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Abstract

This paper addresses two questions: What is the ultimate record in a specific athletic
event? and, how good is a current athletic world record? Data consist of all the per-
sonal bests of athletes in 28 events, 14 for both men and women. As an ultimate record
is considered as a finite endpoint of an underlaying distribution, Extreme Value Theory
and corresponding estimators are used to determine those endpoints. A simulation is per-
formed to show the accuracy and consistency of the different estimators. After checking the
finiteness of the endpoints, the ultimate records are calculated. The quality is measured by
deriving its limiting distribution. Results indicate that some events have enough room for
improvement (men’s marathon, 3 minutes), while other current world records lay close to
the ultimate record (women’s shot put, 7 cm). Moreover, some current records have a high
quality (women’s marathon), whereas other records are likely to be sharpened in the near
future (men’s 110m hurdles). As extension, it is tested if the outdoor long jump data are
contaminated by measurement errors, as the data do not satisfy initial assumptions. Results
indicate that this is indeed the case, with the wind as possible factor that contributes to the
measurement errors.



1 Introduction

On May 1st 2017 the European Athletics Council (EAC) endorsed a revolutionary plan to
approach doping in athletics in a rigorous way. Doping is, from the beginning of athletics,
a huge smear on the sport. Even with the modern drug tests it is still believed that many
athletes are using these performance-enhancing substances. This came to an outburst when the
International Association of Athletics Federations (IAAF) proved that the Russian Athletics
Federation had been systematically forced doping upon their athletes, whom in consequence
were expelled from participation to the Olympic Games in 2016. Ever since, people started
questioning the records made by athletes. Subsequently, records are meaningless if people do
not believe in the human capabilities. This doubt raises questions concerning the capabilities
of humans in athletics. What can possibly be achieved by an athlete, given the today’s state of
art? In this paper two research question will be investigated:

”What is the ultimate world record in a specific athletic event?”
”How good is a current athletic world record?”

The first question measures the possible world record in the near future, given the present
knowledge, materials and drug laws. The second research question can be interpreted as the
difficulty of improving the standing world record. This enables to make the comparison between
the quality of world records in the different athletic disciplines.

An ultimate world record, meaning no further improvement is possible, can be considered
as the endpoint, an extreme-value, of the underlying distribution for achieved records. In the
literature, estimates for endpoints can be obtained using Extreme Value Theory (EVT). This
theory offers an semi-parametric approach to account for the tail region of the underlying dis-
tribution. Specifically, the tail region can be characterized by the Extreme Value Index (EVI),
the shape parameter that displays the heaviness of the tail. Therefore, in the framework of
EVT, the finite endpoint is estimated by the expression of the EVI. Since the EVI comes as a
parameter of a limit distribution, after normalizing the sample maximum for the underlaying
distribution, we can estimate the EVI in several approaches. Traditional methods to estimate
the EVI include the Moment approach (Dekkers, Einmahl, & de Haan, 1989), the Maximum
Likelihood Estimation (Smith, 1987), and the Probability Weighted Moment (PWM) estimator
Hosking and Wallis (1987).

Despite the asymptotic normality of the PWM estimator, the estimator also contains an
asymptotic bias. Recently, Cai, de Haan, and Zhou (2013) succeeded to correct the asymptotic
bias of the PWM estimator, and made it applicable for estimating the EVI. They also showed
that the choice of k, the number of high order statistics used for estimation, is far more flexible
when one uses the bias-corrected PWM estimator. Specifically, the estimator allows a higher
value of k which decreases the asymptotic variance of the estimator. These estimation methods,
along with the framework of EVT, have been thoroughly studied and summarized in Fereira
and de Haan (2006).

With the presented theory on estimating the EVI, applications with the focus on endpoints
were ready to be performed. So did Einmahl and Magnus (2008), who studied the same two
research questions as those of this paper. They used the Moment estimator as well as the
Maximum Likelihood (ML) estimator for the EVI. They argued and showed that in sports the
extreme values should be finite, and therefore considered endpoint estimation. Their findings
were fairly accurate with the available data and techniques.

Extending Einmahl and Magnus (2008), most recent and ongoing research, performed by
Leng et al. (2017), has proposed a method to estimate endpoints when the observations are
contaminated by normally distributed errors. To put this in the context of this paper, it is also
possible to get the endpoint estimator in some sport events where the measurement error plays
a role, e.g. the outdoor long jump.
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The remainder of the paper has the following structure. Section 2 introduces the dataset
and how it will be made suitable to this application. Also it reports their descriptive statistics.
Section 3 regards the methodology of the EVT and the different estimation methods used to
estimate the EVI and endpoints. Section 4 describes how Monte Carlo Simulation will be used
to investigate the finite sample performance of the estimation methods mentioned in Section
3. Section 5 reports and discusses the results of the estimation process applied on the sports
dataset, as well as the results of an extension to the research. Section 6 concludes the paper.
Afterwards, the used references are summarized.

2 Data

As mentioned before, Einmahl and Magnus (2008) already studied the two research questions
proposed in this paper. Because this paper extends the aforementioned study, the dataset of
Einmahl and Magnus (2008) will be used again. Therefore, we also focus on 28 sport events in
the athletics (14 for both men and women). The selected events are as follows:

Running disciplines: 100m, 110/100m hurdles, 200m, 400m, 800m, 1500m, 10km, marathon
Throwing disciplines: Discus throw, javelin throw, shot put

Jumping disciplines: High jump, (outdoor) long jump, pole vault

With 110m hurdles for men and 100m hurdles for women. As the dataset only has data coverage
up to April 30th 2005, new data will be supplemented to get a representative dataset up to now,
May 1st 2017. The data will be obtained from the official IAAF site (www.iaaf.org/statistics/top
lists/index.html) and the Swedish website compiled by Peter Larsson (http://www.alltime-
athletics. com/index.html).

The data consist of all the personal best of the athletes in the events. Notice, as the interest
of this paper is the records and not its development, an athlete can only appear once in the
dataset. Hence only the personal best of an athlete is noted, even when this athlete has broken
the world record multiple times. This data-filtering process has to be handled with caution
and care, because several names of athletes are spelled differently or even misspelled over time.
Specifically, many female athletes took on their husband’s family name after marriage. A
summary of the resulted dataset with the number of athletes and the worst and best record for
each sport event can be seen in Table 1.

