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Abstract

We use Filtered Historical Simulation with a time-varying volatility model to forecast Expected
Shortfall (ES) forecasts. Either the HEAVY or GARCH model is used as the volatility model.
Shephard and Sheppard (2010) introduced the HEAVY model which has quicker adjustments than
the conventional GARCH model to structural breaks in the volatility process. The aim of this
paper is to compare the specification of the ES forecasts and their out-of-sample predictive ability.
34 assets including trades assets, indexes computed by MSCI and exchange rates are used in our
analysis. We show that the HEAVY model is favoured for particular assets in terms of the correct
specification of the model and the predictive performance.



1 Introduction
The use of downside risk measures of assets or portfolios is important for regulation of financial
institutions. The Basel Committee on Banking Supervision initially proposed the Value-at-Risk
(VaR) as the downside risk measure. The VaR is the quantile of the returns or losses of assets
for a given horizon and a given quantile level. Since then, the VaR is widely used in the financial
sector. However, more recently, the Basel Committee has approved the Expected shortfall (ES)
to be used instead of the Value-at-risk (VaR). One of the reasons for this is that the VaR fails
to control for "tail risk". More specifically, the VaR does not give information about the level of
return if the return exceeds the VaR in the left tail (violation). The ES is related to the VaR,
both require a quantile level and a horizon. The ES is the expected return over a given horizon of
an asset given that the return is lower than the VaR with a specific quantile level. Thus the ES
provides information if the return violates the VaR. Often the VaR and ES are viewed in terms of
losses, such that these involve positive values. In our case, we consider VaR and ES in terms of
returns.

We forecast the ES with Filtered Historal Simulation (FHS) combined with a time-varying
volatility model. With historical data of returns and a certain volatility model, the returns can be
’filtered’ or ’devolatised’. Based on these assumed i.i.d. (independently and identically distributed)
standardized returns, the empirical quantile of the distribution of the standardized returns can be
estimated. Then by ’revolatising’ or multiplying the estimated quantile by the forecasted volatil-
ity, the VaR can be estimated. This is a semi-parametric method, because we use non-parametric
estimators of the quantile of the standardized residuals. One advantage is that it is simple to apply
FHS. However, FHS can be less accurate for very extreme confidence or coverage levels.

The focus of this paper is the choice of the volatility model to combine with FHS to create
forecasts. One interesting option is the high frequence-based volatility (HEAVY) model introduced
by Shephard and Sheppard (2010). The idea of HEAVY models were built upon the insights of the
ARCH literature which were first developed by Engle (1982) and Bollerslev (1986), combined with
the use of high frequent intraday data of assets. The work of Shephard and Sheppard (2010) has
shown that HEAVY models have momentum and mean reversion effect, and have quick adjust-
ments to structural breaks in the volatility process. The models were run in periods with a lot of
change in the volatility level to assess the ability in stressful situations. In terms of out-of-sample
performance, they found by using Giacomini and White (2006) tests that the HEAVY model is
favoured compared to the standard GARCH(1,1) model. This is especially the case for shorter
horizon forecasts. They claim that the use of realized measures in their HEAVY models which
have a high signal-to-noise ratio may explain the strength of the HEAVY model. Furthermore,
also in sample and pointwise the standard HEAVY model dominates the GARCH model, but the
out-performance decreases as the horizon increases.

Naturally, the other choice for the volatility model is the GARCH(1,1) model. Besides the stan-
dard GARCH(1,1) model there are many extensions of the GARCH models that can be considered.
For example GARCHX, IGARCH and GJR-GARCH models. We only use the GARCH(1,1) as
the benchmark model to compare with the HEAVY model.

A 1%, 5% and 10% coverage level will be used for the ES forecasts with a horizon of one day.
The forecasts will be based on univariate models, where all models are estimated by a moving win-
dow with parameters of the models updated daily. To compare the two choices of forecasting the
ES, two features will be compared. Namely, the correct specification of the ES forecasts using the
backtests of Du and Escanciano (2016), and a comparison of the out-of-sample predictive ability
by applying the tests of Giacomini and White (2006) where the loss function of Fissler et al. (2015)
is considered.

The conditional backtest of Du and Escanciano (2016) can be seen as the analog of the condi-
tional backtest of Christoffersen (1998) for the Value-at-risk. It is based on the idea that violations
should be unpredictable, i.e. a martingele difference sequence (mds). Du and Escanciano (2016)
claim that the integral of the violations over the coverage level in the left tail also need to be a mds.
Therefore, their conditional test check this mds property. The unconditional test is also based on
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this mds property and is the analoque of the unconditional test for the VaR proposed by Kupiec
(1995).

Fissler et al. (2015) proposed a scoring function for the ES. The important idea is that the ES
is jointly elicitable. “A functional v is elicitable relative to the class P, if there exists a scoring
function s which is strictly consistent for v relative to P”, defined by Ziegel (2016). This scoring
or loss function can be implemented in the predictive ability tests of Giacomini and White (2006).
These predictive ability tests can be used even when the model is misspecified. These tests were
developed from the idea of Diebold and Mariano (1995) and West (1996) to evaluate the accuracy
of a particular forecasting method rather than the accuracy of the forecasting model.

One of the findings of this paper is the quicker adjustments of ES forecasts when the HEAVY
model is considered as the volatility model rather than the GARCH(1,1). The model specification
from the unconditional perspective, seems to be better for a lower coverage level irrespective of
the volatility model. Based on both conditional and unconditional backtests of Du and Escanciano
(2016), the HEAVY model gives more often a correct model specification than the GARCH model.
The HEAVY model is also preferred over the GARCH model to be applied in FHS for several assets
in terms of predictive performance while the GARCH model is never favoured. The preference is
more present in terms of conditional use.

The structure of the remainder is as follows. Section 2 describes the data. Section 3 elaborates
the models to forecast ES and shows the methods to compare the forecasts. In section 4 the
estimated models and the results of the comparisons between the ES forecasts are presented.
Finally, section 5 concludes.

2 Data
In this paper the database ’Oxford-Man Institute’s realised library’ version 0.1 that was used by
Shephard and Sheppard (2010) will be used. This database starts on 3 January 1996 and finishes
on 1 March 2009. There are 34 assets in this database, including traded assets, MSCI indexes or
exchange rates. For each asset, daily returns, daily subsampled realised variances and daily realised
kernels are available. If the market is either closed or if the data is regarded as poor quality for a
certain asset, then this data point will be treated as missing. Days are not recorded in the database
when all markets are closed for these specific days.

The daily realised variance is a simple realized measure. It non-parametrically estimates the
variation of the price path of an asset and ignores the variation of prices overnight. In this paper
the realized variance will be used as a realized measure, defined as:

RMt =
∑

0≤tj−1,t<th,t

x2j,t ≤ 1, xj,t = Xt+tj,t −Xt+tj−1,t

where tj,t are the normalised times of trades of quotes on the tth day and Xt is the price on day
t. If the prices are observed without noise and if minj |tj,t − tj−1,t| ↓ 0, then RMt consistently
estimates the quadratic variation of the price on the tth day. This was formalized by Ander-
sen et al. (2001) and Barndorff-Nielsen and Shephard (2002). In order to mitigate the noise, the
realised variances are subsampled. For more details see the work by Shephard and Sheppard (2010).

Below in Table 1, a short description of the ’OMI’s realised library is given. The start date
and the length of available observations of each asset are shown. The assets in the table are split
into three sections, namely the raw assets, the MSCI assets and the exchange rates which are all
quoted against the US dollar.
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Table 1: A short description of the ’OMI’s realised library’, version 0.1.

