
Short-term electricity demand forecasting
in the time domain and in the frequency

domain

Abstract

This paper compares the forecast accuracy of different models that explicitely accomodate
seasonalities in the time domain with methods in the frequency domain. The forecast accuarcy
of the methods are evaluated by their MAPE’s using a time series of half-hourly electricity
demand for England and Wales. The methods in the time domain include a well-specified
multiplicative seasonal ARIMA model, standard Holt-Winters method, double seasonal Holt-
Winters method both with and without residual auto-correlation correction. The methods in
the frequency domain introduced in this paper are Fourier series that are modified to acco-
modate stochastic dependence. The last class of models in the frequency domain is shown
to perform almost as good as the methods in the time domain and is promising in terms of
accuracy and adaptability.

Jonathan van de Ruitenbeek Student (id 412442)

Mikhail Zhelonkin Supervisor

Michel van de Velden Co-Reader

Erasmus University Rotterdam, Erasmus School of Economics
Econometrics and Operations Research

Bachelor Thesis, July 2, 2017



1 Introduction

Demand forecasting is thoroughly discussed in the Econometric literature and at
the same time of great importance for business and has many practical applications.
Over the past century, scholars have developed a variety of sophisticated models that
can be used for modelling time series with many different features. The interest of
this paper lies in predicting half-hour ahead electricity demand for the National Grid.
The National Grid is an international electricity and gas company that is responsi-
ble for electricity transmission in England and Wales. They play a crucial role in
connecting millions of citizens efficiently to the energy they consume. Electricity de-
mand forecasts are of crucial importance to balance the supply and demand between
generators and suppliers, and accurate forecasts affect multiple levels of production
systems. Accurate forecasts can lead to lower costs, increasing competitiveness and
efficient management. While there is a wide range of forecasting methods available
for use, each method has it’s own advantages and disadvantages.
In this paper I aim to forecast a time series of half-hourly electricity demand in
England and Wales for a fortnight in June 2000. Given the strong seasonal pat-
terns in the time series I focus on univariate methods from the time domain and
the frequency domain that incorporate seasonalities. Only univariate methods are
considered because of the short lead times. For longer lead times multivariate models
might be more suitable. An example of multivariate methods applied to forecasting
electricity demand is given by Taylor & Buizza (2003) which discusses electricity
demand forecasts based on a model that uses weather variables as input. but For
this application however, multivariate models would be too demanding in terms of
half-hourly input.
Of particular interest is the paper of Taylor (2003), where he compares the multi-
plicative double seasonal ARIMA model with several variants of the Holt-Winters
model, by forecasting short-term electricity demand. The most important contribu-
tion of his paper lies in developing a double seasonal Holt-Winters model which is
able to account for more than one seasonal pattern. The methods discussed in Tay-
lor (2003) from the time domain are compared with three other forecasting methods
from the frequency domain.
Modelling time series with trigonometric functions is less widely done in practise
than other methods, but is very appealing given the features of the time series of
electricity demand. The time series contains two strong seasonal patterns, which can
be modelled very well with trigonometric functions. The models discussed in this
paper share some convenient features that I will discuss in section 3.3. The methods
in this paper are based on the Fourier series and as far as I know, Fourier series have
not yet been use for forecasting short-term electricity demand. The first model fit
to the data is a full Fourier series model, the second method considers a adaption of
the first method by correcting for residual auto-correlation and the third model uses
a combination of an ARIMA model for modelling short-term variation and Fourier
terms for modelling multiple seasonal patterns. Cyclical patterns are analyzed by
means of spectral analysis. The outline of the paper is as follows. In the next section
I highlight some of the univariate methods discussed in the literature for modelling
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electricity demand time series and literature on Fourier analysis. In the section that
follows I discuss the models used in this paper in more detail. I then present and
discuss the results and end with the final section that contains a summary and a
conclusion.