A preliminary look at the data indicates that the data occur in clusters, i.e. some records
are the same between the athletes. For instance, in the running disciplines, equal records are
likely caused by imperfect timing. Therefore the dataset will be smoothened using the method
suggested by Einmahl and Magnus (2008), which is constructed as follows. For example, if c
athletes share the same record, d = 9.28, it will be smoothened by

di = 9.275 + .01
2i− 1

2c
i = 1, . . . , c

Note that the running records are expressed in time, which is inconvenient when considering
finite right endpoints. Therefore the times will be transformed to the speeds of the athletes. For
example, a time of 10.00 seconds in the 100m sprint is transformed to a speed of 36.00 km/h.
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Table 1: Data summary

Men Women

Event Depth Worst Best Depth Worst Best

Running
100m 1217 10.3 9.58 715 11.38 10.49
110/100m hurdles 982 13.83 12.80 487 13.20 12.20
200m 1029 20.66 19.19 654 23.14 21.34
400m 826 45.74 43.03 646 52.02 47.60
800m 1026 1:46.61 1:40.91 663 2:01.07 1:53.28
1500m 1075 3:38.79 3:26.00 705 4:09.03 3:50.07
10km 2109 28:30.17 26:17.53 1175 33:04.00 29:17.45
Marathon 2223 2:13:36 2:02:57 1532 2:36:06 2:15:25

Throwing
Shot put 405 19.80 23.12 232 18.42 22.63
Javelin throw 457 77.00 98.48 324 54.08 72.28
Discus throw 364 62.84 74.08 260 62.52 76.80

Jumping
Long jump 804 7.80 8.95 836 6.30 7.52
High jump 527 2.26 2.45 433 1.90 2.09
Pole vault 625 5.50 6.16 632 4.00 5.06

3 Methodology

The methodology used in this paper can be split up into two distinct parts. The first part regards
the EVT. The second part discusses the different estimators used in the EVT framework.

3.1 Extreme-Value Theory

The n records in an event are denoted as i.i.d. observations X1, . . . , Xn, ordered by X1,n ≤ · · · ≤
Xn,n, with world record Xn,n, and are considered to come from some underlaying distribution
F . Using EVT, if for the maximum Xn,n a scale an > 0 and shift bn ∈ R exists, such that

a−1n (Xn,n − bn)
d−→ Gγ(x) = exp

(
−(1 + γx)−1/γ

)
(1)

as n→∞ and 1 + γx > 0, then F is in the max-domain of attraction (MDA) of Gγ . The γ is
then called the EVI. For convenience, one can take logarithms of Equation (1), resulting in

lim
t→∞

t (1− F (atx+ bt)) = − logGγ(x) = (1 + γx)−1/γ (2)

Taking the inverse in both sides of Equation (2), it can be equivalently written as

lim
t→∞

U(tx)− U(t)

a(t)
=
xγ − 1

γ
(3)

with b(t) = U(t), the quantile function that equals the left continuous inverse of F , i.e. U(t) =
F−1

(
1− 1

t

)
. In literature, Equation (3) is referred to as the first order condition. To ensure

the asymptotic normalities of the estimators, a second order condition also has to be imposed.
Assume a scale function A(t) that satisfies limt→∞A(t) = 0, such that for x > 0

lim
t→∞

(
U(tx)− U(t)

a(t)
− xγ − 1

γ

)
/A(t) =

xγ+ρ − 1

ρ(γ + ρ)
(4)
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Coming back to (3), one can observe that when t becomes large it can be written heuristically
that

U(tx) ≈ U(t) + a(t)
xγ − 1

γ
(5)

As mentioned, this paper’s application is estimating the ultimate records, which are considered
as right finite endpoints xF = sup{x|F (x) < 1}. To ensure finiteness, the EVI must be negative.
If γ < 0, then for large x holds

xF ≈ U(t)− a(t)

γ
(6)

By setting t = n/k, with k →∞ and k/n→ 0 as n→∞, the ultimate record will be estimated
by

x̂F = Xn−k,n −
â(n/k)

γ̂
(7)

Where U(t) = Xn−k,n, the empirical analog being a high threshold, n the amount of athletes in
an event and k the number of upper order statistics used for estimation.

The quality of a current world record will be measured by n (1− F (Xn,n)), which is the
expected amount of times that the current record will be improved. The lower, the more
difficult to improve the standing record, hence higher quality. One can argue to use xF −Xn,n

to measure the expected amount hence the quality of a record. However, as this quantity can be
infinite, and moreover, it does not incorporate the tail behavior of underlaying distribution F ,
it is not convenient to this paper’s application. From Equation (2), the quality n (1− F (Xn,n))

can be approximated by k
(

1 + γ
Xn,n−b(n/k)

a(n/k)

)−1/γ
. Therefore, the expected amount will be

estimated by

Q = k

[
max

(
0, 1 + γ̂

Xn,n − b̂
â

)]−1/γ̂
(8)

Assuming that the second order condition (4) holds, and combining it with Theorem 1 in
Einmahl and Magnus (2008), it can be concluded that Q indeed coincides in probability with

n (1− F (Xn,n)), i.e. Q
n(1−F (Xn,n))

p−→ 1. Hence, Xn,n will cover all asymptotic randomness in Q,

and not the estimation of F .
e−Q will present the quality, as it serves a relative and absolute measurement due to its

uniform (0,1) distribution in the limit. Thus, a higher value of e−Q implies a better record,
whereas a low e−Q value indicates a relatively easy to improve record in the near future.

To make use of EVT and to estimate endpoints, the γ and a(n/k) have to be estimated.
The parameters will be estimated simultaneously, using different estimators for (γ̂, â(n/k)). As
replication of Einmahl and Magnus (2008), the Moment estimator will be used. Instead of using
the Maximum Likelihood estimator, the PWM estimator will be used in our paper. This allows
for the comparison with the bias-corrected PWM estimator proposed by Cai et al. (2013), which
will be implemented as extension. Moreover, to deal with potential measurement errors, the
endpoint estimator of Leng et al. (2017) will be implemented, also as an extension.

3.2 The Moment estimator

The Moment estimator (called the M estimator) divides the EVI in two distinct parts, when
negative or when positive. This can be formally written as γ = γ− + γ+, with γ− = min(γ, 0)
and γ+ = max(γ, 0). Define for j = 1, 2

M (j) = M (j)(k) =
1

k

k∑
i=1

(logXn−i+1,n − logXn−k,n)j
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As can be seen, M (j) does not depend on the sample size n. Next, set γ̂− = 1−1
2

(
1− (M(1))

2

M(2)

)−1
and γ̂+ = M (1). Subsequently, this results in

γ̂M = γ̂− + γ̂+ and âM (n/k) = Xn−k,nγ̂+(1− γ̂−) (9)

Dekkers et al. (1989) showed that
(
γ̂M ,

âM (n/k)
a(n/k)

)
converges in probability to their true value

(γ, 1), stating the consistency. The asymptotic variance of the estimators and endpoint can be
also found in their paper.

