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Abstract

I replicate and extend the research documented in Jones and Enders (2016) and manage
to come to similar conclusions. I employ a nonlinear framework, the logistic smooth tran-
sition autoregressive (LSTAR) model, in combination with conditional volatility estimated
using an EGARCH model, realised volatility and conditional volatility estimated using a
MIDAS model as respective uncertainty measures. I find that uncertainty indeed has a
nonlinear effect on macroeconomic activity, in this paper proxied by industrial production,
and this effect also turns out to be asymmetric in the sense that positive and negative
shocks of the same size have different sized effects on industrial production.

Keywords: Nonlinear Models, LSTAR Models, Uncertainty, Uncertainty Shocks, Macroe-
conomic Activity, Volatility
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1 Introduction

Ever since the global financial crisis in 2007-2009 there has been a significant surge in research
in uncertainty. According to Bloom (2014) this surge in research interest was mainly caused by
the jump in uncertainty in 2008 that helped shape the financial crisis. Others have also linked
the increasing uncertainty to the crisis. The Federal Open Market Committee for example has
repeatedly named uncertainty a key factor driving the recession, and Stock (2012) stated that
”The main contributions to the decline in output and employment during the 2007-2009 reces-
sion are estimated to come from financial and uncertainty shocks.” Bloom (2009) and Bloom
et al. (2012) showed that uncertainty can lead to large drops in economic activity, and can
therefore contribute to a financial crisis. Finally, Arellano et al. (2012) found that uncertainty
shocks can explain a substantial fraction of fluctuations in output. All these articles agree that
uncertainty has an effect on the macroeconomy during recessions and during expansions. The
main reason these articles gave to explain this effect of uncertainty is that both consumers
and companies base many of their economic decisions on the degree of uncertainty they are
experiencing, since they usually postpone investment, hiring and consumption decisions when
uncertainty is high until business conditions become clearer (Bloom, 2014).

Mishkin (2011) was the first to suggest that the effect of uncertainty on the macroeconomy
may not be linear. Besides this nonlinearity, Grier et al. (2004) and Foerster (2014) pro-
vided evidence that this effect is also asymmetric. Jones and Enders (2016) investigated these
findings further by estimating several macroeconomic variables as logistic smooth transition
autoregressive (LSTAR) processes with uncertainty as a transition variable. They aimed to
find out whether uncertainty affects the macroeconomy in a nonlinear and asymmetric fashion.
They found that for several key-macroeconomic variables positive uncertainty shocks have a
larger effect on the macroeconomy than negative shocks, and that the effect of uncertainty
shocks is highly dependent on the state of the economy. They concluded that linear models
highly underestimate the consequences of uncertainty during financial crises.

Throughout this report I investigate whether the conclusions drawn in Jones and Enders
(2016) hold up by replicating their main results using the exact same methods as they did
and data similar to theirs. These main results are based on an LSTAR model for industrial
production, with EGARCH conditional volatility of the monthly financial returns on the S&P
500 Index as uncertainty measure. However, the financial returns on an index such as the S&P
500 are available at a much higher frequency, which sparks the idea for my extension of Jones
and Enders (2016) in which I use daily financial returns to estimate an uncertainty measure.
I use these daily returns to estimate monthly realised volatility, which according to Jurado
et al. (2015) is a well-working proxy for uncertainty. Another method I employ to estimate an
uncertainty measure using daily returns is called a MIxed Data Sampling (MIDAS) regression,
which was first introduced by Ghysels et al. (2005). They created a model which linked daily
financial returns to monthly conditional volatility, which is also able to capture asymmetries in
the dynamics of conditional variance and can incorporate nonlinearities, just like the EGARCH
model can. This MIDAS model allows me to use data collected at a higher frequency than the
data used in Jones and Enders (2016), which I anticipate will result in a higher overall accuracy,
and possibly more nuanced conclusions. On top of this expected higher accuracy, Ghysels
et al. (2007) showed that MIDAS regressions are particularly good at forecasting conditional
volatility during periods of high volatility, even more so than most GARCH models. This all
shows that using a MIDAS regression to estimate an uncertainty measure may well prove to be
an improvement over the uncertainty measures applied in Jones and Enders (2016). Through
the use of these methods I aim to find out whether positive and negative uncertainty shocks
have asymmetric effects, and whether the effects of uncertainty shocks vary over the business
cycle by estimating a nonlinear model - the logistic smooth transition autoregressive (LSTAR)
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model - for industrial production where I use the earlier mentioned uncertainty measures:
EGARCH conditional volatility, realised volatility and MIDAS conditional volatility. For each
of the estimated LSTAR models, I create impulse response functions to investigate the response
of industrial production to uncertainty shocks of different signs and sizes. These impulse
responses show that positive uncertainty shocks have a greater effect on industrial production
than negative uncertainty shocks do. They also show that the timing of uncertainty shocks
greatly affects the change in industrial production since uncertainty shocks occurring during
the crisis have a far greater effect than the same size shocks occurring outside the financial
crisis. These findings for the three different LSTAR Models are very similar to those in Jones
and Enders (2016), which shows that their research is both replicable and robust.

In the next section I present the data I use to find my results, and in section 3 I explain the
methods I use to find these results. Section 4 presents the estimated LSTAR models and the
impulse responses created using these models. In section 5 I compare and discuss the different
uncertainty measures, and I compare the impulse responses created using these models. In
section 6 I present my conclusions, and in section 7 I present some suggestions for further
research into this subject matter.

2 Data

The macroeconomic variable I use to proxy macroeconomic activity is the monthly, seasonally
adjusted industrial production as obtained from the Federal Reserve Economic Data (FRED).
This variable ranges from January 1950 until January 2012. Throughout this report, I use
the log difference transformation of industrial production, which can be calculated as yt “
lnpIPtq´lnpIPt´1q, where IPt is the value of industrial production at time t. These transformed
values of industrial production can be interpreted as growth in industrial production.

One of the uncertainty measures I use is the conditional volatility of the monthly opening
prices of the S&P 500 Index. These monthly opening prices are obtained from the Yahoo
Finance website, and range from January 1950 until January 2012. I transform this data into
returns by taking the log differences of the opening prices in the same manner as explained
above. The conditional volatility can then be estimated from these returns, which is explained
in detail in section 3.3.

I also use the daily opening prices of the S&P 500 Index to estimate both the monthly
realised volatility and the monthly conditional volatility of the index. The returns can also
be found on the Yahoo Finance website, and they range from the 3 January 1950 until 30
December 2012. I again transform these opening prices into financial returns by taking the log
differences.

