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Abstract

This paper focuses on treating the estimation problem of the Markowitz portfolio in a large market. Several

methods that have been introduced to solve this problem are investigated. The first method comes from Chen and

Yuan (2016), who propose the so called subspace mean-variance portfolio, which introduces a trade-off between

optimality and estimability. Another way solution for the estimation problem comes in the form of shrinkage

estimation. Shrinkage estimators for the mean and variance of the asset returns have been introduced by Jorion

(1986) and Ledoit and Wolf (2003) respectively. Furthermore, a combination of shrinkage estimation and the

subspace mean-variance portfolio is made. Consequently, it is found through simulation that these methods are

beneficial in terms of Sharpe ratio. However, these benefits were only seen in large markets when studying real

return data. Furthermore, the combination of shrinkage estimation and the subspace mean-variance portfolio

didn’t result in a better or worse portfolio rule, which implies a robustness of the subspace method towards the

quality of the in-put sample estimates.
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1 Introduction

Investors can choose to invest their wealth in countless risky assets available on the financial market. Economic

literature shows that investors have to diversify their wealth over all assets in order to reduce risk and optimize

profits (see, e.g. Haugen (1986) or Berk and DeMarzo (2014)). This practice is commonly referred to as portfolio

selection and has existed for a long time. However, portfolio selection methods were sparse until the seminal work

of Markowitz (1952), before then most investors were primarily focused on finding assets with a high expected

return and neglected covariance. Markowitz introduced a theoretical basis for investment strategy, which finds the

optimal wealth allocation given both the mean and variance of the asset-returns, resulting in a portfolio that is

mean-variance efficient. In practice, this method requires the estimation of the mean and variance from empirical

returns, where the resulting sample estimates are then used as if they were the true parameters, also known as plug-

in estimation. The practical issue of plug-in estimation is estimation error, which causes inadequate estimations

of the theoretical mean-variance portfolio in small samples. The problem becomes worse when there is a larger

amount of assets in the investment universe, as the amount of unknown parameters increases.

The Law of Large Numbers shows that sample estimates are asymptotically consistent, meaning that with enough

data appropriate estimations of the mean and variance can be made. This result translates into consistent estimates

of the mean-variance portfolio weights. However, estimates of the optimal portfolio are inaccurate in small samples

(DeMiguel et al., 2009). When the amount of assets in the portfolio increases, the amount of unique parameters

rises at a quadratic rate, as the covariance matrix and the mean vector grow larger. The result is an excessive

amount of estimation error when using the standard sample moments, which causes the estimated mean-variance

portfolio to perform poorly in small samples.

Several extensions on the traditional Markowitz Portfolio have since been introduced to reduce estimation error,

one of which is the method of shrinkage estimation. Shrinkage estimators are alternative ways of estimating sample

moments by creating a convex combination with the traditional sample estimate and a given target. Shrinkage

estimation has improved estimation power for higher dimensional multivariate normal variables (Stein, 1956), when

using a quadratic loss function for the estimators. Shrinkage estimators of the mean and variance for portfolio

selection purposes have been proposed by Jorion (1986) and Ledoit and Wolf (2003) respectively.

Chen and Yuan (2016) propose an alternative method of handling estimation error. By restricting the investment

space to a specific subspace, they find that the subspace mean-variance portfolio has better estimability in practice,

as it has Sharpe ratios relatively closer to that of the theoretical optimal portfolio.

This paper is focused on comparing the small sample properties of existing portfolio selection methods that are

extensions on the Markowitz portfolio with the goal to identify the best method to compute the portfolio weights.

The investigated methods are the subspace mean-variance portfolio and the shrinkage estimators of Jorion (1986)

and Ledoit and Wolf (2003). Furthermore, a combination of shrinkage estimation and the subspace mean-variance
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portfolio is made. The research gives a critical view on the effectivity of the subspace mean-variance portfolio and

the shrinkage estimators, while also giving more insights into the shortcomings of the traditional sample estimation

methods.

Consequently, it is found that the subspace method estimates better sample portfolios in larger markets. Fur-

thermore, Shrinkage estimation is found to have larger estimation power than the traditional sample estimators

in larger markets. And finally, the combination of shrinkage and subspace estimation didn’t result in a significant

improvement. However, the findings suggest that in larger markets, the traditional Markowitz portfolio can be

improved by either shrinkage estimation or the subspace mean-variance portfolio.

2 Literature

Modern portfolio theory started with the seminal work of Markowitz (1952). In the proposed framework of

Markowitz, an investor is able to find the optimal portfolio for a single period, given that the investor only takes the

mean and variance into account. The framework of Markowitz is able to show that by combining imperfectly corre-

lated assets an investor can create a portfolio with better expected return-risk properties. Furthermore, Markowitz

shows that when a portfolio is fully diversified an investor can only get a higher expected return by taking on more

risk. Since the Markowitz framework is able to capture these two important economic aspects of portfolio theory

and it being easily extendable, i.e. multi-period problems or continuous time problems, the framework has become

the leading portfolio model within finance.

However, Markowitz’s mean-variance portfolio isn’t flawless, for instance the portfolio doesn’t take into account

population moments higher than two. Furthermore, the Markowitz portfolio has inaccurate estimability in practice.

The issue of plug-in estimates has long been noted in empirical literature (see e.g. Jobson and Korkie (1980),

Michaud (1989), Best and Grauer (1991)). The general findings of these papers are that the sample portfolios are

imprecise even when a large sample is used. DeMiguel et al. (2009) compares the sample mean-variance portfolio

and further extensions on the portfolio to naive diversification where each asset is given equal weights. They find

that around 3000 months (250 years) of data is needed for the sample mean-variance portfolio and it’s extensions

to consistently outperform naive diversification for a portfolio with 25 assets. The findings strongly indicate that

current existing portfolio selection methods are insufficient given the realistic amount of data available in practice.

Stein (1956) introduced a method where a sample estimate is made by ”shrinking” the sample moment towards

a chosen target value. He finds that the shrunken estimator has an uniformly lower risk of a higher loss for the

quadratic loss function than the traditional sample mean, when the dimension of the multivariate normal variable

is larger than 2. In a simulation analysis, Jorion (1986) finds that his proposed Bayes-Stein estimator for the mean

always outperforms the usual sample mean. Ledoit and Wolf (2003) extend the practice of shrinkage estimation

towards the covariance matrix, where the sample covariance matrix is shrunk towards the single-index covariance
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matrix of Sharpe (1963). They find that their estimator has significantly lower out-of-sample variance than other

well-known estimators when analyzing return data for portfolio selection.

