
Erasmus University Rotterdam
Erasmus School of Economics

Bachelor Thesis Econometrics and Operations Research

The Maximum Coverage Problem

Investigating Approximation Algorithms for Variants of the

Maximum Coverage Problem

Ymro Nils Hoogendoorn (413127)

Supervisor: ir. drs. R. Kerkkamp
Second Assessor: dr. W. van den Heuvel

July 12, 2017

Abstract

In this thesis, we investigate several heuristics to solve the maximum coverage problems and its variants.
We consider maximum coverage problems with cardinality, matroid and budget constraints. For each of
these problem variants, we solve randomly generated instances with greedy and local search heuristics.
In particular, we investigate the actual performances of these algorithms compared to their theoretical
approximation ratios, if these exist and are known. We also investigate the performance of a tabu
local search algorithm. For the budgeted constrained maximum coverage problem, we construct two
relaxation-based heuristics. One uses the principles of subgradient optimization and Lagrange relaxation
and the other uses a relaxation-based tabu local search. We find that the non-oblivious swap local search
introduced in Filmus and Ward (2012) performs the worst on average of the algorithms, despite having an
the best approximation ratio of (1 − 1

e
) on the cardinality- and matroid-constrained maximum coverage

problem (unless P=NP). The tabu local search algorithm performs best in these cases, but at the cost
of a longer runtime. For the budgeted maximum coverage problem, the relaxation-based tabu swap
local search algorithm performs best, but has a longer runtime than existing greedy and local search
algorithms.

Contents

1 Introduction 2

2 Literature 3

3 The Maximum Coverage Problem 5
3.1 Notational Convention . 5
3.2 Description of the Problem . 5
3.3 Integer Program Formulation . 5
3.4 Variants of the Maximum Coverage Problem . 6

4 Solution Methods 7
4.1 Greedy Algorithm . 7
4.2 Oblivious Swap Local Search . 9
4.3 Non-Oblivious Swap Local Search . 9
4.4 The Lagrange Multiplier Swap Local Search . 10
4.5 Tabu Swap Local Search . 13

5 Numerical Results 14
5.1 Random Instance Generation . 14
5.2 Results for the MCP . 15
5.3 Results for the MCPPM . 16
5.4 Results for the MCPBC . 17

6 Conclusion 19

References 21

A Proofs 22

B Parameter Tuning 23

C Additional Tables 26

D Results for the Test MCP Instances 31

1

1 Introduction

The maximum coverage problem (MCP) is a frequently occurring problem in combinatorics. Suppose we are
given a collection of weighted elements and a collection of sets of these elements. The goal of the maximum
coverage problem is to select a limited number of sets, such that the total weight of the covered elements
in these chosen sets is maximal. A straightforward interpretation of this problem is the so-called cell phone
towers interpretation. In this interpretation, the elements represents customers and their weight is the as-
sociated profit of covering that customer. A set represents a specific cell phone tower and the customers it
can reach. Solving the maximum coverage problem answers the question of how to build a limited number
of cell phone towers, while maximizing the profits.

However, the MCP is NP-hard, which means that solving this problem to optimality is often not an op-
tion for large instances. Therefore, it is of interest to investigate heuristics to solve this problem. Even
though heuristics do not guarantee to find the optimal solution, careful choice of the heuristics can lead to
good or even near-optimal solutions. The concept of α-approximation algorithms (0 ≤ α ≤ 1) has been
studied thoroughly in the history of the MCP. An α-approximation algorithm guarantees that the returned
objective value is at least α (the approximation ratio) times the optimal objective value. In other words,
these algorithms guarantee a certain performance, which is why α-approximation algorithms have been the
subject of many studies.

Even though α-approximation algorithms guarantee a certain performance, this guarantee does not say
anything about the algorithm’s actual performance. In particular, we are interested in the performance ratio
of a heuristic, which is defined as the ratio of the heuristic solution found to the optimal solution. This
thesis will investigate several approximation algorithms for different maximum coverage instances and com-
pare their actual performance against each other and their theoretical performance. We will also investigate
some cases in which the algorithms do not have an approximation ratio and some heuristics without an
approximation ratio.

To accomplish this task, we record the performance of several algorithms on a few variants of the maxi-
mum coverage problem. In particular, we focus our attention on three variants: the previously described
maximum coverage problem (MCP), the maximum coverage problem over a matroid (MCPM) and the max-
imum coverage problem with budget constraints (MCPBC). The three variants only differ in the constraints
they impose on solutions. The MCP, as mentioned before, restricts the maximum number of chosen sets.
The MCPM restricts solutions to lie in a matroid, which is a special kind of structure. We will elaborate on
the precise definition of a matroid in Section 3.4. The MCPBC assigns a nonnegative cost to every set and
solutions are feasible only if the total costs of the chosen sets does not exceed a predefined budget.

The algorithms we are going to investigate fall into two categories: greedy algorithms and local search
methods. Greedy algorithms, in general, construct solutions by iteratively adding sets that maximize a
certain criteria. Local search algorithms, on the other hand, start with a solution and iteratively exchange
sets in the current solution with different sets. As already much research has been done on these types of
algorithms, we give a overview of the relevant literature of the maximum coverage problem in Section 2.

The main goal of this thesis is to investigate the performance of several greedy and local search algorithms
for the three variants of the maximum coverage problem. For the MCPBC, we also construct two additional
local search methods. One method is based on the Lagrange relaxation and the other on the principle of
tabu search.

The outline of this thesis is as follows. Section 2 gives an overview of the relevant literature of the maximum
coverage problems and its variants. This section also describes the principles of Lagrange relaxation and
tabu search. In Section 3 we define the maximum coverage problem and its variants formally and introduce
the notation that will be used throughout this thesis. Section 4 describes the solution methods that will be
investigated. We present in Section 5 the performances of the investigated algorithms and compare these.
Finally, Section 6 summarizes these results and suggests further research topics.

2

2 Literature

The maximum coverage problem (MCP) is a well-studied problem in combinatorics and has a rich history of
approximation algorithms and generalizations of the problem. An early paper to define and investigate this
problem was Hochbaum and Pathria (1998). This paper investigated the standard greedy heuristic. This
heuristic constructs a solution to the problem by iteratively adding sets to the solution, such that the weight
increase of adding the set is maximal. They proved that this heuristic achieves an approximation ratio of
(1 − 1

e). In other words, the greedy heuristic always finds an objective value of (1 − 1
e) times the optimal

objective value or higher.

Nemhauser, Wolsey, and Fisher (1978) considered a more general version of the problem: maximization
of a monotone submodular function under a cardinality constraint. Submodular functions are functions
that assign a real value to a set. They also adhere to a diminishing returns principle, and can be seen as
a discrete equivalent to concave functions. Monotone submodular functions have the additional property
that larger sets yield higher or equal function values. The objective function (weight) of the maximum
coverage problem is also a monotone submodular function. Nemhauser et al. (1978) found the same re-
sult as Hochbaum and Pathria (1998), but several year earlier. That is, the greedy algorithm achieves an
approximation ratio of (1 − 1

e) even in this more general case. It was already known that the maximum
coverage problem is NP-hard, but Feige (1998) proved the inapproximability of the problem. That is, unless
P=NP, it is impossible for an algorithm to achieve an approximation ratio strictly greater than (1− 1

e). This
also implies that the greedy algorithm actually achieves the highest possible approximation ratio of the MCP.

A different approach of solving maximum coverage problem instances was investigated by Resende (1998).
This paper used a greedy randomized adaptive search procedure (GRASP) as a heuristic. Furthermore, he
obtained upper bounds for the optimal weight by considering a linear programming relaxation. It was shown
that for all random instances considered by Resende (1998), GRASP performed better than the greedy al-
gorithm and the solutions found were nearly optimal. However, unlike the greedy algorithm, no theoretical
performance guarantee was proven for GRASP.

One year later, Khuller, Moss, and Naor (1999) investigated an extension to the maximum coverage prob-
lem: the maximum coverage problem with budget constraints (MCPBC). Instead of restricting the maximum
number of sets in a solution, each set is given a costs and solutions are feasible only if the total cost of the
chosen sets is smaller than some predefined fixed budget. First they investigated a greedy-like algorithm
very similar to the standard greedy algorithm. The only difference is that this greedy-like algorithm prefers
sets with the highest weight increase to cost ratio, instead of just using the weight increase. As they showed
that this greedy-like algorithm in this setting does not have an approximation ratio, Khuller et al. (1999)
devised two algorithms. The first algorithm calculated the weight for all solutions with one set. Then, the
first algorithm constructs another set using the aforementioned greedy-like algorithm. The first algorithm
then returns the solution with the greatest weight of all encountered ones. This algorithm achieves an ap-
proximation ratio of 1

2 (1− 1
e). The second algorithm actually calculates the weight all solutions containing

strictly less than κ sets. Then, it uses the same greedy-like approach as the first algorithm on all solutions
containing exactly κ sets. The algorithm returns the encountered solution with the greatest weight. This
achieves an approximation ratio of (1− 1

e) if κ ≥ 3. Furthermore, Khuller et al. (1999) showed that (1− 1
e)

is the highest approximation ratio possible for the MCPBC under similar conditions given by Feige (1998).

Continuing the study of greedy algorithms, Chekuri and Kumar (2004) studied the performance of the
greedy algorithm on the maximum coverage problem with group budget constraints. This variant is also
known as the maximum coverage problem with a partition matroid constraint. The problem has the available
sets partitioned into predefined groups, where a feasible solution is only allowed to contain a certain number
of sets per partition. Chekuri and Kumar (2004) showed that the standard greedy algorithm for this variant
only achieves an approximation ratio of 1

2 .

Just like Nemhauser et al. (1978), Calinescu, Chekuri, Pál, and Vondrák (2011) considered maximization
of a monotone submodular function. However, Calinescu et al. (2011) subjected the monotone submodular

3

function to a matroid constraint, which is broader than the cardinality constraint in Nemhauser et al. (1978).
A matroid is essentially a special structure and can be seen as a collection of subsets satisfying some rules.
The group budget constraint (partition matroid) considered in Chekuri and Kumar (2004) is a special case
of a matroid constraint, thus the analysis of Calinescu et al. (2011) can be applied to many of the previously
considered variants of the maximum coverage problem. Calinescu et al. (2011) proved that the standard
greedy algorithm achieves an approximation ratio of 1

2 in this general case, which is the same approximation
ratio Chekuri and Kumar (2004) found for the partition matroid. Calinescu et al. (2011) used a continu-
ous greedy-like process with pipage rounding. The algorithm first constructs a solution using a continuous
greedy-like process, allowing a fractional amount (between 0 and 1) of some set to be added into a solution.
When the fractional solution is constructed, it is rounded to a feasible solution using pipage rounding. The
pipage rounding technique rounds the fractional solutions to a discrete one using randomized directions. This
algorithm achieves an approximation ratio of (1 − 1

e) for the monotone submodular function maximization
subject to a matroid constraint. This approximation ratio is optimal under the same conditions stated by
Feige (1998).

Filmus and Ward (2012) investigated local search algorithms, instead of greedy-like algorithms, to solve
the maximum coverage problem. Their paper considered the maximum coverage problem subjected to a
matroid constraint (MCPM). They used a swap local search algorithm with an auxiliary objective function
to solve the problem and proved that the approximation ratio is (1 − 1

e). This auxiliary objective function
gives more weight to elements covered multiple times. The achieved approximation ratio is optimal under
the conditions of Feige (1998).

Another technique that will be investigated in this thesis, is the Lagrange relaxation method combined
with subgradient optimization to solve integer programs. This method was first used in Held and Karp
(1970) and Held and Karp (1971). In these two papers, the Lagrange relaxation method with subgradient
optimization was used to solve the symmetric traveling salesman problem. In essence, the Lagrange relax-
ation method relaxes an integer program by removing one or several constraints and adding these in the
objective function, multiplied by penalty vector (the Lagrange multiplier vector). These multipliers are cho-
sen such that the objective function is penalized if a constraint is violated. The Lagrange relaxation method
is particularly useful if the relaxed program is computationally easier to solve than the original program.
If the problem is a maximization (minimization) problem, solving the relaxed problem gives upper (lower)
bounds for every Lagrange multiplier vector. Subgradient optimization then tries to find the multiplier vector
that minimizes (maximizes) the upper (lower) bounds of the problem. It does so by updating the multiplier
vector based on the value of the relaxed constraints. The penalty increases if the relaxed constraints are
violated, and decreases if the relaxed constraints are not violated. Held, Wolfe, and Crowder (1974) proved
the convergence of the subgradient method if the chosen step sizes satisfy certain criteria.

