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Abstract

This thesis looks into the paper of Brouer et al. (2013). The liner shipping
network design problem (LSNDP) looks at the flow of containers over a complex
network of ports in order to minimize the costs and maximize the revenue.
Optimization in this field can yield large advantages in the competitive market
of today. This paper will reproduce the base mixed integer programming model
for the LSNDP that is discussed in Brouer et al. (2013). In addition to this,
we will look at the running time to solve various instances. The problem is
strongly NP hard, which has the result that large instances will be very difficult
to solve. In order to be able to solve more instances, efficient ways to decrease
the number of rotations that is used in the model is discussed. The data that
are used have been taken from Brouer et al. (2013).
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Chapter 1

Introduction

Liner shipping is a very important business for trade between countries. Due to
globalization, and the increasing trade in the world, this business has a substan-
tial influence on the world’s economy. Container shipping is the most efficient
way to transport large amount of quantities efficiently. Operations research is
an important aspect in liner shipping network design. Since the competition in
between shipping companies is quite high, it is essential for such a company to
have a service network which is as efficient as possible. However, research in
this field has shown that it is quite difficult to create a model which takes every
aspect of the Liner-Shipping Network Design Problem (LSNDP) into account.
The problem seems to be too complex to be solved optimally for big instances.
The closer one wants to get to the real world, the more complex models become.
However, in the last years, models with a close resemblance to the real world
have been created.

1.1 Problem definition

In this paper we would like to construct and expand on the base integer pro-
gramming model created by Brouer et al. (2013). Their model takes most
general aspects of liner shipping into account to make the model a basic yet
sophisticated model for the liner shipping network. The goal of the LSNDP is
to minimize the costs and maximize the revenue for transporting certain cargo
throughout a specific area. However, since the problem is NP-hard, solving
the problem optimally is difficult. Different approaches need to be considered
for larger instances to get a good solution. For simplicity, external factors like
weather and currents are omitted from the model. Besides this, the model looks
at six fictive but realistic vessel classes. Of these vessels, all daily running costs,
fuel costs, canal costs, port-calling fees for active vessels, revenues from trans-
porting cargo and charges from loading and unloading containers.
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1.2 overview

In Chapter 2, previous research will be examined. Chapter 3 will look into the
data that is available and which will be used in the mixed-integer programming
model. Chapter 4 will give an overview of the MIP, with a complete explanation
of how it works. Next to this, we will look at rotations and in what way we
can most effectively limit these without getting too far away from the optimal
solution. In Chapter 5 we will look at the outcomes of the model. Specifically,
we will look at the time it took to solve an instance and the consequences
of limiting rotations to the objective value. In Chapter 6 we will summarize
our findings and discuss the limitations of the model as well as suggestions for
further research.
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Chapter 2

Literature review

The work in Brouer et al. (2013) is an extension to that of Álvarez (2009). It ex-
tends the work in the paper by adding butterfly routes and imposing (bi)weekly
frequency on the rotations. Their paper is interesting for further research in the
same field, since it functions as a benchmark suite. Next to this, the paper is
interesting for practical applications. With some modifications, it can be used
by real shipping companies to optimize their service network. For this reason,
the paper has chosen to use real ports and their corresponding characteristics.
The Suez and Panama canals are also taken into account.

When looking at previous research on this topic one can see that the research
community looks at the problem from different angles. Researchers use different
constraints. For example, Rana and Vickson (1991) look at the capacity of ves-
sels and make sure the planning horizon is not exceeded. However, the paper
does not look into transshipments. With transshipments being an important
factor in international modern trade, this makes the model less useful. Another
example is Reinhardt and Pisinger (2012). They take into account everything
what Rana and Vickson (1991) did, and included the transshipments. They
were also able to solve the problem to optimality with up to 15 ports. Next to
this, they implemented butterfly cycles, which is also discussed thoroughly in
Brouer et al. (2013). Another big factor in shipping is bunker costs. The ve-
locity at which a vessel is cruising has a large effect on the fuel costs. Shintani
et al. (2007) consider this in their model. However, they did not incorporate
various factors the previous papers did incorporate in their model. All in all,
when you look at different contributions to the LSNDP, you can see that there
are a lot of different types of contributions, but a comprehensive base model
was still lacking. This is what Brouer et al. (2013) wanted to construct.
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Chapter 3

Data

In general, there are 4 different data classifications. Data for ports, the fleet,
cargo demand and distance. In Table 3.1, all data classifications with their cor-
responding attributes are listed.