In the framework of Chen and Yuan (2016), the portfolio weights are restricted to a subspace spanned by the leading

eigenvectors of the covariance matrix. By restricting the investment space the subspace portfolio is less optimal,

however the improved accuracy of the proposed subspace portfolio results in better sample portfolios in terms of

Sharpe ratio. The research of Chen and Yuan (2016) show a trade-off between optimality and estimation accuracy

similar to the bias-variance trade-off. Through a simulation study, they find that the sample subspace portfolio is

relatively better than the traditional sample portfolio in estimating the theoretical Markowitz portfolio.

Another way to reduce estimation error is by assuming a model structure for the returns, such as a factor model. Fac-

tor models for return analysis originate from Sharpe (1963), who proposes a single-factor market model commonly

referred to as the Capital Asset Pricing Model (CAPM). Other factor models, are for example the Fama-French

model (Fama and French, 1993) or models based on principal components (see e.g. Connor and Korajczyk (1988)).

Factor models have direct implications on the covariance matrix, which can substantially lower the amount of un-

known parameters, resulting in lower estimation error. However, the method is prone to model misspecification.

Research shows that factor models are able to significantly improve the performance of plug-in estimates if the

model is correctly specified. Nonetheless, there is no clear consensus on which factor model should be preferred

(Chan et al., 1999). For a detailed overview on efficient portfolio selection see Brandt (2010).

3 Data

The results of this paper are based on a simulation study and an empirical study. For the simulation, the monthly

Fama-French 3 research factors are gathered from the period July 1963 to August 2007. The 3 Fama french factors

are: rm − rf ; SMB (Small Minus Big); and HML (High Minus Low). The factor rm − rf is the excess market

return, this factor will also be used to calculate the shrinkage estimator of Ledoit and Wolf (2003). For the empirical

study, the monthly equal weight average returns on the Fama-French 25 (5×5) and 100 (10×10) formed on size and

book to market are used as the asset returns. Data is collected from a 50 year period (Januari 1961 to December

2010). As the dataset is incomplete for a small number of portfolios, the missing data for a given portfolio is sampled

from a normal distribution with mean and variance calculated from the data that is available for that portfolio.

Furthermore, a moving window of T months is used such that the first T observations serve as the initial estimation

sample to estimate the holdings at time T + 1. All of the datasets and further descriptions on the datasets can be

found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

3

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


4 Methodology

4.1 Markowitz Mean-Variance Portfolio

Let there be N risky assets available on the market, such that rt ∈ RN is the vector containing the excess returns

on these assets at time t = 1, . . . , T . Excess returns are defined as the returns in excess of the risk-free rate, which

is the return on an investment that contains no risk. A portfolio is created by choosing w ∈ RN , which denotes a

set of weights that allocates wealth over all assets. The optimal Markowitz portfolio results from the solution to

the optimization problem shown in equation (1).

min
w∈RN

{γ
2
wᵀΣw − wᵀµ} (1)

In the equation above µ ∈ RN and Σ ∈ RN×N denote the mean and variance of r respectively, furthermore γ denotes

the coefficient of relative risk aversion. The solution to this problem, denoted by wmv, is given in equation (2).

wmv =
1

γ
Σ−1µ (2)

In this representation of the Markowitz framework there are no constraints on the weights and/or a minimal target

return. This paper assumes that the investor can borrow money indefinitely such that no constraint on the weight

vector is needed. Furthermore, the minimal target return is resolved by the risk coefficient γ, as investors will be

able to get a higher expected portfolio return by lowering their γ and by doing so accept more risk. The derivations

of the Markowitz portfolio with and without constraint on the weights are both given in the appendix.

The weights that result from the Markowitz problem, incorporates both the mean and variance in the optimization

problem and thus results in weights that are mean-variance efficient. However, the calculation of wmv requires

the knowledge of both µ and Σ, which are usually unknown in practice. Instead the parameters are estimated

from historical data and the estimates µ̂ and Σ̂ are then plugged into equation (2) which gives an the sample

mean-variance portfolio, as shown in equation (3).

ŵmv =
1

γ
Σ̂−1µ̂ (3)

4.1.1 Subspace Mean-Variance Portfolio

Chen and Yuan (2016) propose an alternative portfolio selection method similar to the Markowitz problem, where

a trade-off is made between the optimality of the mean-variance portfolio and the estimability in practice. This

is done by restricting w to a linear subspace of RN , denoted by P. The new optimization problem is shown in

equation (4).

min
w∈P
{γ

2
wᵀΣw − wᵀµ} (4)
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The solution to this problem, wPmv, is shown in equation (5)) (see Appendix for the derivation).

wPmv =
1

γ
PP(P ᵀ

PΣPP)−1P ᵀ
Pµ (5)

Where PP is the matrix that forms the orthonormal basis of P. The choice of P is ad hoc, one can choose to construct

P from any existing portfolio rules as the linear subspace that is spanned from those rules. Extreme choices are

P = RN and P = {a1 : a ∈ R}, which denote the theoretical Markowitz framework and naive diversification

respectively. In this paper P is chosen to be space spanned by the leading eigenvectors of the covariance matrix of

the returns. Such that the orthonormal basis of P are the first d eigenvectors of Σ: PP = [η1, . . . , ηd], plugging this

into equation (5) gives the solution shown in equation (6).

wPmv =
1

γ

d∑
k=1

θ−1k ηkη
ᵀ
kµ (6)

In the equation above θk, k = 1, . . . , d, are the first d eigenvalues of the covariance matrix. The choice of the

dimension size d remains ad hoc and has to be estimated from data. Bai and Ng (2002) propose several methods

of determining the dimension in approximate factor models. One of their methods chooses the dimension size

according to equation (7).

d̂ = arg min
1≤k≤kmax

{
log
(∑
j>k

θ̂j
)

+
k(N + T )

NT
log
( NT

N + T

)}
(7)

Where T is the amount of observations and kmax is the maximum dimension size, which is chosen to be kmax = 8

in this paper. Furthermore, Bai and Ng (2002) show that d̂ is an consistent estimator for the correct dimension of

the factor model if both N and T are large.