2 Literature Review

A wide range of univariate methods for modelling time series is discussed in litera-
ture. Many of these methods have been applied to forecasting short-term electricity
demand. Taylor et al. (2006) for example, discusses the accuracy of six univariate
methods for forecasting electricity for short lead times. They conclude that simple
exponential smoothing methods which are easy and quick to implement outperform
more complex alternatives such as the Principal Components Analysis and neural
networks. Exponential smoothing methods are based on a pragmatic approach to
forecasting and are very popular and widely used for short-term forecasting. The
different components of the model are are intuitive to use, computational effort is
kept low and a suprising accuracy can be achieved with minimal model identifica-
tion. Makridakis et al. (1979) and Makridakis et al. (1982) found little difference
in large scale studies between the accuracy of exponential smoohting methods and
well-specified ARIMA models. Many different variants of exponential smoothing
methods have been developed and a detailed overview of the different formulations
are given by Gardner (1985) and Gardner (2006). A noticeable development was
made by Taylor (2003), who discusses an extension to the standard Holt-Winters
method. He considers an exponential smoothing formulation that accounts for dou-
ble seasonality, by introducing an extra seasonal index compared to the standard
Holt-Winters method and adjusting the forecasts and updating equations accord-
ingly. The double seasonal Holt-Winters method can be extended for any number
of seasonalities, though in practise one will often not find more than two or three
seasonal patterns. Another very popular approach for modelling time series is the
ARIMA model with all of it’s variants. The method is extremely popular and since
Box and Jenkins (1976) discuss a systematic method for fitting an ARIMA model it
has been very widely used. The ARIMA model can incorporate different features of
time series such as a trend and seasonality and it often serves as a benchmark for
comparing other models. An interesting extension of the seasonal ARIMA model is
the double seasonal ARIMA model which is discussed by Box et al. (2015). They
argue that the single seasonal ARIMA model can be extended in such a way that it
can account for multiple seasonal patterns in the data.
A less widely used approach for modelling time series is given by the use of trigono-
metric functions for modelling seasonal patterns. This area of research was initiated
by the research of Joseph Fourier, who was a French mathematician and physicist
who is very well known by initiating research on the Fourier series. Through Fourier’s
research the fact was established that an arbitrary function can be fully represented
by a trigonometric series. The original motivation of Fourier series was to model
heatwaves, but later scholars found that Fourier series analysis can be applied to
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a wide range of topics and now application of Fourier series analysis has found it’s
way in time series analysis as well. There are a variety of textbooks such as the
book of Bloomfield (2004) which discuss the application of Fourier series to model-
ing time series. De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011), suggest
the Fourier series approach for modelling time series that contain multiple seasonal
patterns. They propose an innovations state space modeling framework for mod-
elling time series with multiple and complex seasonal patterns. The proposed model
is based on Fourier series and incorporates Box-Cox transformations and ARMA
error-correction. McLoughlin et al. (2013) discuss the application of Fourier trans-
form in forecasting individual demand and conclude that the method performs well.
González-Romera et al. (2008) discuss the application of forecasting monthly elec-
tricity demand by modeling the seasonal patterns by Fourier series and modeling the
trend by a neural network. In this paper different trigonometric models are devel-
oped and fit to the data and shown to be almost as good as very popular methods,
along with the fact that the models have some very convenient features.

3 Methodology

3.1 Data

The data used in this paper is a time series of half-hourly electricity demand in
England and Wales over a period of 12 weeks, starting from Monday 5 June 2000
to Sunday 27 August 20001. The complete 12-week sample consists of 4032 observa-
tions, where the sample is split in an estimation sample of 2688 observations and a
validation sample of 1344 observations. All models are fit on the estimation sample
and evaluated by forecasting with a forecast horizon of 48 half-hour periods. The
next figure displays the Seasonal-Trend Decomposition Based on Loess, designed
by Cleveland et al. (1990) for the estimation sample. The STL-decomposition is
a computationally efficient filtering procedure that decomposes a time series into a
seasonal, trend and remainder components. The method is developed by Cleveland
et al. (1990) using the Loess estimation method, which is a method for estimating
non-linear relationships. The decomposition procedure facilitates the analysis of the
time series by disaggregating the series into feature-based sub-series, which provides
us a graphical overview of the different features of the time series. The next figure
shows the STL-decomposition of electricity demand.

1The data can be found in the forecast package in R, which is developed by Hyndman (2007)
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Figure 1: STL-decomposition based on Loess

The numbers on the x-axis denote the weeks of the estimation sample. The upper
part of the graph is a plot of the raw data set. The next part of the graph contains
a plot of the seasonal pattern that is extracted from the data. The graph that
follows contains a plot of the estimated trend from the data and in the last plot the
remainder of the data which could not be captured by trend seasonality is displayed.
It can be observed that the time series contains a very strong weekly 336-period
seasonal pattern and a strong daily 48-period seasonal pattern. Due to the strong
seasonality, the mean of the observations is not constant anymore, but instead moves
according to a cyclical pattern. The seasonal patterns seems to evolve stable and
constant over time. Because the time series exhibits two strong seasonal patterns,
there is strong appeal to models that can capture this features and therefore all
of the models discussed in this paper can accommodate one or multiple seasonal
patterns. The trend is slightly downwards-sloping for the largest part of the data,
while in the end the trend is estimated upward-sloping. The last part of the graph
contains the remainder of the series, which is the part of the time series that can
not be captured by trend or seasonality. Performing an Augmented Dickey-Fuller
test on the estimation sample rejects the null hypothesis of a unit root against the
trend-stationary alternative, indicating that the data is trend-stationary.
In the next section I give an overview of the methods used by Taylor (2003) which
deal with multiple seasonality and afterwards I discuss the models based on the
Fourier series.
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3.2 Methods by Taylor (2003)

In this paper I implement the methods discussed by Taylor (2003) to forecast the
electricity demand, which are discussed in this section. The methods are given by
the standard Holt-Winters method accounting for multiplicative seasonality at 48
half-hourly periods, the standard Holt-Winters method accounting for multiplicative
seasonality at 336 half-hourly periods, the double seasonal Holt-Winters method
accounting for both seasonalities and the multiplicative seasonal ARIMA model. k-
step ahead forecasts are computed for k=1,...,48 and are evaluated by their MAPE’s.