Table 3.1: Data classifications

Port Data Fleet Data

UNLOCODE Vessel class
Name Capacity
Country TC rate
Cabotage Min speed
Region Max speed
Latitude Design speed
Longitude Fuel consumption (design speed)
Draft Fuel consumption (idle)
Move cost Quantity of vessels
Transshipment cost Suez fee
Fixed port call cost Panama fee
Variable port call cost

Cargo demand Data Distance Data

Origin port Origin port
Destination port Destination port
Quantity Draft
Freight rate Distance
Max transit time Suez traversal

Panama traversal
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The data for ports and fleets will generally be used to calculate all appro-
priate costs.

Table 3.2: Example of port instances. Port: UNLOCODE of the port; Long:
longitude; Lat: latitude; Draft: maximal draft to enter the port; Move: move:
load and unload costs; Trans: transshipment costs; Fixed: fixed port call costs;
Var: variable port call costs.

Port Name Country Cabotage Region Long Lat Draft Move Trans Fixed Var

NLRTM Rotterdam NL NL North Continent 4.5 51.92 13.5 195 148 19187 16
Europe

CNSHA Shanghai China China Central China 121.5 31.22 13.5 150 62 6497 6

An example for the port data is given in Table 3.2. The ports are based
on real world data. Every port has a specific UNLOCODE. For example, the
UNLOCODE of the Port of Rotterdam is NLRTM. The first couple of instances
establish the location of the port. Draft gives the maximum draft of a vessel
(in meters) to be able to enter the port. The move cost represent the cost of
loading and unloading containers. The transshipment cost represent the cost of
transshipping a container from one vessel to another. Finally, there are the fixed
and the variable port call fees. The variable cost is per forty feet equivalent unit
(FFE). All costs are in USD.

Table 3.3: The fleet. Vessel class denotes the name of the vessel. Cap FFE: max
capacity of FFE of the vessel; TC: total cost rate; Draft: draft of the vessel;
Fuel*: fuel consumption at design speed; Fuel0: fuel consumption when idle;
Pan: Panama canal fee; Suez: Suez canal fee.

Vessel class Cap FFE TC Draft Min Speed Max Speed Des Speed Fuel* Fuel0 Pan Suez

Feeder 450 450 5000 8 10 14 12 18.8 2.4 64800 175769
Feeder 800 800 8000 9.5 10 17 14 23.7 2.5 115200 218445
Panamax 1200 1200 11000 12 12 19 18 52.5 4 172800 267217
Panamax 2400 2400 21000 11 12 22 16 57.4 5.3 345600 413533
Post panamax 4200 35000 13 12 23 16.5 82.2 7.4 633007
Super panamax 7500 55000 12.5 12 22 17 126.9 10 1035376

In Table 3.3, all possible vessels are shown. A vessel contains the following
information: the capacity of the vessel; the total cost rate per day; the draft
of the vessel; the minimum speed (in knots); the maximum speed (in knots);
the design speed (in knots); the daily fuel consumption when cruising at the
design speed (denoted by Fuel* in the table); the daily fuel consumption when
idle at port (denoted by Fuel0 in the table); The fee for crossing the Panama
canal (impossible for Post panamax and Super panamax); The fee for crossing
the Suez canal. The fuel costs is an important factor of the total costs of the
model, to calculate these fuel costs F, the following formula is used.
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F (s) = (s/vF )3 · fF , sFmin ≤ s ≤ sFmax (3.1)

Here, s represents speed, vF represents the design speed, fF represents the
fuel costs at the design speed and sFmin and sFmax represent the min and the max
speed respectively.

Table 3.4: Example cargo file

Origin Destination FFE Per week Revenue Transit Time

DEBRV CNDLC 320 780 45

The next data instance is the cargo data. In Table 3.4, an example for a
cargo file is shown. There is an origin and a destination. Next to this, there
is demand of FFE per week and the revenue which one FFE yields. Lastly,
there is the maximum number of days that the demand can be in transit. For
simplicity, we will not take the transit time into account for out model.

