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Abstract

We consider the modelling of rank-ordered data. This data results from questions in
surveys which ask to rank alternatives and contains more information than data with
only the most-preferred alternative of individuals. Standard models for modelling
this kind of data make assumptions which are undesirable, especially when hetero-
geneity across individuals is present. These models are then less useful. We consider
unobserved heterogeneity in ranking capabilities across individuals and preference het-
erogeneity in this paper. We use different models and evaluate which model performs
best under different circumstances. We conclude that the latent-class rank-ordered
logit model performs best in case of unobserved heterogeneity in ranking capabilities
and in case of moderate preference heterogeneity, otherwise the mixed rank-ordered
logit model performs best. We also find that one needs to be careful to conclude which
kind of heterogeneity is present in the data, because the used models lead to contrary
conclusions in both a simulation study and an empirical application.
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1 Introduction

Obtaining and using consumer data to get to know people better is an important busi-
ness. In the field of marketing, when you know people’s preferences better it is easier to
make more appropriate product recommendations, which increases customer satisfaction
and sales. Not only in the field of marketing knowing the preferences of people can make
great difference, think for example of population studies such as the modelling of voter
preferences.

When investigating the preferences of individuals, a widely used tool for obtaining data is
a survey. In a survey, individuals are often asked to give their most preferred item out of a
set of different alternatives. However, when you ask someone to give a complete ranking of
alternatives a lot more information can be obtained. We call this data rank-ordered data.
A commonly used model to model this data is the multinomial logit (MNL) model intro-
duced by McFadden (1973). However, this model only takes the most preferred choice into
account. The rank-ordered logit (ROL) model introduced by Beggs, Cardell, & Hausman
(1981) is a widely used model to estimate the preferences of individuals when a complete
ranking of alternatives is given. However, these models make assumptions which could
lead to less informative and less reliable estimates. It is therefore of great importance to
see what happens if we relax some of these assumptions.

A downside of the use of the standard rank-ordered logit model is the implicit assumption
that a person is able to rank all alternatives. When there are a lot of alternatives to
rank or there are alternatives unknown to an individual, this assumption is not likely.
Therefore in Fok, Paap, & Van Dijk (2012), the rank-ordered logit model is extended with
unobserved heterogeneity in ranking capabilities called the latent-class rank-ordered logit
(LCROL) model.
However, it is also likely that different individuals react different to changes in explana-
tory variables called preference heterogeneity, which is not modelled by the multinomial,
rank-ordered or latent-class rank-ordered logit models. Current research concerning rank-
ordered data mainly focuses on modelling different kinds of heterogeneity across individuals
one at a time. For example, in Fok et al. (2012) the main purpose is to model heterogene-
ity in ranking capabilities, while in Calfee, Winston, & Stempski (2001) the preference
heterogeneity is modelled. In this paper, we investigate what the differences in parameter
estimates are when there is unobserved heterogeneity in ranking capabilities and prefer-
ence heterogeneity across individuals using different models. We also investigate which
model performs best when there is heterogeneity in ranking capabilities or preference het-
erogeneity across individuals present.

We organize the remainder of this paper as follows. In section 2 we give an overview of
the methods for modelling rank-ordered data. Then in section 3 we explain the models
we use in detail. Afterwards, in section 4 we explain which data we use for this research
and in section 5 we report the results of the different models. Finally, in section 6 we give
our conclusion and suggestions for future research.

2 Literature review

In the literature there are several methods available for modelling rank-ordered data. The
most used methods are the multinomial logit model (McFadden, 1973) and the rank-
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ordered logit model (Beggs et al., 1981). Where the multinomial logit models only uses
the most preferred choice from the set of alternatives as dependent variable, the rank-
ordered logit model takes the full ranking of the alternatives into account. This results
in more efficient parameter estimates, because the full ranking contains more information
than only the most preferred choice. However, when the ranking is partially random be-
cause someone has too little knowledge of all the alternatives, the parameter estimates
contain biases as shown in Hausman & Ruud (1987). Fok et al. (2012) solve this problem
by modelling the unobserved heterogeneity in ranking capabilities across individuals using
latent classes. They conclude that the use of the standard rank-ordered logit model leads
to a bias in parameters estimates when the respondents are not able to give a full ranking.
The proposed latent-classes enhanced rank-ordered logit model solves this problem and
gives more efficient estimates than the multinomial logit and standard rank-ordered logit
models. Other ways to deal with the different ranking abilities between respondents is
the use of only a fixed number of rankings or to give a weight to each ranking in the
rank-ordered logit model as is done in Hausman & Ruud (1987).

However, all these models have one downside in common, namely the parameters are
assumed to be constant across all individuals. In these models the independence of irrele-
vant alternatives (IIA) property also holds. To relax this assumption one could construct
a rank-ordered probit model as is done in Hajivassiliou & Ruud (1994). However, the use
of a rank-ordered probit models involves the use of multiple fold integrals, which could be
time consuming especially in the case of a lot of ranking choices (Beggs et al., 1981). A
different way to model rank-ordered data without the IIA assumption and with different
parameters for each individual is to construct a mixed rank-ordered logit model as is done
in Calfee, Winston, & Stempski (2001). This model is based on the mixed logit model by
Revelt & Train (1998) which involves less multiple-fold integrals than the rank-ordered
probit model.

Other ways of modelling a rank-ordered dependent variable is for example the use of
cluster analysis as is done by Busse, Orbanz, & Buhmann (2007) and Murphy & Martin
(2003). In cluster analysis respondents with a common preference behaviour are grouped
together. Then a probability model is constructed to represent the groups. A problem
when using these kinds of methods to model a rank-ordered dependent variable is again
the heterogeneity in ranking capabilities across individuals. The clusters then contain
rankings of different lengths. In Murphy & Martin (2003) the constructed model is not
able to incorporate this kind of heterogeneity. However, the model proposed in Busse et
al. (2007) is able to model data consisting of respondents with different ranking abilities
and they conclude that parameter estimates improve when also partially rankings are used.

The main difference between the cluster models and the logit based models like the rank-
ordered logit model and the mixed logit model is the assumption of the distribution to
capture for example preference heterogeneity. In cluster models, this distribution is as-
sumed to be discrete, while in logit models this distribution is assumed to be continuous.
Using discrete distributions, one can divide the individuals in clusters.