The subspace mean-variance portfolio is a variation on the Markowitz mean-variance portfolio. The knowledge of

µ and Σ is still necessary for calculation, however by restricting the weights to a subspace, i.e. the space spanned

by the leading eigenvectors, an investor is able to get accurate portfolio estimates.

4.2 Parameter Estimation

4.2.1 Plug-in Estimators

Traditional sample estimators for the mean µ and covariance Σ are shown in (8).

µ̂ =
1

T

T∑
t=1

rt, and Σ̂ =
1

T − 1

T∑
t=1

(rt − µ̂)(rt − µ̂)ᵀ (8)

These estimators are widely used because they are unbiased and have satisfactory asymptotic properties. However,

these estimators aren’t the most efficient in small samples as they can be less accurate. Literature shows that

the problem can be slightly relieved by applying ”shrinkage”, which should improve efficiency by using additional

information on the variable at hand.
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4.2.2 Shrinkage Estimators

Shrinkage estimation stems from the work of Stein (1956), who observed that for a multivariate normal variable

with N ≥ 3 the sample mean µ̂ isn’t the most efficient estimator of µ in terms of the quadratic loss function. Stein

shows that the sample mean is dominated by a convex combination of the sample mean and a common constant µ0

as shown in equation (9) (James and Stein, 1961).

µ̂s = δµ0 + (1− δ)µ̂ (9)

Where 0 < δ < 1 denotes the shrinkage factor, which represents the shrinkage intensity. The benefits of shrinkage

estimation is optimal by picking the shrinkage factor δ∗ according to equation (10).

δ∗ =
N + 2

N + 2 + T (µ̂− µ01)ᵀΣ̃−1(µ̂− µ0)1
(10)

Where Σ̃ = T−1
T−N−2Σ. In practice the optimal δ∗ is unknown when Σ is unknown and is estimated from data. Brandt

(2010) shows that even when Σ is unknown, the shrinkage estimator has a significant improvement in estimation.

Furthermore, for any choice of µ0 the shrinkage estimator will have a lower risk of having a high loss. However,

the shrinkage estimator performs best when it’s close to the true µ, in practice µ0 is often chosen to be the grand

mean. Jorion (1986) introduces a shrinkage estimator in a empirical Bayes framework. The Bayes-Stein estimator

is also used in this paper. This estimator makes use of the shrinkage target shown in equation (11).

µ̂0 =
1ᵀΣ̂−1µ̂

1ᵀΣ̂−11
(11)

Shrinkage estimation can also be extended to the covariance matrix as Frost and Savarino (1986) and Ledoit

and Wolf (2003) propose. Similar to the shrinkage estimator for the mean, the covariance estimator is a convex

combination of the sample covariance matrix and a target matrix S0, which is often chosen to be the identity matrix

or the implied covariance matrix by an assumed factor model. The shrinkage estimator for the covariance matrix

is shown in equation (12).

Σ̂s = τS0 + (1− τ)Σ̂ (12)

Where 0 < τ < 1 is the shrinkage factor. Ledoit and Wolf (2003) used Sharpe (1963)’s single-index covariance

matrix as the shrinkage target, which is also the shrinkage target in this paper. The single index covariance matrix

follows from the Single-Index Model (SIM), which assumes that each return is generated by a constant, the market

return and an idiosyncratic error, as shown in equation (13).

rit = αi + βirmt + εit (13)

In this model the returns are driven by the market returns rmt with the respective loadings βi and an error term

εit, furthermore the market returns are uncorrelated with the error terms. The factor structure implies a covariance
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Σs as shown in equation (14).

Σs = σ2
mββ

′ + Σε (14)

Where σ2
m is the variance of the market returns, β is the vector containing the loadings and Σε is the diagonal

variance matrix of the errors. The variance structure can be estimated by performing regressions of the stock returns

on the market return, which results in estimates of both the loadings and the error terms, bi and eit respectively.

With these estimates, Σs can be estimated as in equation (15).

Σ̂s = s2mbb
′ + Σ̂ε (15)

Where s2m is the sample variance of the market returns, b is the vector containing the estimated loadings and Σ̂ε is

the sample covariance of the error terms. The estimate of the single index covariance matrix Σ̂s is then used as the

shrinkage target. Furthermore, the optimal shrinkage factor τ∗ is shown in equation (16).

τ∗ =

∑N
i=1

∑N
j=1 Var(sij)− Cov(fij , sij)∑N

i=1

∑N
j=1 Var(fij − sij) + (φij − σij)2

(16)

Where, sij is the (i, j)-th element of Σ̂, fij is the (i, j)-th element of Σ̂s, φij is the (i, j)-th element of Σs and σij is

the (i, j)-th element of Σ. One of the technical assumptions that should be made, is that the population covariance

matrix Σ and the implied covariance matrix Σs are unequal, such that φij and σij are also unequal. The formulas

of the estimators to calculate the optimal shrinkage factor are shown in the appendix.

The idea of shrinkage follows from the bias-variance trade-off. The shrinkage target results from assumptions on

the model for the returns and thus usually contain bias as the model might be misspecified, such that shrinkage

estimation can perform poorly if the structural assumptions are poor. Shrinkage estimation combines the traditional

unbiased estimators that contain a lot of estimation error with biased estimators with low estimation error in the

hope of attaining the optimal bias-variance trade-off. This paper uses the shrinkage estimators of Jorion (1986)

and Ledoit and Wolf (2003) independently to inspect if they can be of use for portfolio selection by providing more

accurate estimates of the population moments.

4.3 Sharpe Ratio

The Sharpe ratio is a commonly used portfolio measure that relates the portfolio’s return to the portfolio’s risk,

measured by volatility (Sharpe, 1966). Given w the Sharpe ratio can be calculated using equation (17).

SR(w) =
wᵀµ

(wᵀΣw)
1
2

(17)

The Sharpe ratio measures the amount of excess return per unit of standard deviation. Implying that a portfolio

with a higher Sharpe ratio would be preferred over a portfolio with lower Sharpe ratio even if it has a higher return,

because it’s more risk efficient. The optimal feature of the mean-variance portfolio is that it’s the portfolio with
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the highest possible Sharpe ratio given the market (see equation (18)).