Table 3.5: Example of a distance file

Origin Destination Distance Draft Panama traversal Suez traversal

CNDLC DEBRV 11129 No Yes
CNDLC DEBRV 14524 No No

The last data instance is the distance data. In Table 3.5 an example of
the distance file is shown. First of all, there can be multiple edges from one
port to another. This also shown in 3.5. Because it might not be economically
interesting to enter either the Suez or Panama canal, there is also the possibility
to take the long way round. A data file consists of the origin and destination of
an edge, the distance of this edge, the maximum draft of the edge (if appropriate)
and whether the edge traverses through either the Panama or the Suez canal.
If an edge has a maximum draft, vessel which exceed this draft will not be able
to travel over this edge.
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Chapter 4

Methodology

The formulation of our model is similar to the formulation of the model of
Brouer et al. (2013) since this model is reproduced. However, there is one flaw
in the formulation of the model in Brouer et al. (2013). This will be explained in
more detail when all the constraints will be discussed in depth. In the following
pages, a short summary of all the sets, parameters , decision variables and the
mathematical model will be discussed. At the end we will look into what the
minimization function consists of and why all the constraints need to be taken
into account.

Sets

Firstly, there are several sets which need to be considered. These include:

• R: A rotation is a possible route of a vessel. A rotation includes an ordered
list of all the ports it passes, the vessel which is considered for this route
and the speed at which the vessel will be cruising at.

• V : Vessels are all the ships which are taken into account by the model. V
consists of all the fleet data discussed in Chapter 3. For all the different
instances, the only thing that can change for a vessel is the quantity of
the vessels that can be deployed. All the other data is essentially linked
to a certain vessel and has no variability.

• P : This set includes all the ports which will be taken in to account for a
certain instance. the ports set consists of all the port data from Chapter
3.

• G: This set indicates all available FFE that can be transported in the
model. This set consists of the demand data. An origin of the FFE, a
destination, the quantity of FFE and the revenue per FFE.
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• E: This set consists of all possible edges in the model. The distance data
in the previous Section has all appropriate data for this set. If a Suez or
Panama traversal is desirable for a shorter route, there will be at least 2
possible routes. one through the Suez/Panama channel and one without
crossing those. It is possible that there are three possible edges with the
same ports. This would be the case if an edge through the Panama channel
is shorter than without crossing it, but also a traversal through the Suez
channel is shorter than without crossing either of them.

• Er: edges in rotation r. There are a total of |R| different sets of Er.

• Ωr : set of ordered port triplets (h, i, j) in rotation r. Just as with Er,
there is a total of |R| different sets. Next to this, the port triplets are
visited the same way as the vessel would visit them.

Parameters

The following parameters will be used in the model.

• avij : Costs of traversing either the Panama or Suez canal.

• cv : Capacity of a vessel of type v (in FFE).

• dvj : port call costs for vessel v when entering port j (equal to the fixed
costs plus the variable costs times cv).

• e : fuel price per ton ($600 for all ships).

• fv : daily running costs for vessel v over the entire planning horizon.

• f̃v : Cost or revenue for not operating vessel v. Depending on the markets
condition this can be the revenue obtained from chartering the vessel out
over the entire planning horizon, or the cost of laying up the vessel. For
our model, we consider f̃v to be equal to −fv.

• gvs : Fuel consumption (tons per nautical mile) for vessel v steaming at
speed s (this parameter is calculated using Equation 3.1).

• hv : Fuel consumption or vessel v when idle at a port.

• kod : The total demand from port o to port d over the entire planning
period (in FFE).

• lvij : The distance in nautical miles from port i to port j using vessel
v. (the length between these ports can differ for different vessels because
either some vessels are not able to traverse through the Panama canal, or
a traversal through either the Panama or Suez canals is beneficial for all
vessels).
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• mr : Number of round trips that can be done within the planning period.
If the trip would not be finished at the end of the planning period, we
assume that it will be finished in the following period. Therefore, this
parameter does not have to be an integer.

• pvj : The time spent at port j for vessel v. In our model, we assume this
to be 24 hours for every vessel at every port.

• qod : The revenue from transporting one FFE from port o to port d.

• q̃od : The penalty when a certain FFE is not transported from port o to
port d. In our model, we take this to be $1000 USD for all cases.

• sr : The Speed a vessel is cruising at in rotation r.

• uj : The cost of lifting one FFE at port j.

• tj : The cost of transshipping one FFE at port j.

• vr : The vessel type used in rotation r.

• zv : Number of available vessels of type v.

Decision variables

Lastly, these decision variables will be used in the model.