Asset Start date T Asset Start date T

Dow Jones Industrials 3-1-1996 3261 MSCI Australia 5-12-1999 2314
CAC 40 3-1-1996 3301 MSCI Belgium 2-7-1999 2435
FTSE 100 21-10-1997 2844 MSCI Brazil 7-10-2002 1577
Spanish IBEX 3-1-1996 3270 MSCI Canada 13-2-2001 2003
Nasdaq 3-1-1996 3262 MSCI Switzerland 10-6-1999 2427
Italian MIBTEL 4-7-2000 2176 MSCI Germany 2-7-1999 2441
S&P 400 Midcap 3-1-1996 3258 MSCI Spain 2-7-1999 2416
Nikkei 8-1-1996 3160 MSCI France 2-7-1999 2448
Russell 3000 3-1-1996 3262 MSCI UK 9-6-1999 2443
Russell 1000 3-1-1996 3262 MSCI Italy 2-7-1999 2430
Russell 2000 3-1-1996 3264 MSCI Japan 5-12-1999 2231
Milan MIB 3-1-1996 3289 MSCI South Korea 6-12-1999 2253
German DAX 3-1-1996 3296 MSCI Mexico 7-10-2002 1602
S&P TSE 4-1-1999 2529 MSCI Netherlands 2-7-1999 2447
S&P 500 3-1-1996 3263 MSCI World 12-2-2001 2091

British pound 4-1-1999 2576
Euro 4-1-1999 2592
Swiss franc 4-1-1999 2571
Japanese yen 4-1-1999 2590

Note: the table shows the length of each time series in days denoted by T. Every start date of
each time series is included in the table. All series end on either 27-2-2009 or 1-3-2009.

In Table 2, summary statistics of the data are presented. The Avol is the square root of the
mean of 252 times the squared returns or the realised measure, such that Avol is on a scale of an
annualised volatility. It shows that the Avol is higher for the squared returns, while the avol is
roughly the same for the different realized measures. For example, Avol is typically just over 20%
for the raw indexes, while it is around 16% for the realized measures. Realized measures do not
have overnight returns effects which explains this difference. SD is the standard deviation of either
percentage daily squared returns or realised measures. In contrast to Avol, this is not annualised.
From the table it follows that the standard deviation is higher for the squared returns and lower
for the realised measures. The summary statistics are expected. Note that the statistics of the
realized variance are very similar to the realized kernel. In this paper the realized variance will be
used as the realized measure.
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Table 2: Summary statistics of the data

Asset r2t Realized variance Realized kernel

Avol SD Avol SD Avol SD

Dow Jones Industrials 19.5 4.81 15.2 1.94 15.1 1.95
CAC 40 23.7 5.95 18.1 2.18 18.4 2.21
FTSE 100 20.7 4.66 15.2 1.62 15.6 1.74
Spanish IBEX 23.8 6.57 16.8 1.76 16.6 1.73
Nasdaq 28.1 8.35 17.9 2.22 18.8 2.52
Italian MIBTEL 20.2 5.07 13.2 1.34 13.8 1.52
S&P 400 Midcap 21.7 5.68 13.5 1.90 13.8 1.96
Nikkei 25.0 6.96 16.0 1.37 16.6 1.48
Russell 3000 20.4 5.32 14.3 1.86 14.6 1.90
Russell 1000 20.4 5.38 14.7 1.91 15.0 1.94
Russell 2000 23.3 6.02 13.2 1.85 13.5 1.96
Milan MIB 23.2 5.69 16.5 1.84 17.0 1.99
German DAX 25.2 6.57 21.2 3.10 21.4 3.22
S&P TSE 21.0 5.54 14.2 1.82 14.4 1.89
S&P 500 20.8 5.46 15.6 2.09 15.9 2.14
MSCI Australia 16.4 3.05 8.8 0.53 9.1 0.57
MSCI Belgium 23.5 10.53 16.5 1.66 16.2 1.84
MSCI Brazil 43.7 24.35 28.6 6.30 29.6 7.21
MSCI Canada 19.5 5.05 12.6 1.67 13.1 1.88
MSCI Switzerland 20.7 5.25 14.6 1.44 14.6 1.56
MSCI Germany 25.7 6.94 21.1 3.10 20.9 2.99
MSCI Spain 24.0 6.08 17.6 1.84 17.6 1.92
MSCI France 24.0 6.29 18.3 2.23 18.5 2.32
MSCI UK 20.0 4.95 15.6 1.84 15.8 1.89
MSCI Italy 21.4 5.35 16.1 1.82 16.3 1.93
MSCI Japan 23.7 6.40 14.3 1.27 14.5 1.26
MSCI South Korea 32.1 9.63 21.6 2.61 21.9 2.80
MSCI Mexico 29.6 11.81 16.3 2.59 17.5 2.87
MSCI Netherlands 23.9 6.14 17.7 2.09 17.9 2.25
MSCI World 17.8 4.22 13.1 1.44 13.7 1.68
British pound 9.2 0.75 9.8 0.51 9.5 0.51
Euro 10.5 0.79 11.2 0.45 10.6 0.45
Swiss franc 11.1 0.91 11.6 0.39 10.9 0.38
Japanese yen 10.9 1.32 11.7 0.64 11.2 0.63
Note: 100 times differences of the log price (i.e. roughly percent change) are used for
the calculations. Avol is the square root of the mean of 252 times of squared returns
or the realised measure. This is approximately the annualised volatility. SD is the
standard deviation of either the percent daily returns or realised measure.

3 Methodology
First, we show our method to obtain the one-step ahead VaR and ES forecasts with the two
volatility models in the FHS. Secondly, the method of Du and Escanciano (2016) to evaluate the
ES forecasts will be shown. Lastly, the ES forecasts obtained from the different models will be
compared to each other by using the predictive tests along the lines of Giacomini and White (2006).

3.1 Expected shortfall forecast
Let rt denote the daily return on day t of an asset and assume that

rt = µ+ εt
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or
rt − µ = εt = σtzt

zt ∼ G(0, 1)

where G(0, 1) is an unknown distribution with mean 0 and variance 1.

If we also assume µ = 0, then σ2
t = µG + αGr

2
t−1 + βGσ

2
t−1 can be considered as a constant

mean GARCH(1,1) model. The one-step ahead forecast from this model for the variance of the
returns is as follows:

σ̂2
t+1|t = ω̂G + α̂Gr

2
t + β̂Gσ̂

2
t

where the coefficients are estimated by QMLE where we thus assume a simplified distribution
for the standardized residuals. In our case, we use the Gaussian Quasi-likelihood. These coeffi-
cients will be consistent even if the standardized residuals are misspecified. Recall that the formal
definition of the VaR at time t is as follows:

V aR1−q
t = inf{rt : Gt(rt) ≥ q},

where Gt(rt) is the cumulative density distribution of rt and q is the confidence or coverage level.
The squared root of σ̂2

t+1 will be used for the VaR forecasts as shown below.

ˆV aR
1−q
t+1|t = σ̂t+1|tĜ

−1
t,q

Here Ĝ−1t,q is the q-th empirical quantile of zt = εt
σt
. To estimate this quantile we define ẑt = ε̂t

σ̂t

which will be calculated in the in-sample period. We order these residuals in an increasing order:

ẑ∗1 < ẑ∗2 < · · · < ẑ∗m−1 < ẑ∗m

such that ẑ∗1 is the smallest residual and ẑ∗m is the largest residual. Here m is the length of the
moving window. Then, Ĝ−1t,q can be estimated as ẑ∗dqme where dxe denotes the smallest integer not
smaller than x.

Recall that
ES1−q

t+1|t = Et(rt+1|rt+1 < V aR1−q
t+1|t)

such that the ES can be estimated as

ÊS
1−q
t+1|t = σ̂t+1|t

∑dqme
i=1 ẑ∗i
dqme

.