So, in the literature there is little attention for the comparison in model performance when
different kinds of heterogeneity are present. Therefore, we focus on the model performance
when unobserved heterogeneity in ranking capabilities across individuals is present and
when preference heterogeneity is present.
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3 Model specification

In this this research we use the multinomial logit model, the rank-ordered logit model, the
latent-class rank-ordered logit model and the mixed rank-ordered logit model. We explain
each of these models in detail in this section.

3.1 Multinomial logit model

The multinomial logit model is a widely used model for modelling discrete choices when
there are more than two choices available. To explain the multinomial logit model as
well as the models that follow in this paper, we make use of the unobserved random
utility concept. The unobserved random utility which individual i gets from alternative
j, denoted as Uij , is given by:

Uij = x′iβj + z′ijγ + εij (1)

Where xi is a vector containing characteristics of individual i, βj is a vector containing the
parameters specific to alternative j, zij is a vector of alternative specific variables, γ is a
vector containing the parameters, which are fixed across alternatives, for each alternative
specific variable and εij denotes the error-term. Every individual i has a set of unobserved
utilities which contains the utility of each alternative j for individual i, Ui1, Ui2, ..., UiJ .
We use the multinomial logit model to model the most preferred option out of a set
of J alternatives. This implies that the utility obtained by individual i from the most
preferred alternative, denoted as alternative x, is larger than or equal to the maximum
utility obtained by any of the other alternatives:

Uix ≥ max(Ui1, Ui2, ..., UiJ) (2)

When the error terms are identical and independently distributed according to a type-I
extreme value distribution, we talk about the multinomial logit (MNL) model. When we
take Yi as the most preferred choice of individual i out of a set of alternatives, the choice
probability for the most preferred alternative x equals:

P (Yi = x|β) = P (Uix ≥ max(Ui1, Ui2, ..., UiJ)) =
exp(x′iβx + z′ixγ)
J∑
j=1

exp(x′iβj + z′ijγ)

(3)

Where x, β, z and γ have the same meaning as in equation (1).

We estimate the parameters in the multinomial logit model using maximum likelihood.
Therefore, we need to maximize the (log-) likelihood function over the β parameters. The
likelihood and log-likelihood functions for the multinomial logit model are given by:

L(β) =

N∏
i=1

( J∏
j=1

P (Yi = j)I(Yi=j)
)

=

N∏
i=1

( J∏
j=1

exp(x′iβj + z′ijγ)

J∑
k=1

exp(x′iβk + z′ikγ)

I(Yi=j))
,

logL(β) =
N∑
i=1

( J∑
j=1

I(Yi = j) log

{
exp(x′iβj + z′ijγ)

J∑
m=1

exp(x′iβm + z′imγ)

}) (4)

where N is the number of individuals, J is the number of alternatives and I(Yi = j) is an
indicator function which equals 1 if Yi = j and 0 otherwise. βJ is put equal to zero for
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identification purposes. Maximization of the log-likelihood function above as well as the
log-likelihoods functions in the remaining of this paper can be done using any numerical
optimization algorithm like the BFGS or Newton-Raphson algorithm.

So the multinomial logit model only models the most preferred alternative out of a set
of different alternatives. However, when you ask someone to give a complete ranking of
alternatives we can obtain a lot more information. For example, you then also know what
an individual absolutely dislikes. To model the full ranking of an individual we use the
rank-ordered logit model. We explain this model in more detail in the next section.

3.2 Rank-ordered logit model

In the rank-ordered logit model, we again make use of the random utility concept defined
in equation (1). As told before, the rank-ordered logit model takes the full ranking of
an individual into account. To further explain this model, we follow the notation used
in Fok et al. (2012). Therefore, we denote the ranking given by individual i as yi =
(yi1, yi2, ..., yiJ)′, where yij is the rank given by individual i to alternative j. Also, we
denote the ranking seen from the item perspective as ri = (ri1, ri2, ..., riJ)′ where rij
denotes the alternative number that was ranked jth by individual i. Using this notation,
the probability of observing a ranking given by individual i is according to the rank-ordered
logit model equal to:

P (ri|β) = P (Uiri1 > Uiri2 > ... > UiriJ ) =
J−1∏
j=1

exp(x′iβrij + z′irijγ)

J∑
l=j

exp(x′iβril + z′irilγ)

(5)

The difference in the choice probabilities between the multinomial logit and rank-ordered
logit model can best be explained by a small example. When there are, for example, three
alternatives to choose from and individual i prefers the first alternative the most, then
the third alternative and lastly the second alternative. The probability for this ranking
according to the rank-ordered logit model equals, when again using the random utility
concept, P (Ui1 > Ui3 > Ui2). However, the multinomial logit model models this as fol-
lows P (Ui1 > Ui2 ∩ Ui1 > Ui3). The rank-ordered logit model can be seen as a series of
multinomial logit models, where first a multinomial logit model is created for the most
preferred alternative, then one for the second most preferred alternative without using the
most preferred alternative and so forth. This is a special property of the logit models.

We estimate the parameters in the rank-ordered logit model again using maximum likeli-
hood. The likelihood and log-likelihood functions for the rank-ordered logit model equal:

L(β) =
N∏
i=1

( J−1∏
k=1

exp(x′iβrik + z′irikγ)

J∑
m=k

exp(x′iβrim + z′irimγ)

)
,

logL(β) =

N∑
i=1

( J∑
k=1

(x′iβrik + z′irikγ)− log

{ J∑
m=k

exp(x′iβrim + z′irimγ)

}) (6)

where N is again the number of individuals, J is the number of alternatives and βJ is put
equal to zero for identification purposes.
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So, the rank-ordered logit model uses more information compared to the multinomial logit
model, which generally results in more efficient estimates. However, the rank-ordered logit
model also has some disadvantages. One of them is that is the heterogeneity in ranking
capabilities of individuals is not taken into account. It is unlikely that all individuals
can give a complete ranking, because most individuals are likely not completely familiar
with all alternatives presented. This results in partially unreliable rankings. The rank-
ordered logit model assumes that an individual can give a complete unbiased ranking of
alternatives. What we mean by this is that an individual is assumed to give a complete
ranking according to the underlying utility function of that individual. When this is not
the case, the rank-ordered logit model gives unreliable results. Therefore, to make a more
realistic model, one has to incorporate the heterogeneity in ranking capabilities across
individuals into the model. One way to do this is to construct the so-called latent-class
rank-ordered logit model, introduced by Fok et al. (2012). We explain this model in the
next section.