3.3 The PWM estimator

First assume a random variable V ∼ Hγ(x/a(n/k)) i.e. V is generalized Pareto distributed,

with E{V } = a(n/k)
1−γ and E{V (1−Hγ(x/a(n/k)))} = a(n/k)

2(2−γ) . Hosking and Wallis (1987) showed

that if one approximates V by Xn−i+1,n −Xn−k,n, one can consistently estimate γ and a(n/k)
as follows. Define for j = 1, 2

Ij =
1

k

k∑
i=1

(
i

k

)j−1
(Xn−i+1,n −Xn−k,n)

Then E{V } ≈ I1 and E{V (1 − Hγ(x/a(n/k)))} ≈ I2, neglecting a possible scale, and get
estimators

γ̂PWM =
I1 − 4I2
I1 − 2I2

and âPWM (n/k) =
2I1I2
I1 − 2I2

(10)

The asymptotic variance of the estimators and endpoint is shown in Fereira and de Haan (2006).

3.4 The bias-corrected PWM estimator

The bias-corrected PWM estimator (referred to as the UB estimator) is estimated sequentially.
The γ̂UB is formed by subtracting the bias term from the PWM estimator, mentioned in Section
3.3. As the bias term depends on parameters from the second order condition in Equation (4),
additional parameters need to be created. Firstly, a general estimator for γ is constructed as

γ̂q,r =
q2Iq − r2Ir
qIq − rIr

Notice that γ̂2,1 is equal to γ̂PWM . Secondly, the second order index ρ and scale function A (n/k)
are constructed as

ρ̂ = 1−γ̂2,1−
1

2−γ̂2,1
1−γ̂2,1 ·

γ̂3,1−γ̂4,1
γ̂3,2−γ̂4,2 − 1

and Â (n/k) = (γ̂2,1−γ̂3,1)·
(1− γ̂2,1 − ρ̂)(2− γ̂2,1 − ρ̂)(3− γ̂2,1 − ρ̂)

ρ̂(1− γ̂2,1)

Notice, the ρ depends on the choice of k (through γ̂q,r). Subsequently, the bias term can be
constructed and the EVI can be estimated by

γ̂UB = γ̂2,1 − Â (n/k)
(1− γ̂2,1)(2− γ̂2,1)

(1− γ̂2,1 − ρ̂)(2− γ̂2,1 − ρ̂)
(11)

γ̂UB depends on a different choice of k than the k corresponding to ρ. Therefore, one should
first establish an accurate estimator for ρ, which will be used as a fixed parameter for the other
estimates. In addition, the chosen k associated with ρ should be at a higher level compared to
the k belonging to γUB, i.e.

kγ
kρ
→ 0.
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Cai et al. (2013) argued that the asymptotic bias of âPWM (n/k) is incorrect, and therefore
must be corrected. The resulting estimator for the scale function is given by

âUB(n/k) = â(n/k) · exp

(
−Â (n/k)

(1− γ̂UB)(2− γ̂UB)− ρ̂(3− 2γ̂UB)

ρ̂(1− γ̂UB − ρ̂)(2− γ̂UB − ρ̂)

)
(12)

The bias correction in (γ̂UB, âUB(n/k)) has also its effect on the estimation of the endpoint xF .
So, if the UB estimation method is used, not the standard endpoint estimator but the following
bias-corrected endpoint estimator should be used:

x̂UB = Xn−k,n −
âUB(n/k)

γ̂UB
− Â (n/k) âUB(n/k)

ρ̂(γ̂UB + ρ̂)
(13)

Following, the asymptotic variance of the estimators and endpoint is also altered. A thorough
description can be found in Cai et al. (2013).

3.5 Endpoint estimator with measurement errors

In contrast to what is assumed before, data are often contaminated by measurement errors.
Instead of observing the i.i.d. observations Xi, . . . , Xn, a variable Yi is observed, with Yi =
Xi + εi, i = 1, . . . , n, where εi are i.i.d. random errors with mean 0, unknown variance σ2 and
are independent of Xi. The idea of the estimator (henceforth the G estimator) is to estimate the
endpoint xF by correcting the sample maximum directly with a shift quantity that approximates
the error maximum. This may result in x̂F = max

1≤i≤n
Yi − σ

√
2 log n. Ordering the Yi gives the

sample maximum Yn,n, hence xF = Yn,n − σ
√

2 log n. Leng et al. (2017) showed that if one
estimates the error standard deviation by

σ̂G =

√
log(n/k)√

2k

k−1∑
i=1

g(i/k) (Yn−i,n − Yn−k,n)

then an estimator of the endpoint is given as

x̂G = Yn,n − σ̂G
√

2 log n

Notice, the G estimator depends on the sample size n, which is in contrast with the other
estimators. To ensure the asymptotic normality of σ̂G, some conditions on g(s), s ∈ (0, 1]
have to hold, which can be found in Leng et al. (2017). Using g(s) = − log s satisfies all
conditions, hence it will be implemented in this estimator. The resulting asymptotic variance
of the endpoint can be found in the proposed paper. As the G estimator only tries to filter out
the measurement error in the endpoint, conditions on the EVI, such as γ < 0, will be omitted
from the analysis.

4 Simulation

To assess the accuracy and consistency of the first three estimators (M, PWM, UB), a simulation
will be performed by generating data from the Reversed Burr distribution

F (x) = 1−
(
1 + (xF − x)−τ

)−λ
with x < xF , xF = 4, τ = 4, λ = 1.25, such that γ = −1/(τλ) = −0.20. As mentioned before,
the UB estimator depends on a fixed ρ, which is set to −0.80. 100 samples are drawn with
sample size n = 5000. The generated samples are sorted in ascending order and used as data to
estimate the parameters (γ̂, â(n/k)), as well as the endpoint x̂F , using the different estimators.
The estimated parameters and endpoints depend on the upper order statistic k. Therefore, the
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average estimates over the 100 samples will be calculated and plotted against k, with k varying
from 1 to 1000, where k/n < 20%.

The γ̂ will be determined by balancing its bias and variance. Specifically, the optimal k
will be chosen that minimizes the Root Mean Squared Error (RMSE). The accuracy of the
corresponding γ̂ will be tested by checking if the true γ value is included in the 95% Confidence
Interval (CI), which will be constructed as follows[

γ̂ − zα/2
σ̂√
k
, γ̂ + zα/2

σ̂√
k

]
with zα/2 the 1-α/2 quantile of the standard normal distribution with significance level α = 0.05.

