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Abstract

In many statistical methods, complications arise when the number of
dimensions d in a data set is relatively large. Due to overfitting and
multicollinearity, linear regression estimates often suffer from numeri-
cal instability when the amount of predictors is large. In this research,
I compare regularized regression methods that are developed to al-
leviate the consequences of multicollinearity and overfitting, such as
ridge regression and lasso. I combine these methods with an outlier
detection algorithm, developed by Rousseeuw & Van den Bossche
(2016), that is capable of finding outlying cells and rows in high-
dimensional data sets, taking correlations between variables into ac-
count. With this combination, high-dimensional regression estimates
are found that are robust to both rowwise and cellwise outliers.
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1 Introduction

A lot of data sets contain outliers. It is important to detect these outliers, because they may be
undesirable errors or valuable pieces of information. The term outlier typically refers to an ob-
servation (row) in the data set. Since the 1960’s, a lot of research has been done in the field of
robust statistics to develop fitting methods that are less sensitive to outlying rows in the data set.
However, recent research has shown that this rowwise outlier paradigm is no longer sufficient for
modern, high-dimensional data sets. In many cases, only a few cells in a row are outlying, whereas
the remaining cells are regular. Eliminating the influence of rows with a relatively small amount
of outlying cells results in a waste of data. This indicates that a cellwise outlier paradigm would
be more appropriate, which requires new methods to detect outlying data cells. In the first part
of this research, I re-implement such a method, called DetectDeviatingCells (Rousseeuw & Van den
Bossche, 2016), and apply it to four different data sets. The objective for this part is to replicate
the results as presented by Rousseeuw & Van den Bossche (2016).

In the second part of the research, I focus on robust regression with high-dimensional data sets.
When a dependent variable y is regressed on the explanatory variables (columns) in X, standard
linear regression would yield the estimated coefficient vector

β̂ = (X′X)−1X′y (1)

When the number of variables in X is high compared to the number of observations, two major
problems arise in standard linear regression:

1. The linear regression fit often has low bias but high variance. This problem is called over-
fitting : due to the excess of predictors, the regression fit tends to describe the random noise
in the observed data instead of the underlying relation between variables. This results in
numerical instability of the estimates: a small change in the data set can have a relatively
large influence on the estimated coefficients. Another cause of numerical instability in is mul-
ticollinearity, which occurs when predictors are highly correlated with each other. Overfitting
and multicollinearity harm the predictive performance of the regression estimates. In some
cases, prediction accuracy can be improved by sacrificing a small amount of bias in order to
decrease the variance.

2. The linear regression “freely” assigns coefficients to the predicting variables. However, in most
applications with high-dimensional data sets, it is highly unlikely that all available predictors
really influence the dependent variable. For the sake of interpretation, we sometimes want to
find a smaller set of important variables. Linear regression is unable to make such a selection.

Note that when the number of dimensions d exceeds the number of observations n, the linear
regression estimate in equation 1 is not even well-defined, because X′X is not invertible. The
problems mentioned above can (partially) be solved by using regularized regression methods such as
ridge regression, lasso and elastic net regression. These methods are also called penalized regression
methods, as they penalize the size of the coefficients in the objective function they minimize. Ridge
regression penalizes the `2-norm (sum of squared coefficients), lasso penalizes the `1-norm (sum of
absolute coefficients) and elastic net penalizes a convex combination of the `1- and `2-norm. As
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a result of the penalization, the regression estimates are shrunk towards zero. This decreases the
variance of the estimates and thus results in more stable, ‘regular’ estimates. This solves problem (1).
Lasso and elastic net also (partially) solve problem (2), as they usually yield sparse solutions. That
is, the estimated coefficient vector contains zero values. In this research, I compare the performance
of ridge regression, lasso and elastic net. Besides that, I also study the effect of applying the DDC
algorithm on the quality of the estimates. I aim to find answers to the following questions:

• How does applying the DDC algorithm on the set of dependent and independent variables
influence the performance of regularized regression estimates, in terms of prediction accuracy
and distance to the real coefficient vector?