3.3 Latent-class rank-ordered logit model

When individuals are not able to rank all the alternatives according to their real utility
levels, the alternatives which are not known by the individual are likely ranked randomly.
When one wants to estimate the parameters of a rank-ordered logit model it seems obvious
to only use the alternatives that are ranked correctly. We denote the number of correctly
ranked alternatives by k. So, the alternatives corresponding to a rank higher than k
are not used in the estimation of the model parameters, but we know that the utility
obtained from each of the first k items is larger than the utility obtained by any of the
other alternatives which are not ranked correctly. The probability of observing a ranking
of individual i where the number of correctly ranked alternatives equals k is:

P (yi|k, β) = P (Uiri1 > Uiri2 > ... > Uirik > max(Uirik+1
, ..., UiriJ ))

=

(
k∏
j=1

exp(x′iβrij + z′irijγ)

J∑
l=j

exp(x′iβril + z′irilγ)

)
1

(J − k)!
(7)

As already told, an individual can only rank k alternatives correctly. So, J − k items
are ranked randomly and the probability of observing an ordering of the last J − k items
equals 1

(J−k)! , which is the last part of equation (7).

To use the expression in equation (7), we have to determine which value(s) of k we use.
One could assume that k is fixed at a certain amount of alternatives for all individuals,
like is done in Hausman & Ruud (1987). However, it is unlikely that all individuals have
the exact same ranking ability. Also, when assuming a fixed number of ranking ability a
lot of valuable information is lost. Think, for example, at the case where only 1 % of the
individuals can rank only two out of six items correctly, while the other 99 % can rank all
alternatives completely. If you assume a fixed ranking ability across individuals, you can
only use the first two alternatives ranked of each individual to avoid estimation bias. In
this case you do not use a lot of valuable information.
To make more accurate estimation results for the model parameters, we make use of the
latent-class rank-ordered logit model (Fok et al., 2012). Using this model, we assume that
k varies across individuals and does not need to be fixed.
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The latent-class rank-ordered logit model uses latent-classes to incorporate the unobserved
heterogeneity in ranking capabilities across individuals. Therefore, we divide the individ-
uals into J latent classes, where each class k equals the number of alternatives that an
individual ranks correctly, with k = 0, 1, ..., J − 1. Where k is not larger than J − 1,
because when someone can rank J − 1 alternatives correctly it automatically follows that
he or she can rank all the J alternatives correctly.

In the latent-class rank-ordered logit model, the probability of observing a ranking of
individual i equals:

P (yi|β, p) =
J−1∑
k=0

pkP (yi|k, β) (8)

where pk is the probability that an individual i belongs to class k with 0 ≤ pk ≤ 1 and∑J−1
k=0 pk = 1 and where P (yi|k, β) is the probability of observing ranking yi when only k

alternatives are ranked correctly, see equation (7). With a correct ranking, we mean that
the alternatives are ranked according to the latent utility function of an individual.

To estimate the parameters in the latent-class rank-ordered logit model, we again make
use of maximum likelihood estimation. The likelihood and log-likelihood functions equal:

L(β, p) =
N∏
i=1

J−1∑
k=0

pk
(J − k)!

[
k∏
l=1

exp(x′iβril + z′irilγ)

J∑
m=l

exp(x′iβrim + z′irimγ)

]
, (9)

logL(β, p) =
N∑
i=1

log
(J−1∑
k=0

pk exp
[
− log((J − k)!)+

k∑
l=1

{
(x′iβril + z′irilγ)− log

( J∑
m=l

exp(x′iβrim + z′irimγ)
)}])

(10)

We again use the BFGS algorithm to maximize the log-likelihood function. To incorporate
the restrictions which pk has to obey, we optimize over J additional parameters called θj ,
where j = 1, ..., J . We transform these parameters into the pk probabilities as follows:
pk = exp(θk)∑J

i=1 exp(θi)
. Here, θJ is set equal to zero for identification purposes.

So, the latent-class rank-ordered logit model incorporates the heterogeneity in ranking
capabilities between individuals which results in a more realistic model. However, the
latent-class rank-ordered logit model as well as the standard rank-ordered logit and multi-
nomial logit models make some assumptions which could be undesirable. The indepen-
dence of irrelevant alternatives (IIA) assumption holds and the parameters are assumed
to be constant across individuals. This IIA property states that the ratio of preferring one
alternative over another does not depend on other ”irrelevant” alternatives.
It is likely that different individuals react different to changes in explanatory variables,
the so-called preference heterogeneity. Therefore, as an extension to the paper by Fok et
al. (2012) we do not assume the IIA property and we model preference heterogeneity. To
model this, we use the mixed rank-ordered logit (Calfee et al., 2001) model. We compare
the latent-class rank-ordered logit model and the mixed rank-ordered logit model and in-
vestigate whether these models are appropriate for each kind of heterogeneity or that there
cannot be made clear conclusions about which model models which kind of heterogeneity
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the best.

3.4 Mixed rank-ordered logit model

The mixed rank-ordered logit model is a special case of the general mixed logit model
defined in Revelt & Train (1998). This model solves the IIA property and incorporates
the possibility of different parameters across individuals, which makes it possible to model
preference heterogeneity across individuals. This makes the mixed logit model a more
realistic model than for example the multinomial or standard rank-ordered logit model.

To model the preference heterogeneity across individuals, the mixed logit model assumes
a probability distribution, the so-called mixing distribution f(β), for the parameters β
which are assumed to vary across individuals. The choice probabilities in the mixed logit
model are a weighted average of the standard choice probabilities with weights given by
the mixing distribution f(β). When estimating the parameters in a mixed logit model, we
estimate the parameters that characterize the mixing distribution of a parameter which
varies across individuals. For example, when we assume that a certain parameter is dis-
tributed according to the normal distribution, then we estimate the mean and standard
deviation of this distribution. We can check the presence of preference heterogeneity by
testing whether the standard deviation is significantly different from zero.

When we estimate the mixed logit parameters, these parameters are of course not known.
The estimation process therefore involves the computation of integrals, which do not have
a closed-form solution. The number of integrals is equal to the number of parameters
which are assumed to vary across individuals. When you assume that more than one
parameter varies across individuals, then you could also incorporate correlation between
these parameters.
We also have to assume a probability distribution for the parameters which one assumes
to vary across individuals. Often, the normal distribution is chosen, as is done in Revelt &
Train (1998). However, every probability distribution is possible to use as mixing distri-
bution. To determine which probability distribution to use one can, for example, examine
whether the parameters have to be positive.