• Xr
(ij)d. For each rotation r, this decision variable looks stores containers

traveling along edge (i, j) which are headed for port d.

• Urs
(hi)d. This decision variable looks at the transshipments. the number

of containers which are traveling to port d that arrive in port i via edge
(h, i) of rotation r for transshipment to rotation s.

• W r
id. For each rotation r, this variable stores the containers arriving to

their final destination port d via edge (i, d).

• V r
od. For every rotation r, this variable stores the demand from port o to

port d that enters the network for the first time because it is loaded to a
vessel.

• Ood. This variable stores the demand from port o to port d that will not
be serviced by the liner company.

• Y r. Number of vessels assigned to rotation r.

10



MIP

At this point, the MIP is presented. After the mathematical formulation,
an explanation of the objective function and the constraints will be given.

min Zmp

=
∑
r∈R

fvrY r +
∑
v∈V

f̃v(zv −
∑

r∈R:vr=v

Y r) (4.1)

+
∑
r∈R

mrY
r

∑
(i,j)∈Er

(ehvrpvrj + egvrsr lvrij + dvrj + avrij ) (4.2)

+
∑

(o,d)∈G

(q̃odOod − qod
∑
r∈R

V r
od) (4.3)

+
∑
r∈R

∑
(h,i,j)∈Ωr

(ui(W
r
(hi) +

∑
d∈P
d6=i

V rid) + ti
∑
d∈P
d6=i

∑
s∈R
s6=r

Urs
(hi)d)

(4.4)

s.t.

Xr
(hi)d + V r

id +
∑
s∈R:

(k,i,l)∈Ωs

s6=r

Usr
(ki)d = Xr

(ij)d +
∑
s∈R
s6=r

Urs
(hi)d

r ∈ R, (h, i, j) ∈ Ωr, d ∈ P, i 6= d, h 6= d,

(4.5)

V r
id +

∑
s∈R

(k,i,l)∈Ωs

s 6=r

Usr
(ki)d = Xr

(ij)d

r ∈ R, (h, i, j) ∈ Ωr, d ∈ P, i 6= d, h = d,

(4.6)

Xr
(ij)j = W r

(ij) (i, j) ∈ Er, r ∈ R, (4.7)

Ood +
∑
r∈R

V r
od = kod o, d ∈ G, (4.8)∑

d∈P

Xr
ijd ≤ cvr ·mr · Y r r ∈ R (i, j) ∈ Er, (4.9)∑

r∈R:vr=v

Y r ≤ zv v ∈ V, (4.10)

Xr
(ij)d, U

rs
(ij)d,W

r
id ∈ R+

r, s ∈ R, r 6= s (i, j) ∈ Er d ∈ P,
(4.11)

Ood, V
r
od ∈ R+ r ∈ R o, d ∈ G (4.12)

Y r ∈ Z+ r ∈ R. (4.13)

The objective function is given by (4.1)-(4.4). The first term (4.1) establishes
the daily running costs and the cost or revenue from excluding some vessels from
operations. Term (4.2) establishes the fuel costs (both when idle at port and
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when cruising), canal costs and port-calling fees. The third term (4.3) captures
the revenue from transshipping a certain container but also the penalty for not
transshipping a certain container. Finally, the last term (4.4) captures the costs
of loading and unloading containers at the origin and at the destination. Next
to this, the transshipment costs at transshipment points are determined.

Just as the objective function, all constraints have been taken from Brouer
et al. (2013). However, Constraints (4.6) are not in Brouer et al. (2013). Ulti-
mately Constraints (4.5) and (4.6) jointly balance the flow of containers at nodes
other than their final destination. If only Constraints (4.5) would be considered,
the occasions where h = d would never be taken into account. This leads to
the possibility that when h = d containers whose origin is port i and who need
to travel to port d, are not included in the flow of the containers. Therefore,
the Variables V r

od (where d is the final port before going back to port o in this
rotation) in Constraints (4.8) can become whatever number they like without
having to influence Constraints (4.5). This means that the model doesn’t work
properly if Constraints (4.6) wouldn’t be taken into account. To go more in
detail to what Constraints (4.5) and (4.6) actually do, when a certain number
of containers is at port i, they can only continue to the next port in the same
rotation, or transship to a different rotation.

