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Abstract 

In this paper, I investigate the forecasting performance of stock price volatility at different 

horizons (1, 2, 3, 4, 5, 10, 20, 40 and 60 days). To find which model amongst GARCH, 

HAR-RV and HEAVY models performs the best with forecast horizon changing, I use 

returns and realized variances of S&P 500 and make forecasts using MATLAB. Loss 

functions (MSE and QLIKE) and SPA test are both implemented to measure the 

performance of different models. The results turns out that under different measurements, 

HEAVY model is consistently the best when only forecasting a few days ahead. In the long 

run, GARCH and HEAVY model are equally matched under the evaluation of MSE but 

GARCH has unbeatable advantage when using QLIKE. Moreover, I make logarithm 

transformation of RV and compare HAR-log(RV) model with the previous three models. 

The empirical result shows that when using MSE, this new model has better predicting 

ability than GARCH at long predicting horizon. However, GARCH is still the best when 

evaluating by QLIKE. Overall, my suggestion is choosing HEAVY model when forecast 

the near future and HAR-log(RV) or GARCH model for longer horizon.  
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Chapter 1. Introduction 

Calculating volatility is essential in both portfolio construction and in risk management. In 

1952, Markowitz built the investment portfolio theory in which volatility was assumed to 

be constant over time and measured by historical standard deviation. It is widely used since 

then such as in CAPM and VAR model. However in recent years, lots of empirical 

researches find that standard deviation is a time-dependent random variable. Based on this 

assumption, a wide range of models arise to describe this feature and to predict volatility.  

Due to the different modelling approaches of the models, some are able to predict volatility 

in the long run and some in the short run. An issue arises when forecasters with different 

information sets and predicting goals are going to choose among the models. For example, 

the heterogeneity in strategy of low frequency traders and high frequency traders reflects 

concentration in different trading horizons. So my main question focuses on: what is the 

best volatility predicting model with the time horizon changing? I will investigate GARCH, 

HAR-RV and a combined forecast model (HEAVY) first. After that, I will go further into 

HAR-log(RV) model to see if it can improve the forecast efficiency at all time horizons. 

To figure out these problems, I will focus on stock price volatility and do empirical research 

using data of S&P 500. 

There is still lack of research on model comparison from multi-step-ahead forecasts 

performance, and some study results are contradictory. Andersen, Bollerslev, Diebold and 

Labys (2003) find that complicated high-frequency models are not superior to a simple 

long-memory Gaussian vector autoregression that uses logarithmic daily realized 

volatilities as input. In 2005, Koopman, Jungbacker and Hol conclude that compared to 

models using daily returns, models implementing realized variances produce much more 

accurate forecast results. Hansen and Lunde (2005) evaluate the one-step-ahead forecast 

performance of 330 different ARCH-type models and reach the conclusion that 

GARCH(1,1) is superior to other models in the investigation of exchange rate data, while 

it is inferior when predicting IBM returns. Shephard and Sheppard (2010) introduce 

HEAVY model and find that it dominates GARCH model but the advantage becomes 

weaker as horizon increases. Noureldin, Shephard and Sheppard (2012) also conclude that 
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HEAVY model outperforms GARCH model when making out-of-sample forecasts, 

especially at short horizons. 

While there is no coherent conclusion about the predicting accuracy, there are a variety of 

researches on volatility forecasting models. One main category of the forecasting models 

is called historical volatility models which are constructed based on historical return data. 

The representative models - such as autoregressive conditional heteroskedasticity (ARCH) 

model, generalized autoregressive conditional heteroskedasticity  (GARCH) model and 

stochastic volatility (SV) model - usually use long time scale of historical data: daily, 

weekly and even monthly in general. In contrast, another type of model called realized 

volatility (RV) model employs intraday high frequency data to measure volatility. 

In 1982, Engle provides the ARCH model which is very easy to use but cannot describe 

the long memory and leverage effect of financial asset return rate series.  In order to solve 

these problems, Bollerslev (1986) advises GARCH model that can better portray the 

clustering characteristic of volatility and remove high kurtosis effect. However, it still 

cannot explain leverage effect. Later, some researchers provide several asymmetric 

GARCH models to overcome the weakness in GARCH model. In 1991, Nelson suggests 

exponential GARCH (EGARCH) model that allows for asymmetric effects between 

positive and negative asset returns. Another volatility model widely used to solve leverage 

effect problem is threshold ARCH (TARCH) model, or so-called GJR model (see e.g., 

Glosten, Jagannathan and Runkle, 1993).  However, Hansen and Lunde (2005) point out 

that complicated GARCH type models is not superior to GARCH(1,1) model at out-of-

sample forecast. 

Recent years, instead of using long time scale historical data, intraday trading data provide 

new methods for researching financial volatility. Andersen and Bollerslev (1998) propose 

that using conventional squared daily return as daily volatility has large measurement error 

and noise, while using intraday high-frequency returns to calculated realized volatility (RV 

model) can solve this problem. They also find that as the frequency of the data increases, 

the influence of measurement error to the underlying volatility process decreases. However, 

because of the market microstructure effects in practice, the highest data frequency may 

not be the best choice. 
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Based on heterogeneous market hypothesis, Corsi (2009) propose Heterogeneous 

autoregressive model of Realized Volatility (HAR-RV model). He regards volatility as a 

combined effect from high, medium and low frequency traders and describe it through 

three different time scales: daily, weekly and monthly. However, researchers find that 

though in approximately continuous time, intraday high frequency data may have big 

fluctuations, which is called jump. Lee and Mykland (2012) point out that jump has 

essential effect on describing and forecasting volatility. Andersen, Bollerslev and Diebold 

(2007) put up HAR-RV-J and HAR-RV-CJ models which incorporate jump as explanatory 

variable.  

More recent papers have put forward to use forecast combination models in order to get 

better predictions than individual models. Shephard and Sheppard (2010) propose HEAVY 

model which uses high frequency data as predictors in GARCH-type models and do 

empirical research using stock index and exchange index. They reach the conclusion that 

HEAVY model is easier to estimate and is more robust than GARCH model when there is 

structural breaks in volatility. The forecasts are more accurate especially in the first several 

days.  

In this paper, I select GARCH(1,1) from GARCH-type models for the reason that it is the 

most simple but one of the best predicting model according to Hansen and Lunde (2005). 

As realized volatility provides more accurate proxies for daily variance using intraday 

return data, one of the RV models I would like to choose is HAR-RV (Heterogeneous 

Autoregressions) model which has clear economic interpretation. As a combination of 

GARCH and realized variance, HEAVY model is applied to figure out whether it can 

improve the performance of the individual models. Last but not least, based on the 

comparison result of these three models, I find that HAR-RV tends to be the relatively 

worst model with large predicting errors in the long run, which I will discuss in Chapter 5. 