We can use the mixed logit model in the rank-ordered data framework, by using the choice
probabilities of the rank-ordered logit model as stated in equation (5). We then talk about
the mixed rank-ordered logit model (Calfee et al., 2001). In the mixed rank-ordered logit
model, the probability to observe a ranking equals:

P [Uiri1 > Uiri2 > ... > UiriJ ] =

∫ J−1∏
j=1

exp(x′iβrij + z′irijγ)

J∑
l=j

exp(x′iβril + z′irilγ)

f(βi|θi)dβi (11)

Where f(βi|θi) is the mixing distribution where the real parameters equal the vector θi.
This model allows for correlation across the stochastic terms of the utility function of
individuals, therefore this model does not impose the IIA property. In this way, the signs
of the off diagonal elements in the covariance matrix of the error terms denote positive or
negative association between the choices.
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The likelihood function of the mixed rank-ordered logit model equals (Calfee et al., 2001):

L(θ) =
N∑
i=1

log

[∫ J−1∏
j=1

exp(x′iβrij + z′irijγ)

J∑
l=j

exp(x′iβril + z′irilγ)

f(βi|θ)dβi

]
(12)

To estimate the parameters, we simulate the log likelihood function as well as the proba-
bility of observing a certain ranking, because the choice probability functions now involve
integrals which do not have an analytical solution. Therefore, we use maximum simulated
likelihood (Revelt & Train, 1998) to estimate the parameters.
First, we have to take R draws from the chosen mixing distribution to make a good
representation of the mixing distribution. Using a small amount of draws can speed up
the computation, which is essential when running times of several hours are no exception.
Therefore we use Halton draws to generate draws from the mixing distribution. The use of
Halton draws is far more efficient than using random numbers as found in Train (2000), be-
cause the Halton sequence provides more evenly coverage of the unit interval than random
numbers. A Halton sequence is based on a given number, usually a prime. When we take
for example the Halton sequence of the number 2, the unit interval is first divided in half,

then in fourths, then in eights and so on. We then end up with the sequence
1

2
,
1

4
,
3

4
,
1

8
, ....

These Halton draws are first transformed to the specified mixing distribution. We label
these R draws βr, with r = 1, 2, ..., R. Then for each βr, we calculate the rank-ordered
logit probability like in equation (5), while the coefficients who are not assumed to be
vary across individuals remain constant. We call this probability of a ranking given by
individual i: Si(β

r
i ). The simulated choice probabilities of a ranking given by individual

i, SPi(β), are then equal to the average of these rank-ordered logit probabilities:

SPi(β) =
1

R

R∑
r=1

Si(β
r
i ) (13)

The variance of this simulated probability decreases when you take more draws, however
taking more draws also increases the computation time. So, one have to make a trade-off
between variance reduction and computation time. We choose 500 Halton draws to get
accurate estimates in a reasonable amount of time. This simulated probability gives an
unbiased estimate of the probability in equation (11).

The simulated log-likelihood function is now defined as SLL(θ) =
∑N

i=1 logSPi(β). We
maximize this simulated log-likelihood function using a numerical optimization algorithm.
The estimated parameters resulting from the optimization of the simulated log-likelihood
function are biased, because the logarithmic transformation of the simulated choice prob-
abilities is a biased estimate of the logarithm of the real choice probabilities (Train, 2000).
However, this bias decrease when the number of draws, R, increases.
The modelling of different parameters for each individual is equal to the modelling of
preference heterogeneity across individuals. The latent-class rank-ordered logit model, as
already told before, models the unobserved heterogeneity in ranking capabilities. To in-
vestigate the difference in parameter estimates between these two types of heterogeneity
modelling we compare the mixed rank-ordered logit model with the latent-class rank-
ordered logit model.
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4 Data

To compare the different models in terms of parameter estimates when different kinds
of heterogeneity are present, we first perform a simulation study. This also allows us to
control which kind of heterogeneity is present in the data and also allows us to control
the degree of this heterogeneity. Therefore, we simulate latent utilities according to the
following data generating process: Uij = β0j + xi1β1j + xi2β2j + wijβ3 + εij . Here, xi1
is an individual specific variable which we draw from the standard normal distribution,
xi2 is also an individual specific variable which can only take on the values 0 or 1 with
equal probability and wij is an alternative specific variable which we draw from a normal
distribution with mean equal to respectively 3.0, 4.0, 5.0 and 2.0 for the four different
alternatives and standard deviations respectively equal to 1.0, 2.0, 3.0 and 0.5. In this
way, the alternatives are pretty different from each other. We assume that there are four
alternatives to limit the number of parameters we have to estimate and we take the fourth
alternative as base alternative. We choose the β parameters in such a way that there are
no parameters which are a lot larger than others and we choose about an equal distribu-
tion in positive and negative parameters. The values for these parameters are displayed
in tables 1 and 2 in section 5.

We perform this simulation two times. In the first simulation, we generate the utilities
with fixed parameters across individuals, so no preference heterogeneity is present, but we
incorporate heterogeneity in ranking capabilities into the rankings. We do this by first
assigning a ranking ability to each simulated individual, which denotes the number of
items which can be ranked according to the underlying utility function, and we then ran-
domly shuffle the number of lowest ranked items according to this ranking ability. When
the ranking ability of an individual is, for example, one, we randomly shuffle the three
lowest ranked items. In this simulation we perform 1000a simulations, where we generate
in each simulation 1000 individuals. There are four alternatives to choose from, therefore
there are four latent-classes where the probability of the latent-classes is denoted as p0,
p1, p2 and p3. So p0 denotes the probability that an individual cannot rank any of the
items correctly, p1 equals the probability that an individual can rank only one alternative
correctly and so on. In the first simulation we generate the data with p0 equal to 0, p1
and p2 equal to 0.30 and p3 equal to 0.40. So, there are no individuals which cannot rank
any of the alternatives correctly. This allows us to get reliable estimates when using the
multinomial logit model, because this model only takes the most preferred alternative into
account. To get parameter estimates using the mixed rank-ordered logit model we have
to assume a probability distribution for the parameter which is considered to vary across
individuals. We assume that all individuals react differently on changes in the alternative-
specific variable in the mixed rank-ordered logit model, so in our case we assume that the
β3 parameter follows a probability distribution. We assume a normal distribution for this
variable.