3 Methodology

3.1 The LSTAR Model

In order to estimate the effect of uncertainty on macroeconomic activity Jones and Enders
(2016) used a nonlinear framework that allows for the sign and size of uncertainty shocks to have
asymmetric effects. This nonlinear framework is a logistic smooth-transition autoregressive
(LSTAR) model, which allows for different regimes, one with high uncertainty and one with low
uncertainty. These two regimes should account for recessions and expansions, while the smooth
transition in between the two regimes should model the periods in between these recessions
and expansions. The regime the economy is experiencing is determined by the magnitude of
the uncertainty measure used in the LSTAR model.
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The LSTAR model as defined by van Dijk et al. (2002) can be written as follows:

yt “ φ11xt ` φ
1
2xtGpst; γ, cq ` εt, (1)

where xt “ p1, yt´1, yt´2, ..., yt´pq
1 and φi “ pφi,0, φi,1, ..., φi,dq

1, i “ 1, 2. εt in the above equa-
tion is assumed to be a martingale difference sequence with respect to Ωt´1 “ tyt´1, ..., yt´pu,
such that Erεt|Ωt´1s “ 0 and Erε2t |Ωt´1s “ σ2. The smooth transition between the two regimes
is defined by the function Gpst; γ, cq, which in this case is a first-order logistic function:

Gpst; γ, cq “ p1` expr´γpst ´ cqsq
´1, γ ą 0, (2)

where st denotes the transition variable, γ the smoothness parameter and c the centrality
parameter, and Gpst; γ, cq is a continuous function bounded between 0 and 1. The smoothness
parameter, γ, determines the smoothness of the transition between the two regimes, while the
centrality parameter, c, determines the threshold between the two regimes. The regime at time
t is controlled by the value of the transition variable st: The transition function Gpst; γ, cq
increases monotonically from 0 to 1 as st increases, and equals 0.5 when st “ c. When γ tends
to zero, the transition function approaches 0.5 and when γ equals zero, the LSTAR model is
reduced to a linear autoregressive (AR) model. When γ becomes very large, the transition of
Gpst; γ, cq from 0 to 1 becomes almost instantaneous at c, thereby reducing the LSTAR model
to a threshold autoregressive (TAR) model, which is a regime-switching autoregressive model
with an instantaneous transition between its two regimes. The fact that the LSTAR model
can be reduced to a linear AR model and to a TAR model makes it a useful tool for modelling
business cycle variables.

The parameters of the LSTAR model can be estimated using nonlinear least squares es-
timation (Teräsvirta, 1994), whom also argued that the most accurate estimates of γ can be
found using a standardised transition variable. This standardising entails dividing the time
series of the transition variable by its own standard deviation. Throughout my investigation I
therefore use standardised transition variables to estimate the LSTAR models. The parameters
of the LSTAR model can then be estimated by solving the following problem:

θ̂ “ argmin
θ

T
ÿ

t“1

ryt ´ F pxt; θqs
2, (3)

where F pxt; θq “ φ11xt ` φ12xtGpqt; γ, cq. This can be solved using various optimisation algo-
rithms, which converges very well as long as correct starting values are chosen. These starting
values can be found using a grid search over all possible values of γ and c. For fixed values of γ
and c, the LSTAR model is linear in φ1 and φ2 (Franses et al., 2014), and therefore, conditional
on γ and c, φ1 and φ2 can be estimated using ordinary least squares (OLS). The parameters
which result in the lowest sum of squared residuals (SSR) for this regression are chosen to be
the starting values for the optimisation algorithm.

3.2 Tests for Nonlinearity

Before estimating the LSTAR model, it makes sense to investigate whether there is reason to
believe the data to be nonlinear. I therefore submit the data to several different tests, which
are described in this section. These tests were also performed in Jones and Enders (2016).

3.2.1 Testing for LSTAR Behaviour

Teräsvirta (1994) describes a way to test for LSTAR behaviour, where linearity is tested against
the LSTAR model. This test entails approximating the logistic function displayed in equation
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(2) with a third-order Taylor expansion, which when combined with a Lagrange multiplier
(LM) test results in the following auxiliary regression:

yt “ β10xt ` β
1
1x̃tst ` β

1
2x̃ts

2
t ` β

1
3x̃ts

3
t ` et, (4)

where st denotes the transition variable, x̃t “ pyt´1, yt´2, ..., yt´pq
1 and xt “ p1, x̃

1
tq
1. The null

hypothesis for this test statistic is H0 : β1 “ β2 “ β3 “ 0, and the test statistic has an
asymptotic F distribution. The value for p can be found by inspecting the Akaike Information
Criterion (AIC)1 and Bayesian Information Criterion (BIC)2 of a simple AR model and choosing
for p the number of lags which resulted in the lowest respective AIC and BIC.

3.2.2 Regression Error Specification (RESET) Test

The RESET test tests a null hypothesis of linearity against an alternative of nonlinearity (Heij
et al., 2004). This is done by performing an LM test for a regression of residuals of an AR(p)
model for the macroeconomic variable on the regressors and on k powers of the fitted values of
said AR(p) model. This results in the following regression:

yt “ β1xt ` γ1ŷ
2
t ` ...` γk´1ŷ

k
t ` εt, (5)

where ŷt denotes the fitted values of the AR(p) model. The value for p is again found by
inspecting the AIC and BIC for several AR models with different orders, where p is set equal
to the lag-order of the model with the lowest AIC and BIC. When k is chosen too high, it is
likely that some of the added powers are multicollinear, leading to the inaccurate OLS estimates
of the parameters. I therefore use k “ 4, which is small enough not to cause multicollinearity,
and also large enough to include enough information in the test regression. The null hypothesis
of this LM test is that γ1 “ γ2 “ ... “ γk´1 “ 0, and the test statistic follows an F distribution.

3.2.3 Testing for Threshold Effects

This test for threshold effects was developed by Hansen (1997) and finds out whether there is
significant proof of thresholds in the data. This test is performed by choosing a large amount
of possible thresholds and then modelling the data as a simple TAR model for each of those
thresholds, and then comparing each of these models with a simple autoregressive model of the
same order as the TAR model by calculating the F-statistic:

FT pcq “ T

ˆ

σ̃2T ´ σ̂
2
T pcq

σ̂2T pcq

˙

, (6)

where σ̃2T denotes the variance of a simple OLS regression of an AR(p) model, and σ̂2T pcq is
the variance of a TAR(p,c) model, where p is the lag order and c is the chosen threshold.
These variances are calculated as σ2 “ 1

T

řT
t“1 ê

2
t , where êt denotes the residuals of either the

regression for the AR(p) model or the regression for the TAR(p,c) model. The test statistic of
this threshold test is then the supremum of all F-statistics. However, since the true threshold γ
is not identified, the asymptotic distribution of this test statistic is unknown, and is therefore
approximated using a simple bootstrapping procedure (Hansen, 1996). This bootstrapping
procedure entails simulating the dependent (macroeconomic) variable from a standard normal
distribution (mean 0 and variance 1), and then performing the same regressions for the sim-
ulated variable as described earlier, using the same thresholds. This results in another set of
these earlier defined F-statistics, from which the p-value of the test can be found by counting
the percentage of bootstrapped F-statistics which are exceeded by the supremum of the true
F-statistics.