Therefore, I decide to improve HAR-RV by using logarithm of RV and put the HAR-

log(RV) model into the forecast assessment. 

After the model selection, the performance measurements need to be chosen. The 

evaluating methods have been improving over time. Hansen and Lunde (2005)  advise to 

use six loss functions such as mean squared error (MSE), mean absolute error (MAE), 
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heteroskedastic adjusted MSE and MAE (HMSE and HMAE), QLIKE and R2log. 

However, many papers for example, Lamoureux and Lastrapes (1993), Hamilton and 

Susmel (1994) and Bollerslev and Ghysels (1994) use some or all of the loss functions but 

find that the best-performing volatility forecast model is not the same when the choice of 

loss function changes. Patton (2011) finds that only two of the loss functions (MSE and 

QLIKE) are robust to noise when used to compare matching volatility prediction models, 

which means that using a proxy for volatility does not influence the performance ranking 

as using the true conditional variance. For this reason, I use MSE and QLIKE as Patton 

advises instead of employ all of them. White (2000) suggests a test called reality check for 

data snooping (RC), but it is sensitive to the incorporation of poor and irrelevant predictions. 

Hansen (2005) fixes this problem by studentizing the test statistic and by putting up a null 

distribution depending on sample. They suggest a bootstrap procedure for SPA test which 

I will apply to evaluate my models in this paper. After that, Hansen, Lunde and Nason 

(2011) provide the model confidence set that constructs a set of models including the best 

model within a certain confidence interval. 

My results shows that there is no dominating model at all horizons. The conclusion of SPA 

test for MSE and QLIKE is always consistent with using only loss functions. Despite of 

the fact that different loss functions may lead to diverse results, HEAVY model remains to 

be the best amongst all models when forecasting one- and two-day-ahead volatility, which 

conforms to the result of Shephard and Sheppard (2010). When losses are measured by 

MSE, GARCH and HEAVY by turns has the lowest errors when forecasting three days 

ahead and forward. This outcome changes when using QLIKE. From three to five days, 

HAR-RV beats the other models while GARCH is the most accurate model after five days. 

After putting HAR-log(RV) into the comparison, the loss of this optimized model  is the 

lowest when forecast horizon is larger than three. However, this new adding model cannot 

distinct itself from the original three models under the measurement of QLIKE and 

therefore, the best models do not have any differences from before. 

This article contributes to the existing works in three different ways. First, although many 

researches have compared different volatility prediction models, there is still lack of 

findings on horizon effects of those models. Second, as combined forecast is more 
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appealing in real world, putting joint forecasting models into analysis researches more 

innovative models that could be widely put into use in the future. Third, the use of latest 

data enables us to see the differences of model predicting ability between past and now. 

The paper is organized as follows. I begin with an introduction of the topic including the 

motivation of investigating it, literature review on the models and research outcomes on 

their forecasting ability. In Chapter 2, I will describe the mathematical calculation of the 

volatility and derive the formulations of h-step-ahead forecasts of models in details. 

Chapter 3 defines two widely used performance evaluating methods. Data description and 

modelling methods are introduced in Chapter 4. After that, the model correction and 

calculation results of the empirical research which shows the best model over different 

horizons are provided in Chapter 5.  I will conclude in Chapter 6 and finally, discuss the 

possible future improvements in Chapter 7. 

 

Chapter 2. Theoretical Background 

In this chapter, I will introduce how to calculate variance using daily asset returns and why 

in practice, we usually use the sum of squared daily returns as daily variance. Then, I will 

step into the detailed volatility models that are used in my empirical research and show the 

h-step-ahead forecast process, which give the theoretical background of analysis in the 

following chapters. 

2.1 Concepts of variance and calculation 

Consider the discrete series ሼ݌௧ሽ௧ୀଵ
் , where ݌௧ denotes the logarithm of asset price at day t. 

Express the return rate as the compounded daily return, so 

௧ݎ ൌ ௧݌ െ  ௧ିଵ.                                                (2.1.1)݌

Then the daily variance is usually calculated as 

σଶ ൌ ଵ

்
∑ ሺݎ௧ െ ሻଶ்ݎ̅
௧ୀଵ ,                                        (2.1.2) 
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Where ̅ݎ is the average of daily returns. When the data frequency is low, the commonly 

used way is to calculate the variance as above. But if high frequency data is accessible, 

realized measure of variance is better to incorporate all the useful information.  

Let the return process be defined as standard Ito process, which is  

d݌௧ ൌ μ௧݀ݐ ൅ ௧݀ߪ ௧ܹ,                                      (2.1.3) 

where μ௧  represents for the drift, ߪ௧  is the spot volatility and ௧ܹ  is a standard Wiener 

process. μ௧݀ݐ stands for the stable part of return rate and ߪ௧݀ ௧ܹ is the uncertain part. When 

μ௧ and ߪ௧ are jointly independent of ௧ܹ,  

,௧ߤ|௧ݎ ܫ ௧ܸ~ܰሺߤ௧, ܫ ௧ܸሻ,                                      (2.1.4) 

where ߤ௧ ൌ ׬ ݏሻ݀ݏሺߤ
௧
௧ିଵ  and ܫ ௧ܸ ≡ ׬ ݏሻ݀ݏଶሺߪ

௧
௧ିଵ ܫ . ௧ܸ is referred to as integrated variance 

and is used to measure accurate realized variance. However, the accurate ߪଶሺݏሻ is hard to 

get.  

Given that t െ 1 ൌ τ଴ ൏ τଵ ൏ ⋯ ൏ τே೟ ൌ  the intraday returns are written as ,ݐ

௧,௜ݎ ൌ த೔݌ െ ,த೔షభ݌ for	i ൌ 1,… , ௧ܰ                            (2.1.5) 

To approximate the volatility, I write the quadratic variance QV of a stochastic process 

over the interval [t-1, t] as  

ܳ ௧ܸ ≡ plim
ே೟→ஶ

∑ ሺ݌த೔ െ த೔షభሻ݌
ଶே೟

௜ୀଵ .                            (2.1.6) 

When ܰ → ∞, max
ଵஸ௜ஸே೟

|τ௜ െ τ௜ିଵ| → 0. 

The empirical part of ܳ ௧ܸ  is regarded as realized variance which is the sum of the  

instantaneous squared  returns  in  a  continuous  time  of  one  day. Therefore, RV is 

defined as  

ܴ ௧ܸ ൌ ∑ ௧,௜ଶݎ
ே೟
௜ୀଵ .                                          (2.1.7) 
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2.2 GARCH(1,1) model 

Engle (1982) and Bollerslev (1986) put forward the generalized ARCH (GARCH) model. 