• Which regularized regression method performs the best, in terms of prediction accuracy and
distance to the real coefficient vector, when the DDC algorithm is first applied on the set of
dependent and independent variables?

In the next section, I will discuss previous studies about cellwise outliers and regularized regression.
These two can be considered as different subjects, which I combine in this study. Afterwards, I will
discuss the DDC algorithm in more detail and compare my results with the results of Rousseeuw
& Van den Bossche (2016). Finally, I will compare different regularized regression methods by
applying them on simulated data sets.

2 Literature review

2.1 Outlying cells

In the early 1960’s, Tukey (1962) and Huber et al. (1964) introduced a contamination model which
assumed that a small fraction ε of cases in a data set is affected by abnormal noise. In the past
decades, this Tukey-Huber contamination model (THCM) has formed the foundation of most robust
statistical procedures: identifying outlying cases and downweighting their influence. However, the
model has been criticized because it assumes that the majority of the cases is free of contamination.
Another criticism is that downweighting an entire case may be inconvenient when the number of
cases is low compared to the number of variables. Consequently, alternative contamination models
have been developed, such as the (fully) independent contamination model ((F)ICM) as described
by Alqallaf, Van Aelst, Yohai, & Zamar (2009). This model assumes that the probability of a data
cell to be contaminated equals ε, independent from other cells. The researchers showed how con-
taminated cells propagate when computations are performed on the data matrix to a point where
classical robust estimators are not reliable anymore. Therefore, it is important to detect outlying
cells.

Gervini & Yohai (2002) developed an univariate filter that could detect cells that where outlying
compared to the other cells in the same column. The attention for cellwise outliers has grown quickly
in the past few years. Danilov (2010) investigated methods to identify independently contaminated
data cells, using both univariate and multivariate detecting techniques. Univariate techniques only
use information within one variable (column) to detect outliers, whereas multivariate techniques
also use the relationship between multiple variables. Danilov proposed to replace outliers by missing
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values, instead of reducing their effect with some form of Winsorization. Rowwise outliers were not
considered, in contrast to the DetectDeviatingCells algorithm developed by Rousseeuw & Van den
Bossche (2016), which I study in this research. Unlike most other existing detection algorithms,
DDC can deal with data with over 50% contaminated rows. Also, the algorithm performs well on
high-dimensional data.

2.2 Regularized regression

In the field of statistics, regularization was first used by Hoerl & Kennard (1970). Instead of
minimizing the ordinary least squares objective function

SOLS(β̂) = ||y −Xβ̂||22, (2)

ridge regression adds a penalty for the `2-norm of β̂ to the objective function. This yields:

Sridge(β̂) = ||y −Xβ̂||22 + λ||β̂||22, (3)

which reaches its minimum for
β̂ridge = (X′X + λId)

−1X′y (4)

Because of the penalization, the estimated coefficients are shrunk towards zero. λ is called the
shrinkage or penalty parameter, as it controls the strength of the shrinkage. A higher value of λ
will result in estimates closer to zero. This will increase the bias of the ridge estimate, but also
decreases its variance. For λ = 0, ridge is equivalent to ordinary least squares. For λ → ∞, ridge
will yield β̂ridge = 0. In high dimensions, it is shown that ridge performs better than OLS in terms
of predictive ability. This solves the first problem that is discussed in the introduction. However,
ridge is unable to make a variable selection. Even though the estimated coefficients are shrunk
towards zero, they will never be exactly equal to zero.

