 0.21 0.22
6 1.60 2.29 3.40 1.60 2.27 2.96 1.67 1.44 1.45
7 0.12 0.19 0.34 0.12 0.17 0.23 0.12 0.17 0.18
8 0.11 0.13 0.21 0.11 0.13 0.18 0.11 0.12 0.12
9 0.12 0.24 0.54 0.12 0.22 0.41 0.22 0.41 0.43
10 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01
11 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01
12 0.15 0.26 0.56 0.15 0.25 0.38 0.21 0.23 0.23
13 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01
14 0.21 0.20 0.53 0.21 0.19 0.37 0.22 0.28 0.30
15 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02
16 0.03 0.10 0.24 0.03 0.08 0.13 0.02 0.03 0.03
17 0.30 0.43 0.52 0.30 0.44 0.51 0.32 0.32 0.33
18 0.02 0.03 0.05 0.02 0.03 0.04 0.02 0.03 0.03
19 0.03 0.05 0.09 0.03 0.05 0.05 0.04 0.04 0.04
20 0.04 0.09 0.15 0.04 0.08 0.12 0.05 0.07 0.07
21 0.04 0.06 0.08 0.04 0.06 0.09 0.04 0.06 0.06

This table show the RMSPEs(1E+4)
a Product numbering can be found in Appendix A

4.3 Coefficients
In order to investigate the difference between the in- and out-of-sample performances
of the methods it is useful to look at the coefficients. Table 7 shows the coefficients
of price effects for Product 1 (Appendix A). Here values for λ were chosen based on
the lowest RMSPE in the hold-out-sample.

Table 7 shows the betas of the different methods side by side.
The pooled betas are closest to zero. This is likely due to the alternating signs of

the effects of the different products. The pooled estimate averages all these effects
resulting in very conservative betas.

The betas for Pooled Ridge are most similar to the pooled betas. The mean
absolute difference equals 0.61. One of the reasons for this are the values for lambda.
For more than half of the products a value of λ larger than 1

21
is optimal. For those

products the pooled data counts more heavily than the individual product data.
However the estimates still show differences. For example five out of 21 betas have
a different sign compared to the pooled betas.
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The absolute values of the OLS coefficients are very large. This is likely due to
over-fitting, since the out-of-sample fit of OLS was very low compared to the in-
sample fit. Reason for this is that the number of observations (which equaled 33 in
all samples) was very small with respect to the number of explanatory variables (of
which there were 63), making the inverse of X ′X very unstable. The own price effect
of the OLS estimate is positive, this is intuitively difficult to explain and probably
contributes to the high RMSPE for the hold-out-sample

Lastly the coefficient estimates which are high in absolute terms for OLS are also
high for Frequentist Bayes. For many products the optimal value of lambda is lower
than 1

21
causing the estimates of Frequentist Bayes to shrink more towards the OLS

estimates.

Table 7: Betas for FloridaGold Refrigerated 64 Ounces
OLS Pooled FBa Ridge PRb

βi βi βi λ βi λ βi λ

OPEcProduct 1d 1.71 -3.49 -3.5 1 -1.93 1/21 -2.63 1/21
CPEeProduct 1-2 -6.18 0.13 -4.1 1E-4 -3.34 1/21 -0.51 1
CPE Product 1-3 1.51 0.13 -0.8 1E-4 -0.84 1/21 -1.18 1/21
CPE Product 1-4 -7.09 0.13 -4.1 1/21 -0.23 1/21 0.43 1
CPE Product 1-5 18.23 0.13 7.2 1E-4 1.93 1/21 0.30 1
CPE Product 1-6 -7.81 0.13 -4.2 1/21 -1.86 1/21 -1.78 1/21
CPE Product 1-7 -3.39 0.13 -1.2 1 -0.46 1 -0.13 1
CPE Product 1-8 1.48 0.13 2.9 1E-4 0.86 1/21 0.79 1/21
CPE Product 1-9 -0.69 0.07 0.5 1E-4 0.16 1 0.30 1
CPE Product 1-10 -139.53 0.07 -7.6 1 -0.04 1 0.04 1
CPE Product 1-11 4.39 0.07 -1.7 1 -0.16 1/21 0.17 1
CPE Product 1-12 -5.85 0.07 -3.1 1E-4 0.82 1/21 0.26 1
CPE Product 1-13 -7.82 0.07 4.9 1 0.00 1 1.04 1/21
CPE Product 1-14 3.92 0.07 4.0 1E-4 1.38 1/21 1.52 1/21
CPE Product 1-15 -18.27 0.07 0.4 1 0.16 1 0.08 1
CPE Product 1-16 5.34 0.07 4.0 1/21 0.53 1/21 0.61 1/21
CPE Product 1-17 3.63 0.07 2.2 1E-4 -0.29 1/21 -0.09 1
CPE Product 1-18 2.29 0.07 2.2 1 0.43 1/21 0.09 1
CPE Product 1-19 -10.16 -0.46 -8.0 1E-4 -3.20 1E-4 -3.12 1/21
CPE Product 1-20 -18.90 -0.46 -12.5 1E-4 -0.18 1 -0.54 1
CPE Product 1-21 -7.63 -0.46 -9.8 1E-4 -0.22 1 -0.64 1
a FB = Frequentist Bayes, b PR = Pooled Ridge
c OPE = Own Price Effect
d Product numbering can be found in Appendix A
e CPE Product i-j = Cross Price Effect between product i and j
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5 Discussion and Conclusion
In order to predict weekly sales of products like orange juice it is useful to model
cross-effects between competing products of variables such as price, sales and promo-
tion. Incorporating these cross-effects results in many explanatory variables which
leads to over-fitting when using individual ordinary least squares. The correspond-
ing estimates are of bad predictive quality, caused by instability of the estimates.
Therefore we introduced Bayesian inspired shrinkage methods which use pooled (fre-
quentist) regression to establish the parameters of the Bayesian prior distribution.