Given a log return series ݎ௧ , let innovation at time t be ݖ௧ ൌ ௧ݎ െ ௧ݖ ௧. Thenߤ  follows a 

GARCH(m,s) model if  

௧ݖ ൌ ,௧߳௧ߪ ௧ߪ
ଶ ൌ ߱ ൅ ∑ ௧ି௜ݖ௜ߙ

ଶ௠
௜ୀଵ ൅ ∑ ௧ି௝ߪ௝ߚ

ଶ௦
௝ୀଵ ,                 (2.2.1) 

where ߳௧ is often assumed to be a standard normal or standardized Student-t distribution or 

generalized error distribution with mean 0 and variance 1. The constant ߱ > 0 and the 

constraints for parameters are ߙ௜≥ 0, ߚ௝≥ 0, and ∑ ሺߙ௜ ൅ ௜ሻߚ
୫ୟ୶	ሺ௠,௦ሻ
௜ୀଵ ൏ 1. When i > m or j > 

s, ߙ௜= 0 or ߚ௝ = 0 respectively, which turns (2.2.1) to simpler forms. The latter constraint 

on ߙ௜+ ߚ௝ implies that the unconditional variance of ݖ௧ is not infinite, while the conditional 

variance ߪ௧
ଶ changes over time.  

When m=1, s=1, this model turns into GARCH(1,1) model: 

௧ଶߪ ൌ ߱ ൅ ௧ଶݖߙ ൅ ,௧ଶߪߚ ߙ	݄ݐ݅ݓ ൒ 	0, ߚ ൑ 1, ߙ ൅ ߚ ൏ 1.	              (2.2.2) 

To make h-step-ahead forecast easier, I start from h=1: 

௧ାଵߪ
ଶ ൌ ߱ ൅ ௧ݖߙ

ଶ ൅ ௧ߪߚ
ଶ,                                           (2.2.3) 

where ݖ௧ଶ and ߪ௧ଶ are known at time t. So  

௧ߪ
ଶሺ1ሻ ൌ ߱ ൅ ௧ݖߙ

ଶ ൅ ௧ߪߚ
ଶ.                                          (2.2.4) 

For multiple forward prediction, use the function ݖ௧ଶ ൌ ௧ଶ߳௧ଶߪ  and plug it into equation 

(2.2.2). We get 

௧ߪ
ଶ ൌ ߱ ൅ ሺߙ ൅ ௧ߪሻߚ

ଶ ൅ ௧ݖߙ
ଶሺ߳௧

ଶ െ 1ሻ.                           (2.2.5) 

When h=2, the equation above becomes  

௧ାଶߪ
ଶ ൌ ߱ ൅ ሺߙ ൅ ௧ାଵߪሻߚ

ଶ ൅ ௧ାଵݖߙ
ଶ ሺ߳௧ାଵ

ଶ െ 1ሻ.                  (2.2.6) 

Because Eሺ߳௧ାଵ
ଶ െ ௧ሻܨ|1 ൌ 0, the 2-step-ahead volatility forecast at forecast origin t is 

computed by 

௧ߪ
ଶሺ2ሻ ൌ ߱ ൅ ሺߙ ൅ ௧ߪሻߚ

ଶሺ1ሻ.                                   (2.2.7) 



11 
 

Therefore, we can derive the general formula of h-step-ahead forecast, which is  

௧ଶሺ݄ሻߪ ൌ ߱ ൅ ሺߙ ൅ ௧ଶሺ݄ߪሻߚ െ 1ሻ, ݄ ൐ 1.                        (2.2.8) 

    

2.3 HAR-RV model 

To mimic the actions of various types of market participators, Corsi (2004) suggests the 

Heterogeneous Autoregressive model for Realized Volatility (HAR-RV), which considers 

volatilities over different time horizons: daily, weekly and monthly. The model is 

represented as the following equation. At day t, the one-step-ahead daily forecast is 

determined by RVs of today, past week (5 days) and past month (22 days). 

ܴ ௧ܸାଵ
ሺௗሻ ൌ ܿ ൅ ሺௗሻܴߚ ௧ܸ

ሺௗሻ ൅ ሺ௪ሻܴߚ ௧ܸ
ሺ௪ሻ ൅ ሺ௠ሻܴߚ ௧ܸ

ሺ௠ሻ ൅ ߱௧ାଵ            (2.3.1) 

The calculation of ܴ ௧ܸ
ሺ௪ሻ and ܴ ௧ܸ

ሺ௠ሻ is as following: 

ܴ ௧ܸ
ሺ௪ሻ ൌ

ଵ

ହ
ሺܴ ௧ܸିଵ

ሺௗሻ ൅ ܴ ௧ܸିଶ
ሺௗሻ ൅ ܴ ௧ܸିଷ

ሺௗሻ ൅ ܴ ௧ܸିସ
ሺௗሻ ൅ ܴ ௧ܸିହ

ሺௗሻሻ                (2.3.2) 

ܴ ௧ܸ
ሺ௠ሻ ൌ ଵ

ଶଶ
ሺܴ ௧ܸିଵ

ሺௗሻ ൅ ܴ ௧ܸିଶ
ሺௗሻ ൅ ⋯൅ ܴ ௧ܸିଶଶ

ሺௗሻ ሻ                         (2.3.3) 

It is simple to deduct the formula for h-step-ahead forecast from the above equations: 

ܴ ௧ܸା௛
ሺௗሻ ൌ ܿ ൅ ሺௗሻܴߚ ௧ܸା௛ିଵ

ሺௗሻ ൅ ሺ௪ሻܴߚ ௧ܸା௛ିଵ
ሺ௪ሻ ൅ ሺ௠ሻܴߚ ௧ܸା௛ିଵ

ሺ௠ሻ ൅ ߱௧ା௛,            (2.3.4) 

 

2.4 HEAVY model 

HEAVY model (High frEquency bAsed VolatilitY model) proposed by Shephard and 

Shephard (2010) is a combination of GARCH model and realized measures and is simple 

to estimate. They prove that using realized variance can give more accuracy both in in- and 

out-of-sample forecasting. 

As before, ݎଵ, ,ଶݎ … , ௧ିଵܨ ௧ is the series of log return. Ifݎ
௅ி  represents the low frequency past 

data, then the GARCH model as explained in equation (2.2.2) can be written as: 

Varሺݎ௧|ܨ௧ିଵ
௅ி ሻ ൌ ௧ߪ

ଶ ൌ ߱ீ ൅ ௧ିଵݎீߙ
ଶ ൅ ௧ିଵߪீߚ

ଶ .                      (2.4.1) 
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When the realized variance is used,  

Varሺݎ௧|ܨ௧ିଵ
ுி ሻ ൌ ݄௧ ൌ ߱ ൅ ܴߙ ௧ܸିଵ ൅ ,௧ିଵ݄ߚ ߱, ߙ ൒ 0, β ∈ ሾ0,1ሿ,      (2.4.2) 

Where ܨ௧ିଵ
ுி  represents high frequency past data. 