1AIC “ T lnpSSRq ` 2r, with r the number of estimated parameters and SSR the sum of squared residuals
2BIC “ T lnpSSRq ` r lnpT q
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3.3 The EGARCH Model

The uncertainty measure I use to replicate the main results of Jones and Enders (2016) is the
monthly conditional volatility of the returns on the S&P 500 Index. One method of estimating
this conditional volatility entails the use of an Exponential Generalised Autoregressive Con-
ditional Heteroskedasticity (EGARCH) model. This EGARCH model describes the relation
between past uncertainty shocks to the financial returns and the logarithm of the conditional
variance (Franses and van Dijk, 2003). The reason I use an EGARCH model instead of a nor-
mal GARCH is that it is able to explain the leverage effect in a financial series. This leverage
effect refers to the fact that losses have a greater effect on future volatilities than gains do. The
accounting for the leverage effect by the EGARCH model ensures that positive and negative
shocks to financial returns are allowed to have asymmetric effects. This fits well with one of
the goals of this investigation, which is to find out whether uncertainty has asymmetric effects
on macroeconomic activity.

In order to estimate an EGARCH model the returns need to be modelled as follows:

∆ lnpxtq “ a` ε1,t, (7)

where ∆ lnpxtq is the log difference of the financial returns of the S&P 500 Index monthly
opening price and a is a constant. The error term ε1,t conditional on the information available
up to time t ´ 1 follows a standard normal distribution with a mean of zero and a variance
of ht. With the returns properly modelled, the EGARCH specification as defined in Nelson
(1991) can be written as

lnphtq “ ω ` β lnpht´1q ` γ
ε1,t´1
a

ht´1
` α

|ε1,t´1|
a

ht´1
, (8)

where ε1,t are the errors of the model for the returns displayed in equation (7). The model can
be estimated using maximum likelihood estimation (Alexander, 2008).

3.4 Testing for EGARCH Behaviour

Before estimating the EGARCH model, it is necessary to subject the financial returns to several
tests to examine whether the conditional volatility model is well specified. These tests are called
the Sign Bias Test, the Negative Sign Bias Test and the Positive Sign Bias Test. The sign
bias test examines the effect positive and negative shocks have on the volatility not predicted
by the GARCH-type model. The positive and negative size bias tests examine the effects that
large and small positive respectively negative return shocks have on the conditional volatility
not predicted by the GARCH-type model.

In order to find the test statistics for these tests the standardised residuals of equation

(7) are required, which are calculated as follows: vt “ ε1,t{
a

ĥt, where ĥt is estimated from
a GARCH(1,1) model for the financial returns. Also, two dummy variables are needed: S´t´1,
which equals 1 if vt ă 0 and 0 otherwise, and S`t´1, which equals 0 if vt ă 0 and 1 otherwise.

The respective test statistics for the Sign Bias Test, the Negative Sign Bias Test and the
Positive Sign Bias Test are calculated by finding the t-scores of the coefficient b for each of
the following three OLS regressions (Engle and Ng, 1993):

v2t “ a` bS´t´1 ` et, (9)

v2t “ a` bS´t´1vt´1 ` et, (10)

v2t “ a` bS`t´1vt´1 ` et. (11)

The three tests mentioned above can also be considered jointly through the following regression:

v2t “ a` b1S
´
t´1 ` b2S

´
t´1vt´1 ` b3S

`
t´1vt´1 ` et, (12)
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where the joint test statistic can be calculated using an LM test for the null hypothesis of
correct specification: b1 “ b2 “ b3 “ 0.

3.5 Using Daily Returns to Estimate the Uncertainty Measure

Jones and Enders (2016) use monthly returns to estimate conditional volatility as uncertainty
measure. However, returns on an index such as the S&P 500 are observed multiple times per
day. These returns with a higher frequency most likely contain more information than the
monthly returns, and therefore using these daily returns may result in a more accurate uncer-
tainty measure. I therefore propose two methods to estimate monthly uncertainty measures
based on daily returns.

The first method I propose is using monthly realised volatility as uncertainty measure,
which can be estimated using the daily returns on the S&P 500 Index using the following
formula (Corsi, 2009):

RVt “
N
ÿ

j“1

r2t,j , (13)

where rt,j denotes the j daily returns in month t. An LSTAR model with this realised volatility
as uncertainty measure contains more information through the higher number of observations
than the LSTAR model with EGARCH conditional volatility as uncertainty measure, leading
me to believe that this uncertainty measure may lead to more accurate or more nuanced con-
clusions than those drawn in Jones and Enders (2016).

The second method I propose is a MIDAS regression to estimate the monthly conditional
volatility. This type of regression allows left-hand and right-hand variables of a time series
regression to have different frequencies (Ghysels et al., 2007). This means that it is possible to
incorporate more information into estimating the monthly conditional volatility using a MIDAS
regression with daily financial returns than Jones and Enders (2016) were able to using an
EGARCH model with monthly data. The MIDAS model I use looks as follows (Ghysels et al.,
2005):

VM,t “ 22
8
ÿ

d“0

wdr
2
t´d ` εt, (14)

where VM,t denotes the monthly conditional volatility, and wd denotes the weight of the squared
daily return of day t-d : rt´d. The factor 22 forces the variance to be expressed in monthly
units, which is done because a month usually has 22 trading days due to no trading being
done during the weekends. Ghysels et al. (2007) proposes the weight given to the squared daily
returns at day t-d to be equal to

wdpκ1, κ2q “
exppκ1d` κ2d

2q
ř8
i“0 exppκ1i` κ2i2q

. (15)

This specific weighting function ensures that the sum of all weights for time t equals one, it
guarantees that all weights are positive and it can produce a large variety of shapes since it is
a function of two parameters. In order to be able to properly estimate the model, the infinite
sums in the equations (14) and (15) need to be delimited. Ghysels et al. (2005) chose the
number 252 as limit since that number represents the average number of trading days in one
year.

The parameters κ1 and κ2 in the MIDAS model can be estimated using maximum likelihood
estimation. This could only be done after first assuming again that the monthly returns at time
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t follow a time-varying normal distribution with mean 0 and variance hMt . This assumption
together with the models given in equations (14) and (15) allowed for the log-likelihood function
to be written as:

lpκ1, κ2q “ ´
T

2
ln 2π ´

1

2

T
ÿ

t“1

´

lnVM,t

¯

´
1

2

T
ÿ

t“1

´

pVM
t q

´1R2
t

¯

, (16)

where VM,t denotes the MIDAS conditional volatility in month t as defined in equation (14), and
Rt denotes the monthly returns at time t, calculated as described in section 2. The estimates for
κ1 and κ2 in the weighting function used to calculate VM,t are defined as the values maximising
this log-likelihood function.

