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Abstract

The Markowitz estimated mean-variance portfolio is proven to not work well in markets
in which the number of assets is relatively high compared to the number of historical ob-
servations, which can be attributed to the large estimation error in the sample estimates of
the expected return and covariance matrix. Chen & Yuan (2016) introduce a method that
reduces the investment universe to the subspace, spanned by the leading eigenvectors of the
sample covariance matrix. In this paper, it is shown that the sample mean and covariance
matrix can be well used in this so-called subspace mean-variance analysis. These restricted
subspace mean-variance portfolios theoretically outperform the usual unrestricted Markowitz
mean-variance portfolios, even when more sophisticated, shrinkage estimators are used to esti-
mate the mean and variance. However, empirical analysis does not support these observations.
It is shown that in the real market, the subspace method does not necessarily outperform the
estimated mean-variance porfolio which is why its practical application is not unchallenged.
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1 Introduction

Although the mean-variance portfolio strategy, following from the analysis of Markowitz
[7] [8], theoretically guarantee the highest Sharpe ratio, this strategy does not work
very well in practice. In fact, those mean-variance portfolios, whose weights are es-
timated by using the sample first and second moment of the returns, cannot consis-
tently outperform portfolios, based on naive diversification including assigning equal
weights to every possible asset. The reason behind this lack of performance can be
attributed to the estimation error of the moments of the returns, used to estimate
the expected return and the covariance matrix of the returns respectively. Espe-
cially when the number of assets, thus the number of parameters to be estimated,
grows substantially compared to the number of available historical observations, the
estimation error becomes too large, leading to substantial underperformance of the
Markowitz mean-variance portfolios.
Chen & Yuan [2] propose a solution to this problem by substantially decreasing the
number of parameters to be estimated. By restricting the investment universe to
the subspace, spanned by the leading principle components of the sample covariance
matrix of the returns, they show that the Sharpe ratio of the estimated subspace
mean-variance portfolio approaches that of the global mean-variance portfolio when
the number of historical observations and the number of assets increase, because
the loss of efficiency due to the restricted investment options is compensated by
the gains from smaller estimations errors. Based on both simulation analysis and
empirical illustrations they conclude that these proposed subspace mean-variance
portfolios perform consistently better than the naive diversification portfolios and
the sample Markowitz mean-variance portfolios. Additionally, the subspace mean-
variance portfolios can compete very well with alternative, well-established portfolio
rules.
The sample mean covariance matrix is a consistent estimator of the true mean and
covariance matrix, but suffer from huge estimation errors, especially when the num-
ber of assets increases relatively to the number of historical observations. Possible
alternatives include shrinkage estimators of the expected return and covariance ma-
trix. Shrinkage estimation attempts to find a balance between the variance and
the bias of the estimator. The idea is to shrink the unbiased sample estimator to
a shrinkage target, which bears bias, but is numerically more efficient to estimate.
Ledoit and Wolf [6] propose a shrinkage estimator which shrinks the sample covari-
ance matrix to a scalar multiple of the identity matrix. Their shrinkage estimator is
guaranteed to be invertible in markets in which the number of assets outnumber the
historical observations, which is why it is used in this application. Besides, shrinkage
estimators for the expected return and covariance matrix, based on the Bayes-Stein
estimators, are evaluated, as discussed by Jorion [4].
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Simulation analysis shows that the sample moments can be well used as estimators
for the mean and covariance matrix when applying the subspace method. With
the unrestricted investment universe, more sophisticated estimates of the expected
return and covariance matrix result in higher Sharpe ratios, compared to the usual
sample mean-variance portfolio. Still, the subspace method outperforms all esti-
mated shrinkage mean-variance portfolios, from which it can be concluded that the
estimation error is well captured by restricting the investment universe. Empirical
analysis however, shows that the subspace mean-variance portfolios do not necessar-
ily perform better than the estimated mean-variance portfolios, which can possibly
be explained by the mass of external effects in real markets.