The UB estimator works only in the simulation when ρ < 0. Therefore the kρ and corre-
sponding estimated ρ̂ will be determined by searching amongst the negative values for the first
stable plot. With the ρ̂ fixed, the γUB can be estimated.

A similar procedure will be performed on the endpoint estimation. As alternative evaluation
criteria, a box plot of the estimated endpoints will be made to show the accuracy and dispersion
of the different estimators compared to the true endpoint value.

As the empirical analysis also considers endpoints with possible contamination of measure-
ment errors, the proposed G estimator will be implemented and tested in a simulation to show
its accuracy and consistency. To do this, data will be generated from Yi = Xi + εi, i = 1, . . . , n,
where the Xi will come from the aforementioned Reversed Burr distribution and the parameter
as stated in begin of this section. The εi will be drawn from a normal distribution N(0, σ2),
with σ = 2 and σ = 3. Again, 100 samples with sample size n = 5000 will be generated, which
will be used to estimate the G estimator.

For σ = 2 and σ = 3, choosing the k that minimizes the RMSE, the accuracy of the corre-
sponding x̂G will be assessed by testing if xF = 4 is in its 95% CI. To analyze the consistency,
a box plot of the estimated endpoints will be constructed. The performance of the G estimator
will be compared with that of the PWM and UB estimator for xF , which are the adequate
estimators only when ignoring the presence of measurement errors in the data.

The simulation procedure of the estimators on fictional data will be performed in steps. Firstly,
the accuracy and consistency of the EVI and endpoint estimation, in case of no measurement
errors, will be tested by simulating the Reversed Burr distribution. In addition, the G estimator
will be applied by simulating the Reversed Burr distribution with normally distributed errors,
which should verify the accuracy and consistency of the estimator for x̂F .

Figure 1 shows the estimated γ versus k and its standard deviation and RMSE for the M,
PWM and UB estimator.
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Figure 1: EVI estimation for Reversed Burr Distribution

Note: Estimated EVI, standard deviation and RMSE for different values of k using the M, PWM and UB
estimator. Data generated from the Reversed Burr Distribution without measurement errors, using 100 samples
with sample size n = 5000.

One can observe that both the M estimator and the PWM estimator from the stable regions
for the EVI slightly underestimate the true value. Preliminary to the EVI estimation of the
UB estimator, the ρ̂ has to be determined. The first stable plot is found when k = 970, which
yields ρ̂ = −0.93. This differs from the true value −0.80, but as stated in Cai et al. (2013), the
inaccuracy in estimating ρ does not impose a significant error when estimating γ. Therefore
the ρ̂ is kept fixed at −0.93. Looking at Figure 1, it can be concluded that the UB estimator
honors its name, as it corrects the bias when k becomes large, and moreover, the asymptotic
variance drops when k increases.

To assess the accuracy of the estimated EVI, the 95% CI is build for the chosen k that
minimizes the RMSE. The k value, the γ point estimate, as well as its 95% CI can be seen in
Table 2.

Table 2: 95% CI of γ̂ for corresponding k

k γ̂ 95% CI

γ̂M 362 -0.247 [-0.355, -0.139]
γ̂PWM 347 -0.270 [-0.400, -0.139]
γ̂UB 770 -0.183 [-0.484, 0.117]

It becomes evident that the optimal k for the UB estimator is twice the value of the k for
the M and PWM estimator. This is no coincidence, as the UB estimator performs well for a
wider range of k. Moreover, as kγUB = 770, the condition for the UB estimator that

kγ
kρ
→ 0

when k → ∞ is satisfied. As the true γ = −0.20 is in each of estimators’ 95% CI, it can not
be rejected that the estimated EVI equals the true one. From this it can be concluded that the
different estimators are accurate regarding the EVI estimation.

Next, the accuracy and consistency of the endpoints are investigated. Figure 2 shows the
estimated endpoints and RMSE versus k, using the different estimators.
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Figure 2: Endpoint estimation for Reversed Burr Distribution

Note: Estimated endpoints xF and RMSE for different values of k using the M, PWM and UB estimator. Data
generated from the Reversed Burr Distribution without measurement errors, using 100 samples with sample size
n = 5000.

When k is small, the M and PWM estimator have trouble to estimate the endpoints accu-
rately. When k starts to increase, they become more stable, resulting in their RMSE to drop.
However, the M and PWM estimator start to develop a bias when k becomes large, which con-
sequently leads to an increase in the RMSE. The course of the UB estimator is more stable, as
it shows no outliers. Moreover, it converges to the true endpoint. The RMSE drops gradually,
but for k < 1000 it stays above the RMSE of the M and PWM estimator. As done with the
EVI, the k that minimizes the RMSE is chosen to determine the endpoint and corresponding
95% CI, which are shown in Table 3.

Table 3: 95% CI of x̂F for corresponding k

k x̂F 95% CI

x̂M 352 3.946 [3.749, 4.143]
x̂PWM 356 3.918 [3.722, 4.113]
x̂UB 781 3.987 [3.574, 4.400]

Again, the optimal k for the UB estimator doubles the k chosen for the M and PWM
estimator, which share similar k values. The UB estimator estimates the endpoint the most
accurate, but has also the highest variance. As can be seen in Table 3, every 95% CI includes
the true endpoint value 4, hence it can not be rejected that the estimated endpoints are similar
to the true endpoint. This shows that the different estimators estimate the endpoint accurate.
As mentioned before, in addition, a box plot of the estimated endpoints is shown in Figure 3.

Despite that the M and PWM estimator slightly underestimate the endpoints, the box plot
shows that the estimators perform well and are fairly similar to each other; the medians are close
to the true endpoint and variations are low. This concludes that the estimators are accurate
as well as consistent estimators for the EVI and endpoints, when considering data without
measurement errors.
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Figure 3: Box plots of estimated endpoints

Note: Box plots of estimated endpoints xF in optimal k, using the M,
PWM and UB estimator. Data generated from the Reversed Burr Distri-
bution without measurement errors, using 100 samples with sample size
n = 5000.

Next, the accuracy and consistency of the G estimator is tested on the data with measure-
ment errors. Figure 4 shows the estimated endpoints xF of the G estimator versus k. The
standard deviation and RMSE are also plotted.

Figure 4: Endpoint estimation for Reversed Burr Distribution

Note: Estimated endpoints xF , standard deviation and RMSE for different values of k using the G estimator.
Data generated from the Reversed Burr Distribution with normally distributed measurement errors, using 100
samples with sample size n = 5000.