Assume that RV satisfies an AR (1) model which is: 

ܴ ௧ܸ ൌ ߱ோ ൅ ோܴߙ ௧ܸିଵ ൅  ோ.                                    (2.4.3)ߝ

The above equation I use in this paper that explains the development of the realized 

measures is different from the conditional realized variance calculated in Shephard and 

Sheppard (2010) for simplicity reason. The original definition is as following: 

ሺܴܧ ௧ܸ|ܨ௧ିଵ
ுி ሻ ൌ ௧ߤ ൌ ߱ோ ൅ ோܴߙ ௧ܸିଵ ൅ ,௧ିଵߤோߚ ߱ோ, ,ோߙ ோߚ ൒ 0, ோߙ ൅ ோߚ ∈ ሾ0,1ሿ.                              

(2.4.4) 

The forecast when horizon equals to h can be derived from 1-step-ahead forecast formula: 

Varሺݎ௧ା௛|ܨ௧ିଵ
ுி ሻ ൌ ݄௧ା௛ ൌ ߱ ൅ ܴߙ ௧ܸା௛ିଵ ൅ ,௧ା௛ିଵ݄ߚ ߱, ߙ ൒ 0, β ∈ ሾ0,1ሿ,      (2.4.5) 

ܴ ௧ܸା௛ ൌ ߱ோ ൅ ோܴߙ ௧ܸା௛ିଵ ൅  ோ.                                    (2.4.6)ߝ

Unlike other models, HEAVY is constructed by two equations where RV is also affected 

by past obervations. 

2.5 Extension: HAR-log(RV) model 

HAR-log(RV) model defined by Corsi and Reno (2009) is written as below: 

logቀܴ ௧ܸାଵ
ሺௗሻቁ ൌ ܿ ൅ ሺௗሻߚ logቀܴ ௧ܸ

ሺௗሻቁ ൅ ሺ௪ሻߚ logቀܴ ௧ܸ
ሺ௪ሻቁ ൅ ሺ௠ሻߚ logቀܴ ௧ܸ

ሺ௠ሻቁ ൅ ߱௧ାଵ,            

(2.5.1) 

where 

log	ሺܴ ௧ܸ
ሺ௪ሻሻ ൌ

ଵ

ହ
ሺlogቀܴ ௧ܸିଵ

ሺௗሻቁ ൅ logቀܴ ௧ܸିଶ
ሺௗሻቁ ൅ ⋯൅ logቀܴ ௧ܸିହ

ሺௗሻቁሻ           (2.5.2) 

and 

log	ሺܴ ௧ܸ
ሺ௠ሻሻ ൌ

ଵ

ଶଶ
ሺlog	ሺܴ ௧ܸିଵ

ሺௗሻሻ ൅ log	ሺܴ ௧ܸିଶ
ሺௗሻሻ ൅ ⋯൅ log	ሺܴ ௧ܸିଶଶ

ሺௗሻ ሻሻ       (2.5.3) 



13 
 

When ߱௧~ܰሺ0, ܰ	ሺ߱௧ሻ~log	ఠଶሻ, expߪ ሺ0,  ఠଶሻ. Log N is the log-normal distribution. Thenߪ

the conditional realized variance is calculated as 

ܴ ௧ܸାଵ|௧ ൌ exp ቀlog	ሺܴ ௧ܸାଵ
ሺௗሻሻ െ ෝ߱ ൅

ଵ

ଶ
 ොఠଶቁ,                            (2.5.4)ߪ

Where ෝ߱ is mean of the estimated value of the residuals and ߪොఠଶ  is the estimated variance.  

The equation for h-step-forward forecast is the same with formula (2.3.4) except that all 

the RVs need to be taken logarithm. 

 

Chapter 3. Comparison Criteria 

It is difficult to evaluate the performance of volatility models for the reason that conditional 

variance and integrated variance are latent. As I have described in Chapter 2.1, a widely 

used solution is to substitute squared return as a proxy of the real variance. This is also the 

assumption for the comparison criteria which compare the predicted variance to the proxy. 

3.1 Loss functions 

Patton (2011) suggests a new family of loss functions that are robust to the noise of 

volatility proxy and consistent to the selection of units of measurement. This family nets 

MSE and QLIKE which are defined as below:  

MSE௝,௛ ൌ
ଵ

ே
∑ ሺܴ ௝ܸ,௛ െ ො௝,௛ߪ

ଶ ሻଶே
௝ୀଵ                                           (3.1.1) 

and 

QLIKE௝,௛ ൌ
ଵ

ே
∑ ሺln൫ߪො௝,௛

ଶ ൯ ൅
ோ௏ೕ,೓
ఙෝೕ,೓
మ ሻே

௝ୀଵ ,                                        (3.1.2) 

where N is the number of rolls in the modelling process that will be defined in Chapter 4.2 

and ߪො௝,௛
ଶ  is the h-step-ahead variance forecasted at the jth roll. So the loss at each horizon 

can be computed. 

From the definition, MSE measures the average of the squared error between actual 

realized variance and variance predictions. It is always non-negative and the closer to zero, 

the better. The metric QLIKE is the loss implied by a Gaussian likelihood.  
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3.2 SPA test 

Hansen (2005) recommends a superior predictive ability (SPA) test based on bootstrap 

simulation to increase the robustness of comparison. The main idea of SPA test is to figure 

out whether other models are better than the benchmark model in term of expected losses. 

So he designs the test of the null hypothesis ܪ଴ that the benchmark is not inferior to any of 

the alternatives. 

The procedure of SPA test is explained as below.  

To begin with, assume that there are K+1 categories of volatility forecast model, denoted 

as ܯ௞, ݇ ൌ  =௛,௞ଶ, where hߪ ௞ isܯ The h-step-ahead variance forecasts of model .ܭ…0,1

1, 2,…, N. N is the total number of forecasts. Then for every prediction, the corresponding 

error values from the above two loss functions are calculated, which are set to be  ܮ௛,௞,௜, 

where i=1,2. 