3.6 Impulse Response Functions

In Koop et al. (1996) a framework for estimating impulse response functions from nonlinear
models is developed. According to them, an impulse response function measures the time
profile of the effect of a shock on a time series. This shock and the resulting behaviour of the
time series lead to a better understanding of the time series.

In this report I create several impulse response functions for industrial production, where
the shock that occurs is an uncertainty shock, meaning that one of the residuals of the model
for the uncertainty measure is set equal to some shock. In order to create an impulse response
to a temporary uncertainty shock, the first step is to select a horizon for the impulse response,
meaning that the time at which the uncertainty shock occurs and the length of the impulse
response are chosen. Let the uncertainty shock occur at time t, then the innovation ε˚t of the
model for the uncertainty measure, which can be for example the EGARCH model, is set equal
to the chosen shock. If the duration of the impulse response is chosen to be p months, then
the innovations ε˚t`1, ε

˚
t`2, ..., ε

˚
t`p of the model for the uncertainty measure still have to be

selected. These innovations are sampled from the residuals of the model for financial returns
in equation (7), which is done using standard bootstrapping procedures. This means that
the innovations are drawn from a uniform distribution with replacement from the residuals of
the model for the monthly returns. The shock together with these bootstrapped innovations
is then used to produce the uncertainty measure, which for the EGARCH model is th˚t u “
h˚t through h˚t`p. These th˚t u values are then substituted in the estimated LSTAR model to
generate the recursive values of the log differences of industrial production: y˚t , ..., y

˚
t`p. The

impulse response of industrial production to the chosen shock and the selected set of innovations
is then obtained by transforming the log differences of industrial production back to the actual
values of industrial production. This process of bootstrapping the innovations, using them to
calculate the uncertainty measure, and then calculating the values of industrial production is
repeated 1,000 times. The mean value of these 1,000 impulse responses is then obtained, and
the 95% confidence interval can be obtained by taking the 2.5- and the 97.5-percentile of all
these bootstrapped impulse responses. This exact procedure and some minor variations to it
are used throughout this report to create the impulse response functions. Whenever a variation
was used, the exact changes I made in order to obtain the impulse responses are reported.

4 Results

4.1 Results of the Tests for Nonlinearity

The results of the three tests for nonlinearity on the macroeconomic variable industrial pro-
duction are displayed in table 1. The AIC and BIC of a simple AR(p) model for industrial
production show that the optimal lag order for these tests is 2.
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For the test for LSTAR behaviour the transition variable st in equation (4) is set equal
to the lagged log-difference of industrial production: yt´1. This test resulted in a p-value of
0.02, which indicates that there is significant evidence of LSTAR behaviour being present in
industrial production. The RESET test statistic is insignificant at the 5% significance level,
and hence I can say that there is reason to believe that industrial production is nonlinear.
Finally, the test for threshold effects showed that there is evidence at the 5% significance level
that there are threshold effects present in industrial production. The aforementioned indicates
that there is sufficient evidence to claim that the LSTAR model is a good choice to model
industrial production.

Table 1: Test results of the tests for nonlinearity in industrial production

Test statistic p-value

Teräsvirta (1994) 2.54 0.02
RESET test 2.29 0.06
Threshold Effects 7.04 0.03

Interestingly, the test statistics displayed in table 1 are slightly different from those pre-
sented in Jones and Enders (2016). Especially the test statistic and p-value of the test for
threshold effects are very different, since in Jones and Enders (2016) it was concluded that
industrial production does not exhibit threshold effects, while I concluded otherwise. The dif-
fering test results are most likely the result of a change in the indexation of industrial production
after the research in Jones and Enders (2016) was conducted.

4.2 EGARCH Tests and the EGARCH Model

The test results of the four tests discussed in section 2 are displayed in table 2. The GARCH(1,1)
model I use for these tests is given by ht “ 0.00009` 0.11ε21,t´1 ` 0.85ht´1, where ε1,t are the
residuals from equation (7), and ht denotes the conditional volatility of these residuals.

The significant coefficient of the regression for the sign bias test indicates that positive and
negative shocks have asymmetric effects on the conditional variance. The significant coefficients
of the negative and positive size bias test also support the use of an asymmetric GARCH model,
and hence I feel that there is sufficient proof to estimate the conditional volatility of the S&P
500 Index with an EGARCH model. The estimated EGARCH(1,1) model looks as follows:

lnphtq “ ´0.87
p´3.13q

` 0.21
p4.32q

|ε1,t´1|{
a

ht´1 ` 0.89
p´4.09q

lnpht´1q ´0.11
p22.27q

ε1,t´1{
a

ht´1, (17)

where the t-scores are displayed in parentheses below their corresponding parameters. The AIC
and BIC found for this EGARCH(1,1) model are smaller than those found for the GARCH(1,1)
model earlier in this section, which supports the decision to model the conditional volatility
using the EGARCH(1,1) model. Note that the negative coefficient of ε1,t´1{

?
ht ensures that

negative shocks produce a higher variance than positive shocks of the same size.
Do not however, that the test results I found were again somewhat different from the ones

found in Jones and Enders (2016). This is most likely caused by their GARCH(1,1) model being
estimated differently. Namely, the ARCH coefficient in my GARCH(1,1) model equals 0.11,
whereas theirs equalled 0.01. On top of the differing parameters, the exact implementation
of their tests was somewhat vague, resulting in me following the implementation presented in
Engle and Ng (1993), which did however ultimately lead to the same conclusions as in Jones
and Enders (2016).
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Table 2: Test results of the tests by Engle and Ng (1993)

Sign Bias Test Negative Sign Bias Test Positive Sign Bias Test Joint Test

Test statistic 4.68 -2.80 -4.25 23.56
p-value 0.00 0.00 0.00 0.00
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Figure 1: Plot with industrial production on the left y-axis, and standardised EGARCH
conditional volatility on the right y-axis.

Figure 1 shows a plot industrial production together with the standardised EGARCH con-
ditional volatility. This figure illustrates the relation between uncertainty and industrial pro-
duction. A fairly clear correlation can be seen between peaks in the conditional volatility and
smaller growth or decreases in industrial production. Especially the financial crisis is a good
example of this correlation, as a large peak in uncertainty occurs at the same time as a large
decrease in industrial production. However, the largest peak in the figure, which occurs on
Black Monday, October 19th in 1987, is not paired with smaller growth or a decrease in indus-
trial production. Since Black Monday did not occur during a recession, and since the financial
crisis is one of the worst recessions to date, it seems that the effects of an uncertainty shock
could depend on the business cycle at the time of the shock.