It becomes visible that the estimated endpoints create a bias which underestimate the true
endpoint, denoted as the red line. Again, the k is chosen that minimizes the RMSE. The
optimal k for data with σ = 2 and 3 is located at 45 and 57 respectively. Compared to other
estimators, this is relatively early in the plot. Afterwards, the RMSE increases rapidly to a
constant level of 1.5 and 1.8 for σ = 2 and 3 respectively. To still show the point where the
RMSE is minimized, both plots are created with k up to 200. The estimated xF and its 95%
CI, belonging to the optimal k, are constructed to evaluate the accuracy. Table 4 presents the
95% CI for the different σ levels.

10



Table 4: 95% CI of x̂F for corresponding k

σ = 2 σ = 3

k x̂F 95% CI k x̂F 95% CI

x̂G 45 3.745 [3.477, 4.017] 57 3.832 [3.512, 4.152]

The true endpoint xF = 4 is included in the 95% CI, for both σ = 2 and 3. Hence it can not
be rejected that the estimated endpoints are similar to the true endpoint. This confirms that
the G estimator is an accurate estimator for the endpoint when the data are contaminated by
normally distributed measurement errors. The performances of the PWM, UB and G estimator
in case of measurement errors are compared using a box plot, which is shown in Figure 5. The
chosen k for the PWM and UB estimator is also based on the minimization of the RMSE.

Figure 5: Box plots of estimated endpoints

Note: Box plots of estimated endpoints xF in optimal k, using the M, PWM and UB
estimator. Data generated from the Reversed Burr Distribution with normally distributed
measurement errors, using 100 samples with sample size n = 5000.

The PWM and UB estimator largely overestimate the true endpoint xF = 4. They become
even more inaccurate when the σ increases from 2 to 3. In contrast, the G estimator is accurate
for both levels of σ. Moreover, the median is close to the true endpoint and the dispersions
remain low. Hence, it can be concluded that the G estimator is accurate and consistent in
estimating endpoints with data being contaminated by measurement errors.

With the accuracy and consistency of the different estimators been shown, the estimation pro-
cess on the sports dataset can be performed in parts. Firstly, the assumptions that the EVI
exists must be tested, i.e. first order condition (3) must hold for an arbitrary γ ∈ R. Einmahl
and Magnus (2008) showed that the EVI exists for all events except the men’s and women’s
pole vault. Therefore, these two events will be omitted from further analysis, which leaves a 13
x 2 dataset. It is true that this paper uses new data, which potentially causes different results.
However, to make the comparison and for convenience, this paper will use the aforementioned
results concerning existence of the EVI. Nevertheless, the assumption that F ∈ MDA(Gγ) for
γ < 0 holds for each sport event, ensuring finite right endpoints, will be tested using the 95%
CI of the different estimators for γ̂. Because γ̂ depends on k, a plot of (k, γ̂) will be made,
with k starting from 1 to where k/n < 20%. Determining the first coinciding stable region of
the different estimators, and taking averages over the region and estimators, will result in the
estimate for γ.
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Secondly, for events that have γ̂ < 0, ensuring finite endpoints, the ultimate world records
xF will be estimated using the different estimators for (γ̂, â(n/k)), where k is determined from
the plot of (k, γ̂). In addition, the γ̂ found in the previous step will be used as a fixed EVI across
k, such that the endpoint xfixed only depends on k through Xn−k,n and M (1), which produces
a much more stable plot of xF , as shown in Einmahl and Magnus (2008). Subsequently, the
quality of a current world record e−Q will be determined using the previous procedure, likewise
with the fixed estimator Qfixed included.

Lastly, as extension, the possible presence of measurement errors in records in the long jump
discipline will be investigated. This will be done by making the distinction between an outdoor
and indoor long jump data. First the hypothesis that γ ≥ 0 will be tested for the indoor and
outdoor data. If the tests result in different conclusions, contamination of measurement errors
could be present in the outdoor data and consequently the endpoint. Therefore, for outdoor
long jump, the endpoints will be estimated using the G estimator, as it accounts for possible
measurement errors. Notice, the G estimator requires a predetermined sample size n. As n
should reflect the total number of top athletes in an event, the data could possibly not represent
all those athletes, i.e. n of the data could be lower than the actual n. Therefore an arbitrary
value n = 3000 is taken to address this caveat. After estimation, the estimated endpoint for
outdoor, using G estimator, and that of indoor, using the PWM and UB estimator, will be
compared. Notice, for indoor long jump the M estimator will not be used. If the endpoints
mutually agree with each other, the G estimator for outdoor long jump data can be verified. In
case of different values, the estimated endpoints are compared with the sport records, to find a
possible cause for the measurement errors.

5 Results

5.1 Extreme Value Index

As mentioned before, a finite endpoint can only be ensured if the EVI is negative. Testing if
γ ≥ 0 is performed for each of the 26 sport events, using the same procedure. As example,
the men’s 100m is used to show this testing-procedure graphically. Figure 6 shows the plots
of the estimated γ with their 95% CI versus k, using the M, PWM, and UB estimator. After
inspection, the ρ̂ of the UB estimator is set to −8.80.

As can be seen from the graphs, the three estimators behave quite similar. For k > 100, The
M and PWM estimator show some dispersion, whereas the UB estimator is more stable. To
make conclusive statements regarding γ ≥ 0, the significance level of the estimated γ is needed.
For this the estimated γ has to be determined using stable regions. The first stable region of
the M estimator can be located between k = 140 and 475. For the PWM estimator, this can
be found from k = 120 to 475. Lastly, the first stable region for the UB estimator runs from
k = 175 to 575, for which it holds that

kγ
kρ
→ 0 when k →∞. Notice that the UB estimator is

stable for a wider span of k, as proposed. Consequently, the region where all three estimators
are stable is from k = 175 to 475. Taking averages over the different k and estimators, results
in γ̂ = −0.29.
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Figure 6: Estimated EVI

Note: Estimated EVI with corresponding 95% confidence intervals for different values of k, using the M, PWM
and UB estimator.

Next, the 95% CI of the estimated γ is assessed and tested if γ ≥ 0. As can be seen in Figure
6, for the k included in the stable region, all estimates’ 95% CI do not contain 0 or a positive
value. Statistically, the average 95% CI for the average estimate γ̂ = −0.29 is [−0.45,−0.15],
which also does not include positive values. Based on the 95% CI, one can reject that γ ≥ 0 for
men’s 100m, and therefore the finite endpoint is ensured in this particular event.
This procedure is performed for every event, both for men and women. Table 5 shows the
average estimated EVI of the estimators. To compare, the γ̂ from Einmahl and Magnus (2008)
are included.