Constraints (4.7) represent the number of containers that arrive to their final
destination at port j. Constraints (4.8) account for the demand from port o to
port d. If it is economically convenient and feasible to take this demand on for
the liner company, the variables V r

od will increase. If this is not the case, Ood

will increase. Ood therefore ensures that a feasible solution is always possible in
the MIP.

Constraints (4.9) impose restrictions on the total number of containers that
can be transported on each edge of the rotation. The total number of contain-
ers that can be transported on a certain edge is calculated by the capacity of a
vessel times the number round trips times the total number of vessels assigned
on this rotation. Constraints (4.10) ensure that no more vessels than available
are used in the model. Finally, Constraints (4.11)-(4.13) make sure that the
variables are nonnegative. Y r needs to be integer as well.

4.1 Rotations

A rotation includes an ordered number of ports and the edges in between these
ports, a vessel and the speed at which the vessel is cruising. To be entirely sure
that the MIP reaches the optimal allocation of rotations, all possible rotations
of the ports, vessels and possible speeds should be taken into account. This
does mean that already some rotations get removed. A vessel cannot enter a
port which doesn’t allow vessels with their draft. For example, a vessel with a
draft of 12.5 cannot enter a port which has a maximum draft of 9.5. However,
with so many rotations, the MIP becomes too large to run quite quickly. Brouer
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et al. (2013) proved that the problem is strongly NP-hard. Therefore, we need
to find ways in which we can decrease the number of rotations considered by
the model.

Firstly, Brouer et al. (2013) have described that it is important that vessels
arrive at a port on a weekly or biweekly basis. Due to the increased competitive-
ness in markets where vessels have a capacity of above 1200 FFE, these vessels
should have a weekly frequency. The other vessels should have a biweekly fre-
quency. To impose this on the rotations, we only include rotations which have
a frequency of a week for vessels with a capacity of above 1200 FFE and a
biweekly frequency of the vessels below this capacity. We do not only include
rotations which precisely adhere to the (bi)weekly frequencies. For larger ships
the frequency should be in between 6.3 and 7 days. For the smaller ships, the
frequency should be in between 12.7 and 14 days. We do this because it is quite
likely that there are rotations of commercial value which miss the frequency by
a couple of hours. Next to this, due to changes in tides and weather, it might be
a good idea to schedule some slack in the rotation. Ultimately, the constraints
would look like the following:

6.3τr ≤
dr

24sr
≤ 7τr for cvr >= 1200 (4.14)

12.7τr ≤
dr

24sr
≤ 14τr for cvr < 1200 (4.15)

In (4.14) and (4.15) dr is the total distance of a certain rotation (in nautical
miles), sr is the speed the vessel is cruising at (in knots). The term in the middle
will then be the number of days it takes to do one round trip. τr is equivalent to
the number of vessels needed to make this rotation have the required frequency.
For example, if it takes 27 days for a vessel with more than 1200 FFE to make
a round trip, four vessels will be needed to make this rotation have a weekly
frequency. This means that for this instance, τr will be equal to four. Note that
we need a different interpretation of the Y r variable now. we replace Y r with
Ỹ r. Ỹ r can best be described like this:

• Ỹ r. This variable is not zero if the rotations is used in the objective value.
The total number of vessels used in this rotations is given by τr · Y r.

If a rotation is able to adhere to the appropriate equation, the rotation will
be added to the set of R to be used in the MIP. However, if we want to have
these rotations to have (bi)weekly frequency, some alterations need to be made
in the MIP. Constraints (4.9) and (4.10) need to be altered to:

∑
d∈P

Xr
ijd ≤ cvrmrτrỸ

r r ∈ R(i, j) ∈ Er, (4.16)∑
r∈R:vr=v

τrỸ
r ≤ zv v ∈ V, (4.17)
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Next to this, in the objective function, all Y r decision variable will be re-
placed by Ỹ r and they all need to be multiplied with τr. This needs to be done
since τrỸ

r is equivalent to Y r in the original formulation. Lastly, Ỹ r replaces
Y r in (4.13). When all this is altered in the MIP, the model makes sure the
(bi)weekly frequency will be adhered to.

The second way we decrease the number of rotations is the following. If
there are two rotation that have the same ports but in a different order, we will
only choose the rotations which is the shortest. Because we do not take transit
time into account, this will have no implications to the objective value in the
MIP. However, if transit times would be taken into account, it might be more
valuable to have a rotation included which will be discarded here.