SR(w) ≤ SR(wmv) = (µᵀΣ−1µ)
1
2 , ∀w ∈ RN (18)

Using the delta method, one can show that the estimated mean-variance portfolio will reach the Sharpe ratio of the

theoretical mean-variance portfolio when T −→∞ and N is fixed (see equation (19)).

SR(ŵmv)
p−→ SR(wmv) (19)

However, this asymptotic result will most likely not occur in a finite sample due to the estimation error caused

by the large set of unknown parameters and the insufficient amount of data available in practice. From this the

following theorem can be constructed (Chen and Yuan, 2016).

Theorem 1. Assume that the excess returns rt, t = 1, 2, . . . , T are independently and normally distributed with

mean µ and covariance Σ. Then the Sharpe ratio of the sample mean-variance portfolio satisfies Theorem 1.

SR(ŵmv)

SR(wmv)
= Op(

√
T/N)

The theorem states that when the number of assets increase and the estimation window is fixed, the relative effi-

ciency of the sample Markowitz portfolio converges to zero in probability. Under a set of general assumptions (see

Appendix), Chen and Yuan (2016) state the following theorem for the subspace mean-variance portfolio.

Theorem 2. Let d be the correct dimension size, fixed and finite. If the returns follow a Arbitrage Pricing Theory

model which satisfies a set of mild assumptions, then:

SR2(ŵd) = SR2(wmv) +Op(T
−1/2 +N−1/2)

The theorem suggests that the Sharpe ratio of the estimated subspace portfolio will converge to the Sharpe ratio

of the theoretical Markowitz portfolio if there are both lots of assets and observations.

The Sharpe ratio is used to make comparisons between the different portfolio estimation methods. Furthermore,

the Sharpe ratio is used to inspect if the properties of the estimated portfolios approach that of the theoretical

Markowitz mean-variance portfolio.
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4.4 Simulation

The returns are simulated from a k-order common factor model, where rt follows the model shown in equation (20).

rit = αi + βi1f1t + β21f2t + · · ·+ βk1fkt + εit, i = 1, . . . , N ; t = 1, . . . , T (20)

Where α is Jensen’s alpha, fjt is the j-th common factor, βij is the loading for asset i on factor j and εit is the

idiosyncratic error. The factors follow the normal distribution with mean µf and covariance Σf . The error terms

are normally distributed with mean zero and variance Σε, which is a diagonal matrix as the error terms are in-

dependently distributed. Furthermore, the factors are also independently distributed from the error terms, such

that E(εjt|ft) = 0. Given the distributions of the factors and the error-terms, the distribution of the returns is

known. The returns are normally distributed with mean µi = αi + βi1µ
f
1 + . . . + βikµ

f
k for asset i and covariance

Σ = BΣfB
ᵀ + Σε, where B (N ×K) contains all the factor loadings. Arbitrage Theory states that Jensen’s alpha

is equal to zero. Furthermore, the assumption is made that the risk premium µf for each factor is bigger than zero.

The simulation set-up follows that of Chen and Yuan (2016), where a Fama-French three factor model is used to

simulate N assets using equation (20). The factors are generated from a normal multivariate distribution with

mean and covariance calculated from historical data on the 3 Fama-French factors (July 1963 - August 2007). The

factor loadings in the simulation are sampled from a uniform distribution with values ranging from 0.9 and 1.2 for

rm − rf ; -0.3 and 1.4 for SMB; and -0.5 and 0.9 for HML. Furthermore, the error terms are generated from a

normal distribution with a zero mean and a diagonal covariance matrix, whose elements are sampled from a uniform

distribution with values ranging from 0.10 and 0.30. To observe asymptotic behaviour the simulation lasts 1000

iterations and the results averaged over all iterations.

5 Results

The result section is organized as follows, first a critical analysis on the subspace mean-variance portfolio of Chen

and Yuan (2016) is made. Then, an evaluation of the benefits from shrinkage estimation follows. Finally, all the

different portfolio methods used in this paper are compared and a combination rule of shrinkage estimation and the

subspace method is investigated.

5.1 Subspace Mean-Variance Portfolio

First, the effect of the dimension d on the subspace mean-variance portfolio is investigated. Plots of the relative

Sharpe ratio for different dimension sizes can be found in figure 1, where plots are shown for N = 25, 100 and

T = 60, 120, 240. Where the black line represents the sample subspace mean-variance portfolio and the grey

line represents the naive portfolio. The relative Sharpe ratio is defined as the Sharpe ratio of a given portfolio rule

divided by the Sharpe ratio of the theoretical Markowitz portfolio.
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Figure 1: Plots of the relative efficiency of the estimated Subspace mean-variance portfolio at different dimension sizes d.
The plot is made for all combinations N = 25, 100 and T = 60, 120, 240. The horizontal lines are the average relative
efficiency of naive diversification.

Figure 1 shows that the subspace mean-variance portfolio performs best when the d is equal to the true amount

of economic factors that generate the returns, which is three in the simulation. For lower dimensions the subspace

method fails capture the full effect of all the factors. When the dimension grows larger, the subspace method starts

to suffer from estimation error. However, the subspace mean-variance portfolio performs better than the naive port-

folio at a wide range of other dimension sizes close to the true dimension size, especially for larger N and T where the

subspace mean-variance portfolio outperforms the naive portfolio at almost all investigated dimensions. The finding

support Theorem 2, which states that the performance of the subspace mean-variance portfolio improves when

both N and T increase. Furthermore, the figure shows a slight concave form, indicating that the negative effects of

estimation error increases as the dimension size increases, because the amount of parameters to be estimated in-

creases at an increasing rate such that the amount of estimation error should also be increasing at an increasing rate.
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To investigate the practical benefits of the subspace mean-variance portfolio, d is now estimated using equation (7).

The Sharpe ratio of the different portfolio rules at different N is shown in Figure 2, where plots are shown for

T = 60, 120, 240, 360.
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Figure 2: Plots of the Sharpe ratios at different N . The plot is made for estimation windows T = 60, 120, 240, 360.
Furthermore, the Sharpe ratios of the theoretical mean-variance portfolio (black, circles), the estimated subspace mean-variance
portfolio (red, triangle), naive diversification (blue, squares) and the sample mean-variance portfolio (green, crosses) are
shown.