For the second simulation, we simulate data without heterogeneity in ranking capabilities,
but with preference heterogeneity. We do this by randomly draw the β3 parameter from
a normal distribution with mean 0.75 and standard deviation equal to 1.0. In this way,
the alternative-specific variable has no fixed coefficient, which means that every individ-
ual has a different reaction on changes of this variable relative to the population mean.

aDue to processor power limitations we are only able to make 1000 simulations in a reasonable amount of
time.
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We choose a reasonably high standard deviation compared to the mean to incorporate a
large difference in preference for the alternative-specific variable. We again assume that
there are four alternatives to choose from with the fourth alternative as base category and
perform again 1000 simulations with 1000 individuals in each simulation.
In the appendix (table 4 and table 5) we report the distribution of the ranks of the four
alternatives averaged over the 1000 simulations for both simulations. Here one can see
how often each alternative is ranked 1st, 2nd, 3rd and 4th. We see that in the first sim-
ulation alternative 4 is the most popular alternative, while in the second simulation all
alternatives have about the same popularity. We evaluate all the estimated parameters
using the root mean squared error (RMSE) measure.

Next to the simulation study, we also use a dataset consisting of real-world data to investi-
gate the performance of our models and check which kind of heterogeneity is present. The
data available for this research is based on a survey among 91 students of the Erasmus Uni-
versity Rotterdam concerning the ranking of gaming platforms b . The 91 students ranked
the following game platforms: Xbox, Playstation, Playstation Portable (PSP), GameCube,
GameBoy and PC. Further, the dataset also contains which game platform the students
own, the importance of several characteristics of the gaming platforms (on a 1- to 5-scale),
the gender and age of the respondents and the weekly number of hours spent on gaming
by the respondents. For the parameter estimation we only use 90 observations, because
there is one individual who gave two alternatives the same rank. Therefore, we ignore
this observation. In table 6 in the appendix, the distribution of the ranks of the different
alternatives is displayed. So, one can see how often each alternative is ranked 1st, 2nd,
etcetera. We see that the PC is the most popular alternative.

5 Results

In this section, we present the results of the simulation study and the results of the
application on real-life data. We first analyse the result of the simulation where only
heterogeneity in ranking capabilities across individuals is incorporated into the data, and
then analyse the simulation where only preference heterogeneity is incorporated into the
data. Finally, we report the results of the different models when we use the gaming
platform preference data.

5.1 Unobserved heterogeneity in ranking capabilities simulation

In the first simulation we generate data with unobserved heterogeneity in ranking capa-
bilities, but without preference heterogeneity. We use the multinomial logit, rank-ordered
logit, latent-class rank-ordered logit and mixed rank-ordered logit models to estimate the
parameters. The true parameter values, as well as the parameter estimates are displayed
in table 1.

Starting with the results of the multinomial logit model, we see that these parameter
estimates are approximately unbiased. This is completely as expected because there are
no individuals which cannot rank any of the alternatives correctly. The results of the
rank-ordered logit model, however, are biased. This is also as expected, because 60% of
the individuals are not able to give a completely correct ranking, while the rank-ordered
logit model assumes that all individuals can give a complete ranking. When using the

bSource: http://qed.econ.queensu.ca/jae/2012-v27.5/fok-paap-van dijk/
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Table 1: Estimated mean and RMSE (in brackets) of the parameters over 1000 simulations
where each simulation consists of N = 1000 individuals, when only heterogeneity in ranking
capabilities across individuals is present

Parameter True MNLa ROLb LCROLc LCROLd Mixed ROLe

β01 1.00 1.01
(0.18)

-0.70
(1.71)

1.02
(0.16)

1.01
(0.16)

-0.66
(1.67)

β11 0.75 0.76
(0.10)

0.56
(0.21)

0.76
(0.08)

0.76
(0.08)

0.62
(0.15)

β21 -0.30 -0.30
(0.18)

-0.15
(0.20)

-0.30
(0.16)

-0.30
(0.16)

-0.17
(0.20)

β02 0.25 0.25
(0.21)

-1.08
(1.34)

0.26
(0.17)

0.26
(0.17)

-1.10
(1.36)

β12 -0.50 -0.50
(0.12)

-0.06
(0.44)

-0.50
(0.10)

-0.50
(0.10)

-0.09
(0.42)

β22 0.45 0.45
(0.24)

0.25
(0.25)

0.45
(0.19)

0.45
(0.19)

0.29
(0.22)

β03 -0.25 -0.26
(0.24)

-1.15
(0.91)

-0.25
(0.19)

-0.25
(0.18)

-1.27
(1.02)

β13 1.00 1.02
(0.15)

0.53
(0.48)

1.02
(0.12)

1.02
(0.12)

0.60
(0.41)

β23 0.80 0.82
(0.29)

0.34
(0.48)

0.82
(0.23)

0.82
(0.23)

0.41
(0.42)

β3 -0.75 -0.76
(0.05)

-0.32
(0.43)

-0.76
(0.04)

-0.76
(0.04)

-0.46
(0.29)

p0 0.00 - - 0.01
(0.01)

- -

p1 0.30 1.00 - 0.29
(0.04)

0.30
(0.03)

-

p2 0.30 - - 0.30
(0.04)

0.30
(0.04)

-

p3 0.40 - 1.00 0.40
(0.04)

0.40
(0.04)

1.00

aMultinomial logit model
bRank-ordered logit model
cLatent-class rank-ordered logit model
dLatent-class rank-ordered logit model with p0 = 0
eMixed rank-ordered logit model with estimated standard deviation of β3 equal to 0.38 with a mean
standard error of 0.04 and RMSE of 0.38

latent-class rank-ordered logit models, we see that these models give approximately unbi-
ased estimates with a lower RMSE than the multinomial logit model. When we remove
the latent-class where no individual could rank any of the alternatives correctly there is
also a slight improvement in parameter estimates and RMSE of the parameters, so re-
moving redundant latent-classes improves the estimates. From these results one can see
that the latent-class rank-ordered logit models gives unbiased parameter estimates and
a lower RMSE for the parameters than the multinomial logit model, which makes it a
more accurate model than the standard models for modelling rank-ordered data. When
we look at the results of the mixed rank-ordered logit model, we see that the parameter
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estimates resulting from this model are biased. This is expected because, like the stan-
dard rank-ordered logit model, this model assumes that every individual can provide a
completely correct ranking. However, in this data 60% of the individuals cannot do this.
The standard deviation of the β3 variable equals 0.38 and has a mean standard error over
the 1000 simulations of 0.04. This standard deviation is significantly different from zero
at the 5% significance level. So, the mixed rank-ordered logit model estimates a standard
deviation of parameter β3 significantly different from zero, which could indicate preference
heterogeneity for the alternative specific variable wij . However, the data is generated with
only fixed parameters, so there is no preference heterogeneity present. Therefore, this
indicates that the heterogeneity in ranking capabilities is difficult to differentiate from the
preference heterogeneity. To further investigate the difference in modeling heterogeneity
in ranking capabilities and the preference heterogeneity, we perform a second simulation.