2 Literature

When the dimension of the covariance matrix is larger than the number of ob-
servations available, the traditional sample covariance matrix is known to be not
invertible. Even when the number of number of observations exceeds the dimension,
the sample covariance matrix is invertible, but suffers from huge estimations errors.
In particular, De Miguel et al. [3] show that the Markowitz mean-variance portfolios
cannot consistently outperform naive diversified portfolios when the expected return
and covariance matrix are estimated using the sample moments.
Several solutions have been proposed in recent literature, all of which have the same
goal, namely to impose more structure on the estimator of the expected return and
the covariance matrix, which makes it better conditioned and reduces estimation er-
ror. One possibility is to assume a K-factor model for the returns, so the expected
return and covariance matrix can be estimated from this model. It holds that the
lesser the number of factors, the more structure is imposed on the estimators. How-
ever, Connor and Korajczyk [1] show that there is no consensus on the number of
factors to choose.
Shrinkage estimation has been proposed in recent literature for many applications
in portfolio management. This statistical technique is dating back to Stein [10].
Shrinkage estimators aim to shrink the numerically ill-conditioned estimator to a
well-conditioned estimator. Ledoit and Wolf [5] provide a shrinkage estimator which
shrinks the sample covariance matrix to the covariance matrix obtained from the
single-index, one-factor model of Sharpe [9]. Because the shrinkage intensity is de-
termined by minimizing a quadratic loss function, which does not need the inverse
of the covariance matrix but is measured by the distance between the shrinkage
estimator of the covariance and the true covariance matrix by means of the Frobe-
nius norm, it makes their shrinkage estimation applicable in markets in which the
number of assets exceeds the number of observations. An extension is developed by
Ledoit and Wolf [6] with an estimator which shrinkage the sample covariance matrix
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to a scalar multiple of the identity matrix, implying a constant variance matrix with
zero covariances. This estimator is also applicable in markets with the dimension of
the covariance matrix larger than the number of observations for the same reason.
Other shrinkage estimators have been proposed in literature. Well known are the
Bayes-Stein estimators. Jorion [4] developed a general Bayes-Stein estimator using
utility functions. For a given utility function, the mean-variance optimal portfolio is
shrunk towards the minimum variance portfolio. This shrinkage method results in
different mean and covariance estimators, which are described in more detail later.

3 Methodology

3.1 Restricting Investment Universe

Let r ∈ RN be the return of N risky assets in excess of the risk-free rate. Then the
Markowitz global mean-variance efficient portfolio is given by solving the equation
below:

min
w∈RN

γ

2
wTΣw −wTE (1)

with E ∈ RN and Σ ∈ RN×N denoting the mean and variance of r respectively and
with γ being the coefficient of relative risk aversion. The solution of this problem is
given by:

wmv =
1

γ
Σ−1E (2)

The Sharpe ratio of any portfolio rule with weights w

s(w) =
w′E

(w′Σw)
1
2

(3)

which is maximal for the theoretical mean-variance portfolio wmv. Because both
the population mean E and variance Σ of r are unknown, those should be estimated
from historical data.
Following the Chen & Yuan, the investment universe is limited to a linear subspace
of RN , namely P . The optimization problem now becomes:

min
w∈P

γ

2
wTΣw −wTE (4)

When the subspace is chosen such that the first d eigenvectors of the covariance
matrix of r form a basis of P , the solution of the corresponding optimization problem
is given as follows:

ŵd =
1

γ

d∑
k=1

θ−1k ηkη
T
k E (5)

where θk denotes the k-th eigenvalue of Σ and ηk its corresponding eigenvector.
As both the population mean and variance are unknown, all parameters in the above
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sum have to be estimated from historical data.
Bai and Ng (2002) propose an information criterion to estimate the number of
leading eigenvectors to use, d:

d̂ = argmin
1≤k≤kmax

{
log

(∑
j>k

θ̂k

)
+
k(N + T )

NT
log

(
NT

N + T

)}
(6)

This information criterion minimizes the variance of the returns, which is explained
by the eigenvectors that are omitted, while taking into account a penalty for the
number of eigenvectors to include. In the analysis, kmax is set equal to 8. Given the
estimate of d, the optimal portfolio weights of the subspace mean-variance portfolio
can be obtained according to equation (5).

3.2 Improved Moment Estimators

Better estimates of the covariance matrix of the excess returns reduce the necessity of
restricting the investment universe. Several models to model mean and variance are
analyzed. First of all, the sample covariance matrix is shrunk towards a shrinkage
target with slight bias but lesser variance in order to reduce the estimation error.
Secondly, the Bayes-Stein estimates of the mean and variance are investigated.