We started with a simple pooled regression which resolved the instability prob-
lems and improved the predictive performance with respect to individual ordinary
least squares. The estimated coefficients turn out very close to zero due to the aver-
aging over all different products. This makes it a safe method for handling data with
outliers. It generally performed good, overall improving the base-case prediction.
Besides that it also improved Ridge for half of the products.

Our newly introduced method Pooled Ridge works similar to Ridge, however in-
stead of shrinking towards zero the estimates are shrunk towards a common effect:
the pooled coefficients. Overall this method performed better than Ridge, however
not for every single product. The optimal shrinkage term turned out to be higher
than 1

21
, leading to more shrinkage towards the value of the pooled regression. The

in-sample fit and the predictive performance of Pooled Ridge were both better than
Ridge, leading to the conclusion that the individual product data positively influ-
enced the estimates.

Lastly we introduced a method called Frequentist Bayes. This method is simi-
lar to Pooled Ridge however, besides incorporating the pooled cross-effects, it also
incorporates the corresponding correlations. This is done by choosing a normal
distribution for the Bayesian prior and using the pooled estimates and the corre-
sponding covariance matrix as the location and shape parameters respectively. This
method turned out to perform very poorly.

The problem encountered in this method is the size of the covariance matrix.
In order to model the cross-effects between all different products separately we ex-
tended the covariance matrix of the pooled estimates. This resulted in a lot of
duplicate data causing the covariance matrix to not reach full-rank.

Theoretically the Frequentist Bayes estimate works as follows: Firstly it shrinks
the estimates towards the pooled values, just like Pooled Ridge. Secondly it adds
values to the matrix X ′X in order to restore the rank, such that you can compute
a stable inverse. The main difference between Frequentist Bayes and Pooled ridge
however is that, instead of adding a meaningless constant to the diagonal of X ′X, it
adds the pooled covariance matrix to X ′X. The shrinkage term λ can be interpreted
as the extend to which X ′X borrows information from the covariance matrix.

So when the covariance matrix is not full rank, using it to complete the rank of
X ′X does not work. Therefore the question still remains as to how (co)variances
should be incorporated such that they improve the predictive quality of the esti-
mate.
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Some more general limitations of the introduced methods are now discussed.
Firstly, the choice of λ is very influential on the performance of the shrinkage

methods. However a good method to determine λ, ensuring stability of the esti-
mates is difficult to create. Difficulties arise with prediction of new data, because λ
is dependent on the size and scale of the data.

Secondly in pure frequentist or Bayesian regression approaches, there is the pos-
sibility to subject the estimates to statistical tests. One of the setbacks of combining
these two approaches is that it removes this function. The significance of the ex-
planatory variables cannot be formally tested, resulting in a loss of explanatory
power. The proposed methods would be merely of practical use.

Lastly, the methods should be tested on different data sets, using different com-
positions of explanatory variables and varying sample sizes.