Interpretability is one of the reasons why other types of regularized regression have been developed.
Frank & Friedman (1993) proposed bridge regression, which uses the more general penalty λ||β̂||γγ .
Ridge is a special case of bridge (in case γ = 2). Breiman (1995) proposed a non-negative garrote
that was able to select important variables and compete with ridge regression in terms of prediction
accuracy. The garrote starts with OLS estimates and shrinks them by non-negative factors whose
sum is constrained. The main drawback of this method was that it did not perform well in cases
of overfit or highly correlated variables. However, Breiman’s ideas formed the foundation for the
more well known lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996). The
main difference between lasso and ridge is that lasso penalizes the `1-norm of the coefficient vector
instead of the `2-norm. Lasso minimizes the objective function

Slasso(β̂) = ||y −Xβ̂||22 + λ||β̂||1 (5)

Unlike ridge regression, there is no analytic solution for the lasso. For λ = 0, lasso is equivalent
to ordinary least squares. For λ → ∞, lasso will yield β̂lasso = 0. For all other values of λ, the
lasso estimates are different from the ridge estimates. Because of the `1-penalty, lasso shrinks the
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coefficients of some predictors to exactly zero. This is why we say that lasso yields sparse solutions.
The predictors with nonzero estimated coefficients can be seen as a set of ‘important’ variables. The
size of this set decreases for higher values of λ. Lasso also has its drawbacks. For example, when
a group of variables has high pairwise correlations, lasso tends to select only one of the variables,
which can be inappropriate in some situations. Besides that, ridge performs better in terms of
prediction accuracy than lasso when n > d and the correlations between variables are high.

Because of the limitations of lasso, Zou & Hastie (2005) proposed a new type of regularization,
the elastic net. The elastic net uses a mixture of the `1- and `2-norm as penalty. The researchers
discovered that a so-called ‘naïve’ elastic net approach, with objective function

Snaive elnet(β̂) = ||y −Xβ̂||22 + λ1||β̂||1 + λ2||β̂||22, (6)

did not perform well because it incurred a double amount of shrinkage, leading to unnecessary extra
bias. They corrected for this by setting β̂elnet = (1+λ2)β̂

naive elnet. Friedman, Hastie, & Tibshirani
(2010) used the following notation for the elastic net objective function:

Selnet(β̂) =
1

2n
||y −Xβ̂||22 + λ(α||β̂||1 +

1− α
2
||β̂||22) (7)

In this notation, α is the mixture parameter, that indicates how the `1-norm and `2-norm are mixed
in the elastic net penalty. For α = 0, the elastic net penalty equals the ridge penalty, whereas for
α = 1, the elastic net penalty equals the lasso penalty. As α increases form 0 to 1, the sparsity of
the elastic net estimator (the arg min of the objective function in (7)) monotonically increases from
zero to the sparsity of the lasso estimator. It has been shown by Zou & Hastie (2005) that elastic
net regression, in contrast to the lasso, is able to select a group of highly correlated variables in its
solution.

3 Replication of the DDC algorithm

3.1 Outlier detection algorithm

In this section, I describe the DetectDeviatingCells algorithm, developed by Rousseeuw & Van den
Bossche (2016). The algorithm consists of eight main steps, which will not all be described in full
detail here. For all details, I refer to the original paper. The underlying model of the algorithm
is that the data are generated from a multivariate gaussian distribution but afterwards some cells
were corrupted or omitted. Therefore, the variables in the data set should be numerical and take on
more than a few different values. Computations are only performed on columns that satisfy these
conditions. These columns should be approximately gaussian as well, apart from their outlying
values. Skewed data can be transformed beforehand to satisfy this condition.

In the first step, every column of the data matrix is separately standardized, using robust estimators
for the location (robLoc) and scale parameter(robScale). Details of the robLoc and robScale function
can be found in the Appendix of (Rousseeuw & Van den Bossche, 2016). The resulting standardized
matrix is called Z. In the second step, the standardized values that are higher (in absolute value)
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than the 99%-quantile of the chi-squared distribution with one degree of freedom, called c from now
on, are removed and set to NA. In short, the researchers removed the values that were anomalously
high or low, relative to the other values in their respective columns. The adjusted standardized
data matrix is called U.