3.2.1 Linear Shrinkage Estimation

The shrinkage estimation of the covariance matrix of the excess returns is based
on the idea of Ledoit and Wolf. Because the number of observations is too small,
compared to the number of assets, the sample covariance matrix suffers from huge
estimation errors. The goal is to find an estimator which is well-conditioned for
large-dimensional covariance matrices. The identity matrix as an example of an
estimator of the covariance matrix will contain small estimation errors, but will be
heavily biased. Therefore, Ledoit and Wolf attempt to find a convex, linear combi-
nation between a scalar multiple of the identity matrix and the sample covariance
matrix. The optimal weight to allocate to the different covariance matrix estimators
is determined according to a quadratic loss function. Mathematically, this can be
written down as follows:

minimize
ρ1,ρ2

E[‖Σ* − Σ‖2]

subject to Σ* = ρ1I + ρ2S
(7)

with E[‖Σ* − Σ‖2] denoting the expected value of the squared Euclidean distance
between the shrinkage estimator of the covariance matrix Σ* and the true covariance
matrix Σ, commonly referred to as mean squared error. S and I denote the sample
covariance matrix and identity matrix respectively. To give an interpretation of
the shrinkage estimator with respect to the quadratic loss function, it is useful
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to decompose the mean squared error of the shrinkage estimator in variance and
squared bias:

E[‖Σ* − Σ‖2] = E[‖Σ* − E[Σ*]‖2] + ‖E[Σ*]− Σ‖2 (8)

The shrinkage target will contain no variance and only squared bias. For the sample
covariance matrix, the opposite holds: as the estimator is an unbiased estimator of
the covariance, the squared bias will be zero, while the variance will be substantially
positive due to large estimation errors. The idea is to find the optimal trade-off
between variance and squared bias such that the mean squared error of the shrinkage
estimator is minimal, which is the solution of the linear optimization problem, given
above. Ledoit and Wolf show that:

Σ* =
β2

δ2
µI +

α2

δ2
S,

E[‖Σ* − Σ‖2] =
α2β2

δ2

(9)

with µI denoting the shrinkage target. It can be proven that:

µ = 〈Σ, I〉, α2 = ‖Σ− µI‖2, β2 = E[‖S − Σ‖2], δ2 = E[‖S − µI‖2]

Besides, the following property holds:

α2 + β2 = δ2 (10)

to make sure that the linear combination between the sample covariance matrix S
and the shrinkage target µI is convex. To obtain the optimal shrinkage intensity, µ,
α2, β2 and δ2 need to be known. These are all scalar functions of the true covariance
matrix Σ, which mean they are in fact unknown. However, asymptotically there
exists consistent estimators for these four unknown scalar functions of Σ. Standard
asymptotics, implying that the ratio of the number of assets over the number of
observation converges to zero, do not hold. Therefore general asymptotics need to
be considered, which means that the number of assets converges at the same speed
as the number of observations, which is reasonable in large markets. Under standard
asymptotics, the sample covariance matrix is a consistent estimator, which means
that the shrinkage intensity vanishes, while under general asymptotics, it converges
to a certain constant. Therefore, the point of interest is to consistently estimate the
shrinkage estimator under general asymptotics.
Basically, the idea of general asymptotics is as follows. Let t = 1, 2, . . . be the
number of historical observations. Then Xt is an pt × t matrix of observations with
pt denoting the number of assets. Xt is assumed to be observed from a system of pt
random variables with mean zero and covariance matrix Σt. Recall that pt cannot
converge to infinity while t doesn’t. Given t, the sample covariance matrix St can
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be written as t−1XtX
′
t. The same procedure can be followed for the four scalar

functions:

µt = 〈Σt, I〉t, α2
t = ‖Σt − µtIt‖2t , β2

t = E[‖St − Σt)‖2t ], δ2t = E[‖St − µtIt‖2t ],
(11)

all of which remain bounded when t grows to infinity. Ledoit and Wolf show that
although Σt cannot be consistently estimated, the optimal shrinkage target can.
Even the shrinkage estimator Σ*

t can be estimated consistently. First of all, µt can
be consistently estimated by its so called sample counterpart:

mt = 〈St, I〉t (12)

The same holds for δ2t :
dt = ‖St −mtIt‖2t (13)

Let xtk be the kth column of Xt. Define b̄2t = 1
t2

t∑
k=1

‖xtk(xtk)′ − St‖2t .