Before performing the second simulation with only preference heterogeneity in the data,
we first have a further look into the performance of the models when heterogeneity in
ranking capabilities is present. Therefore, we investigate the performance of the multino-
mial logit, rank-ordered logit, latent-class rank-ordered logit and mixed rank-ordered logit
models when the degree of heterogeneity in ranking capabilities across individuals differs.
We now evaluate the performance of these models by computing the mean RMSE only
over the β parameters, because these are the only parameters that all models estimate.
In case of the mixed rank-ordered logit model, we only use the estimated mean of the β3
parameter. The data is generated according to same data generating process mentioned
earlier, but now we vary the degree of heterogeneity in ranking capabilities. We do this by
varying the probabilities that an individual can rank only a certain amount of alternatives
correctly. In this case, when there are four alternatives present, we vary p1, p2 and p3. We,
again, assume that the probability that nobody can rank any of the alternatives correctly
is equal to zero. To visualize the performance of the models with varying heterogeneity in
ranking capabilities we construct a contour plot of the mean RMSE over the β parameters
for each model. The contour plots of the rank-ordered logit, latent-class rank-ordered logit
and mixed rank-ordered logit models are displayed in figure 1.

In the contour plots, the x-axis denotes the probability that an individual can rank only
one alternative correctly, p1 and the y-axis denotes the probability that an individual can
rank all alternatives correctly, p3. We can also implicitly obtain the probability that an
individual can rank two alternatives correctly, p2, from the contour plot. To compute the
mean RMSE over the β parameters for each model, we simulate ten times 1000 individuals
for each feasible combination of p1, p2 and p3. We calculate this mean RMSE for different
values of p1, p2 and p3 ranging from 0 to 1 with 0.1 increments (therefore you can see
the sharp edges on the border of each graph). Each contour plot is a below triangular
plot, because the probabilities p1, p2 and p3 have to sum up to one. We can interpret the
contour plots as follows. When we, for example, look at the point (p1, p3) = (0.2, 0.2)
in the graph of the rank-ordered logit model, we see that the mean RMSE over the β
parameters equals about 0.38 and p2 = 1 − p1 − p3 = 1 − 0.2 − 0.2 = 0.6. Each point in
the contour plot can be interpreted in this same way. We do not show the contour plot of
the multinomial logit model, because this contour plot gives the same mean RMSE for all
possible values of p1, p2 and p3. This is because the multinomial logit model only takes the
most preferred alternative into account which is always ranked correctly in our setting.
However, we do compute the mean RMSE over the β parameters for the multinomial logit
model to compare this model with the other models. This mean RMSE equals 0.18.
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Figure 1: Contour plots of the ROL (a), LCROL (b) and mixed ROL (c) models with
varying degree of unobserved heterogeneity in ranking capabilities.

When we look at the contour plot of the standard rank-ordered logit, figure 1a, we see
that the mean RMSE decreases when the probability that one can rank all alternatives
correctly increases. This is as we expect, because the standard rank-ordered logit model
assumes that all individuals can rank all alternatives correctly. The same conclusion holds
for the mixed rank-ordered logit model, the mean RMSE also decreases when p3 increases.
This is also as expected, because the mixed rank-ordered logit model also assumes that
each individual can rank all alternatives correctly. However, we see that mean RMSE’s
resulting from the mixed rank-ordered logit model are higher than the ones from the
multinomial logit model, standard rank-ordered logit model and from the latent-class
rank-ordered logit model, which makes the mixed-rank ordered logit model a bad choice
when there only is heterogeneity in ranking capabilities. We can also conclude that we
only prefer the rank-ordered logit model above the multinomial logit model when there is
a high probability that all individuals can rank all alternatives correctly.
When we look at the latent-class rank-ordered logit model’s contour plot, we see that this
model performs better compared to the standard and mixed rank-ordered logit models
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especially when p1 is low. Also, the latent-class rank-ordered logit model performs well
when p2 is high. Therefore, we conclude that in the latent-class rank-ordered logit model
we do not need all individuals to be able to rank all alternatives correctly, as expected.
What further draws our attention is the fact that the mean RMSE of the latent-class
rank-ordered logit model seems smaller in all cases than the standard rank-ordered logit
and mixed rank-ordered logit models. To further analyse this, we constructed another
contour plot of the difference in mean RMSE of the standard rank-ordered logit model
and the latent-class rank-ordered logit model, in figure 2.
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Figure 2: Contour plot of the difference in mean RMSE between the LCROL and ROL
models when varying the degree of unobserved heterogeneity in ranking capabilities.

In figure 2 we see that the difference in mean RMSE between the standard rank-ordered
logit model and the latent-class rank-ordered model is always positive. We do see that
when almost everyone is able to rank all alternatives, the difference becomes small (upper-
left corner in figure 2). This is as expected, because then the standard rank-ordered logit
and latent-class rank-ordered models are then in fact the same model. However, every-
thing taken into account, we prefer the use of the latent-class rank-ordered logit model
above the standard rank-ordered logit model or the mixed rank-ordered logit model when
only heterogeneity in ranking capabilities is present.

The contour plot of the latent-class rank-ordered model, figure 1b, also indicates that only
when there is a very high probability that all individuals can rank only one alternative
correctly, the multinomial logit and the latent-class rank-ordered logit model perform
roughly the same. So, we can conclude that when there only is heterogeneity in ranking
capabilities the best model one can use is the latent-class rank-ordered logit model.

5.2 Preference heterogeneity simulation

In the second simulation we generate data again according to the data generating process
mentioned in section 4, but now with only preference heterogeneity instead of unobserved
heterogeneity in ranking capabilities. The results are displayed in table 2.