Table 5: EVI γ̂

Men Women

Event γ̂ Einmahl’s γ̂ γ̂ Einmahl’s γ̂

Running
100 m -0.29 -0.11 -0.43 -0.14
110/100-m hurdles -0.27 -0.16 -0.39 -0.25
200 m -0.12 -0.11 -0.07* -0.18
400 m -0.06* -0.07* -0.25 -0.15
800 m -0.33 -0.20 -0.27 -0.26
1500 m -0.26 -0.20 -0.15 -0.29
10 km -0.16 -0.04* -0.11 -0.08*
Marathon -0.17 -0.27 -0.27 -0.11

Throwing
Shot put -0.28 -0.18 -0.49 -0.30
Javelin throw -0.20 -0.15 -0.18 -0.30
Discus throw -0.24 -0.23 -0.22 -0.16

Jumping
High jump 0.03* -0.20 -0.34 -0.22
Long jump -0.03* 0.06* -0.11* -0.07*

Results indicate that some events have a positive EVI value, e.g. high jump for men,
whereas other events have indeed a negative EVI value which can not statistically be rejected
that γ ≥ 0, e.g. 400m for men, 200m for women and the outdoor long jump for men and
women. These events, and those rendered insignificant by Einmahl, are marked with a * in
Table 5. The differences between this paper’s and Einmahl’s γ̂ are relatively big. Specifically,
for 20 of the 26 estimated EVIs, Einmahl’s estimate is much higher. A possible explanation is
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the way of estimating the EVI. Einmahl and Magnus (2008) use the M and ML estimator to
determine the γ̂, whereas this paper considers the M, PWM and UB estimator. Moreover, in
both papers the EVI is based on determining the first stable region, which is a semi-subjective
view. Therefore different k values could be used for the estimates which can cause the variations
in estimates. A more obvious answer is the fact that the datasets are different, hence different
results. Nevertheless, the different values of γ̂ will have its effect on the estimated endpoint,
which will be discussed next.

5.2 Ultimate World Records

With the estimated EVI, the first research question, the ultimate world records, can be ad-
dressed. For events that have an insignificant negative EVI, a finite endpoint can not be
guaranteed. Therefore only for the events that have a significant negative γ, the endpoint is
estimated. As example, Figure 7 shows the estimated endpoints versus k for the men’s 100m.

Figure 7: Estimated endpoints

Note: Estimated endpoints xF for different values of k using the M, PWM,
UB and fixed estimator, resulting in endpoint estimator x̂F , indicated as
the red line.

As can be seen in Figure 7, the xfixed (dotted line) gives indeed a more stable plot of
the endpoints than the other estimators. Similar to the EVI plot, the first coinciding stable
region runs from k = 175 to 475. Taking averages over the region and different estimators,
including xfixed, results in xF = 37.70, which is represented as the red line. This procedure
is repeated for the remaining 22 of 26 events which have a significant γ < 0. Table 6 shows
the estimated ultimate records and its 95% CI, for each discipline. For the running events the
speeds are transformed back to times. The choice for the 95% CI rather than the standard
errors is because it is unreasonable to convert the errors from speeds to time, as ought with
the running disciplines. For comparison, the current world records, as well as the estimated
ultimate records of Einmahl and Magnus (2008) are presented.
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Table 6: Ultimate world records x̂F

Men Women

Event Ultimate 95% CI Current Einmahl’s Ultimate 95% CI Current Einmahl’s
record record record record record record

Running
100m 9.55 [9.50, 9.58] 9.58 9.29 10.29 [10.20, 10.38] 10.49 10.11
110/100m h 12.58 [12.36, 12.79] 12.80 12.38 12.09 [11.87, 12.28] 12.20 11.98
200m 18.68 [18.38, 19.08] 19.19 18.63 — — 21.34 20.75
400m — — 43.03 — 47.01 [45.81, 48.00] 47.60 45.79
800m 1:40.29 [1:39.28, 1:40.91 1:39:65 1:52.37 [1:50.77, 1:53.28 1:52.28

1:41.28] 1:53.92]
1500m 3:24.16 [3:21.56, 3:26.00 3:22.63 3:33.80 [3:33.26, 3:50.07 3:48.33

3:26.56] 3:34.43]
10km 25:20.16 [24:34.79, 26:17.53 — 26:49.84 [25:50.43, 29:17.45 —

26:03.03] 27:42.83]
Marathon 1:59:55 [1:57:00, 2:02:57 2:04:06 2:15:17 [2:12:57, 2:15:25 2:06:35

2:02:09] 2:17:38]
Throwing

Shot put 23.75 [22.78, 24.78] 23.12 24.80 22.69 [21.60, 23.84] 22.63 23.70
Javelin throw 100.97 [95.31,105.95] 98.48 106.50 79.11 [71.60, 87.52] 72.28 72.50
Discus throw 77.59 [71.22, 84.60] 74.08 77.00 80.17 [74.66, 85.26] 76.80 85.00

Jumping
High jump — — 2.45 2.50 2.11 [2.06, 2.15] 2.09 2.15
Long jump — — 8.95 — — — 7.52 —

The records of events that could not guarantee a finite endpoint, are left blank. Looking at
the results, differences between men and women become visible. The men’s marathon record
has enough time to improve (3 minutes), while for women it is already close to the boundary (8
seconds). With the 10km run this is the other way around; men can only improve the record by
57 seconds, but women can sharpen the current world record by almost 2.5 minutes. Big differ-
ences occur when comparing the ultimate records with those of Einmahl and Magnus (2008).
For 15 of the 19 comparable ultimate records, Einmahl’s endpoints are higher, i.e. greater dis-
tance and fewer time. Only for the men’s marathon, men’s discus throw, women’s 1500m and
women’s javelin throw, this paper estimated a larger frontier. This is most likely caused by the
fact that each of the 4 disciplines had their world record broken after April 30, 2005, the day
that the data collection of Einmahl and Magnus (2008) ended. Moreover, the world records are
sharpened after October 25, 2007, the data used by Einmahl and Magnus (2008) to establish
the current world records in their paper. Because the records are improved, i.e. the maximum
values of the dataset are higher, the estimators could consider higher endpoints. However, for 7
of the 15 events, where Einmahl’s endpoints are estimated higher, their world records were also
improved after April 2007. So recent set records can not causally be accountable for the contrast
between the ultimate records. More thorough explanation lays in the nature of the endpoint. In
Section 5.1 it became obvious that this paper’s EVI estimates are lower than those in Einmahl
and Magnus (2008). When the EVI is relatively low, the estimated underlaying distribution
of the endpoint is relatively steep near the right endpoint. Hence, there is not much space for
improvement of the record, resulting in ultimate records close to the current record. This is
also the reason why the relatively high EVI values of Einmahl and Magnus (2008) give such
high endpoints. This leaves the question why Einmahl and Magnus (2008) estimate the EVI
higher. An explanation can be found in the dataset differences. As can be seen in the data
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section, in each event the number of athletes has increased. Despite the sharpening of the world
records, most of the new athletes have a record that is, compared to the existing data, a rather
weak record. In other words, new records are mainly distributed in the bottom of the dataset
rather than uniformly spread. Consequently, the top records are more isolated and considered
to be more ’ultimate’ than those in Einmahl and Magnus (2008). Therefore the estimators
will estimate an endpoint that is closer to the current record, as the data suggest that the
world record is already a sort of ultimate. This does not imply that the estimated endpoints in
Einmahl and Magnus (2008) are wrong, but given new data, their ultimate records are a little
overestimated. The estimated endpoints of this paper can be considered more realistic to the
actual but unknown frontier.