3.2.1 Exponential smoothing methods

Exponential smoothing methods are very popular for various reasons, which are dis-
cussed in the literature review. It is a popular and widely used scheme to produce
a smoothed time series that is related to the idea of (weighted) moving averages.
Instead of weighting past and recent observations equally, exponential smoothing as-
signs more weight to recent observations compared to past observations in forecast-
ing future observations. As such, observations are assigned exponentially decreasing
weights as the observations get older. Hence, the name ’Exponential smoothing’,
which is given to the method because when time passes by, the smoothed level be-
comes a weighted average of more and more past observations. Exponential smooth-
ing methods come in different forms, and in this paper I implement the methods
discussed by Taylor (2003). As noted earlier, the electricity demand time series
contains strong seasonal patterns, which indicate that the Holt-Winters model with
trend and seasonality are most suitable for modeling the time series. The models
are implemented under the assumption of an additive trend and multiplicative sea-
sonality. The trend is assumed additive in the sense that the trend is added to the
underlying level of the series. The seasonality is multiplicative in the sense that
the underlying level and trend are multiplied by the seasonal index. Other formu-
lations are given by different combinations of additive or multiplicative seasonality
and additive or multiplicative trend and damped trend or not. The multiplicative
formulation for seasonality is more widely used than the additive model formulation
and simplicity I stick to the methods discussed by Taylor (2003).
The standard Holt-Winters method is suitable for modelling time series with a trend
and one seasonal pattern. The method has an additive version and a multiplicative
version, where in this paper the version with additive trend and multiplicative sea-
sonality is implemented for daily (seasonality = 48) and weekly (seasonality = 336)
seasonality. The multiplicative formulation of the model is given by the following set
of equations:

Level : St = α
( yt
It−s

)
+ (1− α)(St−1 + Tt−1) (1)

Trend : Tt = γ(St − St−1) + (1− γ)Tt−1 (2)

Seasonality : It = δ
( yt
St

)
+ (1− δ)It−s (3)

Forecast : yt+k = (St + kTt)It−s+k (4)
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where the level St, trend Tt and seasonality It are recursively updated every iteration
and k-step ahead forecasts can be made by computing yt+k. The smoothing param-
eters are given by α, γ and δ. The length of the season is given by s, t denotes the
index of the current iteration and k denotes the forecast horizon. Initialization of the
standard Holt-Winters models is done by a regression-based technique recommended
by Hyndman et al. (2008). The initial level, trend and seasonality are initialized
by classical decomposition of the time series into seasonal, trend and irregular com-
ponents, based on a multiplicative model. The model is multiplicative in the sense
that the time series is assumed to consist of the multiplication of the trend compo-
nent, the seasonal component and the random component. The trend values for the
first two seasons are determined by using a centered moving average, i.e. symmetric
window with equal weights with the length of the season. The trend is regressed on
the variable t which consists of the values 1,2,3... and the coefficient corresponding
to the variable t is set as the initialization of the trend, while the constant in the
regression is set as the initialization of the level. The seasonal figure is computed by
taking the ratio of the actual observation to the average of the first period.

The double seasonal Holt-Winters method, first introduced by Taylor (2003), is able
to account for two seasonal patterns in a time series. The double-seasonal formulation
is similar to the standard Holt-Winters formulation, but additionally a new seasonal
index is introduced. The formulation for additive trend and multiplicative seasonality
is given by the following set of equations, formally denoted as follows:

Level : St = α
( yt
Dt−s1Wt−S2

)
+ (1− α)(St−1 + Tt−1) (5)

Trend : Tt = γ(St − St−1) + (1− γ)Tt−1 (6)

Seasonality 1 : Dt = δ
( yt
StWt−s2

)
+ (1− δ)Dt−s1 (7)

Seasonality 2 : Wt = ω
( yt
StDt−s1

)
+ (1− ω)Wt−s2 (8)

Forecast : yt+k = (St + kTt)Dt−s1+kWt−s2+k (9)

where compared to the standard Holt-Winters formulation an extra equation for
seasonality is introduced, the equations for seasonality are adjusted to for the other
seasonality and the forecasts are adjusted for both seasonalities. The new seasonal
index is given by Wt and an extra smoothing parameter is given by ω.
Initialization of the double seasonal Holt-Winters method is done by the method
described in Taylor (2003) and Williams and Miller (1999). The initial trend is ini-
tialized as the average of (1) and (2) where (1) is calculated as 1/336 of the difference
between the mean of the first 336 observations and the mean of the second 336 ob-
servations. (2) is calculated as the average of the first differences for the first 336
observations. The level component is initialized as the mean of the 672 observations
minus 336.5 times the initial trend. Initial seasonal values are computed for every
period in the season. The s1 initial seasonal values for within-day seasonality Dt

are calculated as the average of the ratios of the actual observations to the 48-point
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centred moving average from that particular period in the season. The observations
in the first week are used for initialization for the within-day seasonal indices. The
s2 initial seasonal values for within-week seasonality Wt are calculated in the same
way as the daily-seasonal values, and then divided by the corresponding within-day
seasonal index Dt. Note that the values of the level and trend are considered as
observations at t = 0 and initial values of the seasonal indices are considered as ob-
servations corresponding to time t−m where m corresponds to the seasonal period
and t = 0.
The models are estimated in Matlab by minimizing sum of the squared 1-step ahead
forecast errors for the estimation sample, for which I used the first 8 weeks of the
data set in a similar manner as Taylor. The last 4 weeks of the time series is used for
post-sample forecasting evaluation. This implies that the estimation sample is given
by the first 2688 half-hourly observations and the validation sample is given by the
remaining 1344 half-hourly observations.
After applying the exponential smoothed methods discussed above, inspection of the
forecasts errors displays significant first-order autocorrelation. The standard and
double seasonal Holt-Winters forecasts are adjusted by fitting an AR(1) term to the
error terms, which was initially proposed by Reid (1975) and Gilchrist (1976), who
found the same phenomenon. The adjustment is done by fitting an AR(1) model to
the 1-step forecast errors, formally denoted as follows:

et = λet−1 + ξt (10)

such that the forecasts are adjusted as follows:

ŷt+k = ŷt+k + φk(yt − ŷt) (11)

where ŷt+k denotes the k-step ahead forecast obtained by the Holt-Winters proce-
dure. Reid (1975) and Gilchrist (1976) adjust the forecasts in a two-stage estimation,
but Chatfield (1978) suggests a single-stage estimation approach for incorporating
the error term correction, by simultaneously estimating the model parameters and φ
by minimizing the sum of the squared 1-step-ahead errors. The latter procedure is
applied in this paper.

3.2.2 Multiplicative seasonal ARIMA

The autoregressive integrated moving average (ARIMA) is a very popular and well-
known method to model time series that involve autoregressive dependence, moving
average dependence, and differencing operations. The seasonal ARIMA model in-
volves backshifts of the seasonal periods, which allows for modelling seasonality. The
multiplicative seasonal ARIMA model can be written as follows:

φp(L)ΦP (Ls)∇d∇D
s yt = c+ θq(L)ΘQ(Ls)zt, (12)

where yt denotes demand in period t, zt denotes the error term, c is a constant term,
s is the number of periods in the seasonal cycle, ∇ denote the difference operator, d
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denotes the order of difference, D denotes the order of seasonal difference, s denotes
the seasonal period, φp,ΦP , θq and ΘQ, are polynomial functions of orders p, P , q
and Q respectively. The model is multiplicative in the sense that the non-seasonal
factors are multiplied by the seasonal differenced factor. The model is often expressed
in the form ARIMA(p, d, q) × (P,D,Q)s. Application of the model to the time
series of electricity demand yields the value s = 336 for within-week seasonality,
D = 1 to account for non-stationarity for observations made in the same period in
successive weeks. After carefully checking the auto-correlation plot and the partial-
autocorrelation plot, a model was chosen with an intercept, an AR(2), a seasonal
AR(2) and a seasonal MA(2) term. Other models were fit as well, but this model
with hourly-dependence performs best.

3.3 Spectral Analysis

3.3.1 Spectral analysis

The analysis of time series can basically be carried out from two approaches. The
first approach being from the time domain perspective and the other approach being
from the frequency domain perspective. All models discussed above are based on
the time domain approach, while spectral analysis is approached from the frequency
domain. Spectral analysis applied to economic time series is a relatively not very
widely used technique that attempts to explain the underlying pattern of a given
time series by sine and cosine waves. In spectral analysis, the time series is broken
down into it’s cyclical components which are linked to the amount of variation they
explain. As our data set contains very strong cyclical patters, there is a strong
appeal to analyze the time series through spectral analysis. Before going into the
application of spectral analysis to forecasting our time series, it is useful to review
spectral analysis.
In their paper ’Spectral analysis in business forecasting’, Chan and Hayya (1976)
explain the concept and application of spectral analysis for non-mathematicians.
’Spectral analysis’ comes from physics and is about analysis of light, sound, or other
system of vibrations into a spectrum. Given a data set that contains fluctuations, one
can define the fluctuations as noise. When this noise is put through a filter or window,
in a similar manner as a physicist puts white light through prism, the noise can be
broken down into components, which is called a ’spectrum’. For a given time series,
the cyclical patterns can be broken down into a weighted combination of sine and
cosine functions at different frequencies. The variance is broken down in such a way
that the proportion of explained variance is associated with the harmonics at different
frequencies. Spectral analysis is similar to analysis of variance, i.e. the larger the
spectrum at a particular frequency, the larger is its contribution to the variance. The
spectrum breaks down the sample variance of a time series into different components
by associating these components with different frequencies. It can be shown that the
spectra are a decomposition of the variance and as such the relative importance of
frequency k/pi can be identified, see for example Rayner (1971). It can be shown
that there is a one-to-one relation between the spectrum of a time series and the
autocovariance function, therefore the same information is depicted by both, but
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with a slightly different interpretation. Spectrum analysis has an interpretation of
analysis of variance. The field of this research is also closely related to harmonic
analysis or Fourier analysis.
In this paper I discuss three models based on the Fourier series, which are analyzed
and identified by means of spectral analysis. The first model fitted is a full Fourier
model. As we will see, this model is a deterministic function of time and does not
include any stochastic dependence. The next models consider an adaptive version
of the first model, such that the models include stochastic dependence on previous
observations. The second model is an adaptive version of this model which considers
residual auto-correlation correction and the third model consists of a combination of
trigonometric functions and an ARMA model.