Next, consider the HEAVY model that has two equations:

var(rt|FHFt−1 ) = ht = ω + αRMt−1 + βht−1, ω, α ≥ 0, β ∈ [0, 1) (1)

E(RMt|FHFt−1 ) = µt = ωR + αRRMt−1 + βRµt−1, ωR, αR, βR ≥ 0, αR + βR ∈ [0, 1) (2)

Equation 1 is referred to as the HEAVY-r model and equation 2 is referred to as the HEAVY-
RM model. Only the HEAVY-r model is needed for one-step ahead forecasts while the HEAVY-RM
model is used for multistep-ahead forecasts. See Shephard and Sheppard (2010) for the different
methods for multi-step ahead forecasts. Each equation will be estimated separately by using a
Gaussian quasi-likelihood along the lines of Shephard and Sheppard (2010). For convenience,
assume for now that the in-sample starts from the first observation available. The first equation
will be estimated as follows:

logQ1(ω, φ) =

m∑
t=2

−1

2
log(ht + r2t /ht), φ = (α, β)′

where we take h1 = T−1/2
∑bmc1/2
t=1 r2t as proxy for the first latent variable h1 in the estimation

sample. Here bxc denotes the largest integer not larger than x. The same structure is used for the
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second equation:

logQ2(ωR, φR) =

m∑
t=2

−1

2
log(µt +RMt/µt), φr = (αR, βR)′

where we take µ1 = T−1/2
∑bmc1/2
t=1 RMt as the proxy for the first latent variable µ1 in the estima-

tion sample. See Shephard and Sheppard (2010) for more details.

With the GARCH model a similar way will be used to forecast the volatility of the returns.
Namely,

ĥt+1|t = ω̂ + α̂RMt + β̂ĥt.

By taking the squared root of ĥt+1|t, we have the conditional standard deviation forecast. Then
in the same way the ES can be forecasted:

ÊS
1−q
t+1|t =

√
ĥt+1|t

∑dqme
i=1 ẑr∗i
dqme

where ẑr∗i is the series of ẑrt = ε̂t√
ĥt+1|t

ordered in an increasing order.

A moving window will be used for our forecasts. Let T denote the total number of observations
available of a particular asset and define λ = n/m where n is the number of observations of the
out-of-sample and where m is the number of observations in-sample. Since every asset has different
T , the restrictions

n

m
≤ c ∈ (0, 1) (3)

n+m = T (4)

will be imposed. If we use restriction 4 in restriction 3 we get n
m ≤ c⇔ n ≤ c·(T−n)⇔ (1+c)·n ≤

c · T . To satisfy the restrictions we use n =
⌊

c
(1+c) · T

⌋
and m = T − n for the forecasts for each

asset. On one hand we want λ close to zero to minimize the estimation error which is needed for
the evaluation tests of Du and Escanciano (2016). On the other hand n needs to be large to use
the predictive ability tests of Giacomini and White (2006). In our cases we choose c = 0.2. As the
average number of total observations equals 2664, the number of out-of-sample observations will
be around 444 observations for most assets.

3.2 Evaluation Expected shortfall forecast
The basic backtests proposed by Du and Escanciano (2015) to evaluate the expected shortfall
forecasts will be used. Note that the basic backtests are recommended when the estimation effects
are limited.

The first test with the null hypothesis

H0u : E(Ht(q, θ)) = q/2

can be seen as the analoque of the unconditional backtest for VaR proposed by Kupiec (1995). Here
Ht(q) = 1

q

∫ q
0

1(ut ≤ u)du = 1
q (q−ut)1{ut ≤ q} and ut(θ0) = G(rt,Ωt−1, θ0) = P (Rt ≤ rt|Ωt−1, θo)

where 1{·} is the indicator function and G(·,Ωt−1, θ0) is the conditional cumulative distribution of
the returns.

By using the standardized residuals ẑt or ẑrt depending on the model which are not ordered by
size,

ut(θ0) = G(rt,Ωt−1, θ0) = P (Rt ≤ rt|Ωt−1, θo) = P (
Rt − µ̂
σ̂t

≤ ẑt)

can be estimated as ût =
∑m

i 1{ẑi<ẑt}
m . Then Ht(q) can be estimated as Ĥt(q) = 1

q (q−ût)1{ût ≤ q}.
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A simple t-test can be used for this null hypothesis as shown below

UES =

√
n(H̄(q)− q/2)√
q(1/3− q/4)

,

where H̄(q) = 1
n

∑n
1 Ĥt(q) and n is the number of observations out-of-sample. Under the assump-

tion that λ = 0, this t-test converges in distribution to the standard normal distribution.

Next, the conditional backtest with the following null hypothesis is considered

H0c : E(Ht(q, θ0)− q/2|Ωt−1) = 0

which can be seen as the analogue of the conditional backtest of the VaR, Christoffersen (1998)
for example. To test this hypothesis, we first need to define

γnj =
1

n− j

n∑
t=1+j

(Ht(q)− q/2)(Ht−j(q)− q/2) and ρnj =
γnj
γn0

.

This can be estimated by

γ̂nj =
1

n− j

n∑
t=1+j

(Ĥt(q)− q/2)(Ĥt−j(q)− q/2) and ρ̂nj =
γ̂nj
γ̂n0

.

A simple conditional test proposed by Du and Escanciano (2016) using ρ̂nj is the Box-Pierce
test statistic

CES(k) = n

k∑
j=1

ρ̂2nj

where k is the number of different autocorrelation we consider. Under the assumption λ = 0 it
holds that this Box-pierce test converges into a chi-squared distribution with k degrees of freedom,
that is

n

k∑
j=1

ρ̂2nj
d−→ χ2

k.

We will take k = 5 as this is suggested by Du and Escanciano (2016). In their Monte Carlo
simulations they have shown that this conditional backtests with k = 5 performs better than with
k equal to 1 or 3 in terms of power.

3.3 Comparison of the ES forecasts of the different models
After evaluating the specification of the different models, we focus on the difference between the
forecasts of the different models despite their correct or misspecification. To compare the forecasts
we first introduce the loss function as described in Fissler et al. (2015). This loss function is given
as follows:

LM ( ˆV aRt+1, ÊSt+1, rt+1)t+1 = (1{rt+1 ≤ ˆV aRt+1} − q)( ˆV aRt+1 − rt+1)

+
1

q
exp(ÊSt+1)1{rt+1 ≤ ˆV aRt+1}( ˆV aRt+1 − rt+1)

+ exp(ÊSt+1)(ÊSt+1 − ˆV aRt+1)− exp(ÊSt+1)

Here M indicates whether the GARCH or HEAVY model is used in the FHS to forecast ˆV aRt+1

and ÊSt+1. The difference of the losses obtained from the two different models is denoted by:

∆Lm,t+1 = LH( ˆV aRt+1, ÊSt+1, rt+1)t+1 − LG( ˆV aRt+1, ÊSt+1, rt+1)t+1

will be used for the two predictive tests that are proposed by Giacomini and White (2006), here
m is the number of observations in the in-sample period which depends on the particular asset
that is considered. The two predictive tests include a conditional and an unconditional test. The
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unconditional tests has the following null hypothesis:

H0 : E[∆Lm,t+1] = 0

which claims that the models are equally accurate on average. To test this hypothesis, the following
simple t-statistic is applied

tm,n =
∆L̄m,n
σ̂n
√
n
,

where ∆L̄m,n = n−1
∑t−1
t=m ∆Lm,t+1 and where σ̂n is the HAC estimator of the asymptotic vari-

ance of σ2
n = var[

√
n∆L̄m,n].

The conditional null hypothesis is as follows

H0 : E[∆Lm,t+1|Ft] = 0

which says that one cannot predict which model will predict more accurate at time t+ 1, given the
information in time t. This null is equivalent to stating that E[h̃t∆Lm,t+1] = 0 for all measurable
functions h̃t in Ft, see Giacomini andWhite (2006). The test statistic for the conditional hypothesis
that is considered by Giacomini and White (2006) is as follows:

Thm,n = n

(
n−1

T−1∑
t=m

ht∆Lm,t+1

)
Σ̂−1n

(
n−1

T−1∑
t=m

ht∆LH,G,t+1

)
= nZ̄m,nΣ̂−1n Z̄m,n

where Z̄m,n ≡ n−1
∑T−1
t=m Zm,t+1, Zm,t+1 ≡ ht∆Lm,t+1 and Σ̂n ≡ n−1

∑T−1
t=m Zm,t+1Z

′
m,t+1 is a p

x p matrix estimator of the covariance matrix of Zm,t+1. Under H0 T
h
m,n

d−→ χ2
p as n −→∞.