The final technique we will use is tabu search. Tabu search is a metaheuristic that is used quite frequently
to enhance local search algorithms, as described in Glover (1989). The simplest variant of tabu search is
the so-called short-term memory tabu search. The short-term memory tabu search introduces a tabu list
during a local search. This list stores a fixed number of solutions previously visited by the local search
algorithm. The list uses a first-in-first-out structure, where the first added solution is removed if the list is
full. Whenever a solution is in the tabu list, the local search cannot select that solution anymore, essentially
forcing the local search to consider other solutions. Because of the tabu list, the local search can escape local
optima and potentially find better solutions.

Given this large number of algorithms that exist to solve the maximum coverage problem and its vari-
ants, it makes sense to select a few existing algorithms and investigate their performance. However, first we
will formally define the maximum coverage problem and the two variants considered in this thesis formally.

4

3 The Maximum Coverage Problem

This part of the thesis introduces the variants of the maximum coverage problem (MCP) that will be
investigated in this thesis. Section 3.1 gives the notational convention used in this thesis. Section 3.2 defines
the maximum coverage problem formally. An integer program for the problem is set up in Section 3.3.
Finally, Section 3.4 defines the considered variants of the MCP of this thesis.

3.1 Notational Convention

As this thesis deals with sets of elements, sets of sets and sets of sets of sets, we use the following notational
convention to differentiate between the different mathematical objects:

1. Mathematical objects that are not sets (such as elements, real-valued functions or indices) are denoted
in lowercase italic font, for instance u or w.

2. Sets of elements are denoted with uppercase italic, for instance U = {x, y, z}.

3. Sets of sets are denoted with a calligraphic font, for instance F = {S1, . . . , SF }.

4. Sets of sets of sets are denoted with boldface, for instance F = {Y ⊆ F : |Y| ≤ n}.

The only exception to this rule are cardinalities of sets, whose symbol and meaning are specified explicitly.
We will use this convention throughout this thesis.

3.2 Description of the Problem

For the MCP we need a set of elements U , a family of subsets F = {S1, . . . , SF } with Sf ⊆ U for f ∈
{1, . . . , F} and a weight function w : U → R≥0. For convenience, we extend the definition of w for a set
S ⊆ U and a set of sets Y ⊆ F as

w(S) =
∑
u∈S

w(u)

and

w(Y) = w

(⋃
S∈Y

S

)
.

As explained in the introduction, the objective of the MCP is to select sets from F such that the weight of
the covered elements in these sets is maximal. To be able to describe the variants of the MCP in general, we
introduce a set of feasible solutions F ⊆ 2F and restrict solutions, subsets of F , to lie in the set F. Then,
we can define a general maximum coverage problem as follows:

max
Y∈F

w(Y).

By making specific choices for F, we can obtain different variants of the MCP. In Section 3.4 we will define
F for the three variants considered in this thesis: the standard maximum coverage problem (MCP), the
maximum coverage problem over a matroid (MCPM) and the maximum coverage problem with budget
constraints (MCPBC). But first we will introduce an integer program for the general maximum coverage
problem.

3.3 Integer Program Formulation

In order to assess the heuristic methods, we determine optimal solutions using an integer program (IP). The
parameter auf is one if and only if element u ∈ U is contained in Sf , f ∈ {1, . . . , F}. The variable xf is
one if and only if we choose set Sf in our solution, f ∈ {1, . . . , F}. The variable yu is one if and only if
element u ∈ U is covered. We also introduce the nonnegative parameters βfi and ni for all f ∈ {1, . . . , F}

5

and i ∈ {1, . . . ,m}. These parameters will be used to restrict our solutions to the set F using m linear
constraints.

max
∑
u∈U

w(u)yu (1)

s.t. yu ≤
F∑
f=1

aufxf ∀u ∈ U, (2)

F∑
f=1

βfixf ≤ ni ∀i ∈ {1, . . . ,m}, (3)

yu ∈ {0, 1} ∀u ∈ U, (4)

xf ∈ {0, 1} ∀ f ∈ {1, . . . , F}. (5)

In the model (1)-(5), we maximize the total weight of the covered elements in (1). Constraint (2) ensures
that if we do no choose any set that contains element u ∈ U , then we do not cover that particular element.
Constraint (3) states that the chosen solution should be feasible. By choosing specific values for the param-
eters βfi, ni and m, many different feasible sets F can be modeled. Finally, constraints (4) and (5) are the
domain constraints of the variables xf and yu respectively.

3.4 Variants of the Maximum Coverage Problem

In this thesis, we evaluate the heuristics for three variants of the maximum coverage problem, each with
their own choice of F. These variants are the standard maximum coverage problem (MCP), the maximum
coverage problem over a matroid (MCPM) and the maximum coverage problem with budget constraints
(MCPBC).

Maximum Coverage Problem

The MCP restricts the maximum cardinality of a solution. That is, the feasible set is

F = {Y ⊆ F : |Y| ≤ n}

for some positive integer n. To implement this choice of F in the IP of Section 3.3, we set m = 1, n1 = n
and βf1 = 1 for all f ∈ {1, . . . , F}. Constraint (3) would then become

F∑
f=1

xf ≤ n. MCP(3)

Maximum Coverage Problem over a Matroid

For the MCPM, our set of feasible solutions F is equal to the collection of independent sets of a matroid
m. Formally, a matroid m is defined as a tuple (G, I). G is the ground set and I ⊆ 2G is the collection of
independent sets. m is a matroid if and only if

1. I is not empty,

2. if A ∈ I and B ⊂ A, then B ∈ I,

3. for all A,B ∈ I with |B| < |A| it holds that there exists an X ∈ A \ B such that B ∪ {X} ∈ I.

The rank of the matroid m is defined as the maximum cardinality of the sets in I. In our setting, the ground
set G is equal to F and the independent sets I form our set of feasible solutions F.

However, describing an arbitrary matroid with linear constraints proves difficult, if not impossible. There-
fore, we restrict m to be a partition matroid whenever we need a particular implementation of the MCPM:

6

the maximum coverage problem over a partition matroid (MCPPM). To define a partition matroid, the set
F is partitioned into m disjoint sets F1, . . . ,Fm and choose nonnegative integers n1, . . . , nm. A solution is
feasible if and only if it contains at most ni sets from Fi. In other words,

I = F =
{
Y ⊆ F : |Y ∩ Fi| ≤ ni,∀ i ∈ {1, . . . ,m}

}
.

The rank of this matroid is defined as n =
∑m
i=1 ni. We can describe this set using m linear constraints.

We define the binary parameter bfi to be one if and only if set Sf is in partition Fi, f ∈ {1, . . . , F} and
i ∈ {1, . . . ,m}. To implement this into our model, we set βfi = bfi. We can then write the feasibility
constraint (3) as

F∑
f=1

bfixf ≤ ni ∀ i ∈ {1, . . . ,m}. MCPPM(3)

Note that the approximation ratios of the algorithms, described in the next section, are still based on a
general matroid constraint. Whenever we talk about theoretical properties, such as approximation ratios,
we mean a general matroid constraint. However, as our only implementation is a partition matroid, numerical
results are based on the MCPPM.

Maximum Coverage Problem with Budget Constraints

For the MCPBC, we introduce a cost function c : F → R>0. For convenience, we extend the definition of c
to a subset Y ⊆ F as

c(Y) =
∑
S∈Y

c(S).

A solution in the MCPBC is feasible if and only if the costs of that solution are less than a predefined budget
n. That is, F = {Y ⊆ F : c(Y) ≤ n}. To describe this set in the IP, we set m = 1, n1 = n and βf1 = c(Sf)
for all f ∈ {1, . . . , F}. We can then model the feasibility constraint (3) as

F∑
f=1

c(Sf)xf ≤ n. MCPBC(3)

In Lemmas 1-4 in Appendix A we give proofs that the MCP is a special case of both the MCPM and the
MCPBC. Furthermore, we prove that neither MCPM is a special case of MCPBC nor is MCPBC a special
case of MCPM.

4 Solution Methods

In this section, we describe different solution methods for the maximum coverage problem and its variants.
Section 4.1 defines the aforementioned greedy algorithm and its implementation. Sections 4.2 and 4.3
discusses the oblivious and non-oblivious swap local search, as mentioned in Filmus and Ward (2012). Section
4.4 introduces a Lagrange relaxation-based heuristic to solve the MCPBC. Finally, Section 4.5 considers a
tabu swap local search and combines it with a relaxation for the MCPBC.

4.1 Greedy Algorithm

The greedy algorithm (Greedy) constructs a feasible solution for the MCP and its variants by iteratively
choosing sets S ∈ F that maximize a certain criteria function until no more sets can be added. Let us denote
the criteria function with g : F × F → R, which assigns a real value to a set S ∈ F and a current solution
Y ∈ F. The criteria function depends on the considered variant of the MCP. Both the MCP and the MCPM
use

g(S,Y) = w(Y ∪ {S})− w(Y),

7

such that the greedy algorithm adds the set that causes the largest marginal weight increase. On the other
hand, the MCPBC uses

g(S,Y) =
w(Y ∪ {S})− w(Y)

c(S)

(Khuller et al., 1999), so that it prefers sets with the highest marginal weight increase-to-cost ratio.

The approximation ratio of the greedy algorithm differs for the considered variant of the MCP. For the
MCP itself, it is (1− 1

e), which is the highest possible unless P=NP (Feige, 1998). The greedy algorithm on
the MCPM unfortunately has only an approximation ratio of 1

2 (Filmus & Ward, 2012), and on the MCPBC
it does not have any approximation ratio (Khuller et al., 1999).

As not having an approximation ratio can be undesirable, Khuller et al. (1999) proposed one simple ad-
justment to the greedy algorithm so that the approximation ratio becomes 1

2 (1 − 1
e). After constructing a

greedy solution, we check whether there is a solution X with |X | = 1 such that w(X) > w(Y). If so, we
return X instead of Y. We will use this modified version for the MCPBC, which we also call Greedy. The
pseudo code of Greedy is given in Algorithm 1.

Algorithm 1: Greedy.

1 Y ← ∅;
2 R ← F ;
3 while R 6= ∅ do
4 S ← arg max

S∈R
g(S,Y);

5 if Y ∪ {S} ∈ F then
6 Y ← Y ∪ {S};
7 end
8 R ← R \ {S};
9 end

10 if this problem is a MCPBC then
11 X ← arg max

X∈F: |X |=1

w(X);

12 if w(X) > w(Y) then
13 Y ← X ;
14 end

15 end
16 return Y;

Lines 1-2 of Algorithm 1 initialize the solution Y and the remaining sets to be considered R. Lines 3-9
iteratively add sets S to the solution that maximize g(S,Y). If the resulting solution Y ∪{S} is not feasible,
S will not be added to the solution. Lines 10-15 describe the modification proposed by Khuller et al. (1999)
to give Greedy an approximation ratio for the MCPBC.

To improve the approximation ratio of the greedy algorithm for the MCPBC, Khuller et al. (1999) in-
troduced another adjustment to the greedy algorithm. In this variant, which uses partial enumeration, we
choose an integer κ and enumerate all solutions X with cardinality strictly less than κ. We call the solution
with the greatest weight H1. Then, we perform the greedy algorithm on every solution X with cardinal-
ity κ. We call the greedily extended solution with the greatest weight H2. We return either H1 or H2,
whichever has higher weight. This variant, which we will call CostGreedy does achieve an approxima-
tion ratio of (1− 1

e) for κ ≥ 3. Khuller et al. (1999) proved that (1− 1
e) is the highest approximation ratio

possible for the MCPBC under similar conditions as in Feige (1998). The pseudo code is given in Algorithm 2.

8

Algorithm 2: CostGreedy.

1 H1 ← arg max
X∈F:|X |<κ

w(X);

2 H2 ← ∅;
3 foreach X ∈ F : |X | = κ do
4 Y ← result of Greedy without lines 10-15 on X ;
5 if w(Y) > w(H2) then
6 H2 ← Y;
7 end

8 end
9 if w(H1) ≥ w(H2) then

10 return H1;
11 else
12 return H2;
13 end

4.2 Oblivious Swap Local Search

The oblivious swap local search (OblSwap) tries to improve the objective value of an initial solution by
iteratively swapping several sets from the current solution with sets not in the solution. To accomplish this,
the algorithm inspects the objective values of solutions that differ at most k sets from the current solution
Y. If we denote this neighborhood with Nk(Y), we can define it as:

Nk(Y) = {X ∈ F : |X \ Y| ≤ k, |Y \ X | ≤ k}.