Secondly, choose one prediction model ܯ଴ as the benchmark model, the expected loss of 

which is  ܮ௛,଴,௜. Then the relative performance between  ܯ଴ and ܯ୩ is defined as: 

ܺ௛,௞ ൌ ௛,଴,௜ܮ െ  ௛,௞,௜.                                              (3.2.1)ܮ

The null hypothesis can be written as  

max
௞

௞ߣ ൌ ሺܺ௛,௞ሻܧ ൑ 0.                                          (3.2.2) 

If and only if ܧሺܺ௛,௞ሻ ൐ 0, model k is better than the base model. The statistics for the test 

of the hypothesis is calculated as 

T ൌ max √
ே௑ೖതതതത

ఠೖೖ
, ݇ ൌ 1,2, … ,  (3.2.3)                                  	,ܭ

Where  

ܺ௞തതത ൌ ܰିଵ ∑ ܺ௛,௞
ே
௛ୀଵ , ߱௞௞ ൌ  ൫√ܰܺ௞തതത൯.                   (3.2.4)ݎܽݒ

In order to get the distribution and the p-value of the T statistics, Hansen (2005) uses the 

bootstrap procedure that I explain in four steps as below. 
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The first step is getting a new sample from ܺ௛,௞ with a length of N. To achieve this, a re-

sampling process needs to be used to get a subsample from {ܺ௛,௞}. Choose a random 

integer from 1 to N, and then create a number M that follows a geometric distribution with 

a mean of q. q is 0.5 in this paper. Take out  ሼܺெ,௞, ܺெାଵ,௞, … , ܺெା௤ିଵ,௞|݇ ൌ 1,2, … ,  .ሽܭ

When a number M+x is larger than N, it is rearranged to be the modulus by dividing N. 

Repeat this sampling process until the full length of the subsample is N for any K. 

Reiterate the first step for B times and get a new sample which is denoted as { ௡ܻ,௞
௜ , i ൌ

1,2, . . , B, n ൌ 1,2, . . , N, k ൌ 1,2, … , Kሽ . Compute the average value for each of the 

bootstrap sample: 

௞ܻ
పഥ ൌ ܰିଵ ∑ ௡ܻ,௞

௜ே
௡ୀଵ , ݅ ൌ 1,2, … , ,ܤ ݇ ൌ 1,2, … ,  (3.2.5)                  .ܭ

Calculate the variance of all B samples: 

߱௞௞ෞ ൌ ଵିܤ ∑ ሺ ௞ܻ
పഥ െ ௞ܻന ሻଶ

஻
௜ୀଵ , ௞ܻന ൌ ଵିܤ ∑ ௞ܻ

పഥ஻
௜ୀଵ , ݇ ൌ 1,2, … ,  (3.2.6)          .ܭ

For the third step, define ܼ௞
௜  as: 

ܼ௞
పതതത ൌ ൫ ௞ܻ

పഥ െ ௞ܻന ൯ ൈ ሼܫ ௞ܻ ൐ െܣ௞ሽ, ݅ ൌ 1,2, … , ,ܤ ݇ ൌ 1,2, … ,  (3.2.7)        ,ܭ

Where ܣ௞ ൌ
ଵ

ସ
ܰିସ߱௞௞ . I{·} is an indicator function that means when the condition in the 

bracket is satisfied, the value of the function is 1, otherwise it is 0. 

The last step is to get the empirical statistics: 

T௜ ൌ max √
ே௓ೖ

ഢതതതത

ఠೖೖෟ
, i ൌ 1,2, . . , B.                                  (3.2.8) 

Hansen shows that when null hypothesis cannot be rejected, the above statistics converges 

to the T statistics in equation (3.2.8). Then the p-value is: 

p ൌ ଵିܤ ∑ ൛T௜ܫ ൐ ܶൟ஻
௜ୀଵ .                                        (3.2.9) 

The p-value can be computed for every forecast model given a loss function. When it is 

close to 1, the null hypothesis cannot be rejected, which means the benchmark model is 

superior to other models. 
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Chapter 4. Data and Methodology 

4.1 Data 

The S&P 500 Index is widely regarded as the leading benchmark of the overall U.S. stock 

market. It is a capitalization weighted index of 500 leading companies. And because of its 

high market efficiency, the index provides a solid foundation for model calculation. 

Andersen, Bollerslev, Diebold and Labys (2001) advice to use 5-minute returns for the 

realized variance to avoid market microstructure and ‘model free’ problems. Patton (2011) 

also points out that 5-minute returns eliminate all the distortions. I follow their researches 

and use historical daily returns and 5-minute realized variances of S&P 500 from January 

1, 2000 to March 31, 2017. Both return and intraday variance data are downloaded from 

Realized Library of Oxford-Man Institute of Quantitative Finance. I delete all the non-

trading days and multiply the returns by 100 and realized variances by 10000. As the model 

ranking only cares about relative size of the numbers, multiplying a same factor does not 

affect the results but makes the numbers easier to read. 
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Figure 4.1.1 Realized variances over time. The figure plots realized variances from January 1, 2000 

to March 31, 2017. All values are original realized variances time 10000. 

The sample contains both relatively calm and turbulent time periods. From Figure 4.1.1, 

during 2000-2003, the realized variances were high because of the collapse of dot-com 

bubble. Stock prices fell dramatically after the speculative bubble and S&P lost around half 

of its value. Because RV is defined as the sum of squared returns, both consistently positive 

and negative returns would lead to high RV. This explains why during 2000 to 2003 there 

was high volatility. The calm period from 2004 to early 2007 was followed by the 2008 

financial crisis. During this time periods, 56% of the value of S&P 500 vanished. In August 

2011, stock market fell and S&P 500 faced a huge drop in its price again which leads to 

the explosive growth of RV. We can imagine that this unexpected growth may cause large 

forecast errors in the later modelling. After that, RV was relatively low until now.  

4.2 Methodology 

In this paper, I make forecasts of 1, 2, 3, 4, 5, 10, 20, 40 and 60 days forward of S&P 500 

index volatility in a rolling window of 1000 days using MATLAB. In total, I have 3252 

rolls. Some programming functions come from MFE Toolbox by Kevin Sheppard. 

The explanations of the forecast procedures for different models are as following.  

In GARCH(1,1) model, I use 1 to 1000 daily returns to estimate the parameters ω, α	and	β 

in the model. Then I predict h-step-ahead (h=1, 2… 60) variance using equation (2.2.8). 

After that, the parameters are re-estimated using daily returns from 2 to 1001 days and 60 

new forecasts are calculated again.  

The forecasting process of HAR-RV model is similar except that when 2≤h≤60, the weekly 

RV and monthly RV are re-calculated using previous daily forecast of RV to get new 

predictions. For example, after getting ܴ ௧ܸାଵ, ܴ ௧ܸାଶ is defined as following: 

ܴ ௧ܸାଶ
ሺௗሻ ൌ ܿ ൅ ሺௗሻܴߚ ௧ܸାଵ

ሺௗሻ ൅ ሺ௪ሻܴߚ ௧ܸାଵ
ሺ௪ሻ ൅ ሺ௠ሻܴߚ ௧ܸାଵ

ሺ௠ሻ ൅ ߱௧ାଵ.