5.3 Quality of Current Records

With the estimated (γ̂, â(n/k)) using the different estimators, it is possible to assess the second
research question, the quality of the current world records. Determining the Q depends, again,
on the upper order statistic k. So, as done with the EVI and endpoint estimation, the Q is
plotted versus k for the men’s 100m, which can be seen in Figure 8.

Figure 8: estimated Q

Note: Estimated Q versus k using the M, PWM, UB and fixed Q
estimator, resulting in Q̂, indicated as the red line.

As the first coinciding stable region of the EVI and endpoint estimation is the same, the
same region will be applied for the Q plot, i.e. k runs from k = 175 to 475. Taking averages
over the region and different estimators, results in Q = 0.02. Transforming this to the quality
yields e−Q = 0.98. As this quantity is ’uniformly’ distributed over [0,1], it can be concluded
that the current world record of men’s 100m is almost unbeatable.

For the other 25 events, the Q̂ is estimated using the k values of the coinciding stable region
of the EVI and endpoint estimation procedure, as performed in previous steps. The resulting
quality of the world records, with corresponding athlete, record and year, are ordered and
outlined in Table 7. For comparison, the estimated qualities of Einmahl and Magnus (2008) are
also shown, with a * if it concerns the same world record.

16



Table 7: Quality of world records with corresponding athlete, record and year

Athlete Event Record Year e−Q Einmahl’s e−Q

Paula Radcliffe Marathon (W) 2:15:25 2003 0.99 0.86*
Florence Griffith-Joyner 100m (W) 10.49 1988 0.99 0.86*
Javier Sotomayor High jump (M) 2.45 1993 0.98 0.86*
Usain Bolt 100m (M) 9.58 2009 0.98 0.47
Jan Zelezny Javelin throw (M) 98.48 1996 0.97 0.93*
David Rudisha 800m (M) 1:40.91 2012 0.96 0.74
Usain Bolt 200m (M) 19.19 2009 0.94 0.92
Marita Koch 400m (W) 47.60 1985 0.85 0.78*
Natalya Lisovskaya Shot put (W) 22.63 1987 0.84 0.50*
Gabriele Reinsch Discuss throw (W) 76.80 1988 0.80 0.55*
Jarmila Kratochvilova 800m (W) 1:53.28 1983 0.79 0.78*
Wayde van Niekerk 400m (M) 43.03 2016 0.72 0.67
Stefka Kostadinova High jump (W) 2.09 1987 0.72 0.64*
Barbora Spotakova Javelin throw (W) 72.28 2008 0.69 0.98
Hicham El Guerrouj 1500m (M) 3:26.00 1998 0.69 0.74*
Genzebe Dibaba 1500m (W) 3:50.07 2015 0.65 0.86
Jurgen Schult Discuss throw (M) 74.08 1986 0.59 0.74*
Randy Barnes Shot put (M) 23.12 1990 0.54 0.45*
Mike Powell Long jump (M) 8.95 1991 0.47 0.27*
Florence Griffith-Joyner 200m (W) 21.34 1988 0.45 0.74*
Almaz Ayana 10km (W) 29:17.45 2016 0.41 0.50
Kendra Harrison 100m h (W) 12.20 2016 0.27 0.33
Dennis Kimetto Marathon (M) 2:02:57 2014 0.25 0.95
Kenenisa Bekele 10km (M) 26:17.53 2005 0.24 0.33*
Galina Chistyakova Long jump (W) 7.52 1998 0.20 0.30*
Aries Merritt 110m h (M) 12.80 2012 0.16 0.20

When combining Table 6 and Table 7, some interesting differences become evident. It can be
possible that a current world record is of high quality but still has much room for improvement
(men’s 200m). In contrast, a high quality record can also lay very close to its endpoint (women’s
marathon). This can also be concluded for records of low quality, where very little progress is
still possible (men’s 110m hurdles) and where there is more to improve (men’s marathon). The
main cause of these differences are the estimated EVI. For events that have high (low) quality
and much (little) room to improve, the γ̂ is relatively high (low), and vice versa (γ̂ = −0.12 for
men’s 200m against γ̂ = −0.27 for men’s hurdles and γ̂ = −0.17 for women’s marathon against
γ̂ = −0.27 for men’s marathon).
In 16 of the 26 events the world records has not been improved after October 2007. Except
four events, all those qualities have been improved. This may seem logical, as unsharpened
records generate higher qualities over time. However, it does not apply to all 16 events. An
explanation for this can be boiled down to the data, which is similar to the one for the differences
in endpoints, see Section 5.2. The world records that have been sharpened, also show some
variation in the qualities. Some events had a high quality but after improvement have low
quality (men’s marathon, from 0.95 to 0.25), whereas other qualities increase from low to high
(men’s 100m, from 0.47 to 0.98). The first can be attributed to the fact that the old world record
was outlying to the other records, which generated an ultimate record close to the world record.
However, these records have been improved multiple times, which led to a fatter tail region of
the estimated distribution. Consequently, due to the corresponding low EVI, the quality of the
new world record dropped. Reversing this explanation gives the cause for the shift in quality of
the men’s 100m.
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5.4 Extension

As discussed in Section 5.1 and seen in Figure 9, the first coinciding stable region of the outdoor
long jump for men renders the EVI not significantly different from 0 or a positive value, i.e. it
can not be rejected that γ ≥ 0. This conclusion also applies to the women’s outdoor long jump
data. A possible explanation is that the outdoor data are contaminated by measurement errors,
which affects the estimated endpoint. To further investigate this assumption, first, the EVI of
the indoor long jump for men and women is estimated using the PWM and UB estimator. As
example, the estimated EVI for men’s indoor long jump is plotted against k in Figure 9.