Lastly, there is one more way in which we limit the number of rotations. If
several rotations have nearly all ports in common, one could choose to use only
one of these rotations in the model instead of all of them. If a rotation is of a
length of more than two, we will look at rotations which differ at most one port.
If a there is a rotation which satisfies the fact that only one port differs in the
rotation, we will choose the rotation which has the shortest length. We execute
this heuristic once the other two methods of limiting routes have already been
executed. This will remove a substantial number of rotations. Therefore, it
might be the case that various useful rotation will not be taken into account in
the MIP. However, the decrease in rotations which this heuristic causes could
have the consequence that several instances become solvable within reasonable
time.
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Chapter 5

Results

In this section we will look into the results of the two instances. Firstly, we look
into a single-hub instance around the Baltic sea. This instance includes eight
ports, of which one is a hub (Bremerhaven). All the cargo is either directed to
Bremerhaven or originates from Bremerhaven in this instance. Next to this, the
available vessels will be four Feeder 450’s and two Feeder 800’s. For simplicity
we will only look at rotation where the vessels cruise at the designed speed. The
second instance is a combination of ports from Europe and Asia. This instance
also has eight ports; four in Asia and four in Europe. We will look at five ves-
sel types in this instance. They are: Feeder 450, Feeder 800, Panamax 1200,
Panamax 2400 and Post panamax. For this model as well, we will only look
at the designed speed for simplicity. The ports which were considered in both
models can be found in Table 5.1. Next to this, for both models, we will not
take rotations with more than five ports into account. The MIP would other-
wise become too large to solve. In particular, we will look at the cost differences
when which technique and limitations are used. Next to this, we will look into
the computing time of the particular instances. To create the model and obtain
the results, Cplex and java were used. To generate all possible rotations, we
have used MATLAB. For further limitations of the number of possible rotations,
Java was used. The computer which was used to perform the tests has Intel
Core i3, 2.40 GHz with a RAM of 4 GB.

In Table 5.2, the objective value of various instances can be seen. This value
is preferred to be negative since we are minimizing. A negative value means a
profit. The Eurasia instance in Table 5.2 uses a maximum of 100 vessels; twenty
vessels of the five used vessel classes. This has been done such that the MIP is
able to use a large possibility of vessel allocation. This means that, ultimately,
this instance receives a large amount of revenue from the chartering out of vessels
it doesn’t need. Only the small instance from EurAsia is able to be solved. The
number of rotations in the larger instances is simply to big to be solved by the
computer that is used. If we look at the Baltic instances, it is possible to see
that medium and large instances do not differ in their optimal value. The only
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Table 5.1: The used ports for the two instances. The location of the ports is
included next to the maximal draft per port

(a) Baltic

Port Name Country Draft

DEBRV Bremerhaven Germany 13.5
DKAAR Aarhus Denmark 12.5
FIKTK Kotka Finland 9.5
FIRAU Rauma Finland 9.5
NOSVG Stavanger Norway 12.5
NOAES Alesund Norway 9.5
NOKRS Kristiansand Norway 8
NOBGO Bergen Finland 9.5

(b) Eurasia

Port Name Country Draft

DEBRV Bremerhaven Germany 13.5
DKAAR Aarhus Denmark 12.5
FIKTK Kotka Finland 9.5
FIRAU Rauma Finland 9.5
NOSVG Stavanger Norway 12.5
NOAES Alesund Norway 9.5
NOKRS Kristiansand Norway 8
NOBGO Bergen Finland 9.5

difference between them is that multiple rotations which have the same ports
have been taken into account. It also shows that for this instance, one does not
need to take these rotations into account to achieve a better objective value.
However, the difference in computation time is quite large. It took 60 times
the amount of time to solve the large instance instead of the medium instance
with a little more than double the rotations as the medium instance. Table 5.3
illustrates this as well. The possibility for transshipments in the model creates
a lot more complexity. Variable Urs

(hi)d is used for the transshipments. As you
can see, this variable is larger than all the other variables combined. Next to
this, this variable grows the quickest. This has the result that rotations larger
than 100 become very difficult to run on the computer that is used.
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Table 5.2: Objective values and running times. A size of the instance refers to
how many heuristics for limiting the total number of rotations have been used.
With small, all heuristics have been used, with medium, only the final heuristic
hasn’t been used and with large only the first heuristic has been used. The
running time is the total time the computer has been running, the solving time
is the time cplex needed to solve the MIP. the objective value is the costs/revenue
obtained in the best solution. Rot. stands for rotations used in the instance,
Max rot. stands for the maximum number of rotations allowed.