4.3 LSTAR Model with EGARCH Conditional Volatility

The LSTAR model used in Jones and Enders (2016) to produce their main results is the model
for log differences of industrial production with standardised EGARCH conditional volatility as
uncertainty measure, from now on referred to as the EGARCH-LSTAR model. The estimated
EGARCH-LSTAR model looks as follows:

yt “ 0.0031
p7.41q

` 0.2796
p6.69q

yt´1 ` p´0.0051
p´4.93q

` 0.3547
p3.48q

yt´1qr1` exp p´4.0314pht ´ 2.1750qqs´1 ` εt

AIC “ ´2143.3 BIC “ ´2115.7,

(18)

where yt is the log difference of industrial production at time t and ht is the standardised
EGARCH conditional volatility. The t-scores for the first four parameters are displayed below
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their corresponding parameters. The parameter variances required to calculate these t-scores
can be found by regarding the LSTAR model as if it were a linear autoregressive model. This
is done by regressing Xt´1 “ r1 ` Gpqt; γ̂, ĉq, yt´1p1 ` Gpqt; γ̂, ĉqqs on yt, where qt denotes the
standardised uncertainty sequence and Gpqt; γ̂, ĉq the transition function as defined in equation
(2) computed for the estimated values of γ and c. This, in essence, is the same as estimating
industrial production as an AR(1) model. The parameter variances can then be found by
calculating the covariance matrix of the regression: σ2pX 1Xq´1, where σ2 is the variance of
the regression and X “ pX1, X2, ..., XT q

1. These t-scores show that the first four parameters
all significantly differ from zero. The t-score for the smoothness parameter γ is not reported
since the LSTAR model reduces to an AR(1) model when γ “ 0, leading to the parameters
of the LSTAR model being undefined. A t-score for the centrality parameter c is also not
reported since c is estimated based on the values of the uncertainty sequence, and with this
sequence being EGARCH conditional volatility it will always be positive, making a t-test for
c “ 0 unnecessary.
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Figure 2: Figure (a) shows the values of the transition function in the estimated EGARCH-
LSTAR model; figure (b) shows the asymmetric effects of a continuing positive and negative
shock to uncertainty.

Figure 2a shows the transition function of the estimated LSTAR model as a function of
the standardised EGARCH conditional volatility ht. Clearly, the transition between the two
regimes occurs around the estimated centrality parameter, c “ 2.1750. Furthermore, this
transition is quite sharp, as a minor increase in uncertainty could lead to a jump from the
low-uncertainty regime to the high-uncertainty regime. The EGARCH-LSTAR model together
with the transition function show that when the transition function equals zero, meaning that
uncertainty is low, the long-run equilibrium of industrial production growth is positive, and
that the parameter yt´1 has coefficient 0.2796. Likewise, when the transition function equals
one, and thus uncertainty is high, the long-run equilibrium of growth in industrial production
is negative and the coefficient of yt´1 is now much larger at 0.6343. This shows that high values
of uncertainty decrease industrial production and are also more persistent than lower values of
uncertainty.

In order to further investigate whether the LSTAR model is a good choice for modelling
industrial production I compare it with an AR model for industrial production. The optimal
lag order for this AR model is 2, as this order resulted in the lowest respective AIC and BIC.
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This estimated AR(2) model looks as follows:

yt “ 0.0013
p3.90q

` 0.36
p9.97q

yt´1 ` 0.12
p3.28q

yt´2 ` ε2,t

AIC “ ´2128.9 BIC “ ´2115.1,
(19)

where yt is the log difference of industrial production at time t. The EGARCH-LSTAR model
clearly has a lower AIC and BIC than this AR(2) model, indicating that the former is a better
fit for industrial production, even though it estimates three more parameters than the AR(2)
model.

As I mentioned in section 3.6, the estimated LSTAR model can be used to create impulse
responses, which display the manner in which uncertainty shocks affect industrial production.
Note that a positive uncertainty shock is in essence a large negative return; this large negative
return results in a large negative innovation in the model for financial returns displayed in
equation (7), which due to the EGARCH specification in equation (17) results in a higher
conditional variance and hence higher uncertainty.
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Figure 3: Impulse responses to temporary uncertainty shocks. (a) shows the impulse response
to a positive December 2008 one-standard-deviation uncertainty shock occurring in December
2008; (b) shows the the impulse response to an actual December 2008 uncertainty shock oc-
curring in January 2008.

Figure 2b displays the impulse response of industrial production to continuing positive and
negative one-standard-deviation uncertainty shocks for a horizon of 12 months. This impulse
response was created using a different method from the one explained in section 3.6. The model
for this impulse response was initialised by setting the magnitude of uncertainty h˚0 equal to
the value of the centrality parameter c, which was multiplied with the standard deviation
of the uncertainty sequence to account for the standardising of said sequence. The value of
industrial production in period 1 was set equal to the equilibrium of the AR(2) model in
equation (19), which is 0.0025. These starting values are chosen to ensure that the positive
uncertainty shock forces the estimated LSTAR model to be in the high-uncertainty regime,
and that the negative shock forces the LSTAR model to be in the low-uncertainty regime,
thereby illustrating how the two regimes differ. For the positive and negative uncertainty
shocks the innovations ε˚1,1, ..., ε

˚
1,12 in the EGARCH model are set equal to ´

a

h˚0 , ...,´
a

h˚11
and

a

h˚0 , ...,
a

h˚11 respectively. The h˚t here are calculated recursively using the initial value
of the uncertainty sequence and the innovations as defined above. These specific innovations
are chosen because the standard deviation of the residual ε1,t in the model for financial returns
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(equation (7)) is
?
ht. The reflected impulse response to the positive uncertainty shock in figure

2b clearly demonstrates how positive uncertainty shocks to the uncertainty sequence have a
more than twice as large effect on the log differences of industrial production than negative
shocks of the exact same size do; industrial production falls from 0.0025 to -0.0052 for the
continuing positive shock, and rises from 0.0025 to 0.0043 for the negative shock. This clearly
indicates that uncertainty has an asymmetric effect on industrial production.
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Figure 4: The Asymmetric effects of temporary positive one-standard-deviation, positive
two-standard-deviation and negative one-standard-deviation uncertainty shocks. (a) shows
the impulse responses to temporary uncertainty shocks occurring in December 2008, which
was during the financial crisis; (b) shows the impulse responses to temporary December 2008
uncertainty shocks occurring in January 2008. All lines show mean estimates of the impulse
response functions.