Figure 2 shows several strong qualities of the subspace mean-variance portfolio. First of all, the Sharpe ratio

of the subspace mean-variance portfolio remains relatively unaffected to the increase in N , while the sample

mean-variance portfolio sees a rapid drop in Sharpe ratio. Furthermore, the subspace mean-variance portfolio

consistently outperforms both the naive portfolio and the sample mean-variance portfolio, whereas the sample

mean-variance portfolio quickly gets outperformed by the naive portfolio when N increases. Lastly, both the

subspace mean-variance portfolio and the sample mean-variance portfolio show higher Sharpe ratios when T is

larger, which supports both Theorem 1 and Theorem 2.
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The results shown in Figure 2 differ from the findings in Chen and Yuan (2016). In their paper the Sharpe ratios

are overall much higher and show much bigger jumps between different values of N . In Figure 3 the Sharpe ratio

of the theoretical mean-variance portfolio is shown at N = 1 to 50 and T = 120.
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Figure 3: A plot of the Sharpe ratio of the Markowitz mean-variance portfolio as N increases.

Figure 3 shows that when N grows larger than three, the Sharpe ratio quickly starts to converge to a value around

0.26, which is also seen in Figure 2. This is because the assets are generated from a model with only three common

economic factors. Portfolio theory states that the benefits of diversification aren’t endless due to systemic risk

(Tasca and Battiston, 2011), which implies that the Sharpe ratio should convergence after a certain amount of

assets are included in the portfolio. Because only three common factors are used in the simulation, an investor

doesn’t need a large set of assets to reduce exposure towards the risk of the common factors, therefor the Sharpe

ratio converges quickly when N > 3. This differs from what is shown in Chen and Yuan (2016), where there are

large spikes in Sharpe ratio, such as between N = 50 and N = 75.
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To further investigate the properties of the subspace mean-variance portfolio, the holdings will be compared to those

of the Markowitz portfolio. In Figure 4 the holdings of the subspace mean-variance portfolio are plotted against

the theoretical mean-variance portfolio and the sample mean-variance portfolio.
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Figure 4: The plot on the left shows the holdings of the subspace mean variance portfolio (red, solid circles) compared to the
holdings of the sample mean variance portfolio (black, open circles). The plot on the right shows a scatterplot of the theoretical
mean-variance portfolio and the subspace mean-variance portfolio. The results are found using T = 120 and N = 100.

The left plot shows that the holdings of the subspace mean-variance portfolio are significantly smaller in scale,

while also less volatile. Literature shows that portfolio rules originating from quantitative models often result in

extreme and unreasonable positions for the investor (see e.g. Black and Litterman (1992)). The left plot shows

that the subspace mean-variance portfolio might alleviate some of the problem since the holdings appear to be

around the same values. Furthermore, the holdings of the subspace mean-variance portfolio track well with the

holdings of the theoretical mean-variance portfolio, as seen in the plot on the right.
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The extreme investment positions that are suggested by quantitative methods usually differ substantially between

periods, which means that investors have to spend a lot of money on rebalancing their portfolios in between periods.

In the simulation setting, the turnover cost Ct for changing the holdings for the next month t+ 1 can naturally be

measured as in equation (21).

Ct =

N∑
i=1

|wt+1,i − wt,i| (21)

Figure 5 shows box-plots of the turnover costs from the subspace mean-variance portfolio and the sample mean-

variance portfolio for estimation windows T = 120, 240. The turnover costs are calculated over a 50-year period.
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Figure 5: Box-plots are made of the turnover costs using the Subspace mean-variance portfolio and the sample mean-variance
portfolio. This is done in an investment universe with N = 100 over a 50 year period using estimation windows T = 120 and
240. Furthermore, the Y-axes are in log scales.

The box plots show that the turnover costs of the subspace mean-variance portfolio is significantly lower than

that of the sample mean-variance portfolio, suggesting that the investment positions of the subspace mean-variance

portfolio are more stable over time.
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As stated in the data section, the subspace mean-variance portfolio is also investigated using empirical returns of

the Fama-French 25 (5 × 5) and 100 (10 × 10) portfolios. Figure 6 shows a plot of the Sharpe ratio achieved for

different dimension sizes d, the dashed line represents the achieved Sharpe ratio where the subspace dimension is

estimated according to equation (7). As the true population moments µ and Σ are unknown, the achieved Sharpe

ratio is calculated as the average portfolio return divided by the sample standard deviation.
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Figure 6: Plots of the Sharpe ratio at different dimension sizes for the subspace mean-variance portfolio. This is done for
T = 60, 120, 240 and N = 25, 100. The red line (dashed) denotes the Sharpe ratio of the subspace portfolio with estimated
dimension sizes.

Figure 6 shows that the subspace method works best when the dimension size is close to the true the dimension as

for most plots the maximum Sharpe ratio is reached around the estimated dimension size, similar to the findings of

the simulation. The estimated dimension size is usually around 7, indicating that there are 7 common factors that

generate the returns. However comparing Figure 6 in to the similar Figure of Chen and Yuan (2016), the plots

don’t display the extreme drops at the higher dimension sizes. This indicates that the subspace mean-variance

method might not be superior to the traditional sample-mean variance portfolio, since the methods should result

in similar portfolios when the dimension size is close to N .
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5.2 Shrinkage Estimation

This section studies the shrinkage estimators of Jorion (1986) and Ledoit and Wolf (2003). Figure 7 shows plots of

the Sharpe ratio of the sample Markowitz portfolio using both shrinkage and the traditional sample estimators for

different values of N . Furthermore, the Bayes-Stein estimator can’t be calculated when T < N and therefor the

results aren’t shown for these situations.
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Figure 7: Plots of the Sharpe ratio for the sample Markowitz mean-variance portfolio at N = 25, 50, 75, 100, 125 using
different estimator inputs. The green lines (circles) are made using the traditional sample estimators, the blue lines (crosses)
are made using the mean estimator of Jorion (1986) and the red lines (triangles) are made using the covariance matrix of
Ledoit and Wolf (2003).