To be more exact, OblSwap picks iteratively the solution from the neighborhood Nk(Y) with the highest
weight. It keeps doing so until the objective value cannot be increased further. The pseudo code of the
oblivious swap local search is given in Algorithm 3.

Algorithm 3: OblSwap.

1 Y ← some feasible solution;
2 repeat
3 Yold ← Y;
4 Y ← arg max

X∈Nk(Y)
w(X);

5 until Yold = Y;
6 return Y;

In this thesis, we use the outcome of Greedy as the initial solution for OblSwap. As this local search
heuristic is guaranteed to not decrease the weight of the solution, this algorithm has an approximation ratio
of the greedy algorithm or higher. For the MCP, the approximation ratio is (1 − 1

e), which is again the
highest one possible (unless P=NP). If we use OblSwap on the MCPM, the approximation ratio is n−1

2n−k−1
(Filmus & Ward, 2012). Little research has been done on the performance of the oblivious swap local search
algorithm on the MCPBC, but if we use Greedy from the previous section, the approximation ratio is at
least 1

2 (1− 1
e) and at most 1

2 (see Lemma 5 in Appendix A). This upper bound of 1
2 holds only for k = 1.

4.3 Non-Oblivious Swap Local Search

The non-oblivious swap local search (NonOblSwap) was first introduced in Filmus and Ward (2012). This
heuristic chooses the solution from the neighborhood Nk(Y) (defined in Section 4.2) that maximizes a
modified weight function w′ : F → R. This function w′ assigns more weight to elements that are covered
multiple times. Formally, the function is defined as

w′(Y) =
∑
u∈U

αhu(Y)w(u)

9

with hu(Y) = |{S ∈ Y : u ∈ S}| the number of sets in Y that contain the element u and αi some constants
for i ∈ {0, 1, 2, . . .}. Note that if we choose α0 = 0 and αi = 1 for all i ∈ {1, 2, . . .}, then w′ equals the
original weight function w. Filmus and Ward (2012) showed that the following choices for αi are optimal for
the MCP and MCPM:

α0 = 0, (6)

α1 = 1− 1

e[n]
, (7)

αi+1 = (i+ 1)αi − iαi−1 −
1

e[n]
, (8)

where e[n] =
n−1∑
l=0

1
l! + 1

(n−1)!(n−1) . The pseudo code of this heuristic is given in Algorithm 4.

Algorithm 4: NonOblSwap.

1 Y ← some feasible solution;
2 repeat
3 Yold ← Y;
4 Y ← arg max

X∈Nk(Y)
w′(X);

5 until Yold = Y;
6 return Y;

Just as with OblSwap, we use the outcome of Greedy as an initial solution. Filmus and Ward (2012) proved
that this algorithm achieves an approximation ratio of (1− 1

e) for the MCP and MCPM. For the MCPBC,
however, the approximation ratio is unknown. The initial greedy solution does not give an approximation
ratio, as increasing w′ can lead to decreasing w. We show in Lemma 5 in Appendix A that the approximation
ratio is at most 1

2 for the MCPBC whenever k = 1.

4.4 The Lagrange Multiplier Swap Local Search

Filmus and Ward (2012) designed the NonOblSwap heuristic to achieve an approximation ratio of (1− 1
e)

on the MCPM and MCP. With the MCPM and MCP, as the weights of each element is positive, maximal
weight is always achieved for solutions with cardinality n. Therefore, the heuristic can use 1-exchanges in
order to improve on the weight w or modified function w′. However, with the MCPBC, maximum weight
can occur at any cardinality of the solution due to the budget constraint. Thus the algorithm can get stuck
sooner in suboptimal local optima considering only feasible 1-exchanges.

To solve this problem, we consider a relaxation of the budget constraint. That is, we temporarily allow
the heuristic to consider infeasible solutions so that we can escape local optima. One way to do this is using
Lagrange multipliers. That is, we relax the constraint c(Y) ≤ n by adding it into the objective function with
a penalty factor. Thus, the new objective function becomes

wλ(Y) = w(Y) + λ(n− c(Y))

for some scalar multiplier λ ≥ 0. Furthermore, to not leave solutions unconstrained, we add the cardinality
constraint |Y| ≤M to the problem, where M = maxY∈F |Y|. The constraint |Y| ≤M is implied by c(Y) ≤ n
with this specific choice of M . We denote the relaxed set of feasible solutions with

FR = {Y ⊆ F : |Y| ≤M}.

Normally, with Lagrange relaxations for an integer program, one could use the subgradient method to obtain
upper and lower bounds for the problem (Held et al., 1974). That is, the problem is solved to optimality
for some λ ≥ 0, with the adjusted objective function wλ as upper bound for the optimal original objective
function w. Then a feasible solution is constructed from the (usually infeasible) obtained solution to get a
lower bound on the optimal objective. After that, λ is updated according to some rule and the process is

10

repeated until a certain termination criteria is met.

In our case, even when relaxing c(Y) ≤ n, we are not able to solve the problem to optimality in poly-
nomial time. Using an IP to maximize wλ is also not desired, as then we could also solve the MCPBC itself
with an IP. However, we can use the inexact methods presented in the previous sections. One such method
we could use is the swap local search. The swap local search will use the relaxed neighborhood NR

k (Y),
defined as

NR
k (Y) = {X ∈ FR : |X \ Y| ≤ k, |Y \ X | ≤ k}.

To construct feasible solutions out of infeasible ones we use a method based on the greedy algorithm com-
bined with a swap local search. That is, we iteratively remove the set S from the infeasible solution Y with
the highest cost-to-weight decrease ratio until the solution is feasible. However, if there exists a set in the
solution whose removal does not affect the weight of the solution, we remove that set. We do this extra step
so that we prevent division by zero. The pseudo code for this method (Infeas2Feas) is given in Algorithm 5.

Algorithm 5: Infeas2Feas

1 Y ← some (infeasible) solution;
2 while c(Y) > n do
3 if there exists a S ∈ Y such that w(Y) = w(Y \ {S}) then
4 Y ← Y \ {S};
5 else

6 S ← arg max
S∈Y

c(S)
w(Y)−w(Y\{S}) ;

7 Y ← Y \ {S};
8 end

9 end
10 Y ← result of OblSwap on Y;
11 return Y;

After a feasible solution is constructed from the possibly infeasible one, update our multiplier λ. The update
for λ is based on the recommendation in Held et al. (1974), which is for the ith iteration

λi+1 = λi + siρi
wλi(Yi)− LBi
||si||2

,

with Yi the solution that maximizes wλi , si = c(Yi)−n the subgradient, LBi a lower bound on the maximal
feasible weight maxY∈F w(Y), ρi a positive decreasing sequence with limi→∞ ρi = 0 and || · || the Euclidean
norm on the domain of si. As si is a scalar in our context, the Euclidean norm equals the absolute value.
The idea is that λi+1 will be increased if si > 0, which is whenever Yi is infeasible. By increasing λi+1 we
then penalize infeasible costs even higher, thus forcing the costs of the next solution to lie lower. Similarly, if
si < 0, the solution Yi is feasible and we decrease λi+1 such that the costs of the next solution will be higher.
As LBi should form a lower bound on the maximal feasible weight, we can set LBi to be the maximum
weight of all encountered feasible solutions so far.

However, the update for λi+1 suggested by Held et al. (1974) is only valid whenever wλi(Yi) ≥ LBi. As our
maximization of wλi is inexact, we need to make an adjustment to guarantee this inequality. Every iteration
we use Y∗i−1, the feasible solution with the highest weight so far, as the initial solution for the swap local
search to maximize wλi . As LBi−1 = w(Y∗i−1) ≤ wλi(Y∗i−1) and the swap local search never decreases wλi ,
our desired inequality is met if Y∗i−1 is not updated that iteration (thus if LBi−1 = LBi). If Y∗i−1 is updated
and LBi = w(Y∗i) > wλi(Yi), we can use the previous LBi−1 for the update of λi.

We terminate the algorithm after a fixed number of iterations NL. We also terminate the algorithm whenever
we encounter a solution with costs equal to n. The full pseudo code for this Lagrange Multiplier method
(Lagran) is given in Algorithm 6.

11

Algorithm 6: Lagran.

1 Y∗0 ← some feasible solution;
2 λ1 ← 0;
3 LB0 ← w(Y∗0);
4 for i← 1 to NL do
5 Yi ← Y∗i−1;

6 //Swap local search;
7 repeat
8 Yold ← Yi;
9 Yi ← arg max

X∈NR
k (Y)

wλi(X);

10 until Yold = Yi;
11 //Make solution feasible;
12 Yfeas,i ← result of Infeas2Feas on Yi;
13 //Update bounds;
14 if w(Yfeas,i) > LBi−1 then
15 Y∗i ← Yfeas,i;
16 LBi ← w(Yfeas,i);
17 else
18 Y∗i ← Y∗i−1;
19 LBi ← LBi−1;

20 end

21 //Check for termination;
22 if c(Yfeas,i) = n then
23 Y∗NL ← Y

∗
i ;

24 LBNL ← LBi;
25 break;

26 end

27 //Update Lagrange multiplier;
28 si ← (c(Yi)− n);

29 if wλi(Yi) ≥ LBi then
30 λi+1 ← λi + si

1
i
wλi (Yi)−LBi

s2i
;

31 else

32 λi+1 ← λi + si
1
i
wλi (Yi)−LBi−1

s2i
;

33 end

34 end
35 return Y∗NL ;

The update for the multiplier λ in lines 30 and 32 is written such that the structure of the update as in Held
et al. (1974) is maintained. For the constants ρi we chose 1

i . Note that this algorithm will not produce any
upper bounds on the optimal objective value maxY∈F w(Y), as the maximization of wλ(Y) is inexact. Our
initial feasible solution Y∗0 is the outcome of Greedy.

Furthermore, wλ(Y) is a non-monotone submodular function, which means a local search or greedy al-
gorithm does not have a performance guarantee. Suppose we replace the local search (lines 7-11) by an
α-approximation algorithm for maximizing wλi(Y). In that case, upper bounds could be obtained by setting
UB = 1

α l
λi(X), where X is the result of the α-approximation algorithm. The proof for this fact is given in

Lemma 6 of Appendix A.

12

4.5 Tabu Swap Local Search

Another method to aid the swap local search in escaping local optima is the principle of tabu search (Tabu).
With tabu search, one keeps a list L of the L last visited solutions, and restricts the local search to only
consider solutions not in the list (Glover, 1989). That is, the tabu list L can be viewed as an ordered col-
lection of solutions with a maximum size L. Whenever the swap local search updates its current solution,
the solution is also added to the tabu list. As long as a solution is in the tabu list, the swap local search
will ignore this solution. This tabu list will thus force the swap local search to keep updating the current
solution, even if the solution is a local optimum. The tabu list discards the oldest entry if another solution
is added and L solutions are already present in the list.

Furthermore, to aid the local search for the MCPBC, we could temporarily allow for infeasible solutions. We
allow the local search to ignore the constraint c(Y) ≤ n for NI iterations before forcing to local search back
to feasibility. That is, we use the relaxed neighborhood NR

k (Y) for the local search whenever at least one of
the last NI iterations was feasible. The regular neighborhood Nk(Y) is used if all of the last NI iterations
were infeasible. It could happen that the regular neighborhood is empty, especially if a large number of
infeasible iterations have occurred. In this case, we use Infeas2Feas (see Section 4.4) to force the solution
into feasibility.

We terminate the algorithm if the feasible solution with the highest weight has not updated for NT it-
erations. These ideas are summarized in Algorithm 7.

Algorithm 7: Tabu.

1 Y ← some feasible solution;
2 Y∗ ← Y;
3 w∗ ← w(Y∗);
4 i← 0;
5 repeat
6 if i < NI then
7 Y ← arg max

X∈NR
k (Y)\L

w(X);

8 else
9 if (N1(Y) \ L) 6= ∅ then

10 Y ← arg max
X∈Nk(Y)\L

w(X);

11 else
12 Y ← result of Infeas2Feas on Y;
13 end

14 end
15 Add Y to L;
16 If already L solutions in L, remove the oldest entry;
17 if c(Y) ≤ n then
18 if w(Y) ≥ w∗ then
19 Y∗ ← Y;
20 w∗ ← w(Y);

21 end
22 i← 0;

23 else
24 i← i+ 1;
25 end

26 until Y∗ has not updated for NT iterations;

Our initial solution Y is the outcome of Greedy. As we show in Appendix B that in some instances of the
MCPBC choosing NI = 0 yields higher results.