Thm,n can also be estimated as mR2 where R2 is the squared correlation coefficient for the ar-
tificial regression of the constant unity on (ht∆Lm,t+1)′, see Giacomini and White (2006). In our
case the scoring function ht is chosen as [1,∆Lm,t−1].

When the null hypothesis is rejected, it implies that the test functions ht can predict ∆Lm,t+1.
To decide which model is better when the null is rejected, we use the decision rule of Giacomini and
White (2006). This rule consists of two steps. The first step is to regress ∆Lm,t+1 on ht over the
out-of-sample period. Let δ̂n denote the vector of the regression coefficients. The idea of the second
step is based on the approximation of δ̂′nht ≈ E[∆Lm,t+1|Ft] for t = m+ 1,m+ 2, · · ·T − 2, T − 1.
Therefore we can calculate δ̂′nht over this sample and calculate the proportion of 1{δ̂′nht > 0}. If the
proportion is larger than 50%, it means that the HEAVY model is preferred over the GARCH(1,1)
model.

4 Results

4.1 Estimated models
In this section, the fits of the different models used by Shephard and Sheppard (2010), the likelihood
changes by comparing different models due to restrictions and iterative forecasts are replicated.
Note that the results are not identical to the results of Shephard and Sheppard (2010). The
results of the fits often differ in the third decimal. This difference could be explained due to
small differences between different local minimizers that are used for the QMLE. For the iterative
forecasts, the results can even differ in the first decimal. The tables in this subsection only contain
information for most raw indexes. The complete tables are shown in the Appendix.
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Table 3: Fit of the GARCH and HEAVY models of various indexes.

Asset Heavy-R GARCHX GARCH HEAVY-RM Integrated

α β αX βX γX αG βG αR βR αg αR

Dow Jones Industrials 0.406 0.738 0.407 0.737 0.000 0.082 0.913 0.411 0.567 0.063 0.336
CAC 40 0.528 0.673 0.525 0.675 0.000 0.081 0.916 0.417 0.573 0.068 0.350
FTSE 100 0.608 0.658 0.614 0.656 0.000 0.105 0.892 0.434 0.562 0.085 0.369
Spanish IBEX 0.631 0.674 0.479 0.714 0.035 0.112 0.886 0.393 0.604 0.085 0.343
Nasdaq 0.723 0.661 0.439 0.744 0.051 0.082 0.915 0.427 0.568 0.063 0.349
Italian MIBTEL 0.806 0.630 0.806 0.631 0.000 0.107 0.889 0.512 0.486 0.080 0.436
S&P 400 Midcap 0.847 0.641 0.269 0.795 0.083 0.100 0.885 0.392 0.603 0.073 0.333
Nikkei 0.506 0.773 0.508 0.772 0.000 0.079 0.906 0.346 0.641 0.065 0.295
Russell 3000 0.449 0.746 0.446 0.748 0.000 0.081 0.911 0.403 0.574 0.059 0.313
Russell 1000 0.398 0.767 0.396 0.769 0.000 0.078 0.916 0.402 0.577 0.058 0.315
Russell 2000 0.946 0.679 0.243 0.812 0.102 0.107 0.885 0.387 0.622 0.077 0.322
Milan MIB 0.498 0.746 0.342 0.779 0.047 0.102 0.895 0.484 0.518 0.076 0.417
German DAX 0.446 0.673 0.446 0.674 0.000 0.093 0.903 0.457 0.536 0.075 0.376

Note: the complete sample is used for each estimation. The complete table including all 34 assets is shown in the
Appendix.

Above in Table 3, the parameters of the models that were considered are shown. The complete
sample is used to estimate the parameters. In this paper we focus on the GARCH and the standard
HEAVY model. For one-step ahead forecasts, only the HEAVY-r model is relevant. It can be seen
that β is typically around 0.6, except for the exchange rates. ω which is not shown in the table,
is typically very small around 0. For the GARCH model, βG is higher around 0.9. Therefore the
GARCH model has more memory, since it averages more observations that are further away from
the present. The conditional variance obtained from the HEAVY-r model can roughly be seen as
a constant plus a weighted sum of recent realised measures.

Below in Table 4 twice the likilihood change is shown by imposing restrictions. It shows that
the difference between the standard HEAVY-r model and the extended HEAVY-r model or the
GARCHX model is rather small. However, the likelihood change between the GARCH and the
GARCHX model is much larger. This implies that the standard HEAVY model can be favoured
compared to the traditional GARCH model.

Table 4: Twice the likelihood change between different models by imposing restrictions.

Asset Compare to extended HEAVY-r Impose unit root No momentum

HEAVY-r GARCH GARCH HEAVY-RM β = 0

Dow Jones Industrials 0.0 -199.5 -48.5 -19.5 -56.5
CAC 40 0.0 -148.9 -30.9 -14.5 -67.3
FTSE 100 0.0 -125.7 -32.5 -12.3 -55.1
Spanish IBEX -9.3 -113.7 -59.2 -12.1 -78.4
Nasdaq -15.8 -108.4 -31.2 -14.4 -72.9
Italian MIBTEL 0.0 -141.2 -40.6 -9.9 -38.1
S&P 400 Midcap -64.5 -61.8 -61.5 -11.0 -89.1
Nikkei 0.0 -116.5 -64.5 -9.9 -84.6
Russell 3000 0.0 -187.2 -49.9 -21.2 -61.3
Russell 1000 0.0 -186.2 -45.4 -20.0 -61.8
Russell 2000 -163.1 -64.9 -57.5 -12.7 -134.7
Milan MIB -16.5 -100.7 -48.5 -13.0 -75.6
German DAX 0.0 -153.3 -47.2 -16.0 -63.7

Note: left-hand side is compared to the GARCHX model and right-hand side compares the unconstrained
GARCH and HEAVY-RM model with constrained models that impose an unit root. The final column
compares the likelihood of the unconstrained HEAVY-RM model with the constrained HEAVY-RM model
with β = 0. The complete table including all 34 assets is shown in the Appendix.
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In Table 5, the in-sample forecasts are compared between the HEAVY and GARCH model
by evaluating the in-sample likelihood ratio tests for losses of both models. See Shephard and
Sheppard (2010) for the corresponding t-test and losses in details. Negative LR tests favour the
HEAVY model. Note that the negative t-statistic is smallest for horizon of 1. The negative t-
statistics decrease as the horizon increases. This means that the outperformance of the forecasts
for in-sample generated by the HEAVY model decrease as the horizon increases.

Table 5: In sample likelihood ratio tests for losses obtained from the
HEAVY and GARCH models.

Asset t-statistic for non-nested LR tests for h

1 2 3 5 10 22

Dow Jones Industrials -5.72 -3.80 -3.06 -2.96 -2.01 0.88
CAC 40 -4.39 -3.06 -2.34 -0.68 0.04 1.73
FTSE 100 -5.17 -3.39 -2.69 -1.70 -0.14 -0.14
Spanish IBEX -2.83 -2.58 -1.48 -0.60 -1.11 -0.57
Nasdaq -2.47 -0.47 -0.33 -0.71 1.12 -0.33
Italian MIBTEL -4.11 -3.29 -3.35 -1.78 -0.78 -0.75
S&P 400 Midcap 0.07 1.11 1.06 0.08 0.27 -0.41
Nikkei -3.87 -2.72 -2.24 -0.68 0.28 0.64
Russell 3000 -5.73 -4.04 -3.26 -4.04 -1.67 0.03
Russell 1000 -5.44 -3.90 -3.24 -3.88 -1.51 0.45
Russell 2000 1.66 2.23 2.14 1.20 1.34 0.01
Milan MIB -1.89 -1.00 -0.91 -0.10 0.03 -0.02
German DAX -5.12 -3.44 -2.86 -1.10 -0.81 -0.34
Note: negative values favour HEAVY models. Both models are estimated
using the quasi-likelihood. Here h denotes the forecast horizon of the itera-
tive forecasts. The complete table including all 34 assets are shown in the
Appendix.