ܴ ௧ܸାଵ
ሺ௪ሻ and ܴ ௧ܸାଵ

ሺ௠ሻ are computed from the realized variances of the past 5 days and 22 days 

respectively. Therefore, the newly prediction ܴ ௧ܸାଵ should be used for their calculation.  
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As to HEAVY model, it consists out of two parts (2.4.5) and (2.4.6). The difficulty is that 

all the parameters in these two parts should be estimated. Compared to GARCH(1,1), 

conditional realized variance for each step (2≤h≤60) need to be calculated and then put into 

equation (2.4.5) to get future variances.  

Chapter 5. Empirical Analysis 

In this chapter, GARCH(1,1), HAR-RV and HEAVY model are compared under  the 

measurement of both loss functions and SPA test. Realized variance is used as benchmark 

to evaluate the forecasting performance. Erratic result comes out from MSE analysis. 

Therefore, “insanity filter” is used in subsequent content to amend the unrealistic large 

forecasts. In the end, I add HAR-log(RV) model to figure out how it performs compared 

to the original three models. 

5.1 Model correction 

By computing the corresponding MSE values at the horizons I want to investigate, I plot 

lines in Figure 5.1.1 with horizon as X-axis and MSE value as Y-axis. Notice that instead 

of plotting discrete dots, I use all 60 horizons to form smooth lines that can clearly show 

the tendency. 

From the figure below, HAR-RV model has the largest predicting error when forecast 

horizon is larger than 35. The errors have exponentially tendency as horizon increases and 

even reach 1e+6, which is obviously weird. Moreover, because of the explosive numbers 

of HAR-RV, it is hard to see how GARCH and HEAVY model performs. Thus, it is vital 

to figure out why the crazy forecasts come out and how they should be corrected. 
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Figure 5.1.1 Comparison using MSE. The figure illustrates the MSE value changing with horizon. 

Three models (GARCH, HAR-RV and HEAVY model) are measured. Horizon is from 1 to 60.  

Remember that HAR-RV model is defined as below: 

ܴ ௧ܸାଵ
ሺௗሻ ൌ ܿ ൅ ሺௗሻܴߚ ௧ܸ

ሺௗሻ ൅ ሺ௪ሻܴߚ ௧ܸ
ሺ௪ሻ ൅ ሺ௠ሻܴߚ ௧ܸ

ሺ௠ሻ ൅ ߱௧ାଵ,   (5.1.1) 

where the parameters ߚሺௗሻ,  ሺ௠ሻ do not automatically meet restrictions like thoseߚ	 ሺ௪ሻ andߚ

in GARCH model, for example the sum of parameters should be smaller than 1. This means 

that without limitations, the parameters may be too large and the forecasts may deviate 

severely from unconditional variances when unexpected large original data appears, for 

example, during the 2008 financial crisis. 



20 

Figure 5.1.2 HAR-RV estimated coeffecients. This figure shows the values of ߚሺௗሻ, ,ሺ௪ሻߚ  ሺ௠ሻ andߚ

ሺ௦ሻߚ .ሺ௦ሻ at each roll which are calculated by 1000 in-sample dataߚ ൌ ሺௗሻߚ ൅ ሺ௪ሻߚ ൅	ߚሺ௠ሻ. There 

are in total 3252 rolls. 

According to the above analysis, in Figure 5.1.2 I show the values of ߚሺௗሻ, ,ሺ௪ሻߚ  ሺ௠ሻ  andߚ

the sum of them, ߚሺ௦ሻ,  at each roll.  We can see that around the 1200th roll, the sum of the 

parameters are far above 1, which results in the extreme forecasts during those days. Except 

from this sudden increase, all other estimated parameters are relatively steady. 

To prove that only a few explosive numbers lead to the poor performance of HAR-RV 

when forecast horizon is long, in Figure 5.1.3, I show the percentage of forecasts that lies 

in different ranges. When the horizon increases (the vertical axis from bottom to up), the 

number of forecasts that are between 10 and 100 decreases while the number of forecasts 

larger than 100 increases. But even when the horizon equals to 60, the extreme forecasts 

(>100) are still less than 0.5% percent. Hence, if this small part of unreasonal forecasts can 

be corrected, the performance of HAR-RV could be improved a lot. 
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Figure 5.1.3 Percentage of HAR-RV forecasts. This figure describes the percentage of forecasts 

that lies in different ranges. The horizontal axis is percentage that starts from 98% to 100%. The 

vertical axis is the horizon from 1 to 60. For each horizon, the colors show the proportions of 

different forecasts magnitude. 

In order to avoid crazy numbers, I apply “insanity filter” suggested by Swanson and White 

(1995,1997) to substitute the unrealistic forecasts with ones that are more conformative 

with observed data: “ignorance” is better than “insanity”. The filter described in Clements 

and Hendry (2011) works as below.  

Calculate the forecast difference between ்ܴܸ ା௛ and ்ܴܸ , where ்ܴܸ  is the most recent 

known volatiliy. Then compute ܴ ௧ܸ െ ܴ ௧ܸି௛ in the estimation period. As there are 1000 

data in the in-sample period, there will be 999 differences when h=1, 998 when h=2... Find 

the minimum and maximum value for each h. If the forecast difference is not between the 

minimum and maximum value, ்ܴܸ ା௛ will be replaced with the last observation ்ܴܸ .  

To make the comparision consistent, all models are filtered in the rest of the article. 
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5.2 Results from model comparison 

Figure 5.2.1 MSE plot after filtering. In this figure, all models are corrected using “insanity filter”. 

Others are the same with Figure 5.1.1. 

After the correction for all the models, I draw the MSE values with horizon changing again 

in Figure 5.2.1. This time the contradictory is evident. In the long run, HAR-RV has the 

largest errors but is obviously better than the previous model without filtering. Remember 

that due to the filter strategy, the extreme numbers at long horizons are substituted with the 

last observations in the estimated period, which largely decreases the huge forecasts. 

Besides, The GARCH and HEAVY model are almost on a par when forecast horizon is 

larger than 20. 

To see which model performs the best more clearly as horizon changing, I separate all 

horizons into short and long horizons in Figure 5.2.2 and show the exact numbers of MSE 

value in Table 5.2.1.  
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Figure 5.2.2 Comparison using MSE at sub-periods. This 2*2 figure separates all 60 horizons into 

4 periods: 1-5, 6-20, 21-40, and 41-60. Each sub-figure zooms in corresponding periods in Figure 

5.2.1. 

1 2 3 4 5 10 20 40 60 

GARCH(1,1) 5.870 5.450 6.769 6.303 7.019 7.487 9.691 12.470 12.800 

HAR-RV 5.477 5.945 6.883 6.960 7.740 12.857 15.024 20.411 14.665 

HEAVY 4.975 4.991 6.078 6.393 7.759 10.200 9.607 12.187 12.995 

Table 5.2.1 MSE value at different horizons. This table shows the MSE values at key horizons: 1, 

2, 3, 4, 5, 10, 20, 40 and 60. 