In the third step, robust estimates for the correlation between each pair of variables (j, h) are
computed. The function robCorr that is used in this step is also explained in the Appendix of
(Rousseeuw & Van den Bossche, 2016). A pair (j, h) is considered to be connected when the
estimated correlation ρ̂jh between the two variables is higher than 0.5 in absolute value. For every
connected pair, the algorithm also estimates the slope bjh of a robust regression line without intercept
that predicts variable j from variable h. In step 4, these slope estimates are used to compute a
predicted value for all cells. The prediction for cell (i, j) becomes:

ẑij =

∑
h∈Hj

|ρ̂jh|bjhuih∑
h∈Hj

|ρ̂jh|
, (8)

where Hj is the set of variables that are connected with variable j, including j itself. Basically, this
prediction takes the weighted mean over all bjhuih, where corresponding absolute correlations |ρ̂jh|
function as weights. Because the predictions tend to shrink the scale of the entries, all predictions
ẑij are replaced by aj ẑij in step 5, where aj is an estimate of the slope of a robust regression line
without intercept that predicts the observed z.j from the predicted ẑ.j .

Based on the predictions from the previous steps, the algorithm computes standardized cell residuals
in step 6 as follows:

rij =
zij − ẑij

robScalei′(ẑi′j − zi′j)
(9)

Here, robScale is the same function as in step 1. All cells for which |rij | ≥ c1 are flagged as cellwise
outliers. Afterwards, all flagged cellwise outliers and all NAs are replaced by their predicted value
ẑij , which results in an imputed standardized data matrix Zimp. In step 7, the algorithm flags
rowwise outliers. For every row, the following criterion is computed:

Ti =
1

d

d∑
j=1

F (r2ij), (10)

where F is the χ2
1 cumulative distribution function. After standardizing Ti using robLoc and rob-

Scale, the algorithm flags all rows as outlying for which |Ti| exceeds c. Finally, in step 8, the imputed
matrix Zimp is unstandardized to obtain Ximp and all outlying cells and rows are reported.

3.2 Data

Before combining it with different sorts of regularized regression, I applied the outlier detection
algorithm on its own. I used four different data sets for this. The same data sets were used in the

199%-quantile of the chi-squared distribution with one degree of freedom
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original paper by Rousseeuw & Van den Bossche (2016):

• Cars: The first dataset was scraped from the Top Gear website by Alfons (2016) and contains
information about 297 different cars. The original data set contains 32 variables, but only 11
satisfy the conditions mentioned in 3.1. Five of these variables (Price, Displacement, BHP ,
Torque and TopSpeed) were logarithmically transformed as they were rather skewed. Finally,
row 70 and 96 were taken out because they contained over 50% NAs.

• TVs: The second dataset is from Philips and contains 9 characteristics about 677 TV parts
from a new production line. This data set was first used by Rousseeuw & Driessen (1999).

• Mortality: The third dataset is from the Human Mortality Database and contains mortality
rates by age among males in France, from 1816 to 2010. An earlier version was analyzed by
Hyndman & Shang (2010).

• Glass: The final dataset consists of spectra with 750 wavelengths collected on 180 archaeolog-
ical glass samples (Lemberge, De Raedt, Janssens, Wei, & Van Espen, 2000). In this case, the
number of dimensions exceeds the number of observations, but the DDC algorithm still works
in such cases. The first 13 columns were taken out, because over half of their cells contained
the same value.

4 Results replication

In this section, I present my results of applying the DDC algorithm on the four different data sets
mentioned in section 3.2. I also compare them with the results in (Rousseeuw & Van den Bossche,
2016). The presented cellmaps show which cells are flagged as outlying by the algorithm. To avoid
confusion, the flagged outlying rows are not displayed in the figures.