Since new products are introduced all the time and available products are continu-
ously renewed, sales data is often scarce. It is of great importance for corporations
such as supermarkets to predict these sales accurately. Therefore it is necessary to
investigate methods designed to handle small data samples. Overall we can con-
clude that using frequentist methods to establish parameters of the Bayesian prior
can be of great practical value. This paper shows that when modeling the sales of
orange juice, cross-effects can be easily incorporated, while limiting the amount of
observations necessary. This led to very promising predictive results.
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A Appendix - Data Statistics

Table 8: Product Information
Product Number Categorya Brand Contentb(oz)

1 F FloridaGold 64
2 F Minute Maid 64
3 F Minute Maid 96
4 F Tropicana 64
5 F Tropicana 96
6 F Dominick 64
7 F Dominick 128
8 F Floridas Natural 64
9 R FloridaGold 12
10 R Minute Maid 6
11 R Minute Maid 10
12 R Minute Maid 12
13 R Minute Maid 16
14 R Tropicana 12
15 R Tropicana 16
16 R Dominick 6
17 R Dominick 12
18 R Dominick 16
19 S Hi C 64
20 S Gatorade 64
21 S Tropicana 46

a Category is as specified in Table 1
b For frozen Orange juice it is recommended to add three times as much wa-
ter therefore the comparable size is four times what is reported(Rossi and
Allenby, 1993).
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Table 9: Overview of Sales of Orange Juice
Product Whole Sample Estimation Sample Hold-Out-Sample
Numbera meanb SDc mean SD mean SD

1 4.9 5.7 7.0 7.4 2.5 1.8
2 38.8 42.6 36.5 37.6 43.5 43.7
3 8.6 1.6 8.8 1.5 8.6 2.0
4 81.7 52.0 68.1 42.2 93.0 62.9
5 29.3 15.1 25.3 5.1 30.4 11.3
6 29.0 33.0 38.4 40.8 24.4 28.6
7 9.6 5.2 10.1 4.1 10.9 6.6
8 10.3 8.5 9.2 2.6 10.9 3.5
9 3.8 5.6 4.4 6.8 3.5 3.9
10 0.4 0.1 0.4 0.1 0.4 0.1
11 0.5 0.3 0.5 0.3 0.5 0.4
12 12.1 11.7 10.6 9.7 13.2 13.7
13 1.3 0.3 1.5 0.3 1.3 0.3
14 5.8 8.3 5.1 6.9 8.2 10.6
15 1.1 0.4 0.9 0.5 1.2 0.4
16 1.2 2.9 1.2 3.3 0.7 1.4
17 6.1 6.3 6.9 7.3 6.1 6.2
18 1.7 1.0 1.6 0.6 1.7 1.2
19 1.0 0.8 1.0 1.2 1.1 0.5
20 1.3 1.2 1.8 1.7 0.8 0.4
21 3.6 1.5 4.4 1.3 3.5 1.2

a Product Number as specified in A
b SD = Standard Deviation
c Mean and SD are reported in thousands
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Table 10: Overview of Prices of Orange Juice
Product Whole Sample Estimation Sample Hold-Out Sample
Numbera meana SDb mean SD mean SD

1 2.8 0.5 3.3 0.6 2.7 0.3
2 3.7 0.4 3.6 0.2 3.8 0.3
3 3.9 0.3 3.9 0.3 4.1 0.3
4 3.7 0.4 3.7 0.3 3.8 0.4
5 4.2 0.3 4.3 0.2 4.4 0.2
6 2.4 0.5 2.2 0.5 2.6 0.4
7 2.7 0.3 2.6 0.3 2.6 0.3
8 3.8 0.3 3.7 0.2 3.7 0.3
9 11.1 1.8 11.8 2.0 10.5 1.3
10 15.4 0.9 16.3 0.9 15.1 0.1
11 14.9 2.6 15.1 3.2 15.1 2.6
12 12.3 2.1 12.5 2.7 12.3 2.0
13 13.1 1.1 14.3 1.1 12.4 0.3
14 11.4 1.9 12.6 2.1 10.5 1.6
15 12.3 2.0 14.4 2.0 11.1 0.6
16 12.3 3.1 13.9 3.5 11.8 1.5
17 9.8 1.8 10.4 2.2 9.5 1.3
18 10.0 1.9 12.1 1.8 8.9 0.5
19 2.8 0.4 2.9 0.4 2.9 0.2
20 4.1 0.4 3.9 0.5 4.2 0.3
21 5.2 0.3 5.4 0.3 5.3 0.3

a Product Number as specified in A
b SD = Standard Deviation
c Mean and SD are reported in thousands

22



B Appendix - Extra Data Visualization
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