When we look at the estimates of the multinomial logit model, we see that these estimates
are biased. Especially the intercepts show a large bias. The standard rank-ordered logit

14



Table 2: Estimated mean and RMSE (in brackets) of the parameters over 1000 simulations
where each simulation consists of N = 1000 individuals, when only preference heterogeneity
across individuals is present

Parameter True MNLa ROLb LCROLc Mixed ROLd

β01 1.00 -0.56
(1.57)

0.05
(0.96)

1.29
(0.36)

0.13
(0.87)

β11 0.75 0.53
(0.24)

0.38
(0.38)

0.78
(0.17)

0.50
(0.26)

β21 -0.30 -0.36
(0.18)

-0.16
(0.19)

-0.44
(0.33)

-0.21
(0.17)

β02 0.25 -0.93
(1.19)

-0.39
(0.64)

0.44
(0.24)

-0.50
(0.76)

β12 -0.50 -0.47
(0.10)

-0.25
(0.26)

-0.62
(0.21)

-0.41
(0.13)

β22 0.45 0.25
(0.27)

0.23
(0.26)

0.37
(0.33)

0.35
(0.20)

β03 -0.25 -0.90
(0.68)

-0.67
(0.43)

-0.15
(0.27)

-1.05
(0.81)

β13 1.00 0.53
(0.48)

0.50
(0.51)

1.08
(0.21)

0.74
(0.28)

β23 0.80 0.41
(0.43)

0.41
(0.42)

0.78
(0.34)

0.64
(0.26)

β3 (µ) -0.75 -0.13
(0.59)

-0.28
(0.45)

-1.22
(0.46)

-0.64
(0.12)

β3 (σ) 1.00 - - - 0.84
(0.17)

p0 0.00 - - 0.40
(0.40)

-

p1 0.00 1.00 - 0.00
(0.00)

-

p2 0.00 - - 0.00
(0.00)

-

p3 1.00 - 1.00 0.60
(0.40)

1.00

aMultinomial logit model
bRank-ordered logit model
cLatent-class rank-ordered logit model
dMixed rank-ordered logit model with estimated standard deviation of β3 equal to 0.84 with a mean
standard error of 0.07

model shows a smaller bias for some of the parameters than the multinomial logit model.
We can explain this by the fact that the rank-ordered logit model uses the entire ranking
of an individual, which is in this data correctly specified. Looking at the latent-class rank-
ordered logit results, we can see that this model also gives biased parameter estimates and
performs about as bad as the standard rank-ordered logit model in terms of parameter
estimates. What further draws our attention is the fact that the latent-class rank-ordered
logit model estimates that p0 equals 0.40 and that p3 equals 0.60. So, according to the
latent-class rank-ordered logit model there are individuals who cannot rank any of the
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alternatives correctly. However, in this data all individuals can rank all alternatives cor-
rectly and only preference heterogeneity is present. This lets us draw the same conclusion
as in the previous simulation, that it is difficult to differentiate the modelling of hetero-
geneity in ranking capabilities from the preference heterogeneity. We do not construct
another latent-class rank-ordered logit model with p1 and p2 equal to zero, because we
then end up with the standard rank-ordered logit model.
To have a deeper look into the estimated value of p0 by the latent-class rank-ordered logit
model, we make a plot of estimated p0 values when the degree of preference heterogeneity
(the standard deviation of the β3 parameter) varies. This plot is displayed in figure 3.
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Figure 3: Estimated value of p0 when standard deviation of β3 varies

From figure 3 we conclude that when the degree of preference heterogeneity increases, then
the probability that no one can rank any of the alternatives correctly estimated by the
latent-class rank-ordered logit model also increases, while in this setting this probability
equals zero. When the standard deviation of the β3 variable equals 2.0 the estimated
probability that no one can rank any of the alternatives correctly is even about 0.50. So,
one needs to be careful to conclude that there is heterogeneity in ranking capabilities when
the latent-class rank-ordered logit model indicates this. It could very well be that there
only is preference heterogeneity across individuals.

When looking at the results of the mixed rank-ordered logit model in table 2, we see that
this model also gives us biased estimates. This bias could be caused by we generate the
data and in particular at the values of the alternative-specific variable. Also, the mixed
rank-ordered logit model estimates a significant, at the 5% significance level, standard
deviation of the β3 parameter equal to 0.84. In this simulation, where only preference
heterogeneity is present, there is no model which performs clearly better than the other
models when looking at the parameter estimates and corresponding RMSE’s.

Next, we further investigate the sensitivity in parameter estimates of the different models
for preference heterogeneity. We do this by generating data in the exact same way as the
simulation, but we now vary the standard deviation of the β3 parameter. The standard
deviation ranges from 0 to 2.0 with increments of 0.2. With every standard deviation
we generate data, and estimate each model. As performance measure we, again, take

16



the mean RMSE over the β parameters. We also generate ten simulations with 1000
individuals each for every value of the standard deviation of β3. The results are displayed
in figure 4.
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Figure 4: Sensitivity of different models for preference heterogeneity in the data

When the standard deviation of β3 is equal to zero, there is no preference heterogeneity
and no heterogeneity in ranking capabilities present in the data. All individuals can
rank all alternatives correctly. Therefore the latent-class rank-ordered logit model and
the standard rank-ordered-logit model are the same and perform best. We can also see
this in the figure. The graphs of the latent-class rank-ordered logit and standard rank-
ordered logit model are equal when there is a small amount of standard deviation of β3 and
thus a low degree of preference heterogeneity. When the standard deviation increases the
latent-class rank-ordered logit model gives the best performance of the used models. Only
when the degree of preference heterogeneity is pretty strong (when standard deviation is
more than about 1.6) the mixed rank-ordered logit model performs best in terms of mean
RMSE over the β parameters. The multinomial logit model performs the worst when the
degree of preference heterogeneity increases. We first see a decrease in mean RMSE of
the multinomial logit model when the degree of preference heterogenity increases, but this
is likely caused by the fact that we only performed ten simulations for each model. To
conclude, the latent-class rank-ordered logit model is also the best model in terms of mean
RMSE over the β parameters when there is a moderate degree of preference heterogeneity,
and when the degree of preference heterogeneity increases the mixed rank-ordered logit
model seems the best option.

5.3 Application on gaming platform preferences

We now apply the different models on a real-life dataset. Therefore, we use the preferences
of Dutch students on gaming platforms. Using this real-life setting, we can investigate
whether it is now also difficult to differentiate heterogeneity in ranking capabilities from
preference heterogeneity. In table 3 the parameter estimates resulting from the multino-
mial logit, rank-ordered logit, latent-class rank-ordered logit and mixed logit models using
the game dataset are displayed.
As explanatory variables we use an intercept, the weekly numbers of hours spent on gam-
ing and an alternative-specific dummy variable which equals 1 if an individual owns a
gaming platform and 0 otherwise. For the use of the mixed rank-ordered logit model we
assume that the ownership coefficient differs across individuals and that this parameter
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follows the normal distribution. As base category we take the PC.