Instance
run time
(in sec)

solving time
(in sec)

opt. val.
(in USD)

Rot. Max rot.

Baltic
small 2.44 0.66 -2013453 6 5
medium 262 58.70 -4451649 47 5
large 15960 1538.92 -4451649 98 5

Eurasia
small 1163 161.37 -299625036 79 5
medium NA NA NA 1051 5
large NA NA NA 2312 5

Table 5.3: Number of variables for two instances. The decision variables used
in the model. Refer to 4 for further explanation.

Instance Xr
(ij)d Y r Urs

(hi)d Ood W r
id V r

od

Baltic
medium

1589 47 42456 56 227 1589

Baltic
large

3374 98 193548 56 482 3372
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Table 5.4: Separation of the costs of the objective value. All values are in
USD and are in are to be multiplied with 1000. Z is the optimal value of
the best solution obtained. R corresponds to the total revenue obtained from
transporting the cargo. cr is the total running costs, cf the total fuel costs, cp
the port call costs, cc the total canal costs, ct the total transshipment costs and
cl is the total (un)loading costs. Lv is the revenue obtained from chartering out
vessels. P is the penalty costs of not transporting cargo.

Instance Z R cr cf cp cc ct cl Lv P

Baltic
small

2013 36497 2340 4796 8321 0 0 18795 4140 4371

Baltic
medium

4452 38891 2700 6368 6689 0 0 20188 3780 2276

Baltic
large

4452 38891 2700 6368 6689 0 0 20188 3780 2276

Eurasia
small

299625 278508 41220 69210 6162 50225 8600 48625 246780 1620

Eurasia
medium

NA NA NA NA NA NA NA NA NA NA

Eurasia
large

NA NA NA NA NA NA NA NA NA NA

In Table 5.4 the objective value and the separation of the costs and revenues
are shown. If we look at the Baltic instance, we see that the majority of the
costs come from the loading and unloading costs. It seems reasonable that these
costs are higher since the amount of traveling is relatively low. Furthermore,
transshipments are not used in the Baltic model. Again, this seems reasonable
since there is only one hub port and the ports are not the far apart from each
other. If we look at the small Eurasian instance, we can see that the loading
and unloading costs have a smaller influence on the total costs. More time is
spent cruising and the Suez canal is crossed several times. We can also see that
transshipments are being used.
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Chapter 6

Conclusion

In this paper, we have replicated the MIP from Brouer et al. (2013). We have
altered one thing in the formulation such that the formulation is now mathe-
matically correct. We have looked at the differences in running time of instances
with a certain number of rotations. It is possible to see that the running times
grow very quickly, which should be the case since the problem is strongly NP
hard. This has the result that large instances will be very hard to solve. Brouer
et al. (2013) proposed a base heuristic which can solve larger instances heuris-
tically, however not necessarily optimally. Next to this we have looked at what
the influences are of these limitations on the possible rotations on the costs.
Firstly, to limit the possible rotations, we have made sure all rotations are to a
certain extent (bi)weekly. After this all rotations which have all the same ports
as another but are longer in total length are deleted. Lastly, rotations which
have all but one port in common are investigated. The one with the shortest
distance will be considered by the MIP, the other will be discarded. We have
seen that the largest and the medium instance of Baltic do not have a difference
in optimal value. Therefore, the second route limitation might not have such
a negative effect on the optimal value whilst still being able to discard several
rotations. The last limitation has a negative effect on the optimal value, but is
able to decrease the number of rotations drastically. However, this isn’t neces-
sarily the case for all instances. The last limitation might sometimes be needed
because otherwise we wouldn’t have been able to solve the Eurasia instance.

If we look at further limitations of our research, we can see that we are not
yet able to solve the problem efficiently. Next to this, not every aspect of the
liner shipping has been taken into account. Cargo usually does not have an
indefinite transit time. Therefore, to make a complete model, one should take
transit times into account. However, this is likely to increase the complexity.
Because of this high complexity, it might be a good idea to look at improvements
to solve the problem heuristically.

All in all, the LSNDP is a very hard problem to solve and further research
on this aspect could turn out very fruitful. In a world where the competition is
increasing rapidly, efficient routes of vessels is paramount.
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