4.1 TopGear data set

Figure 1 shows the results of applying the outlier detection algorithm on the TopGear data set.
Only a selection of the rows is displayed. When a cell is colored red, it means that the real value
of the cell is much larger than the predicted value. For blue cells, the opposite applies. The figure
shows, for example, that the price of the BMW i3 is high compared to its other attributes. The
Mercedes-Benz G-class is both a relatively heavy and high car, but its width is low compared to the
other features. The weight of the Peugeot 107, 210 kg, is clearly an error. Also, the acceleration
time of 0.0 seconds for the Ssangyong Rodius seems very low compared to other attributes. Figure
1 shows small differences between the original implementation and my own implementation. For
the Ssangyong Rodius, the authors’ implementation found two extra outliers in comparison with
my implementation. However, the online available code for the algorithm yields the same results as
my implementation. Possibly, the authors made some small changes in the code or did extra input
checks which are not described in full detail. This could explain the difference. For the other three
data sets, the results of my implementation are exactly the same as the results in the original paper,
to the extent that it is observable. Therefore, I only show my own results for the other data sets.
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Figure 1: Cell map for a selection of cars from the TopGear data set: (left) for the original paper
(Rousseeuw & Van den Bossche, 2016) and (right) for my own implementation. Red and blue cells
correspond to respectively anomalously high and anomalously low values.
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Figure 3: Cell map for male mortality rates in
France between 1816 and 2010. For visibility, cells
are grouped in blocks of 5 by 5 and their ‘average’
color is displayed.
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4.2 Philips data set

The results for the Philips data set are displayed in figure 2. For visibility, rows are grouped in
blocks of 15. The resulting cells attain the ‘average’ color of the five merged cells. The last two
rows are not displayed, as they could not be fit in a block of 15. At the start of the production line,
a lot of outliers are detected. Especially, the values for variable X6 are anomalously low. At a later
point in the production line, variable X8 attains some anomalously low values.

4.3 Mortality data set

In figure 3, the cell map for male mortality rates in France is displayed. This time, the cells are
blocked in groups of 5 by 5. The cellmap clearly shows a relatively high mortality rate among
children between 1816 and 1860. In three later periods, the mortality rate among people between
the age of 15 and 40 is relatively high, which could be explained by the Prussian War and both
World Wars. In recent years, the mortality rates among elderly people is anomalously low. This
might be a result of medical advances.

4.4 Glass data set

Finally, the cell map for archaelogical glass samples is displayed in figure 4. The figure clearly shows
which wave lengths are anomalous for which glass samples. This provides information about the
responsible chemical elements.

g
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wave length

DDC glass

Figure 4: Cell map for spectra of wavelengths for different archaelogical glass samples. For visibility,
cells are grouped in blocks of 5 by 5.

5 Regularized regression comparison

In the second part of the research, I extend the study of the DDC algorithm by combining it with
regularized regression methods. I generate simulated contaminated data to compare the performance
of ridge regression, lasso and elastic net, both before and after applying DDC to clean the simulated
data. In this section, I describe my methodology for this simulation study.
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5.1 Considered regularization methods

I considered three regularization methods: ridge, lasso and elastic net with mixing parameter
α = 0.5. For each of the three methods, I estimated the regression coefficients both before and
after applying the DDC algorithm on the used data. The algorithm imputed the flagged outlying
cells and removed flagged outlying rows. Consequently, I ended up with six different regression
estimates for each simulated data set. The estimations were done in MATLAB, using the built-in
functions for ridge, lasso and elastic net. The ridge function computes the ridge estimator as formu-
lated in equation 4, whereas the lasso function minimizes the objective function in equation 7 for
α = 1 (lasso) and α = 0.5 (elastic net). Both MATLAB functions standardize the predictors first,
to guarantee that all coefficients are penalized on the same scale. After transforming the estimated
coefficients back to the scale of the original data, both functions return a coefficient vector β̂ and
an intercept α̂0.

To determine the penalty parameter λ for the regularization methods, I used 10-fold cross-validation.
For each estimation, the observations were randomly separated in 10 equally sized groups. Then,
each group was once used as a test set, and the concerned estimator was computed based on the
sample consisting of the other nine groups, for a given value of λ. In each iteration of the cross-
validation, the DDC algorithm was only applied on the sample of nine groups. As a result, I
obtained an estimated coefficient vector β̂λk and an estimated intercept α̂λ0,k in each iteration k. For
this estimate, I computed the median squared prediction error for the test set as follows:

MedSPE = median
i∈T

{(Yi − α̂λ0,k −Xiβ̂
λ
k )

2}, (11)

where T is the test set containing 10% of the observations. I chose the λ that yielded the estimates
with the lowest average median squared prediction error for the test set over the 10 iterations. I
used the median squared prediction error instead of the mean squared prediction error, because the
test set was not ‘cleaned’ by the DDC algorithm and the median squared prediction error gives a
robust performance measure for the prediction accuracy of the obtained estimate. For computational
reasons, the optimal λ was determined with a precision of only one significant digit. Finally, I used
the optimal value of λ to compute the concerned estimator based on the entire sample, yielding
estimate β̂. For this final estimate, the DDC algorithm was applied on the entire data set.