β2
t can be consistently estimated by

b2t = min(b̄2t , d
2
t ) (14)

α2
t is then estimated by

a2t = d2t − b2t (15)

which is in accordance with equation (10). Finally it can be shown that the estimator

S*
t =

b2t
d2t
mtIt +

a2t
d2t
St (16)

is a consistent estimator of Σ*
t from which it can be concluded that under general

asymptotics, the optimal shrinkage intensity can be consistently estimated. Exten-
sive proof on all results can be found in Ledoit and Wolf [6].

3.2.2 Bayes-Stein Estimation

Below the Bayes-Stein estimators for the mean and variance of r are described.
These can also be found in Chen & Yuan.

EBS = (1− v)Ê + vÊg1

and
Σ̂BS =

(
1 +

1

T + λ

)
Σ̃ +

λ

T (T + 1 + λ)

11′

1′Σ̃−11

Where

Êg =
1′Σ̂−1Ê

1′Σ̂−11
, v =

N + 2

N + 2 + T (Ê − Êg1)′Σ̃−1(Ê − Êg1)
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and
Σ̃ =

T − 1

T −N − 2
Σ̂, λ =

N + 2

(Ê − Êg1)′Σ̃−1(Ê − Êg1)

EBS is a shrinkage estimator of the expected return which shrinks the sample mean
to the weights return of the minimum variance portfolio multiplied by the sample
mean. The shrinkage coefficient is denoted by v. The Bayes-Stein variance estimator
Σ̂BS is a linear combination of the biased variance estimator Σ̃ and the N×N matrix
of ones, scaled by a specific quadratic form of the inverse of Σ̃−1. λ is the parameter
determining the weights for the different matrices.

4 Results

In this section, the results for the replication of Chen & Yuan and the results on the
extension on their research are shown. The first two sections correspond with the
replication, the third section corresponds with the extension.

4.1 Simulation Results

Recall that r is an N dimensional vector of returns in excess of the risk-free rate. For
the simulation analysis, the Fama-French three-factor model for the excess returns
is assumed:

rj,t = β1[rM,t−rf,t]+β2SMBt+β3HMLt+εj,t j = 1, . . . , N ; t = 1, . . . , T (17)

The factors are sampled from a multivariate normal distribution with mean and
covariances extracted from July 1963 to August 2007 monthly data on the three fac-
tors (available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html). The factor loadings are sampled from a uniform distribution
between 0.9 and 1.2, -0.3 and 1.4 and -0.5 and 0.9 for the factors of the market port-
folio, the Small-Minus-Big portfolio and the High-Minus-Low portfolio respectively.
The error covariance matrix Σε is assumed to be diagonal with elements uniformly
sampled between 0.1 and 0.3. Firstly, the effect of the dimension d is shown. Below
the results are shown for N = 25 and 100 assets for interval lengths T = 60, 120

and 240 months.
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Figure 1: Simulation results from a three-factor model. For each combination of market size
N=25 or 100, and estimation window T=60, 120, or 240 months, the relative efficiency, measured
by the ratio between the Sharpe ratio relative to that of the true mean–variance portfolio, of ŵd

is reported here for different choices of d. The results are averaged over 1000 simulated data sets
for each plot. The grey horizontal lines correspond to the averaged relative efficiency for the naive
diversification.

Clearly, the relative efficiency is maximal for d = 3, which is in accordance with
the assumption that the returns are generated according with a three-factor model.
Furthermore, it can be seen that the the subspace mean-variance portfolio provides
significant better Sharpe ratios when choosing d not too small or too large. For d = 1

or 2, the first d eigenvectors cannot capture enough information on the covariance
matrix and for too large d, the estimation error becomes too large. In the figure 2,
the Sharpe ratio is plotted for different number of assets. Four time intervals are
considered: T = 60, 120, 240 and 360 months. When, the number of assets increases,
the estimation errors increases dramatically for the sample mean-variance portfolios.
Clearly, the estimated subspace mean-variance portfolio outperforms the sample
mean-variance portfolio and the portfolio of naive diversification. Allthough it is not
clearly visible in the figure, it appears that the estimated subspace mean-variance
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portfolio converges slowly to the true mean-variance portfolio as T increases. For
increasing N and T , the difference between the true mean-variance portfolio and
the estimated subspace mean-variance portfolio declines.

Figure 2: Simulation results based on three-factor model: Data were simulated from a three-
factor model. Sharpe ratio of the true mean–variance portfolio (circles), estimated subspace
mean–variance portfolio (triangles), sample mean–variance portfolio (pluses) and naive portfo-
lio rule (crosses) are presented for different estimating window size and market size. Note that the
true mean–variance portfolio is not feasible and it is added for reference only.