4.2 Comparison of the ES forecasts
In this section the conventional significance level of 0.05 is used for all the tests. In Table 6 the
p-values of the Du and Escanciano (2016) backtests considering ES forecasts with a coverage level
of q = 0.01 are displayed. Recall that there are 34 assets considered. The unconditional test is
rejected for 3 and 8 occasions for the case of using the HEAVY and GARCH model, respectively.
The number of rejections for the conditional test is 7 and 11 for the use of the HEAVY as GARCH
model, respectively. Both models perform quite well for most of the cases. There is slight advantage
for use of the HEAVY model in the FHS method compared to the use of the GARCH model.
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Table 6: The p-values of the backtests of Du and Escanciano (2016).

Asset HEAVY GARCH

Unconditional Conditional Unconditional Conditional

Dow Jones Industrials 0.067 0.997 0.275 0.997
CAC 40 0.659 0.654 0.718 0.013*
FTSE 100 0.067 0.034* 0.063 0.159
Spanish IBEX 0.207 0.071 0.110 0.000***
Nasdaq 0.345 1.000 0.513 0.942
Italian MIBTEL 0.818 1.000 0.932 0.457
S&P 400 Midcap 0.202 1.000 0.280 0.134
Nikkei 0.000*** 0.004** 0.009* 0.048*
Russell 3000 0.825 1.000 0.017* 0.995
Russell 1000 0.980 1.000 0.022* 0.991
Russell 2000 0.257 1.000 0.127 0.994
Milan MIB 0.955 1.000 0.469 0.012*
German DAX 0.758 0.877 0.476 0.999
S&P TSE 0.688 0.781 0.255 0.850
S&P 500 0.667 0.999 0.092 0.994
MSCI Australia 0.679 1.000 0.021* 0.000***
MSCI Belgium 0.094 0.999 0.046* 0.042*
MSCI Brazil 0.604 1.000 0.548 0.999
MSCI Canada 0.691 0.125 0.059 0.047*
MSCI Switzerland 0.865 0.942 0.950 0.980
MSCI Germany 0.830 0.205 0.551 1.000
MSCI Spain 0.086 0.000*** 0.696 0.000***
MSCI France 0.259 0.001** 0.700 0.013*
MSCI UK 0.506 0.000*** 0.110 0.005*
MSCI Italy 0.564 1.000 0.732 1.000
MSCI Japan 0.093 0.999 0.167 1.000
MSCI South Korea 0.636 1.000 0.679 0.999
MSCI Mexico 0.951 0.037* 0.060 0.938
MSCI Netherlands 0.250 0.000*** 0.099 0.002**
MSCI World 0.006** 0.606 0.000*** 0.819
British pound 0.169 0.991 0.008** 0.824
Euro 0.706 1.000 0.801 0.999
Swiss franc 0.015* 0.058 0.001*** 0.060
Japanese yen 0.173 0.998 0.092 0.998
Number of rejections 3 7 8 11
Note: ES forecasts with q = 0.01 are considered. In the last row the number of rejections for
each hypothesis is shown. Furthermore,* represents a p-value smaller than 0.05, ** represents
a p-value smaller than 0.01, *** represents a p-value smaller than 0.001

The p-values of the backtests of Du and Escanciano (2016) concerning ES forecasts with a
coverage level of q = 0.05 are shown in Table 7. The unconditional backtest rejects the null
hypothesis for 14 assets at the conventional significance level when the HEAVY model is used in
the FHS. The number of rejections is somewhat larger when the GARCH model is used, namely
23 cases. The unconditional test seems to favour the HEAVY model. For the conditional test, the
number of rejections are 8 amd 10 for the case of using HEAVY and GARCH model respectively.
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Table 7: The p-values of the backtests of Du and Escanciano (2016).

Asset HEAVY GARCH

Unconditional Conditional Unconditional Conditional

Dow Jones Industrials 0.004* 0.616 0.026* 0.228
CAC 40 0.272 0.518 0.090 0.067
FTSE 100 0.643 0.006** 0.033* 0.025*
Spanish IBEX 0.015* 0.031* 0.029* 0.002**
Nasdaq 0.314 0.603 0.015* 0.261
Italian MIBTEL 0.732 0.362 0.259 0.356
S&P 400 Midcap 0.067 0.479 0.000*** 0.045*
Nikkei 0.000*** 0.000*** 0.062 0.000***
Russell 3000 0.124 0.660 0.002** 0.100
Russell 1000 0.039* 0.589 0.002** 0.070
Russell 2000 0.089 0.729 0.000*** 0.036*
Milan MIB 0.217 0.317 0.127 0.405
German DAX 0.085 0.935 0.259 0.019*
S&P TSE 0.628 0.291 0.002** 0.087
S&P 500 0.011* 0.501 0.000*** 0.033*
MSCI Australia 0.834 0.115 0.009** 0.001***
MSCI Belgium 0.000*** 0.004** 0.002** 0.128
MSCI Brazil 0.078 0.612 0.057 0.316
MSCI Canada 0.257 0.199 0.000*** 0.070
MSCI Switzerland 0.052 0.614 0.010** 0.824
MSCI Germany 0.012* 0.831 0.009** 0.218
MSCI Spain 0.004 ** 0.038* 0.040* 0.003**
MSCI France 0.031* 0.734 0.052 0.127
MSCI UK 0.044* 0.034* 0.051 0.071
MSCI Italy 0.222 0.724 0.039* 0.714
MSCI Japan 0.010* 0.025* 0.553 0.062
MSCI South Korea 0.526 0.913 0.379 0.773
MSCI Mexico 0.081 0.172 0.026* 0.058
MSCI Netherlands 0.239 0.003** 0.029* 0.101
MSCI World 0.001** 0.280 0.000*** 0.274
British pound 0.057 0.844 0.002** 0.891
Euro 0.045* 0.564 0.105 0.165
Swiss franc 0.123 0.772 0.004** 0.669
Japanese yen 0.003** 0.485 0.000*** 0.031*
Number of rejections 14 8 23 10
Note: ES forecasts with q = 0.05 are considered. In the last row the number of rejections for
each hypothesis is shown. Furthermore,* represents a p-value smaller than 0.05, ** represents
a p-value smaller than 0.01, *** represents a p-value smaller than 0.001

In Table 8, the p-values of the backtests are shown for ES forecasts at a coverage level of
q = 0.1. A quite similar pattern is shown with respect to ES forecasts at q = 0.01. Both the
unconditional and conditional test favour the HEAVY model. However, the number of rejections
for the unconditional test is larger for both models.
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Table 8: The p-values of the backtests of Du and Escanciano (2016).