Table 3: Parameters estimates and standard errors (in brackets) of the MNL, ROL,
LCROL and mixed ROL models using the gaming platform preferences data

Parameter MNL ROL LCROL Mixed ROL

Xbox (intercept) 0.87
(0.49)

1.37
(0.29)

1.48
(0.48)

1.43
(0.32)

Playstation (intercept) 0.49
(0.46)

0.88
(0.27)

1.05
(0.45)

0.94
(0.30)

PSP (intercept) -0.07
(0.59)

0.74
(0.28)

0.39
(0.48)

0.79
(0.32)

GameCube (intercept) 0.46
(0.59)

-0.03
(0.30)

-3.48
(1.36)

0.02
(0.32)

GameBoy (intercept) -1.47
(1.00)

0.03
(0.29)

-2.71
(1.20)

0.08
(0.31)

Xbox (hours) -0.09
(0.07)

-0.17
(0.05)

-0.13
(0.06)

-0.18
(0.05)

Playstation (hours) -0.10
(0.07)

-0.12
(0.04)

-0.10
(0.06)

-0.14
(0.05)

PSP (hours) -0.10
(0.11)

-0.23
(0.05)

-0.35
(0.12)

-0.24
(0.06)

GameCube (hours) -0.39
(0.24)

-0.18
(0.05)

-0.01
(0.14)

-0.19
(0.06)

GameBoy (hours) -0.06
(0.18)

-0.23
(0.05)

-0.23
(0.14)

-0.24
(0.06)

Ownership (µ) 1.74
(0.38)

0.95
(0.19)

1.69
(0.36)

0.97
(0.21)

Ownership (σ) - - - 0.75
(0.74)

p0 - - 0.23
(0.07)

-

p1 1.00 - 0.19
(0.08)

-

p2 - - 0.07
(0.08)

-

p3 - - 0.08
(0.09)

-

p4 - - 0.00
(0.16)

-

p5 - 1.00 0.44 1.00

When we compare the parameter estimates resulting from the multinomial logit model and
the rank-ordered logit model, we see a large difference in parameter estimates. This gives
the suggestion that not all individuals could rank all alternatives correctly. When we look
at the results of the latent-class rank-ordered logit model, we see that this model suggests
that there is heterogeneity in ranking capabilities across individuals. We estimate the
probability that an individual cannot rank a single item correctly at 23%. However, based
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on the results of our simulation study we cannot draw the conclusion that there is unob-
served heterogeneity across individuals that easily. The results of the mixed rank-ordered
logit model give even more reason to doubt about the suggestion that there only is hetero-
geneity in ranking capabilities. Using this model, the estimated standard deviation of the
ownership variable is 0.75 when we assume that all individuals can rank all alternatives
correctly. However, this estimated standard deviation is not even significant at the 10%
significance level. So, in this real-life application we obviously do not know whether there
is heterogeneity in ranking capabilities across individuals, preference heterogeneity or a
combination of both present. The different models we use lead to conflicting conclusions.
To be sure which kind of heterogeneity is present one have to know more background
information which could be obtained by asking more questions.

6 Conclusion

To get reliable parameter estimates of a ranking task in a survey when there is unobserved
heterogeneity in ranking capabilities across individuals present, the best model one can use,
based on the results of our simulation study, is the latent-class rank-ordered logit model.
This model also gives the best parameter estimates when the degree of heterogeneity in
ranking capabilities increases. When there is only preference heterogeneity present, one
could also use the latent-class rank-ordered logit model when this preference heterogeneity
across individuals is not large, otherwise the mixed rank-ordered logit model is the best
model one can use. When comparing the modelling of heterogeneity in ranking capabilities
and preference heterogeneity across individuals, we find that the mixed rank-ordered logit
model indicates the presence of preference heterogeneity when there only is heterogeneity
in ranking capabilities present in the data. Also, the latent-class rank-ordered logit model
indicates that there is heterogeneity in ranking capabilities present while there only is
preference heterogeneity present in the data. When the degree of preference heterogeneity
increases, the latent-class-rank-ordered logit model also estimates an ever increasing prob-
ability that nobody can rank any of the alternatives correctly. In the application of the
models on real-life data, the latent-class rank-ordered logit model and mixed rank-ordered
logit model lead to a contradictory conclusion on which kind of heterogeneity is present.
Therefore, when you investigate real-life data you have to look further into the data when
you search for which kind of heterogeneity is present in the data. You could also ask
someone to indicate if he or she had difficulties filling in the ranking task.

In our research we only incorporated the modelling of heterogeneity in ranking capabilities
and preference heterogeneity only once at a time in a model. To make a model which can
deal with both types of heterogeneity, one could construct a mixed latent-class rank-
ordered logit model. We also evaluate the models by computing the root mean squared
error (RMSE) over the estimated parameters. To get further insights into the model
performance one could use other performance measures and also compare the prediction
accuracy of the models. Another limitation of this research is that we only use a relatively
small amount of simulations to evaluate the models. One could increase this number
and check if the same conclusions hold. Finally, one could simulate data in a different
way. In our simulation the alternative-specific variable have a large contribution to the
utility obtained by an individual compared to the individual-specific variables. In further
research, one could change this and see whether this changes the parameter estimates,
especially in the simulation with only preference heterogeneity where all models are not
that accurate.
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A Appendix

Table 4: Distribution of the rank of the four alternatives averaged over the 1000 simula-
tions for the simulation when only unobserved heterogeneity in ranking capabilities across
individuals is present

1st 2nd 3rd 4th

Alternative 1 196 344 276 184
Alternative 2 113 231 332 324
Alternative 3 92 171 303 434
Alternative 4 599 254 89 58

Table 5: Distribution of the rank of the four alternatives averaged over the 1000 simulations
for the simulation when only preference heterogeneity across individuals is present

1st 2nd 3rd 4th

Alternative 1 303 273 264 160
Alternative 2 268 251 243 238
Alternative 3 162 200 244 394
Alternative 4 267 276 249 208

Table 6: Distribution of the rank of the six gaming platforms

1st 2nd 3rd 4th 5th 6th

Xbox 18 26 25 10 9 2
Playstation 17 27 19 11 9 7
PSP 7 9 18 28 16 12
GameCube 7 9 9 16 19 30
GameBoy 2 6 8 15 31 28
PC 39 13 11 10 6 11
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