Apparently, when forecast horizon is no more than 3, HEAVY model has the smallest MSE 

value. But it is exceeded by GARCH(1,1) before horizon equals to 20. However, from 20-

step-ahead and forwards, though errors of HEAVY and GARCH model have up and downs, 

there is no big advantage for both of them. After 40 days, GARCH model is slightly better 

than HEAVY. As a result from MSE, There is no winner in all situations, for example, 1-
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day volatility, 5-day volatility and 60-day volatility prediction and HAR-RV cannot beat 

the other models at all horizons. The second loss function QLIKE is applied to see if the 

conclusion is about the same. 

Figure 5.2.3 QLIKE plot after filtering. In this figure, all models are corrected after using “insanity 

filter”. The vertical axis shows the calculated QLIKE values. 

Figure 5.2.3 shows the QLIKE values of the models at all 60 horizons. Surprisingly, the 

pattern is quite different from using MSE. The explanation would be that according to the 

definitions, MSE takes care of errors while QLIKE focuses on standardized errors. Patton 

(2011) points out that MSE is more sensitive to outliers and volatility levels. Using QLIKE, 

GARCH(1,1) has the best predicting accuracy after about a week and continue its 

advantage until 60 days. Another change is that the error of HEAVY model exceeds that 

of HAR-RV model, so HEAVY becomes the last model we want to employ when 

forecasting in the long future. 
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Similarly, I zoom in different periods in Figure 5.2.4. When using QLIKE as loss function, 

the result is a bit different from using MSE at short horizon. HEAVY model remains to 

have greatest forecast accuracy in the first two days. Nevertheless, in 3 to 5 days, HAR-

RV model forecasts more accurate than others.  

Figure 5.2.4 Comparison using QLIKE at sub-periods. This 2*2 figure separates all 60 horizons 

into 4 periods: 1-5, 6-20, 21-40, and 41-60. Each sub-figure zooms in corresponding periods in 

Figure 5.2.3. 

1 2 3 4 5 10 20 40 60 

GARCH(1,1) 0.571 0.601 0.638 0.659 0.676 0.737 0.822 0.944 1.066 

HAR-RV 0.562 0.591 0.624 0.651 0.670 0.762 0.871 1.076 1.184 

HEAVY 0.512 0.570 0.651 0.730 0.794 1.021 1.159 1.261 1.320 

Table 5.2.2 QLIKE value at different horizons. This table shows the QLIKE values at key horizons: 

1, 2, 3, 4, 5, 10, 20, 40 and 60. 
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In Table 5.2.3, I compare the models by calculating p-values of SPA test using GARCH(1,1) 

as benchmark model. The table is divided into Panel A and Panel B using value of different 

loss functions as input. Remember that when the p-value is close to 1, the benchmark model 

is superior to the corresponding prediction model. According to Panel A, when forecasting 

1-day-ahead, the p-values of HAR-RV and HEAVY model are all near 0. But the value of

HEAVY model is even smaller (0.041<0.148). When forecasting the future 4, 5, 10and 60

days, p-values are all equal to 1 for both models, which indicates that the null hypothesis

H0 that the benchmark GARCH(1,1) is  not  inferior  to  any  of  the  alternatives  is  harder

to  be  rejected. This confirms the result from using MSE that GARCH (1, 1) has relatively

better predicting ability. In Panel B, for the first 2 days, both models are better than

GARCH(1,1), while HEAVY model predicts more precise. During 3 to 5 days, HAR-RV

performs the best followed by GARCH and HEAVY model. As before, GARCH wins at

long horizon. In all, the result from SPA test is exactly the same with that from loss

functions, which is quite convincing.

Benchmark: GARCH(1,1) 

Bootstrap replication=1000, window size=12 

Panel A: MSE 

1 2 3 4 5 10 20 40 60 

HAR-RV 0.148 1 1 1 1 1 1 1 1 

HEAVY 0.041 0.182 0.108 1 1 1 0.422 0.309 1 

Panel B: QLIKE 

1 2 3 4 5 10 20 40 60 

HAR-RV 0.365 0.261 0.046 0.235 0.244 1 1 1 1 

HEAVY 0 0 1 1 1 1 1 1 1 

Table 5.2.3 SPA test results. This table illustrates the computed p-values of SPA test. In both panels, 

GARCH(1,1) is used as benchmark model and in my programming, I set bootstrap replication 

equals to 1000 and window size equals to 12. Notice that each time run the model, the numbers in 

this table changes but the magnitude is similar. If p-value is close to 0, GARCH(1,1) is inferior to 

the corresponding model. Otherwise, GARCH(1,1) performs better. Panel A is the SPA test result 

using MSE as input. Panel B uses QLIKE. The values are shown at key horizons: 1, 2, 3, 4, 5, 10, 

20, 40 and 60. 
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5.3 Results with HAR-log(RV) model 

From previous analysis, “insanity filter” works quite efficiently that enables the forecast 

losses of HAR-RV model drop a lot. However, it is still worse than the other two models 

at most horizons. Corsi and Reno (2009) transform RV using logarithm in case of 

negativity issues, which can also get approximately normal distribution of volatility 

measures. After that, Ma, Wei, Huang and Chen (2013) utilize high frequency data of 

Shanghai Composite Index as input of HAR-log(RV) model and conclude that it is the best 

model amongst other 22 high-frequency models based on MCS test. A pity is that in their 

paper, there is no GARCH and HEAVY model for assessment. So I add HAR-log(RV) in 

order to investigate if it can provide a better choice. 

Figure 5.3.1 MSE comparison with HAR-log(RV) model. This figure adds HAR-log(RV) model to 
Figure 5.2.1.  

Figure 5.3.1 includes HAR-log(RV) model in the MSE measurement. Similar with the 

expectation, the new added model indeed has excellent performance. It beats GARCH(1,1) 
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almost at any horizons. Figure 5.3.2 and Table 5.3.1 shows the difference during short 

predicting period more clearly. When horizon=1, 2 and 3, HEAVY model has the lowest 

MSE, which is the same without adding HAR-log(RV) model. Big change arises from 3 

days in the future and onwards, the MSE values of HAR-log(RV) are consistently lower 

than that of GARCH model, which confirms the idea that using logarithm indeed has great 

predicting advantage. 

Figure 5.3.2 MSE comparison with HAR-log(RV) at sub-periods. This plot adds HAR-log(RV) 
model to Figure 5.2.2. Other illustrations refer to Figure 5.2.2. 