Asset HEAVY GARCH

Unconditional Conditional Unconditional Conditional

Dow Jones Industrials 0.001** 0.279 0.006** 0.152
CAC 40 0.176 0.556 0.099 0.147
FTSE 100 0.408 0.123 0.102 0.264
Spanish IBEX 0.039* 0.107 0.069 0.019*
Nasdaq 0.455 0.610 0.007** 0.045*
Italian MIBTEL 0.167 0.924 0.006** 0.586
S&P 400 Midcap 0.065 0.664 0.001*** 0.052
Nikkei 0.000*** 0.013* 0.004** 0.234
Russell 3000 0.039* 0.116 0.001** 0.011*
Russell 1000 0.012* 0.112 0.001*** 0.015*
Russell 2000 0.086 0.073 0.001*** 0.018*
Milan MIB 0.046* 0.977 0.007 0.305
German DAX 0.118 0.964 0.339 0.183
S&P TSE 0.297 0.380 0.000*** 0.099
S&P 500 0.006** 0.074 0.001*** 0.014*
MSCI Australia 0.299 0.472 0.006 0.136
MSCI Belgium 0.000*** 0.002** 0.001*** 0.077
MSCI Brazil 0.050* 0.488 0.011* 0.414
MSCI Canada 0.034* 0.300 0.000*** 0.330
MSCI Switzerland 0.026* 0.980 0.007** 0.994
MSCI Germany 0.036* 0.942 0.027* 0.205
MSCI Spain 0.005** 0.119 0.038* 0.061
MSCI France 0.031* 0.731 0.035* 0.524
MSCI UK 0.021* 0.650 0.012* 0.930
MSCI Italy 0.060 0.971 0.003** 0.638
MSCI Japan 0.000*** 0.012* 0.025* 0.338
MSCI South Korea 0.132 0.861 0.156 0.171
MSCI Mexico 0.351 0.130 0.034* 0.065
MSCI Netherlands 0.114 0.067 0.041* 0.107
MSCI World 0.000*** 0.110 0.000*** 0.150
British pound 0.007** 0.871 0.000*** 0.604
Euro 0.014* 0.243 0.021* 0.031**
Swiss franc 0.202 0.378 0.030* 0.451
Japanese yen 0.000*** 0.162 0.000*** 0.000***
Number of rejections 20 3 29 8
Note: ES forecasts with q = 0.10 are considered. In the last row the number of rejections for
each hypothesis is shown. Furthermore, * represents a p-value smaller than 0.05, ** represents
a p-value smaller than 0.01, *** represents a p-value smaller than 0.001

The p-values of the predictive ability tests of Giacomini and White (2006) are shown below in
Table 9. The ratio between the numbers of assets where the HEAVY model is preferred and the
total number of assets is shown in the last row. This ratio is for both coverage levels q = 0.05 and
q = 0.10 similar, conditionally and unconditionally. Consider the unconditional test, here the null
hypothesis is rejected at the conventional significance level for 10 out of 34 assets due to negative
t-statistics. For these 10 assets, the HEAVY model is favoured to be used in our FHS method. For
the rest of the 24 assets, the loss functions of the different models do not seem to be significantly
different from each other. Note that there are no preferences for the exchange rates indexes. Now
for the conditional test, rejection occurs for 16 out of 34 assets. In these cases, the decision rule
tells us that the HEAVY models is preferred. This can be seen by the proportion that is lower
than 0.5 for the rejected cases.
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Table 9: The p-values of the unconditional and conditional predictive ability tests of Giacomini
and White (2006).

Asset q=0.05 q=0.10

Unc Con Proportion Unc Con Proportion

Dow Jones Industrials 0.126 0.062 - 0.144 0.024* 0.107
CAC 40 0.079 0.243 - 0.211 0.109 -
FTSE 100 0.096 0.079 - 0.116 0.034* 0.165
Spanish IBEX 0.271 0.045* 0.125 0.496 0.014* 0.529
Nasdaq 0.075 0.046* 0.041 0.063 0.029* 0.087
Italian MIBTEL 0.019* 0.107 - 0.021* 0.017* 0.105
S&P 400 Midcap 0.040* 0.116 - 0.060 0.295 -
Nikkei 0.120 0.006** 0.941 0.149 0.444 -
Russell 3000 0.010** 0.036* 0.020 0.036* 0.009** 0.076
Russell 1000 0.012* 0.042* 0.017 0.033* 0.004** 0.076
Russell 2000 0.147 0.045* 0.053 0.187 0.228 -
Milan MIB 0.022* 0.098 - 0.032* 0.003** 0.139
German DAX 0.096 0.032* 0.027 0.153 0.035* 0.106
S&P TSE 0.091 0.027* 0.045 0.028* 0.010** 0.100
S&P 500 0.003** 0.013* 0.018 0.007** 0.042* 0.044
MSCI Australia 0.068 0.167 - 0.077 0.221 -
MSCI Belgium 0.223 0.427 - 0.303 0.870 -
MSCI Brazil 0.399 0.103 - 0.084 0.189 -
MSCI Canada 0.038* 0.009** 0.045 0.014* 0.008** 0.081
MSCI Switzerland 0.104 0.261 - 0.259 0.138 -
MSCI Germany 0.268 0.015* 0.104 0.205 0.037* 0.183
MSCI Spain 0.424 0.040* 0.289 0.302 0.009** 0.756
MSCI France 0.105 0.232 - 0.220 0.136 -
MSCI UK 0.137 0.023* 0.039 0.176 0.156 -
MSCI Italy 0.047* 0.018* 0.069 0.106 0.004** 0.176
MSCI Japan 0.486 0.925 - 0.414 0.930 -
MSCI South Korea 0.007** 0.043* 0.011 0.015* 0.042* 0.096
MSCI Mexico 0.363 0.946 - 0.396 0.240 -
MSCI Netherlands 0.005** 0.069 - 0.036* 0.197 -
MSCI World 0.194 0.021* 0.066 0.092 0.055 -
British pound 0.051 0.192 - 0.023* 0.101 -
Euro 0.473 0.883 - 0.352 0.919 -
Swiss franc 0.106 0.459 - 0.253 0.712 -
Japanese yen 0.055 0.239 - 0.147 0.455 -
Ratio 0.29 - 0.47 0.29 - 0.47
Note: if the conditional test is rejected, the decision rule is used. The proportion of 1{δ̂′nht > 0} over
the out-sample period is shown below. A proportion smaller than 0.5 favours the HEAVY model. On
the left hand side, the ES forecasts at a coverage level of 0.05 are evaluated while the right hand side
considers ES forecasts at a coverage level of 0.1. Ratio in the last row is the number of assets where
the HEAVY model is favoured divided by the total number of assets. Furthermore, * represents a
p-value smaller than 0.05, ** represents a p-value smaller than 0.01

Interestingly, the results of the predictive ability tests are somewhat different for the coverage
level of q = 0.01. These results are displayed in Table 13 in the Appendix. For the unconditional
test all 8 rejected cases were based on negative t-statistics which leads to a ratio of roughly 0.24
which is rather the same compared to other coverage levels. However the Ratio for the conditional
test is roughly 0.24 which is smaller compared to the ratio of 0.47 obtained with the other coverage
levels. Note that there are again no preferences for the exchange rates indexes. This observation
is reasonable as Shephard and Sheppard (2010) also found that the HEAVY fit is not much better
than the GARCH fit for exchange rates. This can be explained by the fact that the HEAVY model
holds on average much more memory for exchange rates. This can be confirmed by their higher
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β around 0.85, see Table 10 in the Appendix. The difference between the HEAVY and GARCH
model is therefore smaller for exchange rates.

The one-step ahead ES forecasts of the Dow Jones Industrial returns with a coverage level of
q = 0.05 are shown in Figure 1. The forecasts obtained with the FHS in combination with the
HEAVY model seem to adjust in greater magnitude. Consequently, the variance of the ES forecasts
is larger compared to the ’GARCH’ forecasts. This feature is observed for most assets and different
coverage levels.

Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09
-0.15

-0.1

-0.05

0

E
S

 f
o

re
c
a

s
ts

HEAVY

GARCH

Figure 1: The ES forecasts for the Dow Jones Industrial index at a coverage level of q = 0.05

Figure 2 gives the loss functions with a coverage level of q = 0.05 of both models for Dow Jones
Industrial index. It is difficult to see from the figure, but the loss function is on average lower for
the HEAVY model due to several periods with lower losses. These periods are paired with lower ES
forecasts. For example, consider the most extreme period, from December 2008 till mid January
2009 where the loss function is lower for the HEAVY model. The ES forecasts are larger when the
HEAVY model is used compared to the GARCH model in this period as shown in Figure 3.
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Figure 2: The loss functions for the Dow Jones Industrial index at a coverage level of q = 0.05
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Figure 3: The loss functions for the Dow Jones Industrial index at a coverage level of q = 0.05
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5 Conclusion
The backtests of Du and Escanciano (2016) indicate that the ES forecasts are correctly specified
for both FHS combinations in most cases when the coverage level of q = 0.01 is used. The num-
ber of correct unconditional specifications decreases as the coverage level increases. This applies
for both applications of the HEAVY and GARCH model. However the conditional specification
is correct for most of the cases independent of the coverage level. When the HEAVY model is
used rather than the GARCH model as the time-varying volatility model for the FHS method the
correct specification occurs more often.

Based on the predictive ability tests of Giacomini and White (2006), conditionally wise the
favour goes to the use of the HEAVY model for almost half of the cases for coverage levels of
q− 0.05 and q = 0.10. Differently is when a coverage level of q = 0.01 is used. Then the preference
from the conditional perspective for the use of the HEAVY model is only 24% of the cases. Uncon-
ditionally, the preference for the HEAVY model occurs in 29% of the cases for coverage levels of
0.05 and q = 0.10. When the coverage level of 0.01 is considered, the preference from the uncondi-
tional view for the HEAVY model is present in 24% of the assets. So the preference of the HEAVY
model is present for all coverage levels, but for the lowest coverage level of 0.01 this outperfor-
mance is in smaller extent. The preferences for the use of the HEAVY model is only present for
the raw indexes and the MSCI indexes. The preference is not observed for the exchange rates in-
dexes. This may be due to the larger memory of the HEAVY model for the exchange rates indexes.

The greater adjustments of the ES forecasts when the HEAVY model is considered might play
an important role for the preference for the HEAVY model in terms of specification and predictive
ability. One could investigate whether the favour is still present when less stressful times are used
for forecasts.

For further research, it could be interesting to investigate multi-step ahead ES forecasts. Also
besides using empirical data, it might be reasonable to assume distributions of returns to estimate
the quantiles.
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6 Appendix

Table 10: Fit of the GARCH and HEAVY models of various indexes and exchange rates.

Asset Heavy-R GARCHX GARCH HEAVY-RM Integrated

α β αX βX γX αG βG αR βR αg αR

Dow Jones Industrials 0.406 0.738 0.407 0.737 0.000 0.082 0.913 0.411 0.567 0.063 0.336
CAC 40 0.528 0.673 0.525 0.675 0.000 0.081 0.916 0.417 0.573 0.068 0.350
FTSE 100 0.608 0.658 0.614 0.656 0.000 0.105 0.892 0.434 0.562 0.085 0.369
Spanish IBEX 0.631 0.674 0.479 0.714 0.035 0.112 0.886 0.393 0.604 0.085 0.343
Nasdaq 0.723 0.661 0.439 0.744 0.051 0.082 0.915 0.427 0.568 0.063 0.349
Italian MIBTEL 0.806 0.630 0.806 0.631 0.000 0.107 0.889 0.512 0.486 0.080 0.436
S&P 400 Midcap 0.847 0.641 0.269 0.795 0.083 0.100 0.885 0.392 0.603 0.073 0.333
Nikkei 0.506 0.773 0.508 0.772 0.000 0.079 0.906 0.346 0.641 0.065 0.295
Russell 3000 0.449 0.746 0.446 0.748 0.000 0.081 0.911 0.403 0.574 0.059 0.313
Russell 1000 0.398 0.767 0.396 0.769 0.000 0.078 0.916 0.402 0.577 0.058 0.315
Russell 2000 0.946 0.679 0.243 0.812 0.102 0.107 0.885 0.387 0.622 0.077 0.322
Milan MIB 0.498 0.746 0.342 0.779 0.047 0.102 0.895 0.484 0.518 0.076 0.417
German DAX 0.446 0.673 0.446 0.674 0.000 0.093 0.903 0.457 0.536 0.075 0.376
S&P TSE 0.640 0.694 0.637 0.693 0.002 0.067 0.930 0.362 0.635 0.054 0.324
S&P 500 0.379 0.773 0.377 0.774 0.000 0.076 0.918 0.417 0.564 0.054 0.340
MSCI Australia 0.213 0.646 0.976 0.668 0.043 0.098 0.894 0.323 0.671 0.069 0.291
MSCI Belgium 0.768 0.568 0.374 0.692 0.093 0.143 0.854 0.399 0.608 0.105 0.359
MSCI Brazil 0.663 0.652 0.660 0.653 0.001 0.096 0.877 0.431 0.538 0.072 0.375
MSCI Canada 0.497 0.772 0.481 0.771 0.009 0.076 0.911 0.364 0.630 0.061 0.329
MSCI Switzerland 0.699 0.638 0.699 0.638 0.000 0.131 0.860 0.474 0.508 0.093 0.425
MSCI Germany 0.567 0.592 0.568 0.592 0.000 0.107 0.885 0.461 0.530 0.084 0.388
MSCI Spain 0.589 0.659 0.589 0.660 0.000 0.090 0.907 0.415 0.580 0.068 0.365
MSCI France 0.595 0.628 0.595 0.628 0.000 0.090 0.908 0.453 0.543 0.074 0.386
MSCI UK 0.580 0.618 0.582 0.617 0.000 0.110 0.886 0.456 0.543 0.086 0.393
MSCI Italy 0.581 0.660 0.583 0.659 0.000 0.100 0.896 0.536 0.463 0.075 0.467
MSCI Japan 0.736 0.722 0.740 0.721 0.000 0.088 0.901 0.458 0.534 0.075 0.387
MSCI South Korea 0.761 0.662 0.763 0.662 0.000 0.071 0.928 0.432 0.564 0.059 0.393
MSCI Mexico 0.873 0.711 0.720 0.726 0.032 0.095 0.885 0.363 0.625 0.068 0.328
MSCI Netherlands 0.538 0.678 0.538 0.678 0.000 0.105 0.889 0.453 0.542 0.084 0.396
MSCI World 0.337 0.799 0.337 0.799 0.000 0.085 0.909 0.377 0.610 0.068 0.340
British pound 0.162 0.811 0.161 0.815 0.000 0.042 0.950 0.282 0.699 0.035 0.264
Euro 0.056 0.934 0.034 0.949 0.013 0.031 0.968 0.247 0.746 0.028 0.223
Swiss franc 0.049 0.944 0.045 0.948 0.002 0.030 0.966 0.237 0.750 0.026 0.220
Japanese yen 0.171 0.774 0.172 0.775 0.000 0.048 0.934 0.396 0.554 0.036 0.341

Note: the whole sample is used for each estimation.
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Table 11: Twice the likelihood change between different models by imposing restrictions.