To address the stability of the weights of the subspace mean-variance portfolio,
below the weights of the estimated subspace mean-variance portfolio together with
the weights of the sample mean-variance portfolio and the true mean-variance port-
folio for the case of N=100 assets and T=120 months historical data are depicted.
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Figure 3: Stability — the left panel compares the holdings of the estimated mean–variance
portfolio, represented by the black lines, and subspace mean–variance portfolio, represented by
the red crosses. The right panel compares the holdings of the estimated subspace mean–variance
portfolio with those of the true global mean–variance portfolio.

Clearly the results in figure 3 show that the portfolio holdings of the subspace
mean-variance portfolio are much more stable than those of the sample mean-
variance portfolio. Besides, the holdings of the subspace mean-variance portfolio
have a nearly one-to-one relation with the weights of the true mean-variance portfo-
lio. To further examine the stability, the monthly rebalancing required by both the
subspace mean-variance portfolios and the sample mean-variance portfolios have
been evaluated. The rebalancing costs can be calculated by the sum of absolute
change in weights over the N assets between two subsequent months, as mathemat-
ically shown below.

Turnovert :=
N∑
j=1

|wt+1,j −wt,j|.

The results of these rebalancing for T=120 months and T=240 months are shown
in figure 4. Due to the log scale of the Y-axes of the box plots, the weights of
the subspace mean-variance portfolio seem to be less stable than the weights of the
sample mean-variance portfolio, which is misleading, because removing the log scale
shows very clear the stableness of the subspace mean-variance portfolios, contrary
to the sample mean-variance portfolios.
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Figure 4: Rebalancing cost — boxplots of the monthly rebalancing cost for the subspace
mean–variance portfolio and sample mean–variance portfolio with 100 assets over a period of
50 years. The left panel corresponds to an estimating window of 120 months whereas the right
panel 240 months. The Y-axes in both panels are in log scale for better contrast between the two
portfolio rules.

4.2 Empirical Illustrations

The setup for the empirical section follows from Chen & Yuan. The used data
consists of a 50-year period (from January 1961 to December 2010) of returns for
N = 25 and 94 portfolios. The data consists of the Fama-French 25 (5×5) and 100
(10×10) portfolios, containing equally weighted returns for the intersections of size
and book-to-market portfolios. In case, a portfolio contains missing data, it is erased
from the data set. The time frames T = 60, 120 and 240 are evaluated. For every N
and T , a rolling-window approach is used. For every t = T, . . . , 600−T , the returns
are calculated using observations rt−T , . . . , rt−1. The Sharpe ratio is then calculated
by dividing the sample mean of the 600− T observations by their sample standard
deviation. In figure 5 the results are reported. The Sharpe ratios are plotted for
different d’s, while the dashed red line corresponds with dim(P) calculated by means
of information criterion (6).
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Figure 5: Fama–French portfolio examples — historical performance of ŵd for different choices
of d over a 50 year period. The dashed horizontal lines represent the Sharpe ratio of the estimated
subspace mean–variance portfolio with dim (P) determined using information criterion (6).

Contrary to the simulation analysis, the results are less stable. This can be at-
tributed to external effects which have substantial influence on the returns. Still, it
can be seen that for low choices of d, too less variance is explained by the eigenvec-
tors. However, due to external effects, the effects of the estimation error cannot be
very clearly extracted from the figure.
Several other portfolio rules are evaluated. These are the three-fund rule of Jorion
(1986), the rule of Kan and Zhou (2007), the combination of the sample mean-
variance portfolio and the portfolio of naive diversification from Tu and Zhou (2011)
and the combination of the portfolio Kan and Zhou and the portfolio of naive diver-
sification, developed by Tu and Zhou (2011). These are abbreviated in respective
order by PJ, KZ, S&N and KZ&N. The dimension of P for the estimated subspace
mean-variance portfolio is determined using the discussed information criterion (6).
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Table 1: Comparison between the estimated subspace mean–variance portfolio and several other
popular alternatives on the Fama–French data sets

Data T Sample Naive S&N KZ KZ&N PJ Subspace MV
25 Portfolios 60 0.28 0.13 0.28 0.29 0.28 0.29 0.17

120 0.37 0.14 0.37 0.38 0.37 0.38 0.20
240 0.38 0.15 0.39 0.38 0.38 0.38 0.33

100 Portfolios 60 0.16 0.13 NA NA NA NA 0.13
120 0.21 0.14 0.23 0.21 0.22 0.22 0.20
240 0.17 0.15 0.17 0.19 0.20 0.20 0.24