Figure 3 shows the impulse responses of industrial production to temporary positive un-
certainty shocks for a horizon of 12 months. The procedure used to obtain these impulse
responses is slightly different from the procedure explained in section 3.6 in that here there is
an additional step: the residuals εt of the LSTAR model are also bootstrapped using a uniform
distribution with replacement from the actual residuals of the estimated LSTAR model, and
are then used to find the recursive values of ty˚t u. Figure 3a shows the impulse response of
industrial production to a temporary positive one-standard-deviation shock occurring in De-
cember 2008, for which the first innovation is set equal to ´

?
ht, where ht is the EGARCH

conditional volatility for December 2008. The remaining innovations after the shock are boot-
strapped using the procedure explained in section 3.6. The same method is employed to create
the impulse response in figure 3b, yet here the innovation in January 2008 is set equal to ε1,t
from the model for financial returns in equation (7), with t corresponding to December 2008.
As before, the remaining innovations after January 2008 are bootstrapped. Figure 3a clearly
shows that a positive uncertainty shock occurring during the financial crisis has a negative ef-
fect on industrial production, although the series appears to be rising back towards its original
level. The figure on the right however shows that a positive uncertainty shock from the crisis
has a very small effect on industrial production; in fact, industrial production rises despite the
large uncertainty shock, which happens to have twice the size of the shock used for figure 3a.
This actual December 2008 crisis shock used for the impulse response function in reality had
a large negative effect on industrial production in December 2008, whereas it hardly affects
industrial production if it occurs before the crisis, when the economy was strong. This shows
how uncertainty shocks which occur when the economy is booming have significantly different
effects than same-sized uncertainty shocks which occur during a recession.
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Figure 4 shows the impulse responses of industrial production to several temporary uncer-
tainty shocks for a horizon of 24 months. These impulse responses were created by setting an
innovation ε1,t of the EGARCH model in equation (8) equal to a multiple of a one-standard-
deviation shock. This means that the first innovation for the impulse response function is set
equal to ´

?
ht for a positive one-standard-deviation shock, ´2

?
ht for a positive two-standard-

deviation shock or
?
ht for a negative one-standard-deviation shock, where ht is the conditional

volatility for December 2008 estimated using the EGARCH model. The remaining innovations
were bootstrapped as was explained in section 3.6. Figure 4a shows the impulse responses
to shocks from December 2008 occurring in December 2008, and figure 4b shows the impulse
responses to shocks from December 2008 occurring in January 2008. These figures clearly show
that uncertainty shocks occurring during the crisis all have a negative effect on industrial pro-
duction, even if the temporary shock is a negative uncertainty shock. These same shocks have a
very different effect when they occur before the financial crisis; the negative uncertainty shock
has a strictly positive effect, and the two negative uncertainty shocks have a much smaller
negative effect if they occur before the crisis than if they occur during the crisis. It is therefore
clear that the timing of uncertainty shocks makes a significant difference in the effect on indus-
trial production, and that even quite large shocks, such as the positive two-standard-deviation
shock, have a small effect on industrial production if they occur when the economy is booming.

4.4 LSTAR Model with Realised Volatility

In section 3.5 I discussed how I would use daily returns to estimate the monthly realised
volatility of the S&P 500 Index, which would then be used as uncertainty measure in an
LSTAR model for industrial production, which from here on referred to as the RV-LSTAR
model. This estimated RV-LSTAR model looks as follows:

yt “ 0.0052
p5.65q

` 0.2026
p2.49q

yt´1 ` p´0.0060
p´4.19q

` 0.3250
p2.53q

yt´1qr1` exp p´5.4397pRVt ´ 0.2356qqs´1 ` ε3,t

AIC “ ´2124.9 BIC “ ´2097.2,

(20)

where yt denotes the log difference of industrial production and RVt the standardised realised
volatility of the S&P 500 Index. The t-scores for the parameters are reported between paren-
theses below their corresponding parameters, and the t-scores for γ and c are omitted for the
same reasons as described in section 4.3. The t-scores show that the first four parameters
significantly differ from zero. Both the AIC and BIC of this LSTAR model are higher than
those of the AR(2) model for industrial production (equation (19)), indicating that the AR(2)
model may be better able to model industrial production.

The estimate of the centrality parameter c “ 0.2356 is somewhat surprising, as it is very
close to zero. However, upon closer inspection of the transition function, displayed in figure 5,
it becomes clear why this estimate is rather small. Most of the realised volatilities lie very close
to zero, indicating that the distribution of these realised volatilities is negatively skewed. Since
the centrality parameter is usually estimated to be where the density of the transition variable
is the highest, it is logical that c was estimated to be very close to zero. This specific transition
function suggests that the low-uncertainty regime lies on the left of the y-axis in the figure,
and therefore the model can only be in a low-uncertainty regime for negative values of realised
volatility. A negative volatility is of course not possible, meaning that this LSTAR model with
standardised realised volatility as uncertainty measure does not allow for a low-uncertainty
regime. However, it is still the case that when uncertainty is low, the long-run equilibrium
is positive and when uncertainty is high it is negative. Furthermore, the coefficient of yt´1
increases as uncertainty increases, and hence high values of uncertainty decrease industrial
production and are more persistent than low values of uncertainty.
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Figure 5: The values of the transition function in the estimated RV-LSTAR model

In order to obtain impulse response functions for this estimated LSTAR model, I model
the estimated realised volatility as an AR(2) model so as to obtain a recursive relation for
the uncertainty measure through which the temporary shocks can have a long-lasting effect on
uncertainty and therefore on industrial production. The optimal lag order for this model is
2 as it resulted in the lowest AIC and BIC. The AR(2) model for realised volatility looks as
follows:

RVt “ 0.0010
p2.49q

` 0.34
p34.70q

RVt´1 ` 0.14
p4.40q

RVt´2 ` ε4,t

AIC “ ´6157.8 BIC “ ´6144.0,
(21)

where RVt denotes the (non-standardised) monthly realised volatility. Do note that an AR
model is a linear model, and hence it incorporates positive and negative shocks in a symmetric
manner into the time series. However, the manner in which the time series converges back to
its long-run equilibrium does differ for positive and negative shocks.

Using the AR(2) model for realised volatility, I produce impulse responses to temporary
uncertainty shocks in the same manner as in figure 4. Note that for the EGARCH model
a negative innovation resulted in higher uncertainty, yet this is not the case for an AR(2)
model, as here a positive innovation results in a higher realised volatility, and hence a higher
uncertainty. Therefore, for a positive one-standard-deviation shock I set an innovation of the
AR(2) model equal to

?
RVt, and for the positive two-standard-deviation and negative one-

standard-deviation shocks I set the first innovation equal to 2
?
RVt and ´

?
RVt respectively,

withRVt the (non-standardised) realised volatility in December 2008. The innovations following
the uncertainty shock are again bootstrapped from the residuals in equation (7). Figure 6a
shows the impulse responses to temporary uncertainty shocks occurring in December 2008, and
figure 6b shows the impulse responses to temporary uncertainty shocks from December 2008
occurring in January 2008. The impulse responses show that the positive uncertainty shocks
occurring during the financial crisis have a large negative effect on industrial production, while
these positive shocks have a much smaller negative effect on industrial production when they
occur before the crisis. For negative uncertainty shocks, the effect on industrial production
is positive, and is slightly larger before the crisis than it is during the crisis. This indicates
that reasonable size uncertainty shocks occurring during a recession have a greater effect on
industrial production than same-size shocks occurring during an expansion.
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Figure 6: The Asymmetric effects of temporary positive one-standard-deviation, positive
two-standard-deviation and negative one-standard-deviation uncertainty shocks. (a) shows the
impulse responses to temporary uncertainty shocks occurring in December 2008; (b) shows the
impulse responses to temporary December 2008 uncertainty shocks occurring in January 2008.
All lines show mean estimates of the impulse response functions.