Asset Compare to extended HEAVY-r Impose unit root No momentum

HEAVY-r GARCH GARCH HEAVY-RM β = 0

Dow Jones Industrials 0.0 -199.5 -48.5 -19.5 -56.5
CAC 40 0.0 -148.9 -30.9 -14.5 -67.3
FTSE 100 0.0 -125.7 -32.5 -12.3 -55.1
Spanish IBEX -9.3 -113.7 -59.2 -12.1 -78.4
Nasdaq -15.8 -108.4 -31.2 -14.4 -72.9
Italian MIBTEL 0.0 -141.2 -40.6 -9.9 -38.1
S&P 400 Midcap -64.5 -61.8 -61.5 -11.0 -89.1
Nikkei 0.0 -116.5 -64.5 -9.9 -84.6
Russell 3000 0.0 -187.2 -49.9 -21.2 -61.3
Russell 1000 0.0 -186.2 -45.4 -20.0 -61.8
Russell 2000 -163.1 -64.9 -57.5 -12.7 -134.7
Milan MIB -16.5 -100.7 -48.5 -13.0 -75.6
German DAX 0.0 -153.3 -47.2 -16.0 -63.7
S&P TSE 0.0 -120.8 -17.4 -5.6 -72.3
S&P 500 0.0 -211.0 -50.7 -17.9 -67.2
MSCI Australia -7.9 -96.6 -31.2 -3.9 -55.8
MSCI Belgium -22.7 -66.2 -60.2 -4.0 -57.4
MSCI Brazil 0.0 -60.1 -35.6 -7.1 -23.6
MSCI Canada -0.4 -74.9 -23.2 -4.4 -57.9
MSCI Switzerland 0.0 -153.4 -65.8 -9.1 -32.7
MSCI Germany 0.0 -136.9 -45.0 -10.7 -44.5
MSCI Spain 0.0 -106.7 -31.5 -7.5 -44.5
MSCI France 0.0 -158.3 -27.7 -9.4 -47.1
MSCI UK 0.0 -134.3 -37.2 -9.3 -44.5
MSCI Italy 0.0 -154.7 -38.4 -8.7 -35.4
MSCI Japan 0.0 -111.8 -33.8 -6.2 -28.0
MSCI South Korea 0.0 -118.8 -15.2 -4.1 -43.5
MSCI Mexico -3.4 -61.0 -36.4 -3.4 -43.2
MSCI Netherlands 0.0 -117.8 -40.9 -7.6 -46.8
MSCI World 0.0 -93.0 -25.7 -6.4 -104.0
British pound 0.0 -50.6 -15.7 -1.8 -28.3
Euro -2.7 -18.8 -5.7 -1.6 -44.6
Swiss franc -0.1 -33.2 -5.6 -1.7 -40.4
Japanese yen 0.0 -67.5 -38.6 -8.4 -26.1

Note: left-hand side is compared to the GARCHX model and right-hand side compares the unconstrained
GARCH and HEAVY-RM model with those which impose an unit root. The final column compares the
likelihood of the unconstrained HEAVY-RM model with the constrained HEAVY-RM model with β = 0
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Table 12: In-sample likelihood ratio tests for losses generated by
HEAVY and GARCH models.

Asset t-statistic for non-nested LR tests for h

1 2 3 5 10 22

Dow Jones Industrials -5.72 -3.80 -3.06 -2.96 -2.01 0.88
CAC 40 -4.39 -3.06 -2.34 -0.68 0.04 1.73
FTSE 100 -5.17 -3.39 -2.69 -1.70 -0.14 -0.14
Spanish IBEX -2.83 -2.58 -1.48 -0.60 -1.11 -0.57
Nasdaq -2.47 -0.47 -0.33 -0.71 1.12 -0.33
Italian MIBTEL -4.11 -3.29 -3.35 -1.78 -0.78 -0.75
S&P 400 Midcap 0.07 1.11 1.06 0.08 0.27 -0.41
Nikkei -3.87 -2.72 -2.24 -0.68 0.28 0.64
Russell 3000 -5.73 -4.04 -3.26 -4.04 -1.67 0.03
Russell 1000 -5.44 -3.90 -3.24 -3.88 -1.51 0.45
Russell 2000 1.66 2.23 2.14 1.20 1.34 0.01
Milan MIB -1.89 -1.00 -0.91 -0.10 0.03 -0.02
German DAX -5.12 -3.44 -2.86 -1.10 -0.81 -0.34
S&P TSE -5.16 -4.52 -3.62 -2.28 -0.84 -0.17
S&P 500 -6.13 -4.44 -3.97 -4.08 -1.79 1.01
MSCI Australia -3.15 -2.01 -2.65 -1.90 -2.45 -2.93
MSCI Belgium -1.19 -1.29 -1.16 -1.86 -2.13 -2.11
MSCI Brazil -3.56 -2.35 -1.59 -1.40 -1.52 -0.22
MSCI Canada -3.92 -3.20 -3.16 -2.53 -1.66 -0.96
MSCI Switzerland -4.30 -3.21 -2.43 -2.03 -0.35 -1.53
MSCI Germany -5.27 -4.71 -4.17 -2.56 -1.16 -1.46
MSCI Spain -3.71 -2.62 -2.12 -1.19 -0.29 -0.46
MSCI France -5.70 -4.69 -3.45 -1.68 -0.53 0.09
MSCI UK -5.60 -4.19 -3.37 -2.31 -0.33 -0.39
MSCI Italy -5.36 -3.82 -3.35 -2.72 -0.92 -0.18
MSCI Japan -5.29 -3.01 -2.28 -0.63 -0.02 0.79
MSCI South Korea -4.82 -2.55 -2.23 -2.25 -0.39 2.90
MSCI Mexico -2.47 -1.89 -1.94 -1.30 -2.00 -1.23
MSCI Netherlands -4.78 -3.46 -2.42 -2.20 -1.35 -1.33
MSCI World -5.51 -4.38 -3.44 -2.03 -1.27 -0.32
British pound -3.30 -3.04 -2.07 -1.88 -1.50 -2.22
Euro -1.14 -0.80 -0.70 -0.44 -0.27 -0.16
Swiss franc -2.58 -2.87 -2.87 -2.11 -2.15 -2.28
Japanese yen -3.02 -2.46 -1.32 -0.18 -0.89 0.68

Note: negative values favour HEAVY models. Both models are estimated
using the quasi-likelihood, i.e. tuned to one-step-ahead predictions. Here h
denotes the forecast horizon of the iterative forecasts.
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Table 13: The p-values of the unconditional and conditional predictive
ability tests of Giacomini and White (2006).

Asset q=0.01

Unconditional Conditional Proportion

Dow Jones Industrials 0.194 0.007** 0.009
CAC 40 0.167 0.652 -
FTSE 100 0.164 0.167 -
Spanish IBEX 0.012* 0.008** 0.000
Nasdaq 0.305 0.408 -
Italian MIBTEL 0.073 0.011* 0.000
S&P 400 Midcap 0.133 0.456 -
Nikkei 0.307 0.129 -
Russell 3000 0.026* 0.000*** 0.000
Russell 1000 0.022* 0.000*** 0.000
Russell 2000 0.446 0.317 -
Milan MIB 0.016* 0.000*** 0.000
German DAX 0.013* 0.000*** 0.000
S&P TSE 0.470 0.975 -
S&P 500 0.050 0.000*** 0.000
MSCI Australia 0.103 0.239 -
MSCI Belgium 0.276 0.530 -
MSCI Brazil 0.421 0.382 -
MSCI Canada 0.236 0.508 -
MSCI Switzerland 0.033* 0.135 -
MSCI Germany 0.051 0.003** 0.000
MSCI Spain 0.097 0.149 -
MSCI France 0.041* 0.375 -
MSCI UK 0.185 0.096 -
MSCI Italy 0.074 0.067 -
MSCI Japan 0.021* 0.137 -
MSCI South Korea 0.118 0.070 -
MSCI Mexico 0.074 0.215 -
MSCI Netherlands 0.095 0.350 -
MSCI World 0.255 0.075 -
British pound 0.231 0.554 -
Euro 0.346 0.196 -
Swiss franc 0.204 0.226 -
Japanese yen 0.455 0.350 -
Ratio 0.24 - 0.26
Note: if the conditional test is rejected, the decision rule is used. The
proportion of 1{δ̂′nht > 0} over the out-sample period is shown below. A
proportion smaller than 0.5 favours the HEAVY model. On the left hand
side, the ES forecasts at a coverage level of 0.05 are evaluated while the right
hand side considers ES forecasts at a coverage level of 0.1. Ratio in the last
row is the number of assets where the HEAVY model is favoured divided
by the total number of assets. Furthermore, * represents a p-value smaller
than 0.05, ** represents a p-value smaller than 0.01
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