The subspace mean-variance portfolio always outperforms the naive diversifica-
tion portfolio. For N = 25, it holds that the subspace mean-variance portfolio per-
forms worse than the other portfolio rules, beside naive diversification. For N = 100,
it becomes clear that the larger estimation errors result lower Sharpe ratios for the
sample mean-variance portfolio. However, for the subspace mean-variance portfolio,
the same holds. In fact, for N equals 100, the subspace mean-variance portfolio
displays a higher Sharpe ratio only for T = 240, which is not expected. The sub-
space mean-variance portfolio compares favorably well with the other 4 portfolio
rules when N = 100. In short, based on empirical data, the subspace mean-variance
portfolio is not able to consistently outperform the sample mean-variance portfolio.

4.3 Improved Moment Estimators

In this section, the results on the extension of the paper of Chen & Yuan are dis-
cussed. First of all, the performance of the subspace mean-variance portfolios mak-
ing use of the sample moments are compared to the performance of the unrestricted
mean-variance portfolios using the shrinkage estimators. Afterwards, the shrinkage
estimators are implemented in the subspace method to investigate whether further
improvement is possible.
The simulation setup is the same as discussed before: the excess returns are gen-
erated according to the three-factor Fama-French model. In figure 6, the Sharpe
ratios are portrayed for the subspace mean-variance portfolio and the unrestricted
estimated mean-variance portfolios using different shrinkage estimators for the mean
and covariance matrix. The figure on the left hand side displays Sharpe ratios for a
fixed number of assets N = 25 and increasing observation window T . The figure on
the right hand side keeps the number of observations T fixed at 360 months, while
the number of assets increases.
From the figure on the left hand side, several observations can be made. Clearly, all
portfolio rules perform better when T increases, which can be logically explained by
the convergence of the sample moments to the true moments of the returns, which
reduces estimation error. Furthermore, it can be easily concluded that the sub-
space mean-variance portfolio rule outperforms all other unrestricted mean-variance
portfolios. Thirdly, the shrinkage estimators of Ledoit and Wolf perform substan-
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tially better than the estimated mean-variance portfolios using the sample moments,
though the difference vanishes for increasing T . This can be explained by the shrink-
age intensity converging to zero, because the sample moments approach the true
moments when T grows large. Finally, it can be said that the Bayes-Stein estima-
tors perform severely bad, which is remarkable as the Bayes-Stein estimates of the
population mean and variance apparently do not shrink to the sample mean and
variance.
From the figure on the right hand side, it can generally be concluded that the merits
of diversification are way too low compared to the disadvantages due to estimation
error, in case the investment universe is not restricted. However, the subspace
method shows that increasing N for fixed T does not suffer from large estimation
errors and outperforms the other unrestricted mean-variance portfolios. For increas-
ing N , the unrestricted mean-variance portfolios display decreasing Sharpe ratios.
The shrinkage estimator of Ledoit and Wolf performs far better than the Bayes-Stein
estimators and the sample mean and variance estimates. Finally, it can be seen that
when N grows large, the Bayes-Stein estimates and the sample mean and variance
estimates perform equally bad.

Figure 6: The Sharpe ratios for increasing T (left) and N (right). The black, red, green and blue
lines correspond with the subspace mean-variance portfolio, the Bayes-Stein estimators, the linear
shrinkage estimator and the sample mean-variance portfolio.

One particular case is examined, namely when N and T converge at the same
speed. The results can be seen in figure 7. T is set equal to N + 1 to make sure
that the Bayes-Stein estimators are defined. Roughly, the same can be said about
the performance of the different portfolio rules as earlier done. A few things can be
noticed: the unrestricted mean-variance portfolios using the sample moments and
the Bayes-Stein estimates perform equally worse, while the shrinkage estimator of
Ledoit and Wolf performs much better than those two. When N and T grow at the
same speed, the benefits of the subspace method become clear as the Sharpe ratios
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are increasing, contrary to the unrestricted mean-variance portfolios.

Figure 7: The Sharpe ratios for increasing N and T . The black, red, green and blue lines corre-
spond with the subspace mean-variance portfolio, the Bayes-Stein estimators, the linear shrinkage
estimator and the sample mean-variance portfolio.