Full Fourier model

The first model based on trigonometric series is the full Fourier model. Fourier
(1808) proved that an arbitrary set of data points can be completely represented by
a trigonometric series, which implies that a given time series can be represented by
a weighted combination of sine and cosine waves. All methods of fitting sinusoids to
time series fall under the wider term of Fourier analysis. One of the basic results of
Fourier analysis is that an arbitrary analytic function defined over a finite interval,
can be represented by a weighted sum of trigonometric functions of harmonically
increasing frequencies to any desired degree of accuracy. If K is chosen as N/2,
where N denotes the sample size, the model perfectly fits the data, see e.g. Chan
and Hayya (1976). The full Fourier series model is given by the following equation:

yt = c+
K∑
k=1

αk sin
(2πkt

N

)
+ βk cos

(2πkt

N

)
(13)

where yt denotes observation of the time series at time t, c denotes a constant, αk

and βk denote coefficients that weight the different harmonics, K is given by N/2
where N denotes the estimation sample size. The fact that K is expressed by the
number N/2 contributes to the aliasing problem and the number N/2 is also called
Nyquist folding frequency. Nyquist proved that no power from frequencies greater
than N/2 contribute to the spectral density, which is among others explained by
Koopmans (1995). The parameters are estimated by least squares. The residuals of
the estimation are zero, because by choosing K=N/2 the Fourier series will perfectly
fit the data. Forecasts are based on the estimation sample. Forecasts obtained by this
model assume that the historical pattern exactly repeats itself, without any stochastic
dependence on previous observations. Note that the forecast of observation i is the
same for all k-step ahead forecasts, i.e. the 1-step ahead forecast of observation i is
the same as the 48-step ahead forecast of observation i, therefore the MAPE’s will
the same for k = 1,...,h, where h denotes the forecast horizon.
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Partial Fourier model with residual auto-correlation correction

The next model applied to the data set considers an adaptation of the full Fourier
model. The full Fourier model is adapted such a way that it includes a smaller
number of harmonics so that there are residuals left which are then modelled by a
simple ARMA model. The model is adapted such that it can accommodate multiple
seasonalities, by writing the current observation as a function of sine and cosine
waves at the most important frequencies, i.e. including cycles of period kpi. The
model is formally denoted as follows:

yt = c+
M∑
i=1

Ki∑
k=1

αi,k sin
(2πkt

pi

)
+ βi,k cos

(2πkt

pi

)
+ et (14)

where electricity demand yt is modelled by a constant and some Fourier terms. In
this model c denotes a constant, M denotes the number of periods which are explic-
itly modelled, Ki denotes the degree of complexity for period pi, αi,k and βi, k denote
the weight coefficients of the different harmonics. Including an extra seasonality is
easily done by adding an extra period pi and choosing the degree of complexity Ki.
The Fourier series is a weighted combination of multiple periodic functions, which
repeats itself every pi periods. Please note that the trigonometric part of the model
is a simplification of the model described by equation (13), because only the most
dominant periodic cycles are taken into account.
To find the most important harmonic terms at the frequencies that contribute most
to the variance of the series, a periodogram is constructed. A periodogram is used
to identify the most important oscillation patterns and is given by the spectrum of
the series plotted against it’s corresponding frequencies. Time series data are mea-
sured at discrete, fixed intervals t in time at a frequency of 1/t. The transformation
of the signal from the time domain to the frequency domain can be done by the
Fourier Transform, which transform a signal from the time domain to a signal in the
frequency domain by summing up different sinusoids. The signal in the frequency
domain is described by it’s amplitude, frequency and it’s phase t. At this point, the
amplitude (maximum range of variation) and phase of the signal can be plotted at
every frequency (or across the entire spectrum) which gives the frequency domain
representation of the signal (spectral density). This information can be very useful
in identifying periodicity in the series and is represented in a periodogram.
The periodogram is constructed in R where it is calculated using a Fast Fourier trans-
form, and smoothed with a series of modified Daniell smoothers (moving averages
giving half weight to the end values) to get a consistent estimator of the spectrum.
The Fast Fourier transform is an algorithm for computing the discrete Fourier trans-
form of a data series at all of the Fourier frequencies, in a computational efficient
way. It is worth mentioning that the Fourier model and the Fast Fourier transform
are two different things which are not directly related to each other. Since a very
strong 48-period and 336-period seasonal pattern is observed, two periodograms are
constructed for the ease of interpretation. In the first periodogram a frequency of 1
corresponds to 48 half-hourly periods and in the second periodogram a frequency of
1 corresponds to 336 half-hourly periods.
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Figure 2: Periodogram at daily periods Figure 3: Periodogram at weekly periods