4.5 LSTAR Model with MIDAS Conditional Volatility

In section 3.5 I explain how the daily returns on the S&P 500 Index can be used to estimate
the monthly conditional volatility. The estimation procedure suggests the following weights for
the weighting function displayed in equation (15): κ1 “ ´0.0377 and κ2 “ ´3.4979ˆ 10´11.
The weighting function resulting from this specific combination of parameters is displayed in
figure 7a, where it can be seen how the weights for the first 25 days are significantly larger
than the weights for the following days, and how the weights decline over time towards zero.
The conditional volatility estimated using this weighting function in equation (14) can, after
standardising, be used as uncertainty measure in an LSTAR model for industrial production,
which I from hereon refer to as the MIDAS-LSTAR model. Note that the conditional volatility
is estimated based on the daily returns from the first 252 days before each month, and since
there are no daily returns available from before January 1950, the first estimated conditional
volatility is for January 1951. The estimated MIDAS-LSTAR model then looks as follows:

yt “ 0.0044
p6.30q

` 0.2167
p3.38q

yt´1 ` p´0.0053
p´4.62q

` 0.2922
p2.64q

yt´1qr1` exp p´5.3447pVM,t ´ 0.4046qqs´1 ` ε5,t

AIC “ ´2135.1 BIC “ ´2107.5,

(22)

where yt denotes the log difference of industrial production and VM,t the standardised MIDAS
conditional volatility. Again, the t-scores in parentheses below their corresponding parameters
show how all parameters significantly differ from zero, and for the same reasons as before I do
not report the t-scores for γ and c. The AIC for the LSTAR model is slightly higher than the
AIC of the AR(2) model for industrial production, whereas its BIC is smaller than the one
for the AR(2) model. Since the BIC punishes more strictly for a higher number of estimated
parameters and tends to select more parsimonious models that underfit the data (Burnham
and Anderon, 2002), I believe that in this case the LSTAR-MIDAS model is a better fit than
the AR(2) model.

The transition function resulting from the estimated γ and c is displayed in figure 7b. Again
the estimate for the centrality parameter is very close to zero, which, as can be seen from the
figure, is due to most MIDAS conditional volatilities being very close to zero as well, indicating
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that their distribution is negatively skewed. The estimated transition function indicates that
the low-uncertainty regime can only occur for conditional volatilities lower than zero, which is
impossible since volatility cannot be negative. Therefore, MIDAS-LSTAR does not allow for
a low-uncertainty regime. However, it is still the case that when uncertainty is very low, the
long-run equilibrium of the model is positive, and it becomes negative as uncertainty increases,
while at the same time the coefficient of yt´1 increases. This demonstrates how high values of
uncertainty negatively affect the growth of industrial production, and how these higher values
are more persistent than lower values.
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Figure 7: Figure (a) shows the estimated weighting function for the MIDAS model; figure (b)
displays the transition function of the estimated MIDAS-LSTAR model.

In order to obtain impulse responses for this LSTAR model, I again model the uncertainty
measure as an AR(2) model. I use lag-order two for the AR model for the sake of consistency
and since this order results in a relatively low AIC and BIC. The AR(2) model looks as follows:

VM,t “ 0.0005
p2.14q

` 0.78
p79.84q

VM,t´1 ´ 0.05
p´2.02q

VM,t´2 ` ε6,t

AIC “ ´6803.5 BIC “ ´6789.8,
(23)

where VM,t is the (non-standardised) MIDAS conditional volatility. Using this AR(2) model, I
produce impulse responses to temporary uncertainty shocks in the same manner as for figures
4 and 6. For a positive one-standard-deviation shock I set an innovation of the AR(2) model
in equation (23) equal to

a

VM,t, and for the positive two-standard-deviation and negative
one-standard-deviation shocks I set this innovation equal to 2

a

VM,t and ´
a

VM,t respectively,
where VM,t denotes the MIDAS conditional volatility for December 2008. The remaining resid-
uals after the shock are again bootstrapped from the residuals of equation (7). Figure 8a then
shows the impulse responses to temporary uncertainty shocks occurring in December 2008, and
figure 8b shows the impulse responses to temporary uncertainty shocks from December 2008
occurring in January 2008. The impulse responses show that negative shocks to the uncertainty
sequence have a positive effect on industrial production, and this effect is slightly larger before
the financial crisis than during the crisis. The positive uncertainty shocks all have a negative
effect on industrial production, yet this effect is larger during the crisis than it is before the
crisis, and on top of that, it takes longer for industrial production to attain its previous level
during the crisis than it does before the crisis. This again illustrates that uncertainty shocks
during the crisis have a greater effect on industrial production than same-sized shocks occurring
during an economic expansion.
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Figure 8: The Asymmetric effects of temporary positive one-standard-deviation, positive
two-standard-deviation and negative one-standard-deviation uncertainty shocks. (a) shows the
impulse responses to temporary December 2008 uncertainty shocks occurring in December
2008, which was during the financial crisis; (b) shows the impulse responses to temporary
December 2008 uncertainty shocks occurring in January 2008. All lines show mean estimates
of the impulse response functions.

5 Comparison and Discussion of the Models

In this section I compare the three estimated LSTAR models with each other based on their
respective uncertainty measures and based on their respective impulse response functions.

5.1 The Models and Uncertainty Measures

Of the three different uncertainty measures I investigated, the EGARCH-LSTAR model had
lowest respective AIC and BIC of the three models, indicating that standardised EGARCH
conditional volatility is best able to measure uncertainty when modelling industrial produc-
tion. Furthermore, both the EGARCH-LSTAR and the MIDAS-LSTAR model outperform the
AR(2) model based on their respective information criteria. The RV-LSTAR model performed
worst based on its AIC and BIC, and on top of that it was outperformed by the AR(2) model
for industrial production, indicating that standardised realised volatility as used in this paper
is not as fitting as uncertainty measure as EGARCH conditional volatility and MIDAS condi-
tional volatility.