13

A possible reason as to why not allowing infeasible solution (NI = 0) sometimes yields better results than
allowing for infeasible solutions (NI > 0) is that we did not penalize the potential infeasibility in any way.
Therefore, we will only penalize infeasible solutions with the following modified weight function defined as

wλ+(Y) = w(Y)− λ(max{c(Y)− n, 0})

with λ ≥ 0. This function wλ+(Y) equals the weight function w(Y) whenever the solution Y is feasible. If Y
is not feasible, the function wλ+(Y) is smaller than, or equal to, the weight of that solution. This way, we still
allow the algorithm to consider infeasible solutions, but force it to stay close to feasibility, as we penalize for
costs greater than the budget n. Keep in mind that the algorithm Tabu does not use this penalty function,
which is the same as setting λ = 0.

So, we can use the modified weight function wλ+(Y) in line 7 of Algorithm 7. For the change to have
any effect, we should set NI > 0. Furthermore, the found solution could heavily depend on the choice of λ.
As the penalty of wλ+(Y) is linear, just as a Lagrange multiplier, one could use the last λ from Lagran (see
Section 4.4) as the value of λ for this tabu swap local search. We shall call this variant TabuLagran, as it
uses Lagran as its input.

Another choice for λ that does not depend on a different method and seems to perform well in practice

is choosing λ = λR = w(Y)
c(Y) . Note that this multiplier does depend on the currently considered solution Y.

If we rewrite the modified weight function wλ+(Y) with this particular choice of λ = λR, we get

wλR+ (Y) =

w(Y)
n

c(Y)
if c(Y) > n

w(Y) if c(Y) ≤ n
.

So, this choice of λ = λR essentially penalizes with a multiplicative factor, instead of an additive one. This
multiplicative penalizing factor n

c(Y) is easy to interpret. For instance, we have an infeasible solution Y whose

costs are x% larger than the budget n. Then, if we want the tabu local search to prefer Y over some feasible
solution X , then the weight of Y has to be more than x% larger than the weight of X . In other words, any
relative increase of the costs over the budget must be met with an equal or higher relative increase of the
weight. We shall call this method TabuRatio, as the choice of λ = λR is the ratio of the weight over the
costs of the solution.

5 Numerical Results

This section presents the numerical results of this thesis. Section 5.1 describes the algorithm used to generate
random problem instances for the MCP, MCPPM and MCPBC. Sections 5.2, 5.3 and 5.4 give the numerical
results for the MCP, MCPPM and MCPBC respectively. These sections will compare the different methods
and explain the difference in performance between them.

5.1 Random Instance Generation

First, we describe how problem instances for the maximum coverage problem and its variants are generated.
We base our methods largely on Resende (1998), who generated maximum coverage problems with this
method. In this method, an element u ∈ U is interpreted as a demand location on the two dimensional
unit square with Cartesian coordinates (xu, yu). Likewise, a set Sf ∈ F is a facility in the same space
with coordinates (xf , yf). An element u ∈ U is contained in a set Sf if and only if the Euclidean distance

duf =
√

(xu − xf)2 + (yu − yf)2 is smaller than rmax, the cover radius of the facility. Weights of elements
are uniformly distributed between a predefined minimum wmin and maximum wmax. The pseudo code for
this generation method is given in Algorithm 8.

14

Algorithm 8: Random Maximum Coverage Instance Generator.

1 for u← 1 to |U | do
2 Generate xu ∼ Uniform(0, 1);
3 Generate yu ∼ Uniform(0, 1);
4 Generate w(u) ∼ Uniform(wmin, wmax);

5 end
6 Choose F random demand points from U to place facilities at;
7 Denote facility coordinates with (xf , yf), f ∈ {1, . . . , F};
8 for f ← 1 to F do
9 Sf ← {u ∈ U : duf ≤ rmax};

10 end
11 for u← 1 to |U | do
12 if u is not contained in any set Sf , f ∈ {1, . . . , F} then
13 f∗ ← arg min

f∈{1,...,F}
duf ;

14 Sf∗ ← Sf∗ ∪ {u};
15 end

16 end
17 return F = {S1, . . . , SF }, w

In Algorithm 8, lines 1-5 generate demand points, lines 6-10 generate facilities and their sets and lines 11-16
make sure that every element is in at least one set. These last lines were not included in Resende (1998),
which means that some elements were not covered by any set.

Algorithm 8 is only suitable for generating MCP instances, as MCPPM and MCPBC instances require
more information. Whenever we generate a MCPPM, we need to determine a partitioning of F into m
disjoint subsets. We consider two partitioning methods: random partitioning and radial partitioning. With
random partitioning, every set Sf has an equal probability of 1

m to be placed in any partition. With radial
partitioning we choose m = 4, and we divide the unit square into four equal-sized squares. A set Sf is placed
into one of the four partitions based on its coordinates (xf , yf). Furthermore, we set the parameters ni equal
to d nme, where d·e denotes the ceiling function, for all i ∈ {1, . . . ,m}.

For the MCPBC we also need to determine a cost function c : F → R≥0. We consider two methods
for determining a cost function: random costs and pay-for-reach costs. In the random cost method, we draw
for every set Sf , f ∈ {1, . . . , F} a random uniform cost with bounds cmin and cmax. In the pay-for-reach
method, we assume that F is an even number. Instead of choosing F random facility locations in line 6, we
choose F

2 random facility locations and place 2 facilities at each location: one with reach rmax and costs c
and one with reach r′max > rmax and costs c′ > c. In line 13 of Algorithm 8, instead of considering all the
facilities, we place uncovered elements solely into the sets of far-reaching facilities.

For the numerical experiments, we use the values |U | ∈ {100, 150, 200}, F ∈ {0.5|U |, 0.8|U |} and n ∈
{0.1F, 0.2F}. This gives rise to 12 different parameter combinations. The other parameters are set to
rmax = 0.1, r′max = 0.2, wmin = 1, wmax = 10, m = 4, cmin = 0.5, c = 1 and cmax = c′ = 2. For every
parameter combination, we generate 1000 random MCP, MCPPM and MCPBC instances and solve them
with the different methods from Section 4. Then, we calculate the performance ratio, which is the ratio of
the found objective value to the optimal objective value of the IP. We also calculate the fraction of instances
a heuristic returned an optimal solution, as well as the running time of each algorithm.

5.2 Results for the MCP

The numerical results of the heuristics are given in Table 1. This table shows the averages of the statistics
for the four parameter cases described in Section 5.1. The four parameter cases themselves are shown in Ap-
pendix C. Table 1 reports four statistics for every method: the performance ratio (Perf. Ratio) with standard

15

deviation, the fraction of optimal solutions (Fr. Opt.) and the average runtime (Runtime). The performance
ratio is defined as the average fraction of the objective value found by the heuristic to the optimal objective
value (obtained by solving the IP). The fraction of optimal solutions is defined as the fraction of solutions
that attain the optimal objective value. Lastly, the runtime is the average runtime of the heuristic, in seconds.

For OblSwap, NonOblSwap and Tabu, we set k = 1 in order to limit the runtime. For Tabu the
other parameters are NI = 0 and NT = 50. The motivation for these parameters of Tabu is shown in
Appendix B. We show in Appendix D results of additional test instances of the MCP.

Table 1: MCP instance results

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9947 (0.0084) 0.6183 0.0014 0.9898 (0.0090) 0.3097 0.0055 0.9854 (0.0094) 0.1345 0.0140
OblSwap 0.9968 (0.0064) 0.6983 0.0036 0.9941 (0.0069) 0.4135 0.0189 0.9916 (0.0072) 0.2173 0.0636
NonOblSwap 0.9798 (0.0199) 0.4123 0.0104 0.9693 (0.0185) 0.1770 0.0686 0.9619 (0.0170) 0.0753 0.2904
Tabu 0.9992 (0.0025) 0.8813 0.1264 0.9975 (0.0040) 0.6450 0.5101 0.9958 (0.0049) 0.4215 1.3430

As we can see from Table 1, all methods are an average performance ratio of over 96%. Of the four tested
methods, NonOblSwap performs the worst, as it has the lowest average performance ratio, the highest
standard deviation and the lowest fraction of optimal solutions. Tabu performs the best, but its running
time is an order of magnitude higher than the other heuristics. We also observe that the performance ratios
are decreasing for increasing |U |.

As both OblSwap and Tabu take the solution of Greedy and only strictly improve its objective value, it
makes sense that OblSwap and Tabu perform better than Greedy. NonOblSwap only strictly increases
the auxiliary objective function w′(·). As increasing w′(·) does not necessarily increase w(·), it could be that
NonOblSwap actually decreases the weight of the solution provided by Greedy. This is probably the
cause of NonOblSwap performing on average the worst of the algorithms.

The tabu list of Tabu forces the local search to continue, even if stuck in a local optimum. This could
explain why Tabu performs, on average, better than the other algorithms, as it necessarily enumerates more
solutions. The enumeration of more solutions probably also causes the longer runtimes of Tabu, compared
to the other algorithms.

5.3 Results for the MCPPM

Tables 2 and 3 report the numerical results for the radial and random partitioning methods for the MCPPM.
The separate parameter cases are given in Appendix C, whereas Tables 2 and 3 report the average statistics
over the four parameter cases.

For OblSwap, NonOblSwap and Tabu, we set k = 1, in order to limit the runtime. For Tabu the
other parameters are NI = 0 and NT = 50. The motivation for these parameters of Tabu is shown in
Appendix B.

Table 2: Random Partitioning MCPPM instance results

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9801 (0.0188) 0.2068 0.0022 0.9766 (0.0161) 0.0900 0.0081 0.9734 (0.0139) 0.0220 0.0214
OblSwap 0.9833 (0.0166) 0.2405 0.0046 0.9809 (0.0143) 0.1128 0.0197 0.9792 (0.0117) 0.0298 0.0644
NonOblSwap 0.9679 (0.0251) 0.1605 0.0095 0.9596 (0.0214) 0.0730 0.0544 0.9528 (0.0189) 0.0172 0.2132
Tabu 0.9923 (0.0108) 0.4650 0.1403 0.9886 (0.0108) 0.2385 0.5129 0.9860 (0.0096) 0.0915 1.3937

16

Table 3: Radial Partitioning MCPPM instance results

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9917 (0.0117) 0.5023 0.0023 0.9872 (0.0111) 0.2630 0.0083 0.9821 (0.0110) 0.0763 0.0221
OblSwap 0.9942 (0.0099) 0.5925 0.0048 0.9918 (0.0093) 0.3650 0.0220 0.9890 (0.0089) 0.1563 0.0755
NonOblSwap 0.9798 (0.0201) 0.3462 0.0096 0.9711 (0.0182) 0.1853 0.0601 0.9627 (0.0175) 0.0490 0.2501
Tabu 0.9978 (0.0060) 0.8028 0.1411 0.9957 (0.0066) 0.5590 0.5033 0.9935 (0.0070) 0.3385 1.3728

Tables 2 and 3 show the same pattern as Table 1. Non-oblivious swap local search performs on average
the worst and tabu swap local search on average the best. However, Tabu also has a longer runtime than
any other algorithm. Furthermore, increasing |U | leads to a decrease of the performance ratio. A difference
between the MCP and MCPPM is that the performance ratios and the fraction of optimal solutions for the
MCPPM are lower than for the MCP. The runtimes between the MCP and MCPPM do not differ much.
Also, the performance ratios of the random partitioning method (Table 2) are lower than of the radial par-
titioning method (Table 3). However, all methods have a performance ratio higher than 95%.

The same line of reasoning as in Section 5.2 holds. That is, NonOblSwap performs worst because in-
creasing w′(·) does not imply increasing w(·), Tabu performs best as it enumerates more solutions and the
performances decrease whenever |U | increases as there are more solutions.

As the radial partitioning method partitions the sets based on their coordinates, sets of the same parti-
tion are much more likely to contain the same elements. The facilities (sets) in one partition are spatially
nearer to other facilities from the same partition (except for sets on the boundaries). With random par-
titioning, this is not the case. Thus, radial partitioned MCPPM resembles separate MCP instances more
closely than randomly partitioned MCPPM. This could explain the higher performance of the algorithms in
Table 3 than in 2.

5.4 Results for the MCPBC

Tables 4 and 5 report the numerical results for the random costs and pay-for-reach instances for the MCPBC.
Tables 4 and 5 contain the average statistics over the four problem instances. Again, the separate parameter
cases are given in Appendix C.