From the first periodogram it can be observed that a dominant peak is located at the
frequency of 1/48, and other minor frequencies are located at multiples 2...5 of this
frequency. From the second periodogram it can be observed that a dominant peak
is located at the frequency of 1/336 and zoomed in it can be observed that minor
peaks are located at multiples 2...5 of this frequency.
The model is now constructed as follows. I include two periods, being the daily
period p1 = 48 and the weekly seasonal cycle p2 =336. Based on the information
from the periodogram, I chose K1 = 5 and K2 = 10, such that the dominant cyclical
patterns are modelled by harmonic terms at frequencies 1/48 and the 5 multiples
thereof, and at frequencies 1/336 and 10 multiples thereof. Please note that the
harmonic term corresponding to p2 and K = 7 is not included in the model, because
that harmonic term is essentially the same as the harmonic term corresponding to
p1 and K = 1. After fitting the Fourier model to the data, a model is chosen for
the residuals based on the (partial) auto-correlation plot of the residuals. After
careful inspections of the residuals, it is observed that the residuals display both a
strong short-term half-hourly dependence and a strong longer-term dependence on
the day before. The observed relationship is modelled by fitting an AR(1) term and
an AR(48) to the residuals, formally denoted as follows:

et = φ1et−1 + φ2et−48 + ηt (15)

where et denotes the residuals of the partial Fourier model for the time series of
electricity demand, et−1 and et−48 denote the lags of residuals, and ηt the error term
of the regression. The forecasts from the partial Fourier model are corrected by
adding the expected forecast-error to the forecasts.

Partial Fourier representation combined with an ARMA model

The last model discussed in this paper also considers an adaptive version of the full
Fourier model. The model is fitted with a number harmonic terms at the frequencies
that explain most of the variance together with ARMA terms to explain the remain-
ing variation of the series. The idea of a model that is estimated based where the
data is modelled by a combination of trigonometric functions and an ARMA model
is discussed by De Livera, Hyndman, & Snyder (2011) in the state-space modelling
framework, but in this paper the model is analyzed and estimated within the con-
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ventional framework. The model is formally denoted as follows:

yt = c+
M∑
i=1

Ki∑
k=1

αi,k sin
(2πkt

pi

)
+ βi,k cos

(2πkt

pi

)
+Nt (16)

where the seasonal cycles of the electricity demand yt are modelled by a constant,
the Fourier terms and where the remainder which is modelled as an ARMA process.
Interpretation of parameters and coefficients is the same as the previous model and
periodicity is identified in the same way as the previous model. Based on the pe-
riodogram, the number of periods is given by M = 2, where period p1 = 48 and
period p2 = 336. The number of Fourier terms K1 is chosen equal to 5 and K2

equal to 10. The ARMA model is chosen based on carefully analyzing the (partial)
auto-correlation plot and comparing the in-sample forecasting performance of differ-
ent models. Short-term lags are added at significant low-order lags to account for
short-term variation and long-term lags are added to account for long-term variation.
The final model chosen for Nt is denoted as follows:

Nt = φ1yt−1 + φ2yt−2 + φ3yt−3 + φ4yt−48 + θ1zt−1 + θ2zt−2 + θ3zt−3 + ηt (17)

where Nt denotes the ARMA process, yt−i denotes the i-period lag of yt with φi

the corresponding coefficient, zt−i denotes the i-period lag of the residual at time t
with θi the corresponding coefficient and ηt denotes the error term of the regression.
The full model is estimated in one stage estimation process, more specifically as an
ARIMAX where the harmonics are added as external regressors.

With the models described above one can easily model multiple seasonalities of any
length by adding multiple Fourier terms of different frequencies. Smooth seasonality
is accounted for by small K, but more complex seasonal patterns can be modelled
by a larger number for K. The model allows for non-integer seasonal periods, such
as modeling the gap year, where the seasonal period is often set to 365.25 in case
of daily seasonality. The data used in this paper does not contain any days with
unusual demand, such as holidays. Taylor mentions that demands on these days
is usually hard to forecast with univariate methods and that therefore in practise
interactive facilities that override the system are used. However, the model decribed
above can deal with unusual demand by including dummies for ’special’ days such as
Easter and Chistmas. Given the attractive features of the model, there is a strong
appeal for applying the model to forecast electricity demand. The model accounts
for daily seasonal cycle and the within-week seasonal cycle and, where the trigono-
metric part of the model assumes fixed seasonal patterns that do not change over
time, however, by adding sesaonal lags of yt the model accounts for seasonal variation
over time. All of the above models are evaluated by their MAPE’s of k-step ahead
forecasts where k=1,..48, based on a rolling forecast origin. The models are updated
by adding new observations, but parameters of the models described in this section
are assumed to stay constant over time and are not re-estimated, since the process of
model identification is impractical in the application of online demand forecasting.
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4 Results

This section discusses the results for all of the models discussed in this paper. First,
an overview is given of the results of the methods by Taylor (2003), then the results
for the other models are presented and discussed and compared. Section 4.1 discusses
the parameter estimates of the exponential smoothing methods, the parameter esti-
mates of the multiplicative seasonal ARIMA and the estimation results of the Fourier
models. In section 4.2 I compare and discuss the MAPE’s of the different models
and finally an evaluation of the models is presented.

4.1 Estimation results

The estimated smoothing parameters of the Holt-Winters models are presented in
table (1) and the estimated smoothing parameters for the Holt-Winters models with
residual auto-correlation correction are displayed in table (2).