Figure 7 shows that of the Shrinkage estimators only the estimator of Ledoit and Wolf (2003) is able to significantly

improve portfolio selection in terms of Sharpe ratio. The estimator follows from a misspecified model, as the

model assumes that the returns are generated by a market return factor, but the returns are also generated

by two additional factors. In the simulation setting, the shrinkage estimator is able to give an improvement in

estimation power. This shows that although there is some misspecification, assuming a model structure for the

returns is potentially beneficial. The Bayes-Stein estimator shows very similar estimation power to the tradi-

tional sample mean. However, this estimator requires N < T to be calculated and could thus be regarded as inferior.
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The holding- and turnover-plots using both shrinkage estimators can be found in the appendix. The holding plots

show lower variation when calculating the sample mean-variance portfolio using the shrinkage estimator than with

the traditional sample estimates. Especially for the shrunk covariance estimator, which also results in a portfolio

with better tracking of the true Markowitz portfolio holdings compared to the Bayes-Stein estimator. Furthermore,

the box-plots show that the shrunk covariance estimator also results in a significantly lower turnover cost, compared

to both the traditional sample estimates and the Bayes-Stein estimator.

5.3 Shrinkage Estimation and Subspace Mean-Variance Portfolio combined

In this section a combination of shrinkage estimation and the subspace mean-variance portfolio is investigated. In

Figure 8 the Sharpe ratio for the subspace mean-variance portfolio is plotted using both shrinkage estimators and

the sample estimators at different N .
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Figure 8: Plots of the Sharpe ratio for the subspace Markowitz mean-variance portfolio at N = 25, 50, 75, 100, 125 using
different estimator inputs. The green lines (circles) are made using the traditional sample estimators, the blue lines (crosses)
are made using the mean estimator of Jorion (1986) and the red lines (triangles) are made using the covariance matrix of
Ledoit and Wolf (2003).

Figure 7 shows that the shrinkage estimator of Ledoit and Wolf (2003) improves the sample mean-variance portfolio.

However, figure 8 doesn’t show a clear improvement in Sharpe ratio when using the shrinkage estimator inputs in

combination with the subspace method. This result indicates that the subspace mean-variance portfolio is more

robust towards the overall estimation accuracy of the estimator. The subspace mean-variance portfolio is made
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using the eigenvectors from the covariance, which can be considered as estimations of the common factors that

generate the returns. Thus, the subspace mean-variance portfolio is only significantly improved, if the estimated

covariance matrix is relatively better in capturing the common economic movement. One way to achieve this

would be to assume a correctly specified factor model for the returns, whereas the model used for the shrinkage

estimator is misspecified. The results of figure 8 also suggests that poor estimators will have relatively better

results when combining it with the subspace mean-variance portfolio, if the estimator sufficiently captures the

common movement in the returns.

Furthermore, the shrinkage estimators are investigated using the empirical returns of the Fama-French portfolios.

Figure 9 shows the achieved Sharpe ratios for the subspace mean-variance portfolio calculated using the shrinkage

estimators and the traditional sample estimates.
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Figure 9: Plots of the Sharpe ratio at different dimension sizes for the subspace mean-variance portfolio. The black line is
made using the traditional sample estimates, the blue line (dashed) uses the mean estimator of Jorion (1986) and the red line
(dotted) uses the covariance estimator of Ledoit and Wolf (2003). This is done for T = 60, 120, 240, N = 25, 100 and
N < T .
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Figure 9 shows that the three different lines exhibit similar movement, such that the difference in Sharpe ratio

is almost independent to the size of d. Furthermore, the shrinkage estimators don’t always show improvement

in estimation. However, when N = 100 the shrinkage estimator of Ledoit and Wolf (2003) shows higher Sharpe

ratio for all T and the Bayes-Stein estimator shows improvement for T = 120. For N = 25 both estimator show

similar to worse estimation power, except for T = 60. These findings display two important features of shrinkage

estimators. First, shrinkage estimators are more robust towards larger N . Second, shrinkage estimation is perform

relatively better for small T and don’t benefit as much from an increased estimation window compared to the

traditional sample estimates. These findings indicate that shrinkage estimation could be beneficial in settings when

N is large and T is small, but could have similar to worse results otherwise. As mentioned before, the estimated

dimension size is usually around 7, which means that also in the empirical setting the single index model is most

likely misspecified. The subspace method in combination with shrinkage estimation could be further improved, if

more advanced return models are used that are more likely to be correctly specified.

Table 1 reports the achieved Sharpe ratio of the portfolio selection methods used in this paper and three other

portfolio rules that have come out of portfolio literature. These additional portfolio rules are: (KZ) the portfolio

rule of Kan and Zhou (2007); (S&N) a combination rule based on the sample mean-variance portfolio and naive

diversification (Tu and Zhou, 2011); and (KZ&N) a combination rule based on the KZ rule and naive diversification

(Tu and Zhou, 2011). The exact implementation of the additional portfolio rules can be found in the appendix.

The tables shows the achieved Sharpe ratios calculated from the empirical returns of the Fama-French portfolios.

N = 25 N = 100

Portfolio Rule T = 60 T = 120 T = 240 T = 60 T = 120 T = 240

Sample MV 0.28 0.37 0.38 0.16 0.21 0.17

Naive 0.13 0.14 0.15 0.13 0.14 0.15

S&N 0.28 0.37 0.38 0.21 0.17

KZ 0.28 0.37 0.38 0.21 0.18

KZ&N 0.28 0.37 0.38 0.21 0.18

Subspace MV 0.17 0.20 0.33 0.13 0.20 0.24

SJ 0.23 0.37 0.38 0.18 0.20

SLW 0.23 0.32 0.38 0.16 0.22 0.21

Subspace MV & SJ 0.16 0.21 0.29 0.20 0.18

Subspace MV & SLW 0.22 0.24 0.31 0.15 0.20 0.17

Table 1: The table reports the achieved Sharpe ratios calculated using a selection of portfolio selection methods. A heatmap
is made along the columns, where the maximum values are represented by green (light grey shade), the minimum values are
represented by red (dark grey shade) and the color for the values in between is interpolated given the value. The Sharpe ratio
are calculated over a period of 50 years in a market with N = 25, 100 and estimation windows T = 60, 120, 240. For certain
methods the portfolio rule couldn’t be calculated when T < N and are left blank. Furthermore, ’SJ’ stands for Shrinkage
Jorion and ’SLW’ for Shrinkage Ledoit and Wolf.
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As seen in table 1, the subspace mean-variance portfolio isn’t able to consequently beat all the other portfolio

rules except for naive diversification. For N = 25, it even appears to be worse than other portfolio rules, however

the subspace mean-variance performs better for N = 100 and larger T , which also where the subspace method

is expected to perform best compared to the other methods. The finding supports theorem 2, which states that

the subspace mean-variance portfolio is more robust towards large markets. The results in table 1 differ from

what is shown in Chen and Yuan (2016), where the subspace method appeared relatively better towards the

other portfolio rules, such that it should be questioned how effective the subspace mean-variance portfolio actually is.