5.2 Data simulation

To analyze the performance of the robust regularized regression estimators, I first generated clean
multivariate gaussian data with mean vector µ = 0 and two types of covariance matrices Σ with
unit diagonal. Firstly, I implemented the algorithm described by Agostinelli et al. (2015) to gen-
erate random correlation matrices. These ‘ALYZ’ random correlation matrices yield relatively low
correlations between variables. Secondly, I used the A09 correlation matrix, where the correlation
between variable h and j is given by ρjh = (−0.9)|h−j|. This correlation matrix yields both high
and low correlations between the variables. After taking n draws from this distribution, I ended up
with an n by d data matrix, which is called X. I also generated a d by 1 coefficient vector β by
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randomly setting 10 elements2 of β equal to a random draw from the standard normal distribution
and all d− 10 other elements equal to zero. Finally, I generated a dependent variable Y as follows:

Yi = Xiβ + εi (12)

for i = 1, .., n, where Xi is the ith row of X and ε is an error term drawn from a normal distribution
with mean zero and variance σ2. σ was chosen such that the signal-to-noise ratio equalled three,
i.e.
√
β′Σβ/σ = 3. A much higher sigma-to-noise ratio would make it too easy for the regression

models to retrieve the real β, whereas a much lower ratio would make it too hard.

Then, I contaminated the clean data. To generate outlying cells, I replaced a random subset of all
n∗ (d+1) cells3 by a value γ which was varied to see its effect. Outlying rows were generated in the
direction of the eigenvector v corresponding to the smallest eigenvalue of the true covariance matrix
Σ, as the placement of outliers in this direction is the least favourable for the proposed estimator
(Agostinelli et al., 2015). I rescaled v such that v′Σ−1v = d and then replaced a random subset
of the rows in X by γv. To contaminate the corresponding elements of Y for these observations as
well, I set β∗ = −β and computed the contaminated values of Y by multiplying the corresponding
contaminated rows of X by β∗. I repeated the simulations for d ranging from 20 to 200 and n

from 10 to 100, each time with 25 replications. Note that the used values of d are relatively large
compared to the used values of n, as I am especially interested in high-dimensional data.

5.3 Evaluation of the regularization methods

I evaluated the performance of the methods in two different ways. Firstly, I computed the Euclidean
distance between the estimated coefficient vector β̂ and the real coefficient vector β:

ED(α̂0, β̂) =

√√√√α̂0
2 +

d∑
i=1

(βi − β̂i)2 (13)

The intercept is squared as there was no intercept included in the real coefficient vector. Secondly, I
computed the mean squared prediction error (MSPE) of the regression estimate on a newly generated
clean data set X′ from the same distribution as X and with half the amount of observations. Y′

was generated in the same way as Y (see equation 12). The MSPE was computed as follows:

MSPE(α̂0, β̂) =
1

n

n∑
i=1

(Y ′i − α̂0 −X′iβ̂)
2 (14)

2this was possible as I used d > 10 in all simulations
3d+ 1 as Y is also contaminated
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6 Results of regularized regression comparison

First, I show the results of applying the proposed regularized regressors on the cellwise contaminated
simulated data sets, for both ALYZ and A09 correlation matrices. Afterwards, I show the results
of the rowwise contaminated simulated data sets, again for both types of correlation matrices. I do
not display the results of all simulation runs, but, unless specifically mentioned, the comparisons
yield qualitatively the same conclusions under different settings.