Table 1: Results Holt-Winters parameters without auto-correlation adjustment

Model Level α Trend γ Within-day Within-week
seasonality δ seasonality ω

Holt-Winters for Within-Day Seasonality 0.99 0.85 1
Holt-Winters for Within-Week Seasonality 0.83 0 1
Double Seasonal Holt-Winters 0.85 0 0.53 1

Without residual auto-correlation adjustment

Table 2: Results Holt-Winters parameters wih autocorrelation adjustment

Model Level α Trend γ Within-day Within-week AR φ
seasonality δ seasonality ω

Holt-Winters for Within-Day Seasonality 0.80 0 0.69 0.74
Holt-Winters for Within-Week Seasonality 0.01 0 0.41 0.92
Double Seasonal Holt-Winters 0.01 0 0.18 0.31 0.94

With residual auto-correlation adjustment

It can be observed that the smoothing parameter for the level is estimated for the
Holt-Winters models without residual auto-correlation adjustment are relatively close
to 1. This indicates that the level of the current observation is given much more
weight compared to the level of past observations, which implies that the current
level estimate is highly being determined by the last observation. For the Holt-
Winters method with residual auto-correlation adjustment it seems that the effect
of the level is to a large extend being replaced by the auto-correlation adjustment.
The smoothing parameter of the trend is estimated 0 for all methods, except for
the Holt-Winters method for Within-Day Seasonality. This is probably due to the
method’s inability to capture the weekly pattern, which is has biased the trend es-
timation. This indicates that in general the trend effect is nihil. For the standard
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Holt-Winters method, high values for the smoothing parameters for the seasonal in-
dices can be observed, which is corresponding in line with my expectations that the
time series is strongly dominated by the seasonal patterns. Again it can be observed
that the estimated seasonal effects are smaller with the introduction of the residual
auto-correlation adjustment. The results in this paper are in my opinion close to the
results obtained by Taylor and in line with my initial expectations. Small differences
are found for some parameters which can be due to some minor differences in the
setup of the Holt-Winters method, such as initialization.

The estimated coefficients of the multiplicative ARIMA model are given by the fol-
lowing equation:

(1 + 0.98L2)(1 + 0.78L2)(1 + L336)yt = −0.59 + (1− 0.90L2)zt (18)

The model contains an auto-regressive term for the second lag, a seasonal auto-
regressive term for the second lag, a moving-average term for the second lag while
the series is seasonaly differenced at seasonality equal to 336. The seasonality is
captured by seasonally differencing the series. It can be observed from the resulting
model that the electricity displays a strong hourly dependence of previous observa-
tions. The model was estimated for half-hourly lags as well, but this did not improve
the model. It is not very clear why this is the case, but a possible reason might
be that the electricity demand is recorded at the National Grid with hourly depen-
dence. This model performs well in terms of mean-absolute percentage errors and
serves more as a benchmark model to compare the other methods with.

The estimated coefficients of the full Fourier model are impractical to report, be-
cause of the large number of estimated paramaters involved in the model. The
estimated parameters for the two partial Fourier models are also impractical for the
same reason and interpretation is difficult. The following figure illustrates the esti-
mation results by showing the forecasts of the first 2 weeks of the validation sample
for both the full Fourier model and the Fourier model with a reduced number of
harmonics, without the additional features of the model and the real data.
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Figure 4: Forecast results of Fourier models

It can be observed that both models seem to capture the seasonal pattern of the
data, because the model for the seasonality shows the same shape as the original
data. The MAPE of the full Fourier model is given by 3.6% and the MAPE of
the partial Fourier model is given by 3.29% for these 2 weeks of observations and
forecasts for the validation sample. A remarkable observation is given by the fact that
by modelling only the seasonal pattern of the data, the partial Fourier model provides
better forecasts than the full Fourier model. There is no satisfactory explanation for
this observed phenomenon in my opinion, since the partial Fourier model is a subset
model of the full Fourier model. The full Fourier model is clearly over-fitting the
data, but in my opinion the relative performance of the two models can not only be
due to that reason. The most important thing that can be observed is the fact that
both the full Fourier model an the Fourier terms of the subset Fourier model both
seem to capture the seasonal pattern well.

4.2 Post-sample forecasting performance

The post-sample performance of the methods is compared by the mean absolute per-
centage errors (MAPE). Figure (5) shows the MAPE’s for the Holt-Winters meth-
ods without auto-correlation adjustments and figure (6) shows the MAPE’s of the
Holt-Winters methods with autocorrelation adjustments. Both figures contain the
MAPE’s that were obtained from the forecasts of the SARIMA model.
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Figure 5: MAPES of models - no AR term
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Figure 6: MAPES of models - AR term

It can be seen that the multiplicative seasonal ARIMA model clearly outperforms
all Holt-Winters methods, including the double seasonal Holt-Winters method. The
Holt-Winters method for within-day seasonality produces very inaccurate forecasts,
to the extend that it could not be plotted in the figures. The double seasonal Holt-
Winters method for within-day seasonality performs slightly better for low k and
high k compared to the standard Holt-Winters method for withing-week seasonality.
The models where the forecasts are adjusted, perform substantively better than mod-
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els without auto-correlation correction of the residuals. Also it can be observed that
the double-seasonal Holt-Winters method outperforms all other methods, including
the well-specified multiplicative ARIMA model. These conclusions are similar to the
conclusions made by Taylor (2003), but the MAPE’s are somewhat different at some
points. The models were run for the parameters obtained by Taylor, but this gave
similar MAPE’s as the ones displayed in the figures above. It is not clear to me
where the differences in parameters estimates come from, but the small differences
in the results might be due to differences in initialization.