Figure 9: Estimated EVI

Note: Estimated EVI γ of indoor and outdoor long jump for men, with corresponding 95% confidence intervals
for different values of k, using the PWM and UB estimator.

The first stable region of the PWM estimator can be found from k = 120 to 320. For the
UB estimator, the region runs from k = 180 to 350. Hence, the first coinciding stable region is
from k = 180 to 320. Taking averages over the region and estimators results in γ̂. The same
procedure is performed for the women’s indoor long jump. Table 8 reports the γ̂ with its 95%
CI for men and women. Graphically, the 95% CI of the γ̂ over the stable region does not contain
0 or a positive value, for both estimators. Likewise, the statistical 95% does not include 0 or
positive values. Therefore, γ ≥ 0 is rejected for both men and women, hence the finite endpoint
exists. The different conclusions regarding γ ≥ 0 between outdoor and indoor data, support
the assumption that the outdoor long jump data are contaminated by measurement errors.

Based on these findings, the G estimator is used to estimate the endpoints for the outdoor
long jump data, while the PWM and UB estimator are used for the indoor long jump data.
Figure 10 shows the estimated endpoints versus k for men’s indoor and outdoor long jump. For
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convenience, the estimated xfixed is also plotted.

Figure 10: Estimated endpoints

Note: Estimated endpoints xF of indoor long jump data using the PWM and UB estimator, and estimated
endpoints xF of outdoor long jump data using the G estimator with corresponding 95% confidence intervals.

For men’s indoor long jump, the coinciding stable region can be found from k = 180 to 320,
which is identical to the region of the EVI. In the simulation results in Section 4, it became
evident that the G estimator performs well when k is small. Hence, the k of the G estimator
is plotted from 1 to 50. The first stable region can be found from k = 5 to 10. To follow the
procedure of Leng et al. (2017), instead of taking averages over the region, a single k value
is chosen to determine the estimated endpoint. Therefore, the k with smallest RMSE in the
region is chosen, which yields k = 8. The resulting endpoints for the indoor and outdoor long
jump for both men and women are reported in Table 8.

Table 8: estimated EVI and endpoints: Long jump data

Men Women

n k Point 95% CI n k Point 95% CI

Outdoor
γ̂ - 100-275 -0.03 [-0.19, 0.13] - 50-150 -0.11 [-0.36, 0.13]
x̂G 804 8 8.39 [7.95, 8.82] 836 6 7.27 [7.05, 7.49]
x̂G 3000 8 8.25 [7.71, 8.79] 3000 6 7.21 [6.94, 7.49]

Indoor
γ̂ - 180-320 -0.36 [-0.63, -0.23] - 150-200 -0.34 [-0.56, -0.12]
x̂F - 180-320 8.78 [8.37, 9.19] - 150-200 7.44 [7.05, 7.84]

It is observed that the value of x̂G of the outdoor data drops a little when the sample size
n increases. Moreover, the 95% CI of x̂G becomes wider for larger n. However, this is a minor
difference, hence x̂G is stated to be insensitive to the sample size n. It becomes also evident
that the estimated endpoints using G estimator for outdoor long jump are all lower than those
from applying the PWM and UB estimator on indoor long jump data. Nevertheless, the 95%
CI of the outdoor endpoint x̂G includes the indoor endpoint x̂F and vice versa, hence the the
estimated endpoints still coincide in a certain extent with each other.
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The main interest of this extension is if the outdoor long jump data are contaminated by
measurement errors. The aforementioned results indicated indeed that this can be the case.
To make conclusive remarks regarding this assumption, the results of Table 8 are compared to
the actual observations in the data. The PWM and UB estimator based on the indoor long
jump data suggest that the endpoints for men’s and women’s long jump are 8.78 and 7.44 re-
spectively. However, when assessing the outdoor long jump data, multiple observations exceed
those estimated endpoints. Specifically, for men’s long jump there are four better records than
8.78, while for women’s long jump five records are higher than 7.44. The only explanation for
the difference must be due to a positive measurement error value, ergo the outdoor long jump
data are contaminated by measurement errors. In the context of the long jump, one can think
of the wind that assisted the records positively. As the dataset provides the wind speed for
each record, this claim can be checked. Assessing the data, in eight of the nine aforementioned
occasions the wind speeds were indeed positive. Therefore, the data support the claim that the
wind can be a possible factor that contributes to measurement errors in the outdoor long jump
data.

6 Conclusion

This paper’s aim is to answer two questions: (1) What is the ultimate world record in a specific
athletic event? and (2) How good is a current athletic world record? In total 28 sport events
in athletics are investigated, 14 for both men and women. To get a representative impression
of the records, only the personal bests of the top athletes are considered in the dataset. An
ultimate world record can be seen as the endpoint of an underlaying distribution based on
the data. Therefore, Extreme Value Theory is used for this framework. After checking if
the Extreme Value Index exists and is negative, which ensures finite endpoints, several semi-
parametric estimators are implemented to estimate the existing endpoints. Using simulation
on fictional data with and without normally distributed errors, the accuracy and consistency of
the different estimators are shown. Subsequently, the ultimate records are estimated, as shown
in Table 6. Some ultimate records are close to the current world record (men’s 100m), while
other events have enough room for improvement (men’s marathon). Concerning the quality of
current records, shown in Table 7, some events have records that are of high quality (women’s
marathon), whereas other records are likely to be improved in near future (women’s long jump).
Note, results indicate that records close to the current record do not always imply that the
record is of high quality (men’s 200m), or vice versa (men’s 110m hurdles). The events that
did not satisfy a negative EVI, could have data that are contaminated by measurement errors.
One event, the outdoor long jump for men and women, is chosen to further investigate this
assumption. Using different estimators on outdoor and indoor data, results show that outdoor
long jump data are indeed contaminated by measurement errors. Moreover, outdoor long jump
data support the claim that the wind potentially contributes to the measurement errors in this
particular event.

As this paper replicates the study of Einmahl and Magnus (2008), comparisons concerning
the ultimate records and quality of current world records are made. The majority of the ultimate
records of this paper lay closer to current records than those of Einmahl and Magnus (2008).
One has to be cautious when interpreting these differences, as the estimates are determined
semi-subjectively. Therefore, we suggest further investigation in how to determine the optimal
upper statistic k. Nevertheless, this paper’s results should be considered for further research,
as the estimates are a better approximation of the true ultimate records and qualities due to
the recently updated dataset and implementation of a more accurate and consistent estimator.
Furthermore, the proposed methods can not only be used to assess the quality of records in
multi-event sports, such as decathlon and heptathlon, but can also be applied in other scientific
fields of interest, such as human life spawn and still water level.
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