For OblSwap, NonOblSwap, Tabu, Lagran, TabuRatio and TabuLagran, we set k = 1, in order
to limit the runtime. As is shown in Appendix B, choosing NT = 50, L = 50 and NI = 0 for the random
costs and NI = 8 for the pay-for-reach costs seem to yield the highest performances. The parameter κ of
CostGreedy is set to 3, as it is the lowest value of κ that achieves an approximation ratio of (1− 1

e). For
Lagran, the starting value of λ is set to 0 and NL is set to 50 (see Appendix B). Appendix B also motivates
NI = 1 for TabuRatio and TabuLagran. NT and L are set in both algorithms to 50 to match the values
of Tabu.

As the runtime of CostGreedy is several orders of magnitude higher than all the other algorithms, the
statistics are only calculated for 100 random instances, instead of 1000. Also, only |U | = 100 has been
evaluated for this algorithm. The runtimes of TabuLagran include the runtime of Lagran.

17

Table 4: Random Costs MCPBC instance results

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9833 (0.0151) 0.1923 0.0037 0.9832 (0.0113) 0.0780 0.0143 0.9832 (0.0097) 0.0425 0.0382
OblSwap 0.9925 (0.0106) 0.4560 0.0074 0.9913 (0.0085) 0.2500 0.0299 0.9903 (0.0076) 0.1545 0.0838
NonOblSwap 0.9758 (0.0212) 0.2663 0.0111 0.9659 (0.0190) 0.0832 0.0618 0.9602 (0.0166) 0.0370 0.2403
Tabu 0.9982 (0.0049) 0.7590 0.1425 0.9971 (0.0046) 0.5228 0.5637 0.9965 (0.0044) 0.3620 1.5829
Lagran 0.9966 (0.0063) 0.5905 0.7952 0.9965 (0.0047) 0.3940 3.3518 0.9965 (0.0039) 0.2753 8.7306
TabuRatio 0.9997 (0.0014) 0.9155 0.2082 0.9990 (0.0021) 0.7418 0.9309 0.9983 (0.0026) 0.5535 2.8011
TabuLagran 0.9995 (0.0021) 0.9003 0.9525 0.9992 (0.0021) 0.7528 4.0574 0.9988 (0.0021) 0.5990 10.8570
CostGreedy∗ 0.9998 (0.0008) 0.9100 194.560 - (-) - - - (-) - -

∗: Calculated with 100 observations.

Table 5: Pay-for-Reach MCPBC instance results

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9776 (0.0216) 0.3280 0.0030 0.9756 (0.0182) 0.1418 0.0124 0.9743 (0.0140) 0.2523 0.0356
OblSwap 0.9824 (0.0200) 0.3812 0.0060 0.9823 (0.0165) 0.2173 0.0281 0.9814 (0.0129) 0.3170 0.0717
NonOblSwap 0.9662 (0.0280) 0.3022 0.0110 0.9585 (0.0253) 0.1140 0.0749 0.9556 (0.0206) 0.0505 0.3689
Tabu 0.9939 (0.0097) 0.6133 0.1209 0.9933 (0.0092) 0.4538 0.4926 0.9923 (0.0077) 0.4653 1.6451
Lagran 0.9963 (0.0078) 0.7025 0.4930 0.9958 (0.0072) 0.5505 1.2249 0.9946 (0.0064) 0.5203 2.3509
TabuRatio 0.9959 (0.0066) 0.7780 0.1690 0.9938 (0.0095) 0.5750 0.6945 0.9903 (0.0096) 0.5245 1.8167
TabuLagran 0.9987 (0.0039) 0.8647 0.6339 0.9979 (0.0052) 0.7415 1.8451 0.9969 (0.0052) 0.6728 4.0002
CostGreedy∗ 0.9996 (0.0001) 0.9350 396.526 - (-) - - - (-) - -

∗: Calculated with 100 observations.

From Table 4 we can see that the performance of TabuRatio and TabuLagran are very similar on average.
However, both algorithms perform on average better than all other algorithms, except for CostGreedy.
The long runtime makes CostGreedy an undesirable alternative, though. As the TabuLagran also re-
quires Lagran, the runtime of TabuLagran is much higher than TabuRatio. For the random costs
MCPBC, this means that TabuRatio is the more desired alternative of the two. We can also see that Tabu
performs better than Lagran, despite the larger runtime of Lagran. Just as with the MCP and MCPPM,
NonOblSwap has the lowest average performance ratio of all the algorithms. Also, the performance ratio
and fraction of optimal solutions decreases whenever |U | increases. All methods have a performance ratio
higher than 96%.

The reason for the inferior performance of NonOblSwap is probably again the fact that increasing w′

does not guarantee increasing w. The high performance of CostGreedy may be caused by the partial
enumeration of the algorithm. This, however, also causes the long runtime. That TabuRatio and Tabu-
Lagran perform better than Tabu shows that relaxing the budget constraint and penalizing infeasibilities
aids the local search.

From Table 5 we can see that CostGreedy has the highest performance. However, just as in Table 4,
the long runtime makes this algorithm undesirable. The algorithm with the highest performance after
CostGreedy, is TabuLagran. Unlike in Table 4, TabuRatio performs on average inferior compared
to TabuLagran, but the runtime of TabuLagran is still higher than TabuRatio. Another interesting
observation is that Lagran has on average a higher performance ratio than Tabu, even though the opposite
was true in Table 4. All methods have a performance ratio higher than 95% in Table 5.

Lagran performs relatively better in the pay-for-reach costs than in the random costs, which could ex-
plain why TabuLagran performs better than TabuRatio in the pay-for-reach costs MCPBC. Also, as
the costs are only c = 1 or c′ = 2 in the pay-for-reach costs, the subgradient could more easily equal 0 for
Lagran, explaining the lower runtime of Lagran in the pay-for-reach costs compared to the random costs.
A more curious question is why Lagran performs better in the pay-for-reach costs MCPBC than in the ran-

18

dom costs MCPBC. Investigating several random MCPBC instances reveals that, when using Infeas2Feas,
the weight of a solution decreases on average relatively less in a pay-for-reach costs instance than a random
costs instance. This in turn means better lower bounds and thus better solutions.

A peculiar result can be observed in the parameter case |U | = 200, F = 0.8|U | and n = 0.2F for the
pay-for-reach costs MCPBC. The table of this parameter case is duplicated from Appendix C and shown in
Table 6. Except for this parameter case, generally the performance ratio and fraction of optimal solutions
decreases whenever |U | increases. However, when increasing |U | from 150 to 200 in Table 6, the performance
ratios increase drastically and many approximately achieve the optimal ratio of 1.

In this parameter case, the actual parameter values are |U | = 200, F = 160 and n = 32. As there are
80 facilities with radius 0.2 and 80 facilities with radius 0.1, there is a high probability that many solutions
cover all elements. The sets (facilities) have a cost either of 1 or of 2. This means that if the optimal
solution covers all elements and there are enough sets such that many solutions cover all elements, many
feasible optimal solutions exist. This does not happen in the random costs method, as all sets have a radius
of 0.1 and the costs are random. That is, even if there are many solutions that cover all elements, many of
them can be unfeasible due to the random costs. In the pay-for-reach method with |U | = 200, F = 160 and
n = 32, n and F are probably high enough so that many feasible solutions exist that cover all elements (and
are therefore optimal). This does explain the sudden increase in performance, as it is easier to construct
feasible optimal solutions.

Table 6: Pay-for-Reach MCPBC instance results for F = 0.8|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9615 (0.0203) 0.0130 0.0060 0.9799 (0.0114) 0.0220 0.0257 0.9994 (0.0016) 0.7950 0.0751
OblSwap 0.9719 (0.0183) 0.0470 0.0138 0.9867 (0.0094) 0.0710 0.0679 0.9997 (0.0010) 0.8960 0.1395
NonOblSwap 0.9323 (0.0278) 0.0030 0.0301 0.9430 (0.0199) 0.0000 0.2252 0.9745 (0.0121) 0.0040 1.1680
Tabu 0.9865 (0.0121) 0.1730 0.2754 0.9946 (0.0059) 0.3060 1.0478 1.0000 (0.0001) 0.9980 3.7611
Lagran 0.9924 (0.0090) 0.3390 1.0301 0.9961 (0.0046) 0.3570 0.9516 1.0000 (0.0000) 0.9990 0.1407
TabuRatio 0.9861 (0.0158) 0.3040 0.4029 0.9937 (0.0081) 0.3980 1.5710 1.0000 (0.0001) 0.9970 3.7617
TabuLagran 0.9965 (0.0070) 0.6060 1.3592 0.9978 (0.0036) 0.5810 2.4267 1.0000 (0.0000) 1.0000 3.5571
CostGreedy∗ 0.9982 (0.0038) 0.7400 958.298 - (-) - - - (-) - -

∗: Calculated with 100 observations.

6 Conclusion

In this thesis, we considered three problem variants of the maximum coverage problem: the MCP, the
MCPM (more specific the MCPPM) and the MCPBC. For each of these problem variants, we used different
heuristics to solve randomly generated problem instances. The algorithms were either greedy algorithms or
local search algorithms. We also created a tabu local search algorithm and for the MCPBC, we designed
relaxation-based algorithms.

For the MCP and the MCPPM, the Tabu algorithm performs best. Even though NonOblSwap has
the highest approximation ratio of the algorithms on those problem instances, it actually has the lowest
performance ratio of all algorithms considered. The reason for this low performance is possibly because
NonOblSwap does not guarantee a weight increase during its iterations.

Tabu performed the best on the MCP and MCPPM, but its runtime is also the highest. Therefore Tabu
is only a viable option if high performance, at the cost of long runtimes, is desired. If not, Greedy and
OblSwap are more suitable candidates, as their average performance ratio was always larger than 95%.

For the MCPBC, the CostGreedy algorithm performs best. However, its runtime is several orders of mag-
nitude greater than the other algorithms, which makes the algorithm undesirable. The relaxation-based tabu

19

swap local search algorithms TabuRatio and TabuLagran perform slightly worse than CostGreedy, but
better than all the other algorithms. The performances of TabuLagran and TabuRatio are approximately
equal for random costs MCPBC, but the higher runtime of TabuLagran makes TabuRatio preferred in
this scenario. For pay-for-reach costs MCPBC, TabuLagran performs better than TabuRatio. This im-
plies that TabuLagran is preferred if sets with higher costs also cover more elements.

However, both TabuRatio and TabuLagran have a runtime several orders of magnitude higher than
Greedy, OblSwap and NonOblSwap. Not to mention the dependency of TabuLagran on Lagran
makes its runtime longer than TabuRatio. So TabuLagran is only preferred if one wants high perfor-
mance on MCPBC instances that resemble pay-for-reach costs. If one wants a lower runtime, TabuRatio
is the next best option, followed by OblSwap and Greedy. Also TabuLagran is not desired in MCPBC
instances with random costs, as TabuRatio performs similar and has a lower runtime.

All considered algorithms, even the ones without an approximation ratio, have a high performance ratio: the
average performance ratio was strictly greater than 95%. This implies that simple algorithms as Greedy
or OblSwap can be desired if one is willing to sacrifice performance for speed. If not, one could employ the
more involved algorithms, such as Tabu, TabuRatio and TabuLagran, to gain some performance at the
cost of a longer runtime. This runtime can be several orders of magnitude greater.

Our contribution to this topic is that we have tested several algorithms in concrete maximum coverage
problems. We showed that a higher approximation ratio does not guarantee a higher actual performance.
This suggests that careful thought should be put into choosing an algorithm for solving maximum coverage
problems. This issue is further emphasized by the fact that all the highest-performing algorithms also have
the longest runtimes. Furthermore, we introduced two relaxation-based algorithms to solve the budgeted
maximum coverage problem. This idea could be further expanded upon by generalizing the relaxed con-
straint in order to solve maximum coverage problems with more complex constraints. The relaxation-based
algorithms could also be modified and analyzed to improve their performance further.

20

References

Calinescu, G., Chekuri, C., Pál, M., & Vondrák, J. (2011). “Maximizing a monotone submodular function
subject to a matroid constraint.” SIAM Journal on Computing , 40 (6), 1740–1766.

Chekuri, C., & Kumar, A. (2004). “Maximum coverage problem with group budget constraints and applica-
tions.” In Approximation, randomization, and combinatorial optimization. algorithms and techniques
(pp. 72–83). Springer.

Feige, U. (1998). “A threshold of ln n for approximating set cover.” Journal of the ACM (JACM), 45 (4),
634–652.

Filmus, Y., & Ward, J. (2012). “The power of local search: Maximum coverage over a matroid.” In Stacs’12
(29th symposium on theoretical aspects of computer science) (Vol. 14, pp. 601–612).