The forecasting performance of the Fourier models is also evaluated by the MAPE’s,
which are presented in the next figure. The following figure displays the MAPE’s of
all Fourier models.
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Figure 7: MAPE’s of Fourier models

The first thing that can be observed from figure 7 is that the MAPE’s of the full
Fourier model are given by a horizontal line. This result is exactly as I expected,
since forecasts are obtained by extrapolating the deterministic function of sine and
cosine waves, which does not take into account information of new observations.
The MAPE’s of the two partial Fourier models both seem to converge to a certain
number for increasing k when considering k-step ahead forecasts. The MAPE’s of
the error-correction model converge to a MAPE of 2.11% and the MAPE’s of the
combination of the partial Fourier model and the ARMA model converge to a MAPE
of 1.83%. The convergence of the MAPE’s can be explained by the way the model
is setup. The MAPE’s of the deterministic part of the models, which consists of
trigonometric functions independent of new observations, are given by a constant
number, as observed for the full Fourier model. The improvement of the constant
MAPE is due to the inclusion of lagged observations or error terms in the model.
These terms highly improve the short-term forecasts, but the effect decays for longer-
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term forecasts. This can be clarified by the following simple illustration. Consider
a stochastic variable, say xt which depends on the previous observation xt−1 with a
certain effect λ between 0 and 1, i.e. xt = λxt−1 + et, then xt+k can be written as
follows:

xt+k = λkxt + et+k for 0 ≤ λ ≤ 1 (19)

It can be seen from equation (19) that the effect of λ decays for increasing k because
λk converges to zero. This effect is observed for the MAPE’s of the partial Fourier
models, because the effect of short-term lags decay.
It can be seen from figure 7 that the näıve full Fourier model can substantially be
improved by adapting the model. The partial Fourier model with error-correction
shows a MAPE that converges to 2.11% and the combined Fourier model performs
slightly better with a MAPE that converges to 1.83%, which in my opinion is a good
and promising result.

The following figure contains an overview of the MAPE’s of the best performing
models.
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Figure 8: MAPE’s of best models

Comparing all models together, I find the double seasonal Holt-Winters with residual
auto-correlation correction the best model, in the sense that the method produces
the most accurate forecasts of the validation sample. The multiplicative seasonal
ARIMA is a very good competitor which performs well in practise if well-specified.
The advantage of the Holt-Winters methods is that they are easy to implement and
that they require little model specification efforts. The full Fourier model seems
more of a naive method of forecasting that can substantially be improved by adapt-
ing the model. Correcting for residual auto-correlation yields improvement and the
combination of the Fouriers series and an ARMA model performs almost as good as
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the double seasonal Holt-Winters method and the ARIMA model and is therefore
a good alternative for the more widely-used models, since it has some nice features
and is easy to work with.

5 Conclusion

Electricity demand forecasting is of great importance to balance supply and demand
between generators and suppliers. Accurate electricity demand forecasts can lead
to lower costs and more efficiency. The time series modelled in this paper consid-
ers a time series of half-hourly observations of electricity demand in England and
Wales over a period of 12 weeks. The series contains strong seasonal patterns, there-
fore different forecasting methods from the time domain and the frequency domain
are applied and compared with each other, where special attention is given to the
seasonal patterns. A strong within-day seasonal cycle and a strong within-week sea-
sonal cycle are evident from the data and these are analyzed and modelled from
both the time-domain and the frequency domain perspective. I reach the same con-
clusion regarding exponential smoothing methods as Taylor (2003) who finds the
double seasonal Holt-Winters method with residual auto-correlation adjustment the
most accurate method, compared to other Holt-Winters methods and a well-specified
multiplicative seasonal ARIMA model. Other methods have been developed and im-
plemented by me that focus on modelling the electricity demand by trigonometric
series. The models are given by the full Fourier model, a subset Fourier model with
error-correction for the residuals and the most promising method where the series is
modelled by a combination of trigonometric functions together with an ARMA pro-
ces. None of the methods were able to outperform the double seasonal Holt-Winters
method with error-correction for the residuals, but last method performs almost as
well as the ARIMA model and the double seasonal Holt-Winters method with resid-
ual auto-correlation correction. The methods discussed in this paper models a given
time series by a deterministic function for seasonality together with stochastic com-
ponents to account for short-term and long-term variation. The first advantage of
the new model formulations is given by the fact that it can easily incorporate mul-
tiple non-integer seasonalities of different complexities. Another advantage is given
by the fact that it can easily be extended with exogenous regressors and has a good
adaptability. I conclude that the model has potential for modelling time series with
evident seasonal patterns and I recommend research on the application of the model
on medium-term and long-term time-series. I think think that the Fourier model
formulations presented in this paper have strong potential for modelling time series
with complex seasonalities, rather than modelling time series with simple seasonali-
ties that can be captured with simpler models. If the trigonometric models presented
in this paper proof to produce good results for other data sets, the model can be
extended by adapting the model by methods such as the Box-Cox transformation,
Furthermore I recommend that the relationship between the harmonics and the sea-
sonal lags is investigated further and that a more formal procedure is specified for
identifying the models. There will be situations where the model will perform very
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well and situations where the model is outperformed by other methods, therefore I
recommended to always try to fit different models to the data.
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