1 2 3 4 5 10 20 40 60 

GARCH(1,1) 5.870 5.450 6.769 6.303 7.019 7.487 9.691 12.470 12.800 

HAR-RV 5.477 5.945 6.883 6.960 7.740 12.857 15.024 20.411 14.665 

HEAVY 4.975 4.991 6.078 6.393 7.759 10.200 9.607 12.187 12.995 

HAR-log(RV) 5.512 5.023 6.387 5.860 6.588 6.891 8.379 11.125 11.970 

Table 5.3.1 MSE value with HAR-log(RV) at different horizons. 
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Again, I test the result using QLIKE loss function in Figure 5.3.3 and Figure 5.3.4. The 

performance ranking is totally different from the above outcome. In the long run, GARCH 

beats all the other models and even HAR-log(RV) model. Besides, HAR-log(RV) has 

higher QLIKE value than the simple HAR-RV model, while HEAVY is still the worst to 

predict volatility in the far future. Because at all 60 horizons, HAR-log(RV) model is 

inferior to GARCH and HAR-RV model, so the preeminent models with horizon changing 

do not change from when logarithm is not applied. 

Figure 5.3.3 QLIKE comparison with HAR-log(RV) model. This figure adds HAR-log(RV) model 
to Figure 5.2.3.  
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Figure 5.3.4 QLIKE comparison with HAR-log(RV) at sub-periods. This plot adds HAR-log(RV) 
model to Figure 5.2.4. Other illustrations refer to Figure 5.2.4. 

1 2 3 4 5 10 20 40 60 

GARCH(1,1) 0.571 0.601 0.638 0.659 0.676 0.737 0.822 0.944 1.066 

HAR-RV 0.562 0.591 0.624 0.651 0.670 0.762 0.871 1.076 1.184 

HEAVY 0.512 0.570 0.651 0.730 0.794 1.021 1.159 1.261 1.320 

HAR-log(RV) 0.577 0.606 0.646 0.676 0.695 0.801 0.934 1.146 1.260 

Table 5.3.2 QLIKE with HAR-log(RV) value at different horizons.  

The p-values of SPA test including HAR-log(RV) model are in Table 5.3.3. The values of 

HAR-RV and HEAVY model in this table are no doubt the same as in Table 5.2.3. The 

difference is that in Panel A from day 4, the p-values of HAR-log(RV) model are around 

0.1 that are all the smallest among the other models though at horizon 20 and 40, HEAVY 

model is also superior than GARCH. The numbers show that the new model is a universal 
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winner at relatively long horizon. In contrast, all the p-values of HAR-log(RV) are 1 in 

Panel B.  

Benchmark: GARCH(1,1) 

Bootstrap replication=1000, window size=12 

Panel A: MSE 

1 2 3 4 5 10 20 40 60 

HAR-RV 0.148 1 1 1 1 1 1 1 1 

HEAVY 0.041 0.182 0.108 1 1 1 0.422 0.309 1 

HAR-log(RV) 0.168 0.163 0.251 0.189 0.207 0.192 0.097 0.078 0.049 

Panel B: QLIKE 

1 2 3 4 5 10 20 40 60 

HAR-RV 0.365 0.261 0.046 0.235 0.244 1 1 1 1 

HEAVY 0 0 1 1 1 1 1 1 1 

HAR-log(RV) 1 1 1 1 1 1 1 1 1 

Table 5.3.3 SPA test result with HAR-log(RV) model. Detailed description see Table 5.2.3. 
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Chapter 6. Conclusion 

I study the volatility predictability of GARCH(1,1), HAR-RV, HEAVY model and an 

extensive model HAR-log(RV) at both short and long horizons. Daily returns and realized 

variances of S&P 500 stock index is used as input of the models and the forecasts are made 

using a rolling window of 1000 days. The forecast accuracy in this article is measured by 

two loss functions (MSE and QLIKE) and SPA test, where realized variances are used as 

the benchmark for loss functions and GARCH(1,1) is the benchmark model for SPA test. 

In my research, SPA tests in terms of MSE and QLIKE provide the same result as applying 

only loss functions respectively. 

Due to the fact that without correcting the unrealistic forecasts, the predicting errors are 

extremely large and harm the good forecasts. “Insanity filter” is applied to all the models 

to replace the “insanity” number with the most recent observed RV. 

Based on my empirical analysis result, there is no universal winner. Under all the statistical 

criteria, HEAVY model has lowest forecast error if prediction period is short (1 to 3 days). 

This is consistent with what Shephard and Sheppard (2010) point out. When predicting 

horizon is long, the best model depends on which loss function is used. Under MSE, 

GARCH and HEAVY model both have well predicted ability at long horizon. However, 

QLIKE value indicates that HAR-RV has the most accurate 3 to 5-step-ahead forecasts 

while GARCH remains perfect after a week from now. 

To improve the HAR-RV model, I follow Corsi and Reno (2009) and take logarithm of 

RV. The MSE values decreases dramatically and HAR-log(RV) is better than other models 

from horizon 4, but it still cannot beat HEAVY in the first 3 days. In contrast, from the 

QLIKE values, HAR-log(RV) is not the best model at any horizon. 

To sum up, I draw Figure 6.1 to show the best model at different horizons under MSE and 

QLIKE. SPA test result is the same as loss functions, so it is excluded. My advice of 

choosing the best-performance model depends on the different characteristics of traders. 

For those who trade very often (speculator), HEAVY model is no doubt the best choice. 

Long-term investor can select from GARCH(1,1) and HAR-log(RV), as they both have 

their own advantages under different measurements. 
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Figure 6.1 Best model at different horizons. This figure takes all models into account. The 

horizontal axis is horizon and the vertical axis indicates when using different measurements. The 

models shown in this figure have lowest errors at corresponding horizon. 
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HEAVY HAR‐log(RV) HAR‐RV GARCH

QLIKE
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Chapter 7. Discussion 

As what I have described in Chapter 1, the comparison outcomes are not the same in 

previous researches and some are even contradictory. So does my result. It turns out that 

the predicting accuracy of GARCH(1,1) is stable while the accuracy of HEAVY and HAR-

RV model decreases relatively larger with horizon increasing. Things changes after I 

improve HAR-RV model by applying logarithm on RV. It then has steady losses and beats 

the other models to be the best model. Therefore, one guess is that using extensions of the 

basic models to avoid unnecessary noise and increase stability may benefit the forecast 

precision a lot.  

Another factor that may influence the forecasts may be the filtering strategy. As I have 

described in Chapter 5.1, the forecast is replaced if the forecast difference (்ܴܸ ା௛ - ்ܴܸ ) 

is outside the range. However, if the observed ்ܴܸ  is an abnormal number compared to the 

data previous and after it, the forecast different may lies in the range. Therefore, although 

the forecast ்ܴܸ ା௛ is unrealistic, it is still regarded as a good prediction. 

Last but not least, the different of data used may affect the ranking hugely. I include the 

variances of 2008 financial crises which increase that of the relatively calm period by 

almost tenfold. This strike brings extremely large predicting losses to the models and may 

cause distortions to the overall predictability.  
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