Glover, F. (1989). “Tabu search—part I.” ORSA Journal on computing , 1 (3), 190–206.
Held, M., & Karp, R. M. (1970). “The traveling-salesman problem and minimum spanning trees.” Operations

Research, 18 (6), 1138–1162.
Held, M., & Karp, R. M. (1971). “The traveling-salesman problem and minimum spanning trees: Part II.”

Mathematical programming , 1 (1), 6–25.
Held, M., Wolfe, P., & Crowder, H. P. (1974). “Validation of subgradient optimization.” Mathematical

programming , 6 (1), 62–88.
Hochbaum, D. S., & Pathria, A. (1998). “Analysis of the greedy approach in problems of maximum k-

coverage.” Naval Research Logistics, 45 (6), 615–627.
Khuller, S., Moss, A., & Naor, J. S. (1999). “The budgeted maximum coverage problem.” Information

Processing Letters, 70 (1), 39–45.
Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). “An analysis of approximations for maximizing

submodular set functions—I.” Mathematical Programming , 14 (1), 265–294.
Resende, M. G. (1998). “Computing approximate solutions of the maximum covering problem with GRASP.”

Journal of Heuristics, 4 (2), 161–177.

21

A Proofs

This section shows various proofs that are referenced in the main text.

Lemma 1. MCP is a special case of the MCPM

Proof. The tuple (F ,F) with F = {Y ⊆ F : |Y| ≤ n} is the uniform matroid of rank n. Clearly, F is equal
to the collection of feasible sets for the MCP. Therefore, MCP is a special case of the MCPM.

Lemma 2. MCP is a special case of the MCPBC

Proof. For the MCPBC, define c(S) = 1 for all S ∈ F . Then, F = {Y ⊆ F : c(Y) ≤ n} = {Y ⊆ F :∑
S∈Y c(S) ≤ n} = {Y ⊆ F :

∑
S∈Y 1 ≤ n} = {Y ⊆ F : |Y| ≤ n}. As this equals the collection of feasible

sets for the MCP, MCP is a special case of MCPBC.

Lemma 3. MCPBC is not a special case of MCPM

Proof. To prove this, we construct a specific instance of the MCPBC and show that (F ,F) is not a matroid.
Define U = {x, y, z}, S1 = {x}, S2 = {y} and S3 = {z}. Set w(x) = w(y) = w(z) = 1, c(S1) = c(S2) = 1 and
c(S3) = 3. Then F =

{
{}, {S1}, {S2}, {S3}, {S1, S2}

}
. Let us take A = {S1, S2} and B = {S3}. Obviously,

2 = |A| > |B| = 1 and A,B ∈ F. However, there does not exist an X ∈ A \ B = {S1, S2} such that
B ∪ {X} ∈ F, as {S1, S3} /∈ F and {S2, S3} /∈ F. So, F violates Property 3 of a matroid (Section 3.4) and
thus (F ,F) is not a matroid. Therefore, MCPBC is not a special case of MCPM.

Lemma 4. MCPM is not a special case of MCPBC

Proof. To prove this, we construct a specific example of the MCPM. Consider a partition matroid m with
F1 = {S1, S2}, F2 = {S1, S2} and n1 = n2 = 1. Then,
F =

{
{}, {S1}, {S2}, {S3}, {S4}, {S1, S3}, {S2, S3}, {S1, S4}, {S2, S4},

}
. If we assume a cost function c : F →

R≥0 such that F = {Y ⊆ F : c(Y) ≤ n} exists, then it most hold that c(S1)+c(S3) ≤ n and c(S1)+c(S2) ≥ n.
Thus, c(S2) ≥ c(S3). However, combining this with c(S2) + c(S4) ≤ n, we get c(S3) + c(S4) ≤ n, but
{S3, S4} /∈ F. Thus such a function c does not exist and thus MCPM is not a special case of MCPBC.

Lemma 5. OblSwap and NonOblSwap with k = 1 achieve approximation ratios of at most 50% on the
MCPBC

Proof. To prove this, we construct a specific instance of the MCPBC. Let us have U = {a, b, x} with
w(a) = w(b) = 1 and w(x) = ε > 0. The sets are defined as S1 = {a, x}, S2 = {b, x}, S3 = {a} and
S4 = {b} with costs c(S1) = c(S2) = 1 + γ and c(S3) = c(S4) = 1. The value γ is chosen such that 1+ε

1+γ > 1

(thus 0 < γ < ε). The budget is n = 2. Clearly, the (cost-adjusted) greedy algorithm gives us the solution
Y = {S1} or Y = {S2} with weight 1 + ε, whereas the optimal solution is Y∗ = {S3, S4} with weight
2. As every feasible one-exchange from Y results in a weight decrease (and also a decrease of f(Y)), the
non-oblivious swap local search cannot improve on the solution found by the greedy algorithm. In this case,
the non-oblivious and oblivious swap local search achieves a performance ratio of 1+ε

2 , which becomes 1
2 as

we can make ε arbitrarily small. This proves thus that, if the non-oblivious and oblivious swap local search
has an approximation ratio on the MCPBC, it is at most 1

2 .

Lemma 6. If X is the result of an α-approximation algorithm to maximize wλ, then 1
αw

λ(X) forms an
upper bound on the maximal feasible weight of the MCPBC

Proof. Let wλ : 2F → R be a non-monotone submodular set function. The function is defined as wλ(Y) =
w(Y)+λ(n− c(Y)). Let us denote Y∗ = arg max

Y∈F
w(Y) as the optimal solution to the MCPBC. Furthermore,

we define Yλ = arg max
Y∈FR

wλ(Y) as the optimal solution to the relaxation, given the multiplier λ.

Suppose we have found a solution X ∈ FR by using an α-approximation algorithm for maximizing wλ. By
definition of an α-approximation algorithm, lλ(X) ≥ αwλ(Yλ). Furthermore, as Yλ is the optimal solution,
it holds that wλ(Yλ) ≥ lλ(Y∗). Also, as Y∗ ∈ F, it means that c(Y∗) ≤ n, and thus that wλ(Y∗) ≥ w(Y∗).

Combining these four inequalities and dividing by α, we get 1
αw

λ(X) ≥ wλ(Yλ) ≥ wλ(Y∗) ≥ w(Y∗).
Thus 1

αw
λ(X) forms an upper bound on the maximal feasible weight.

22

B Parameter Tuning

This section shows additional graphs and motivations for the chosen parameters of the considered algorithms.
We first discuss the parameters for Lagran. Then, we discuss the parameters of Tabu and its derivatives,
TabuRatio and TabuLagran. The only parameter of Lagran we have to determine is NL, the number
of iterations Lagran updates its multiplier before terminating. Figure 1 gives the performance ratios and
fractions of optimal solutions of Lagran for different values of NL. These numerical values were obtained
by averaging 100 random cost MCPBC instances with |U | = 100 and averaging over all four parameter cases
(as described in Section 5.1).

Performance Ratio Fraction Optimal

0 10 20 30 40 50 60 70 80 90 100

NL

0.9961

0.9961

0.9962

0.9962

0.9962

0.9962

0.9962

0.9963

0.9963

0.9963

0.9963

0.9963

0.9964

P
er

fo
rm

an
ce

 R
at

io

0.568

0.570

0.572

0.574

0.576

0.578

0.580

0.582

0.584

0.586

0.588

F
raction

 O
ptim

a
l

(a) |U | = 100, random costs MCPBC

Performance Ratio Fraction Optimal

0 10 20 30 40 50 60 70 80 90 100

NL

0.9963

0.9963

0.9964

0.9964

0.9964

0.9964

0.9964

0.9965

0.9965

0.9965

0.9965

0.9965

P
er

fo
rm

an
ce

 R
at

io
0.690

0.691

0.692

0.693

0.694

0.695

0.696

0.697

0.698

0.699

0.700

F
raction

 O
ptim

a
l

(b) |U | = 100, pay-for-reach costs MCPBC

Figure 1: Performance ratios and fractions of optimal solutions of Lagran for different values of NL

As we can observe from Figure 1, whenever NL is larger than 20, the lines flatten out. Also, as the running
time is approximately linear with respect to NL, we set NL to 50, compromising performance for speed. In
our opinion, the additional performance of increasing NL to 100 is not worth the extra runtime.

Next, we discuss the parameter settings for Tabu. The algorithm has three parameters that need to be
tuned: NI , L and NT . For the latter, NT , it seems that a value larger than 10 does not influence the found
solutions at all. To be sure NT is set high enough, we set it to 50. Figure 2 shows the influence of NI on
the MCPBC with |U | = 100, averaged over the four parameter cases and 100 random instances each.

Performance Ratio Fraction Optimal

0 2 4 6 8 10 12 14 16 18 20

NI

0.9860

0.9880

0.9900

0.9920

0.9940

0.9960

0.9980

P
er

fo
rm

an
ce

 R
at

io

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0.550

0.600

0.650

0.700

0.750

F
raction

 O
ptim

a
l

(a) |U | = 100, random costs MCPBC

Performance Ratio Fraction Optimal

0 2 4 6 8 10 12 14 16 18 20

NI

0.9900

0.9905

0.9910

0.9915

0.9920

0.9925

0.9930

0.9935

0.9940

P
er

fo
rm

an
ce

 R
at

io

0.490

0.500

0.510

0.520

0.530

0.540

0.550

0.560

0.570

0.580

0.590

0.600

0.610

F
raction

 O
ptim

a
l

(b) |U | = 100, pay-for-reach costs MCPBC

Figure 2: Performance ratios and fractions of optimal solutions of Tabu for different values of NI , with
L = 50 and NT = 50

23

Figure 2a shows a very straightforward relation between NI and performance: the higher I is, the lower the
performance is. Therefore we choose NI = 0 for Tabu with the random costs MCPBC. This relationship is
not at all visible in Figure 2b, however. In fact, it seems the performance increases with NI . For this reason,
we set NI = 8 for Tabu with the pay-for-reach costs MCPBC.

Now, we determine the influence of L on the performance of Tabu. Figure 3 shows the influence of L
on the MCPBC with |U | = 100, averaged over the four parameter cases and 100 random instances each.
Figure 3 shows the same relationship between L and performance for both the random costs and pay-for-
reach costs. That is, the performance increases when L increases and the graphs show diminishing returns.
This makes sense, as a larger tabu list forces the tabu search to cycle less and consider more solutions, which
could lead to escaping more local optima. As the returns seems to start diminishing if L is larger than 50,
we set L equal to 50 for Tabu. As this reasoning also holds for TabuRatio and TabuLagran, L will be
set to 50 for those algorithms as well. Additionally, we set L = 50 for Tabu on the MCP and MCPM, as
the reasoning still holds for these cases.

Performance Ratio Fraction Optimal

0 10 20 30 40 50 60 70

L

0.9955

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

P
er

fo
rm

an
ce

 R
at

io

0.540

0.560

0.580

0.600

0.620

0.640

0.660

0.680

0.700

0.720

0.740

0.760

F
raction

 O
ptim

a
l

(a) |U | = 100, NI = 0, random costs MCPBC

Performance Ratio Fraction Optimal

0 10 20 30 40 50 60 70

L

0.9870

0.9880

0.9890

0.9900

0.9910

0.9920

0.9930

P
er

fo
rm

an
ce

 R
at

io

0.480

0.500

0.520

0.540

0.560

0.580

0.600

0.620

0.640

0.660

0.680

F
raction

 O
ptim

a
l

(b) |U | = 100, NI = 8, pay-for-reach costs MCPBC

Figure 3: Performance ratios and fractions of optimal solutions of Tabu for different values of L, with
NT = 50

Now we have determined all the parameter of Tabu. Next, we will discuss the parameter settings of Tabu-
Ratio and TabuLagran. As TabuRatio and TabuLagran only differ from Tabu in their relaxation,
we assume NT and L can be set to the same values as for Tabu. Thus, we set NT = 50 and L = 50 for
TabuRatio and TabuLagran. It is still of interest to investigate the influence of NI on TabuRatio and
TabuLagran. Figure 4 shows the performance results of TabuRatio on 100 random problem instances,
averaged over the four parameter cases. Likewise, Figure 5 shows the same statistics for TabuLagran.