The Sharpe ratios of the portfolio rules calculated using the shrinkage methods also are not superior to other

selection methods that have appeared in literature. However, the methods do show relatively high Sharpe ratios

when N = 100, which is also expected since shrinkage estimation is supposed to be a better estimator for high

dimension multivariate normal variables. Furthermore, the combined method of shrinkage and the subspace mean-

variance portfolio didn’t result in a significantly improved selection method as seen from table 2.

6 Conclusion

Through simulation it is shown that both the subspace method and shrinkage estimation are beneficial towards

portfolio selection in terms of Sharpe ratio. Also in the form of stable holding positions and lower turnover costs

both methods could prove to be beneficial. However, the empirical study shows the limits towards the benefits of

both methods in practice. It is found that for both methods only in large markets the Sharpe ratios are higher and

equal to lower otherwise.

The results of Chen and Yuan (2016) are found to be difficult to replicate, such that there are some doubts towards

the extent of the effectiveness of the subspace mean-variance portfolio. Of the shrinkage estimators, the estimator

of Ledoit and Wolf (2003) shows the best improvement for the sample mean-variance portfolio. Since this estimator

uses a misspecified model, it could be improved by applying more advanced return models. The shrinkage estimator

of Jorion (1986) is found to have almost similar estimation power as the traditional sample mean. Furthermore, the

combination of shrinkage estimation and the subspace mean-variance portfolio doesn’t appear to be beneficial, but

the subspace method could still be improved if more advanced return models are applied to calculate the subspace

or the covariance estimator.
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7 Appendix

A Additional Figures

Holding plots

The holdings of the sample mean-variance portfolio calculated using shrinkage estimators of Jorion (1986) and

Ledoit and Wolf (2003) are shown in the following figures.
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Shrinkage estimator of Ledoit and Wolf (2003)

20 40 60 80 100
-0.15

-0.10

-0.05

0

0.05

0.10

0.15

Asset Index

H
ol

d
in

gs

−3 −2 −1 0 1 2 3·10−3
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0

0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
·10−2

Holdings by True MV

H
ol

d
in

gs
b
y

S
am

p
le

M
V

23



Turnover plots

The turnover costs of the sample mean-variance portfolio calculated using shrinkage estimators of Jorion (1986)

and Ledoit and Wolf (2003) are shown in the following figures.

Shrinkage estimator of Jorion (1986)
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Shrinkage estimator of Ledoit and Wolf (2003)
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B Assumptions

As stated in the paper of Chen and Yuan (2016), the methods and theorems of this paper rely on the following set

of assumptions on the factor model that generates the asset returns.

Assumption 1. The factors have finite fourth moments such that there exists a positive constant C1 < ∞ satist-

fying:

max
1≤k≤K

Ef4kt ≤ C1

Assumption 2. There is a strictly positive definite matrix ΣB such that:

BᵀB/N → ΣB as N →∞

Assumption 3. The covariance matrix of the error terms (ε1t, . . . , εNt)
ᵀ, Σε, has eigenvalues which are bounded

away from both zero and infinity. Moreover, the idiosyncratic risks have finite fourth moments such that there exists

a positive constant C2 <∞ satisfying:

max
1≤j≤N

E ε4jt ≤ C2

Assumption 4. The factors f1, . . . , ft are weakly dependent in that there exists a positive constant C3 < ∞

satisfying:

max
1≤k1,k2≤K

E
{ T∑
t=1

(fk1tfk2t − Σfk1k2)2
}
≤ C3T

where Σfk1k2 is the (k1, k2)th entry of Σf .

Assumption 5. The idiosyncratic risks (ε11, . . . , εN1)ᵀ, . . . , (ε1t, . . . , εNt)
ᵀ are weakly dependent in that there exists

a positive constant C4 <∞ satisfying:

max
1≤j1,j2≤K

E
{ T∑
t=1

(εj1tεj2t − Σεj1j2)2
}
≤ C4T

where Σεj1j2 is the (j1, j2)th entry of Σε.

Assumption 6. The factors and idiosyncratic risks are jointly weakly dependent in that ther exists a positive

constant C5 <∞ satisfying:

max
1≤j≤N
1≤k≤K

E
( T∑
t=1

ε2jtf
2
kt

)
≤ C5T

It has been shown that these assumptions generally hold for factor models that have been proposed in literature

(Bai and Ng, 2002).

C Proof of Markowitz Weights

The minimization problem of Markowitz can be represented by the following equation,
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min
w∈RN

{γ
2
wᵀΣw − wᵀµ}

Then the differentiating this equation with respect to w and equating the differential to zero will give the solution,

d

dw
(
γ

2
wᵀΣw − wᵀµ) = 0

γΣw − µ = 0

w =
1

γ
Σ−1µ

Proof of Markowitz Weights with restriction

A common restriction for portfolio weights is that they add up to one, then the optimization problem is as follows,

min
w∈RN

{γ
2
wᵀΣw − wᵀµ}

s.t.

wᵀ1 = 1

Where 1 is a N ×1 vector where each element is a 1. This problem can be solved by applying Lagrange multipliers,

L(w, λ) =
γ

2
wᵀΣw − wᵀµ− λ(w′1− 1)

Which gives,

dL
dw

= γΣw − µ− λ1 = 0

dL
dλ

= wᵀ1− 1 = 0

Solving the upper equation for w gives,

w =
1

γ
Σ−1µ+

λ

γ
Σ−11

This solution can be substituted into dL
dλ for a solution for the multiplier λ, which gives the optimal weights that

add up to one.
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wᵀ1 = 1

(
1

γ
Σ−1µ+

λ

γ
Σ−11)ᵀ1 = 1

µᵀΣ−11 + λ1ᵀΣ−11 = γ

λ =
γ − µᵀΣ−11

1ᵀΣ−11

Using this λ the optimal portfolio weights can be found,

wopt =
1

γ
Σ−1µ+

1

γ
(
γ − µᵀΣ−11

1ᵀΣ−11
)Σ−11

D Proof of Subspace Mean-Variance Weights

The mapping Rd → P : x → PPx is bijective. Let xP ∈ Rd be such that wP(x) = PPx solves the optimization