The different expected return and covariance estimators have been evaluated with
the same empirical data procedure as before. Differently than before, the estimates
of the mean and covariance matrix have been implemented in the subspace method as
well. So, for all three estimators of the mean and covariance matrix, the unrestricted
and subspace restricted portfolio Sharpe ratios have been calculated. The results
are given in figure 8.
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Figure 8: Fama–French portfolio examples — historical performance of ŵd for different choices
of d over a 50 year period. The dashed black (1), red (2) and green (3) lines correspond with the
subspace mean-variance portfolios using the sample moments (1), the Bayes-Stein estimates (2)
and the linear shrinkage estimator (3) respectively. The continuous black (1), red (2) and green
(3) lines correspond with the unrestricted estimated mean-variance portfolios using the sample
moments (1), Bayes-Stein estimates (2) and the linear shrinkage estimator (3) respectively. The
left figure on the second row does not include the Bayes-Stein estimates, because T < N in that
case.

A few observations can be made, regarding the subspace method. First of all,
it can be roughly concluded that the shrinkage estimator outperforms the usual
sample covariance matrix, though the difference declines for increasing T . This is
in accordance with the definition of the shrinkage estimator which shrinks the co-
variance estimator to the sample covariance matrix when T grows large. Secondly,
it can be seen that the Bayes-Stein estimates perform worse when T grows. This
is quite unexpected, as the above mentioned convergence should also hold for the
Bayes-Stein estimators. Apparently, this convergence is slower, compared to the
shrinkage estimator.
Regarding the unrestricted estimated mean-variance portfolios, the following can be
noted. First of all, when the market is small, the differences between the different
estimators of the expected return and covariance matrix are minor. There is no clear
estimator which provides the best results. For the larger market, it can generally be
said that the shrinkage estimator performs much better than the others.
Comparing the subspace mean-variance portfolios with the estimated mean-variance
portfolios, the following can be observed. The subspace mean-variance portfolios do

17



not necessarily outperform the estimated mean-variance portfolios. Especially, when
T is small, compared to N , the estimated mean-variance portfolios compare favor-
ably well with the subspace mean-variance portfolios, in case the shrinkage estimator
of Ledoit and Wolf is applied. For the other estimators, it holds that there is no
clear pattern on whether the subspace mean-variance portfolios provide worse or
better Sharpe ratios than the estimated mean-variance portfolios. To make a soft
remark, it can be said that given a mean and covariance estimator, it seems that
the unrestricted estimated mean-variance portfolio performs better than the its re-
stricted subspace counterpart until dim(P) chosen large enough, although this is
not generally true for all estimators.
One final comment to make is that the merits of the subspace-mean variance portfo-
lios, as demonstrated using simulation analysis, do not hold by definition in practice.
A reasonable explanation is the vast amount of noise and external effects in real data.
This leads to substantial variation in the performance of the different methods with
different mean and covariance estimators. Furthermore, the normality of the re-
turns, as assumed in the simulation analysis, is likely to be incorrect. The practical
application of the subspace method therefore remains challenged.

5 Conclusion

By restricting the investment universe to the leading eigenvectors of the covariance
matrix, the optimal Sharpe ratio can be achieved, when a three-factor model for
the excess returns is assumed. This paper has attempted to implement different
estimators of the expected returns and the covariance matrix in the restricted and
unrestricted investment universe. Simulation analysis has made clear that restricting
the investment universe by the subspace, spanned by the leading eigenvectors of the
covariance matrix, offers substantial improvement over the estimated mean-variance
portfolio with unrestricted investment universe, hereby making use of different mean
and covariance estimators. Apparently, restricting the investment universe dramati-
cally captures a lot of the estimation error in the sample mean and covariance matrix.
Though the benefits of the subspace method are clear in simulation, empirical anal-
ysis does not support this conclusion. In fact, the subspace mean-variance portfolios
do not necessarily outperform the estimated mean-variance portfolios. As stated,
external effects have major influence on the performance of the different portfolio
construction methods with different mean and covariance estimators, which makes
it hard to state to determine which moment estimators and investment universe
should be implemented in the real stock market.
Further research can be done on examining models that fit particular data well.
In this way, the practical merits of the subspace mean-variance portfolios can be
made clear. As shown, theoretically the subspace mean-variance portfolio rule out-
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performs the portfolio rule of naive diversification and the estimated mean-variance
portfolio rule, which is why it can be very well implemented, though its practical
benefits still need to demonstrated.
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