24

Performance Ratio Fraction Optimal

0 2 4 6 8 10 12 14 16 18 20

NI

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998
P

er
fo

rm
an

ce
 R

at
io

0.760

0.780

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

F
raction

 O
ptim

a
l

(a) |U | = 100, random costs MCPBC

Performance Ratio Fraction Optimal

0 2 4 6 8 10 12 14 16 18 20

NI

0.9900

0.9905

0.9910

0.9915

0.9920

0.9925

0.9930

0.9935

0.9940

0.9945

0.9950

0.9955

P
er

fo
rm

an
ce

 R
at

io

0.580

0.600

0.620

0.640

0.660

0.680

0.700

0.720

0.740

0.760

F
raction

 O
ptim

a
l

(b) |U | = 100, pay-for-reach costs MCPBC

Figure 4: Performance ratios and fractions of optimal solutions of TabuRatio for different values of NI ,
with NT = 50 and L = 50

Performance Ratio Fraction Optimal

0 2 4 6 8 10 12 14 16 18 20

NI

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

P
er

fo
rm

an
ce

 R
at

io

0.780

0.800

0.820

0.840

0.860

0.880

0.900
F

raction
 O

ptim
a

l

(a) |U | = 100, random costs MCPBC

Performance Ratio Fraction Optimal

0 2 4 6 8 10 12 14 16 18 20

NI

0.9900

0.9910

0.9920

0.9930

0.9940

0.9950

0.9960

0.9970

0.9980

0.9990

P
er

fo
rm

an
ce

 R
at

io

0.600

0.650

0.700

0.750

0.800

0.850

F
raction

 O
ptim

a
l

(b) |U | = 100, pay-for-reach costs MCPBC

Figure 5: Performance ratios and fractions of optimal solutions of TabuLagran for different values of NI ,
with NT = 50 and L = 50

As can been seen from Figures 4 and 5, choosing NI = 0 leads to inferior performance and the performance
stays relatively constant for NI > 0. Choosing NI = 0 renders the relaxation of TabuRatio and TabuLa-
gran ineffective, which reduces these methods back to Tabu. That the relaxation forces the local search to
stay close to feasibility probably explains why the performance does not differ much for all NI > 0. As there
is no performance increase for NI > 1, we choose NI = 1 for both pay-for-reach costs and random costs and
for TabuRatio and TabuLagran. It is worth noting that the choice for NI is more stable for TabuRatio
and TabuLagran than for Tabu, where the cost method influenced the choice of NI .

25

C Additional Tables

This section contains the tables of all the numerical results. The column “Perf. Ratio” contains the mean
and standard deviation of the performance ratio. “Fr. Opt.” denotes the fraction of instances the heuristic
returned an optimal solution. “Runtime” denotes the average running time, in seconds.

C.1 Results for the MCP

The following tables summarize all the MCP instance results for the different methods.

Table 7: MCP instance results for F = 0.5|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9987 (0.0058) 0.9190 0.0004 0.9969 (0.0071) 0.7190 0.0014 0.9942 (0.0082) 0.4420 0.0032
OblSwap 0.9990 (0.0051) 0.9350 0.0009 0.9980 (0.0056) 0.7960 0.0036 0.9961 (0.0066) 0.5680 0.0080
NonOblSwap 0.9957 (0.0132) 0.8240 0.0016 0.9916 (0.0148) 0.5360 0.0067 0.9879 (0.0158) 0.2900 0.0210
Tabu 0.9999 (0.0010) 0.9910 0.0347 0.9996 (0.0021) 0.9450 0.1366 0.9989 (0.0035) 0.8390 0.2867

Table 8: MCP instance results for F = 0.8|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9956 (0.0093) 0.6820 0.0011 0.9915 (0.0096) 0.2760 0.0043 0.9851 (0.0108) 0.0610 0.0115
OblSwap 0.9971 (0.0072) 0.7430 0.0027 0.9945 (0.0076) 0.4030 0.0111 0.9905 (0.0085) 0.1350 0.0367
NonOblSwap 0.9846 (0.0224) 0.4600 0.0056 0.9768 (0.0203) 0.1180 0.0312 0.9669 (0.0188) 0.0090 0.1317
Tabu 0.9995 (0.0027) 0.9320 0.1010 0.9981 (0.0043) 0.7090 0.3909 0.9958 (0.0057) 0.3800 1.1413

Table 9: MCP instance results for F = 0.5|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9964 (0.0076) 0.6790 0.0010 0.9911 (0.0092) 0.2370 0.0036 0.9846 (0.0101) 0.0350 0.0094
OblSwap 0.9980 (0.0052) 0.7690 0.0024 0.9952 (0.0065) 0.4050 0.0101 0.9921 (0.0073) 0.1580 0.0339
NonOblSwap 0.9839 (0.0200) 0.3490 0.0047 0.9713 (0.0205) 0.0540 0.0290 0.9581 (0.0183) 0.0020 0.1180
Tabu 0.9997 (0.0016) 0.9350 0.0879 0.9986 (0.0035) 0.7360 0.3321 0.9968 (0.0046) 0.4350 0.8764

Table 10: MCP instance results for F = 0.8|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9882 (0.0110) 0.1930 0.0031 0.9798 (0.0102) 0.0070 0.0125 0.9776 (0.0085) 0.0000 0.0320
OblSwap 0.9931 (0.0082) 0.3460 0.0085 0.9887 (0.0079) 0.0500 0.0506 0.9876 (0.0064) 0.0080 0.1760
NonOblSwap 0.9547 (0.0240) 0.0160 0.0295 0.9376 (0.0183) 0.0000 0.2074 0.9347 (0.0154) 0.0000 0.8910
Tabu 0.9979 (0.0045) 0.6670 0.2822 0.9938 (0.0062) 0.1900 1.1806 0.9918 (0.0056) 0.0320 3.0679

26

C.2 Results for the MCPPM - Random Partitioning

The following tables summarize all the random partitioning MCPPM instance results for the different meth-
ods.

Table 11: Random Partitioning MCPPM instance results for F = 0.5|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9847 (0.0192) 0.3450 0.0009 0.9840 (0.0179) 0.2640 0.0017 0.9798 (0.0150) 0.0640 0.0056
OblSwap 0.9864 (0.0179) 0.3770 0.0018 0.9859 (0.0169) 0.3080 0.0035 0.9830 (0.0130) 0.0830 0.0116
NonOblSwap 0.9792 (0.0255) 0.3010 0.0025 0.9798 (0.0222) 0.2450 0.0048 0.9725 (0.0198) 0.0590 0.0216
Tabu 0.9951 (0.0101) 0.6720 0.0589 0.9935 (0.0114) 0.5580 0.1163 0.9905 (0.0100) 0.2460 0.3671

Table 12: Random Partitioning MCPPM instance results for F = 0.8|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9832 (0.0179) 0.2570 0.0015 0.9795 (0.0147) 0.0520 0.0057 0.9745 (0.0142) 0.0160 0.0158
OblSwap 0.9844 (0.0171) 0.2760 0.0030 0.9817 (0.0139) 0.0720 0.0117 0.9787 (0.0125) 0.0200 0.0360
NonOblSwap 0.9740 (0.0264) 0.2230 0.0044 0.9661 (0.0226) 0.0320 0.0219 0.9574 (0.0207) 0.0100 0.0845
Tabu 0.9925 (0.0119) 0.5130 0.0982 0.9886 (0.0112) 0.1810 0.3648 0.9854 (0.0104) 0.0600 1.0337

Table 13: Random Partitioning MCPPM instance results for F = 0.5|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9802 (0.0189) 0.1920 0.0017 0.9754 (0.0176) 0.0430 0.0056 0.9702 (0.0158) 0.0080 0.0135
OblSwap 0.9847 (0.0157) 0.2560 0.0034 0.9809 (0.0144) 0.0690 0.0121 0.9774 (0.0129) 0.0160 0.0333
NonOblSwap 0.9702 (0.0237) 0.1130 0.0059 0.9607 (0.0214) 0.0150 0.0261 0.9510 (0.0197) 0.0000 0.0833
Tabu 0.9935 (0.0097) 0.5010 0.1096 0.9897 (0.0103) 0.2020 0.3465 0.9861 (0.0102) 0.0600 0.8421

Table 14: Random Partitioning MCPPM instance results for F = 0.8|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9724 (0.0193) 0.0330 0.0047 0.9676 (0.0140) 0.0010 0.0193 0.9692 (0.0105) 0.0000 0.0508
OblSwap 0.9778 (0.0159) 0.0530 0.0102 0.9754 (0.0120) 0.0020 0.0513 0.9778 (0.0085) 0.0000 0.1770
NonOblSwap 0.9480 (0.0246) 0.0050 0.0253 0.9320 (0.0193) 0.0000 0.1647 0.9304 (0.0152) 0.0000 0.6637
Tabu 0.9879 (0.0117) 0.1740 0.2945 0.9825 (0.0101) 0.0130 1.2237 0.9820 (0.0079) 0.0000 3.3321

27

C.3 Results for the MCPPM - Radial Partitioning

The following tables summarize all the radial partitioning MCPPM instance results for the different methods.

Table 15: Radial Partitioning MCPPM instance results for F = 0.5|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9957 (0.0099) 0.7260 0.0009 0.9949 (0.0102) 0.6500 0.0018 0.9897 (0.0110) 0.2480 0.0058
OblSwap 0.9968 (0.0084) 0.7810 0.0018 0.9963 (0.0088) 0.7210 0.0037 0.9927 (0.0094) 0.3780 0.0123
NonOblSwap 0.9907 (0.0173) 0.5960 0.0023 0.9919 (0.0146) 0.5550 0.0046 0.9832 (0.0173) 0.1760 0.0221
Tabu 0.9991 (0.0047) 0.9370 0.0592 0.9988 (0.0053) 0.8920 0.1214 0.9966 (0.0066) 0.6480 0.3727

Table 16: Radial Partitioning MCPPM instance results for F = 0.8|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9928 (0.0132) 0.6140 0.0015 0.9887 (0.0122) 0.2320 0.0060 0.9820 (0.0123) 0.0400 0.0166
OblSwap 0.9943 (0.0119) 0.6690 0.0030 0.9917 (0.0105) 0.3430 0.0125 0.9880 (0.0103) 0.1100 0.0408
NonOblSwap 0.9877 (0.0194) 0.5090 0.0040 0.9789 (0.0196) 0.1390 0.0239 0.9686 (0.0190) 0.0180 0.1004
Tabu 0.9982 (0.0069) 0.8720 0.0982 0.9963 (0.0071) 0.5920 0.3724 0.9935 (0.0082) 0.3150 1.0444

Table 17: Radial Partitioning MCPPM instance results for F = 0.5|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9933 (0.0106) 0.5030 0.0018 0.9881 (0.0108) 0.1650 0.0058 0.9818 (0.0116) 0.0170 0.0143
OblSwap 0.9957 (0.0083) 0.6260 0.0035 0.9932 (0.0087) 0.3530 0.0132 0.9903 (0.0085) 0.1290 0.0396
NonOblSwap 0.9808 (0.0203) 0.2470 0.0056 0.9715 (0.0198) 0.0470 0.0272 0.9620 (0.0185) 0.0020 0.0952
Tabu 0.9986 (0.0047) 0.8600 0.1099 0.9969 (0.0059) 0.6210 0.3498 0.9950 (0.0064) 0.3720 0.8528

Table 18: Radial Partitioning MCPPM instance results for F = 0.8|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9851 (0.0131) 0.1660 0.0049 0.9770 (0.0113) 0.0050 0.0195 0.9747 (0.0094) 0.0000 0.0517
OblSwap 0.9901 (0.0110) 0.2940 0.0107 0.9863 (0.0093) 0.0430 0.0587 0.9852 (0.0075) 0.0080 0.2092
NonOblSwap 0.9600 (0.0233) 0.0330 0.0265 0.9422 (0.0188) 0.0000 0.1844 0.9369 (0.0153) 0.0000 0.7828
Tabu 0.9954 (0.0075) 0.5420 0.2968 0.9909 (0.0082) 0.1310 1.1723 0.9890 (0.0066) 0.0190 3.2215

28

C.4 Results for the MCPBC - Random Costs

The following tables summarize all the random costs MCPBC instance results for the different methods.

Table 19: Random Costs MCPBC instance results for F = 0.5|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9814 (0.0206) 0.3330 0.0012 0.9839 (0.0141) 0.1780 0.0047 0.9845 (0.0125) 0.1280 0.0111
OblSwap 0.9945 (0.0121) 0.7060 0.0022 0.9945 (0.0089) 0.5020 0.0090 0.9940 (0.0086) 0.4120 0.0211
NonOblSwap 0.9889 (0.0199) 0.5840 0.0025 0.9829 (0.0185) 0.2520 0.0106 0.9787 (0.0175) 0.1370 0.0270
Tabu 0.9988 (0.0056) 0.9080 0.0384 0.9982 (0.0045) 0.7660 0.1489 0.9977 (0.0048) 0.6730 0.3242
Lagran 0.9962 (0.0089) 0.7460 0.1881 0.9968 (0.0058) 0.5920 0.9410 0.9968 (0.0051) 0.5210 2.4557
TabuRatio 1.0000 (0.0005) 0.9920 0.0528 0.9998 (0.0012) 0.9640 0.2318 0.9997 (0.0016) 0.9140 0.5599
TabuLagran 0.9997 (0.0022) 0.9690 0.2281 0.9995 (0.0021) 0.9030 1.1239 0.9994 (0.0020) 0.8530 2.9034
CostGreedy∗ 1.0000 (0.0000) 1.000 30.0219 - (-) - - - (-) - -

∗: Calculated with 100 observations.