problem,

min
w∈P
{γ

2
wᵀΣw − wᵀµ}

Which can be rewritten to the following problem which is solved by xP ,

min
x∈Rd
{γ

2
xᵀP ᵀ

PΣPPx− xᵀP ᵀ
Pµ}

This problem is similar to the traditional Markowitz framework, however the mean and variance are scaled by PP

giving P ᵀ
PΣPP and P ᵀ

Pµ for the mean and variance respectively. The solution of this problem is known and has the

following form,

xP =
1

γ
(P ᵀ
PΣPP)−1P ᵀ

Pµ

Plugging this equation into wP(x) gives the solution,

wPmv =
1

γ
PP(P ᵀ

PΣPP)−1P ᵀ
Pµ

Deriviation of the Subspace Mean-Variance Weights using the Eigenvector Subspace

The general solution to the Subspace mean variance portfolio is given below,

wPmv =
1

γ
PP(P ᵀ

PΣPP)−1P ᵀ
Pµ

If the subspace P is chosen to be the subspace spanned by the first d eigenvectors of the covariance matrix, then the

orthonormal base of P is given by PP = [η1, . . . , ηd], with ηi being i-th eigenvector of Σ. As the covariance matrix
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is a symmetric matrix it is known that such an orthonormal base exists, because the eigenvectors are orthogonal

and can be constructed to be unit length. Thus for the eigenvectors the following properties hold: ηᵀi ηj = 0 when

i 6= j; ηᵀi ηj = 1 when i = j; and Σηi = θiηi for any eigenvector. Then the general solution can be rewritten as

follows,

P ᵀ
PΣPP = [η1, . . . , ηd]

ᵀΣ [η1, . . . , ηd]

=


ηᵀ1
...

ηᵀd

 [θ1η1, . . . , θdηd]

=


θ1

θ2

. . .

θd


And thus,

(P ᵀ
PΣPP)−1 =


θ−11

θ−12

. . .

θd−1


This equation can be plugged back into the general solution for the eqaution of the subspace mean-variance portfolio

shown below,

wPmv =
1

γ

d∑
k=1

θ−1k ηkη
ᵀ
kµ

E Shrinkage Factor of Ledoit and Wolf (2003)

The optimal shrinkage factor of Ledoit and Wolf (2003) has the following form,

τ∗ =

∑N
i=1

∑N
j=1 Var(sij)− Cov(fij , sij)∑N

i=1

∑N
j=1 Var(fij − sij) + (φij − σij)2

Ledoit and Wolf (2003) show that the optimal shrinkage factor satisfies the following equation,

τ∗ =
1

T

π − ρ
κ

+Op
( 1

T 2

)
Where π =

∑N
i=1

∑N
j=1 AsyVar[

√
Tsij ], ρ =

∑N
i=1

∑N
j=1 AsyVar[

√
Tfij ,

√
Tsij ] and κ =

∑N
i=1

∑N
j=1(φij − σij)2.
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Such that the optimal τ∗ is of the form 1
T
π−ρ
κ . Since this equation has unobserved terms, the factor has to be

estimated from data. For this purpose, the following decompositions are made:

π =

N∑
i=1

N∑
j=1

πij ρ =

N∑
i=1

N∑
j=1

ρij κ =

N∑
i=1

N∑
j=1

κij

The following set of equations for π̂ij , ρ̂ij and κ̂ij result in consistent estimators for πij , ρij and κij respectively.

π̂ij =
1

T

T∑
t=1

[
(rit − µ̂i)(rjt − µ̂j)− sij

]2
ρ̂ij =

1

T

T∑
t=1

ρ̂ijt

ρ̂ijt =
sjmsm(rit − µ̂i) + simsm(rjt − µ̂j)− simsjm(rmt − µ̂m)

s2m
(rm − µ̂m)(rit − µ̂i)(rjt − µ̂j)− fijsij

κ̂ij =
(
fij − sij

)2
Where rit is the return on stock i at time t and µ̂i is the average return on stock i. Furthermore, sm is the standard

deviation of the market return, µ̂m is the average market return and sim is the covariance between the market

return and stock i.

F Other Portfolio Rules

• Naive Diversification:

wN =
1

N
1

• KZ: Portfolio rule of Kan and Zhou (2007):

ŵKZ =
1

γ

T −N − 2

c(T − 1)

[
ηΣ̂−1µ̂+ (1− η)µ̂gΣ̂

−11

]
where,

η =
ψ2

ψ2 +N/T
, ψ2 = (µ̂− µ̂g1)ᵀΣ̂−1(µ̂− µ̂g1)

• S&N: Combination Rule based on sample mean-variance portfolio and the naive portfolio (Tu and Zhou, 2011) :

ŵS&N = (1− δ)wN + δ
T −N − 2

T − 1
ŵmv
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where,

δ =
π1

π1 + π2

π1 = wᵀ
N Σ̂wN −

2

γ
wᵀ
N µ̂+

1

γ2
θ̃2

π2 =
1

γ2

[
(T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
− 1

]
θ̃2 +

(T − 2)(T −N − 2)

γ2(T −N − 1)(T −N − 4)

N

T

θ̃2 =
(T −N − 2)θ2 −N

T
+

2θN (1 + θ2)−(T−2)/2

T
∫ θ2/(1+θ2)
0

xN/2(1− x)(T−N−2)/2dx

θ2 = µ̂ᵀΣ̂−1µ̂

• KZ&N: Combination Rule based on the portfolio rule of Kan and Zhou (2007) and naive diversification (Tu

and Zhou, 2011):

ŵKZ&N = (1− ζ)wN + ζwKZ

where,

ζ =
π1 − π13

π1 − 2π13 + π3

π13 =
1

γ2
θ̃2 − 1

γ
wᵀ
N µ̂+

(T −N − 1)(T −N − 4)

γ(T − 2)(T −N − 2)

[
ηwᵀ

N µ̂+ (1− η)µ̂gw
ᵀ
N1

]

− (T −N − 1)(T −N − 4)

γ2(T − 2)(T −N − 2)

[
ηµ̂ᵀΣ̃−1µ̂+ (1− η)µ̂gµ̂

ᵀΣ̃−11

π3 =
1

γ2
θ̃2 − (T −N − 1)(T −N − 4)

γ2(T − 2)(T −N − 2)

(
θ̃2 − N

T
η

)
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