6.1 Results cellwise contamination

In figure 5, the results of one simulation with a cellwise contaminated data set is displayed, for the
two types of correlation matrices. The data set used for the top panels is generated with an ALYZ
random correlation matrix, whereas the data set for the bottom panels is generated with the A09
correlation matrix. The top left panel shows the Euclidean distance between the estimated and real
coefficient vector for different values of contamination parameter γ. For the same simulation run,
the mean squared prediction errors (MSPEs) for the clean data set are shown in the top right panel.
The solid lines show the results of the estimations done before applying DDC, whereas the dashed
lines show the results of the estimations done after applying DDC.

For γ < 3, the estimations with DDC do not perform better than the estimations without DDC.
This is not strange, as these values of γ are not really outstanding compared to the other values
in the data. For higher values of γ, the estimations with DDC clearly outperform their respective
counterparts, as they yield lower MSPEs and lower distances to the real coefficients. As γ increases,
the MSPEs and distances of the estimations without DDC keep increasing, whereas the MSPEs
and distances of the estimations with DDC stay the same or even decrease. In the vast majority of
the simulations with the ALYZ model and cellwise contamination, combining DDC with lasso (red)
yields the lowest MSPEs and distances, followed by elastic net (blue) and ridge (black). This is also
the case for the displayed simulation run. A factor that might have had influence here is the sparse
nature of the used coefficient vectors in the data generating process. As ridge regression does not
yield sparse estimates, in contrast to lasso and elastic net, this might have been a disadvantage for
the ridge estimates.

For the A09 model, the same conclusions can be drawn about applying DDC: it yields lower MSPEs
and lower distances for γ ≥ 3. However, over all simulation runs, this time none of the regulariza-
tion methods uniformly dominated the other two. The reason why lasso performs relatively worse
compared to ridge in this case, is probably the use of the A09 correlation matrix, which yields higher
correlations than the ALYZ random correlation matrix. When a group of variables are highly cor-
related, lasso only selects one due to the sparse nature of its estimates. Elastic net and ridge do
not have this problem, which might explain why the three methods are very close in terms of their
predictive performance and their ability to retrieve the original coefficient vector.

6.2 Results rowwise contamination

In figure 6, the results of one simulation with a rowwise contaminated data set is displayed, again
for both types of correlation matrices. For the ALYZ model, roughly the same conclusions can be
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Figure 5: Comparison of different estimators in case of cellwise contamination for different values
of contamination parameter γ. Left panels show the Euclidean distance between estimated and real
regression coefficient vectors, right panels show the mean squared prediction errors with estimated
coefficients for a clean data set: (top) with ALYZ random correlation matrix, (bottom) with A09
correlation matrix. For both types of correlation matrices, the left and right graph correspond to
the same simulation.
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Figure 6: Comparison of different estimators in case of rowwise contamination for different values
of contamination parameter γ. Left panels show the Euclidean distance between estimated and real
regression coefficient vectors, right panels show the mean squared prediction errors with estimated
coefficients for a clean data set: (top) with ALYZ random correlation matrix, (bottom) with A09
correlation matrix. For both types of correlation matrices, the left and right graph correspond to
the same simulation.
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drawn as for the cellwise contamination: applying DDC yields lower MSPEs and lower distances
for high values of γ. Combining DDC with lasso yields the lowest MSPEs and distances in most of
the simulations, followed by elastic net and ridge.

For the A09 model, the results are slightly different. Under these settings, applying DDC does not
always yield lower MSPEs and/or distances, even though the algorithm was always able to exactly
identify and remove the artificially contaminated rows for γ > 2. In the displayed simulation,
applying DDC yields higher distances for lasso and higher MSPEs for ridge. Possibly, the DDC
algorithm flags some cells that are not really outlying, which harms the quality of the estimates.
Over all simulations, lasso and elastic net did not dominate the other one uniformly. In most
simulations, ridge yielded higher MSPEs and distances than the other two methods when they were
combined with DDC. Again, the high correlations in A09 in combination with the lack of ability for
lasso to select a group of highly correlated variables might be a reason why lasso estimates do not
outperform elastic net estimates, whereas they do for the ALYZ random correlation matrix.