Table 20: Random Costs MCPBC instance results for F = 0.8|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9836 (0.0148) 0.1830 0.0040 0.9830 (0.0115) 0.0610 0.0157 0.9822 (0.0097) 0.0180 0.0432
OblSwap 0.9931 (0.0104) 0.4700 0.0074 0.9917 (0.0089) 0.2360 0.0294 0.9903 (0.0080) 0.0940 0.0830
NonOblSwap 0.9775 (0.0232) 0.2340 0.0090 0.9677 (0.0204) 0.0400 0.0422 0.9604 (0.0174) 0.0040 0.1398
Tabu 0.9980 (0.0051) 0.7670 0.1239 0.9966 (0.0055) 0.5100 0.4417 0.9958 (0.0050) 0.3030 1.2534
Lagran 0.9964 (0.0064) 0.5860 0.7307 0.9964 (0.0047) 0.3910 3.2392 0.9961 (0.0041) 0.2300 9.5979
TabuRatio 0.9998 (0.0016) 0.9580 0.1843 0.9992 (0.0021) 0.7920 0.7496 0.9983 (0.0029) 0.5550 2.2899
TabuLagran 0.9995 (0.0023) 0.9160 0.8742 0.9993 (0.0022) 0.7920 3.8369 0.9988 (0.0025) 0.6320 11.4837
CostGreedy∗ 0.9998 (0.0012) 0.9300 572.952 - (-) - - - (-) - -

∗: Calculated with 100 observations.

Table 21: Random Costs MCPBC instance results for F = 0.5|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9858 (0.0132) 0.2050 0.0021 0.9848 (0.0109) 0.0700 0.0078 0.9840 (0.0091) 0.0240 0.0212
OblSwap 0.9936 (0.0099) 0.4940 0.0044 0.9922 (0.0087) 0.2470 0.0166 0.9902 (0.0077) 0.1100 0.0461
NonOblSwap 0.9805 (0.0196) 0.2330 0.0054 0.9702 (0.0195) 0.0410 0.0248 0.9618 (0.0170) 0.0070 0.0879
Tabu 0.9987 (0.0042) 0.8250 0.0903 0.9978 (0.0041) 0.5930 0.3221 0.9967 (0.0043) 0.3850 0.8976
Lagran 0.9972 (0.0055) 0.6300 0.4891 0.9970 (0.0043) 0.4210 2.0385 0.9969 (0.0035) 0.2800 5.9021
TabuRatio 0.9999 (0.0010) 0.9630 0.1261 0.9995 (0.0018) 0.8640 0.5045 0.9987 (0.0026) 0.6230 1.4959
TabuLagran 0.9997 (0.0016) 0.9310 0.5818 0.9995 (0.0017) 0.8360 2.4268 0.9992 (0.0020) 0.6990 7.0486
CostGreedy∗ 0.9999 (0.0005) 0.9500 67.2553 - (-) - - - (-) - -

∗: Calculated with 100 observations.

Table 22: Random Costs MCPBC instance results for F = 0.8|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9822 (0.0117) 0.0480 0.0073 0.9813 (0.0088) 0.0030 0.0291 0.9823 (0.0074) 0.0000 0.0773
OblSwap 0.9887 (0.0099) 0.1540 0.0154 0.9869 (0.0077) 0.0150 0.0647 0.9868 (0.0063) 0.0020 0.1849
NonOblSwap 0.9561 (0.0221) 0.0140 0.0277 0.9430 (0.0174) 0.0000 0.1698 0.9400 (0.0144) 0.0000 0.7064
Tabu 0.9973 (0.0047) 0.5360 0.3174 0.9959 (0.0043) 0.2220 1.3423 0.9957 (0.0035) 0.0870 3.8566
Lagran 0.9966 (0.0043) 0.4000 1.7727 0.9960 (0.0038) 0.1720 7.1887 0.9962 (0.0029) 0.0700 16.9669
TabuRatio 0.9990 (0.0024) 0.7490 0.4692 0.9976 (0.0031) 0.3470 2.2378 0.9965 (0.0032) 0.1220 6.8586
TabuLagran 0.9991 (0.0025) 0.7850 2.1256 0.9985 (0.0025) 0.4800 8.8420 0.9978 (0.0021) 0.2120 21.9926
CostGreedy∗ 0.9994 (0.0016) 0.7600 1078.12 - (-) - - - (-) - -

∗: Calculated with 100 observations.

29

C.5 Results for the MCPBC - Pay-for-Reach

The following tables summarize all the pay-for-reach costs MCPBC instance results for the different methods.

Table 23: Pay-for-Reach MCPBC instance results for F = 0.5|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9915 (0.0199) 0.7110 0.0010 0.9843 (0.0203) 0.4180 0.0038 0.9792 (0.0199) 0.2080 0.0101
OblSwap 0.9921 (0.0192) 0.7320 0.0016 0.9879 (0.0187) 0.5270 0.0063 0.9846 (0.0179) 0.3330 0.0168
NonOblSwap 0.9901 (0.0225) 0.6990 0.0019 0.9817 (0.0249) 0.3820 0.0081 0.9753 (0.0245) 0.1950 0.0252
Tabu 0.9980 (0.0083) 0.9020 0.0328 0.9972 (0.0088) 0.8230 0.1346 0.9954 (0.0088) 0.6260 0.3461
Lagran 0.9979 (0.0081) 0.8950 0.1265 0.9978 (0.0075) 0.8420 0.5391 0.9959 (0.0084) 0.6530 1.3839
TabuRatio 1.0000 (0.0002) 0.9990 0.0372 0.9995 (0.0038) 0.9680 0.1577 0.9977 (0.0079) 0.8470 0.4379
TabuLagran 1.0000 (0.0002) 0.9990 0.1622 0.9992 (0.0048) 0.9420 0.6734 0.9984 (0.0058) 0.8420 1.7422
CostGreedy∗ 1.0000 (0.0000) 1.0000 32.1906 - (-) - - - (-) - -

∗: Calculated with 100 observations.

Table 24: Pay-for-Reach MCPBC instance results for F = 0.8|U | and n = 0.1F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9797 (0.0233) 0.3210 0.0032 0.9704 (0.0216) 0.0860 0.0128 0.9565 (0.0187) 0.0050 0.0373
OblSwap 0.9828 (0.0219) 0.3860 0.0052 0.9772 (0.0200) 0.1540 0.0220 0.9670 (0.0181) 0.0220 0.0738
NonOblSwap 0.9742 (0.0305) 0.2940 0.0068 0.9597 (0.0291) 0.0570 0.0362 0.9370 (0.0249) 0.0030 0.1485
Tabu 0.9959 (0.0090) 0.7100 0.0973 0.9914 (0.0115) 0.3930 0.4296 0.9856 (0.0123) 0.1360 1.3785
Lagran 0.9971 (0.0077) 0.7790 0.4390 0.9944 (0.0091) 0.5150 1.8861 0.9905 (0.0098) 0.2300 4.8168
TabuRatio 0.9985 (0.0062) 0.9060 0.1285 0.9907 (0.0135) 0.4620 0.5662 0.9784 (0.0166) 0.0970 1.6447
TabuLagran 0.9989 (0.0053) 0.9170 0.5483 0.9967 (0.0074) 0.6820 2.3580 0.9930 (0.0095) 0.3950 6.3422
CostGreedy∗ 1.0000 (0.0000) 1.0000 535.766 - (-) - - - (-) - -

∗: Calculated with 100 observations.

Table 25: Pay-for-Reach MCPBC instance results for F = 0.5|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9779 (0.0230) 0.2670 0.0018 0.9678 (0.0196) 0.0410 0.0071 0.9619 (0.0157) 0.0010 0.0201
OblSwap 0.9829 (0.0206) 0.3600 0.0035 0.9773 (0.0180) 0.1170 0.0162 0.9745 (0.0148) 0.0170 0.0569
NonOblSwap 0.9684 (0.0313) 0.2130 0.0053 0.9494 (0.0271) 0.0170 0.0298 0.9356 (0.0209) 0.0000 0.1340
Tabu 0.9953 (0.0093) 0.6680 0.0782 0.9901 (0.0107) 0.2930 0.3580 0.9882 (0.0097) 0.1010 1.0948
Lagran 0.9978 (0.0064) 0.7970 0.3764 0.9950 (0.0077) 0.4880 1.5228 0.9922 (0.0074) 0.1990 3.0621
TabuRatio 0.9990 (0.0043) 0.9030 0.1073 0.9913 (0.0126) 0.4720 0.4908 0.9852 (0.0139) 0.1570 1.4226
TabuLagran 0.9994 (0.0033) 0.9370 0.4659 0.9980 (0.0050) 0.7610 1.9223 0.9964 (0.0056) 0.4540 4.3598
CostGreedy∗ 1.0000 (0.0000) 1.0000 60.8512 - (-) - - - (-) - -

∗: Calculated with 100 observations.

Table 26: Pay-for-Reach MCPBC instance results for F = 0.8|U | and n = 0.2F

|U | = 100 |U | = 150 |U | = 200
Perf. Ratio Fr. Opt. Runtime (s) Perf. Ratio Fr. Op. Runtime (s) Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9615 (0.0203) 0.0130 0.0060 0.9799 (0.0114) 0.0220 0.0257 0.9994 (0.0016) 0.7950 0.0751
OblSwap 0.9719 (0.0183) 0.0470 0.0138 0.9867 (0.0094) 0.0710 0.0679 0.9997 (0.0010) 0.8960 0.1395
NonOblSwap 0.9323 (0.0278) 0.0030 0.0301 0.9430 (0.0199) 0.0000 0.2252 0.9745 (0.0121) 0.0040 1.1680
Tabu 0.9865 (0.0121) 0.1730 0.2754 0.9946 (0.0059) 0.3060 1.0478 1.0000 (0.0001) 0.9980 3.7611
Lagran 0.9924 (0.0090) 0.3390 1.0301 0.9961 (0.0046) 0.3570 0.9516 1.0000 (0.0000) 0.9990 0.1407
TabuRatio 0.9861 (0.0158) 0.3040 0.4029 0.9937 (0.0081) 0.3980 1.5710 1.0000 (0.0001) 0.9970 3.7617
TabuLagran 0.9965 (0.0070) 0.6060 1.3592 0.9978 (0.0036) 0.5810 2.4267 1.0000 (0.0000) 1.0000 3.5571
CostGreedy∗ 0.9982 (0.0038) 0.7400 958.298 - (-) - - - (-) - -

∗: Calculated with 100 observations.

30

D Results for the Test MCP Instances

This section gives the results of 50 test instances of the MCP. These instances are generated with a similar
algorithm as Algorithm 8. For these instances, 250 random points are generated on the unit square as
demand locations. The weight of each point is uniformly generated with bounds 0 and 1. Furthermore, we
place a facility at each demand point, resulting in 250 facilities. Each facility covers another demand point
if the Euclidean distance is smaller than some predefined radius. This radius is chosen such that 90% of the
demand points are covered in the optimal (IP) solution of the problem. Finally, the maximum cardinality n
of a solution is 15.

These instances can be generated with Algorithm 8, by choosing the parameters |U | = 250, F = 250,
n = 15, wmin = 0 and wmax = 1. As mentioned before, rmax is chosen such that the optimal solution covers
90% of the demand points. The numerical results of these 50 instances are given in Table 27

Table 27: Test MCP instance results

Perf. Ratio Fr. Opt. Runtime (s)

Greedy 0.9649 (0.0123) 0.0000 0.0277
OblSwap 0.9821 (0.0108) 0.0000 0.1919
NonOblSwap 0.9462 (0.0237) 0.0000 0.4903
Tabu 0.9918 (0.0071) 0.1000 3.8735

31

	Introduction
	Literature
	The Maximum Coverage Problem
	Solution Methods
	Numerical Results
	Conclusion
	References
	Proofs
	Parameter Tuning
	Additional Tables
	Results for the Test [par:mcp]MCP Instances