Figure 9 shows the three standardised uncertainty measures. Realised volatility and MIDAS
conditional volatility clearly display sharper and higher peaks than the EGARCH conditional
volatility, although the peaks in the latter uncertainty measure occur more often. All three
uncertainty measures clearly show large peaks for Black Monday and for the recent financial
at the correct times.

Interestingly, the levels of the three standardised uncertainty measures are fairly different,
which is the result of the standardising by the standard deviations of the respective measures.
The EGARCH conditional volatility is the least volatile of the three, whereas realised volatility
is by far the most volatile. This results in the level of the standardised EGARCH volatility
being the largest, the level of the standardised MIDAS conditional volatility being the second
largest and the level of the standardised realised volatility being the smallest. These low levels
show that the distribution of the magnitude of uncertainty for realised volatility and for MIDAS
conditional volatility is negatively skewed, and since the centrality parameter is estimated to
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be where the density of the transition variable is highest it is clear why c was estimated very
close to zero for the RV-LSTAR model and MIDAS-LSTAR model.

It appears that there is some evidence of correlation between the level of the uncertainty
measure, and therefore the estimate for the centrality parameter c, and the fit of the LSTAR
model based on the AIC and BIC. The lower the value of c, the larger the amount of uncer-
tainty sequence observations falling in periods of relatively high uncertainty. Since the long-run
equilibrium of industrial production is negative when uncertainty is high, this indicates that
the MIDAS-LSTAR model underestimates industrial production during actual expansions and
overestimates industrial production during recessions. This underestimating and overestimat-
ing is even worse for the RV-LSTAR model.
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Figure 9: The three standardised uncertainty measures. The first plot shows the EGARCH
conditional volatility, the second the estimated monthly realised volatility based on daily re-
turns and the third shows the estimated monthly MIDAS conditional volatility based on daily
returns.

The fact that the RV-LSTAR model and the MIDAS-LSTAR model do not allow for a
low-uncertainty measure does not necessarily indicate that realised volatility and MIDAS con-
ditional volatility are unfit to be used as uncertainty measures. A logarithmic transformation
of both non-standardised uncertainty measures reduces the skewness of both uncertainty se-
quences significantly and allows for both a low-uncertainty and a high-uncertainty regime in the
resulting estimated LSTAR models. On top of that the use of these transformed uncertainty
measures results in lower AICs and BICs than were found for the RV-LSTAR model and the
MIDAS-LSTAR model. These findings indicate that the transformed realised volatility and
MIDAS conditional volatility could be better fit as uncertainty measures in the LSTAR model
than their non-transformed versions.

5.2 The Impulse Response Functions

Figure 10 shows the impulse responses of the three LSTAR models to a positive two-standard-
deviation crisis shock occurring either during (10a) or before the financial crisis (10b). These
impulse responses are the exact same ones as those discussed in section 4. The figures show
that large positive uncertainty shocks occurring during the financial crisis have a larger nega-
tive effect on industrial production effect than these same shocks occurring before the crisis.
Especially the time it takes industrial production to return to its previous level is much longer
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when the shocks occur during the financial crisis.
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Figure 10: Figure (a) displays the impulse responses of industrial production to a temporary
positive two-standard-deviation December 2008 uncertainty shock occurring in December 2008
calculated for each of the three estimated LSTAR models; figure (b) displays the impulse
responses of industrial production to a temporary positive two-standard-deviation December
2008 uncertainty shock occurring in January 2008 calculated for each of the three estimated
LSTAR models.

Both figures show that the EGARCH-LSTAR model responds more strongly to a positive
uncertain shock than the other two models, while the absolute size of the shocks is larger
for the latter two models. This difference can be explained by the different models used for
the uncertainty measures; the EGARCH model is an asymmetric model which guarantees
that negative uncertainty shocks produce larger conditional variances than positive shocks do,
whereas positive and negative shocks of the same size have the same absolute effect in a linear
AR(2) model.

Interestingly, the relation between the size of the uncertainty shock and the size of the
impulse response of each specific model appears to be inverse. The EGARCH-LSTAR model
experiences the smallest shock in absolute terms yet the effect on industrial production is the
largest; the MIDAS-LSTAR model experiences a larger shock in absolute terms yet the effect
on industrial production is smaller; and the RV-LSTAR model experiences the largest shock in
absolute terms yet the effect on industrial production is the smallest. This is in accordance with
what I discussed in section 5.1, where I explained that the RV-LSTAR model overestimates
industrial production during high-uncertainty regimes, even more so than the MIDAS-LSTAR
model does. As both these models assume they are in a high-uncertainty regime too often,
as is the case for the shocks used to produce these impulse responses, the underestimating of
industrial production shown in these impulse responses makes sense.

6 Conclusion

The purpose of my investigation into the effect of uncertainty on macroeconomic activity was
to find out whether positive and negative shocks affect macroeconomic activity in asymmetric
manners, and to find out whether the state of the economy at the time an uncertainty shock
occurs affects the effect of such a shock.

Using an LSTAR model with EGARCH conditional volatility as uncertainty measure I
created several impulse response functions which showed that the effect of positive and negative
shocks on industrial production, and therefore on macroeconomic activity, is asymmetric.
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I also estimated two other LSTAR models, one with realised volatility and one with MIDAS
conditional volatility as uncertainty measure. The impulse response functions of the three
different models showed that both positive and negative uncertainty shocks have different effects
on industrial production dependent on the state of the economy: both positive and negative
uncertainty shocks occurring during the crisis have a larger effect than the same-sized shocks
occurring when the economy is booming. This all underlines how the timing of an uncertainty
shock greatly influences the effect the shock has on macroeconomic activity. These findings
show that monetary policy should aim to reduce and control the magnitude of uncertainty
during recessions as much as possible to ensure the macroeconomy keeps functioning properly.

7 Suggestions for Further Research

As I mentioned briefly in section 5.1, the fit of the LSTAR models with realised volatility and
MIDAS conditional volatility can be improved by using a logarithmic transformation of these
uncertainty measures. The resulting LSTAR models were promising in that they both allowed
for the two regimes to be attained by the transition variable. The use of these transformed
uncertainty measures should be further researched in order to draw any conclusions on them
being fitting proxies for uncertainty.

Also, the AR models for uncertainty I used to produce impulse response functions are lin-
ear models which do not allow for asymmetric responses to uncertainty shocks. They therefore
may not be the best choice for modelling uncertainty, and hence it may be fruitful to exper-
iment with using different, possibly nonlinear models for uncertainty which do allow for this
asymmetry as this may result in more accurate conclusions regarding the effect of uncertainty
on macroeconomic variables.

A final suggestion for further research is the use of other proxies for macroeconomic activity
in combination with the uncertainty measures proposed in this report, since the conclusions
may differ from my conclusions, which are all based on industrial production.
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