7 Conclusion

The objective of the first part of this research was to replicate the results of Rousseeuw & Van den
Bossche (2016). My results for the TopGear data differed slightly from their results, possibly due
to a small difference in the used algorithm. For the other three data sets, the results are exactly
the same. For the second part of the research, I aimed to find answers to two questions:

• How does applying the DDC algorithm on the set of dependent and independent variables
influence the performance of regularized regression estimates, in terms of prediction accuracy
and distance to the real coefficient vector?

• Which regularized regression method performs the best, in terms of prediction accuracy and
distance to the real coefficient vector, when the DDC algorithm is first applied on the set of
dependent and independent variables?

As regards the first question, applying the DDC algorithm yielded estimates with lower MSPEs
and lower distances to the real coefficient vector in the vast majority of the simulations for γ > 3.
Only for the A09 model with contaminated rows, the DDC algorithm did not always improve the
performance of the estimates compared to the estimates of the same regularization method but
without applying DDC. These results support the idea that detecting outliers and reducing their
influence is important to find good regression estimates. As regards the second question, lasso
dominated the other two regularization methods in terms of MSPE and distance in the ALYZ
model, when combined with DDC. For the A09 model, none of the methods uniformly dominated
the other two, although ridge performed slightly worse in case of rowwise contamination. All in all,
it can be concluded that applying the DDC algorithm on the dependent and independent variables
in most cases yields estimates that are robust to cellwise and rowwise contamination.
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8 Discussion

8.1 Limitations

Although this research gives some insights in the relation between different regularization methods
and the importance of detecting outliers, it also has its limiations. For example, I fixed the mixture
parameter α in the elastic net regression. It would be better to determine the optimal value of α
in a similar way as the optimal value of λ. Because this is computationally expensive, this was
not done in this research. If α would have been chosen optimally, the elastic net estimates would
probably have yielded other MSPEs and distances. Of course, it would also have been better to
determine the optimal value of λ with more precision. For computational reasons, I computed λ

with a precision of one significant digit.

Secondly, the sparse design of the coefficient vector in the data generating process might have fa-
vored the performance of lasso (and, to a lesser extent, elastic net). The majority of the coefficients
in the ‘real’ coefficient vector β are set to zero, as explained in section 5.2. Because lasso usually
yields sparse solutions (in contrary to ridge), the data generating process might have given lasso an
advantage.

The used contamination models are relatively simple: in each simulation, a subset of the data cells
(rows) is replaced by a fixed value (row). In reality, the way and shape in which outliers appear in
data sets is probably a lot more complex. Some outliers are caused by human mistakes, others are
just special observations. It is highly unlikely that all outliers will deviate to the same extent, as
in the contamination model I used. It is also unlikely that outliers are always completely randomly
distributed over the data set. For example, when a variable is not measured correctly, its column
will contain a relatively large amount of outliers compared to other columns. In short, outliers in
reality do not always behave in the way outliers are generated in this research. This harms the
external validity of the conclusions.

8.2 Future research

As regards the DDC algorithm, the authors of the original paper already mentioned that the algo-
rithm could be extended to non-numerical variables, such as nominal variables (e.g. car brands in
the Top Gear data sets) and binary variables (e.g. gender for a mortality data set). To achieve this,
correlations would need to be replaced by measures of bivariate association. Also, linear regression
would need to be replaced by logistic regression or another technique that is capable of dealing with
binary variables.

As regards the comparison of regularized estimators, some points for future research follow directly
from the limitations of my research. To fully investigate the performance of elastic net, the optimal
value of α should be determined in a similar way as λ (e.g. with cross-validation). Also, it would
be interesting to see what happens to the relative performance of the regularization methods when
coefficient vector β is designed in another, less sparse way. Another point for future research is
comparing the estimators after applying other types of outlier detection (e.g. the Gervini-Yohai
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filter). This would provide more insight into the added value of applying the DDC algorithm
instead of other outlier detection techniques.
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