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Abstract: In this thesis, I propose the Repeated Kernel Density-based Regression Estimator

(RKDRE) for the linear regression model. The intuition is that the unknown error distribution

can be approximated by using kernel density estimation on the residuals of an initial estimator.

This density can then be maximized to obtain a new parameter estimate. The process of

estimating the parameter and obtaining a density is repeated until convergence. RKDRE can be

regarded as the multi-step version of KDRE as proposed by Yao and Zhao (2013). For

computational convenience, I develop a constrained EM algorithm to perform the maximization.

I show under relatively weak conditions that both KDRE and RKDRE converge almost surely to

the true parameter. Also, I prove that using the conditions under which KDRE is adaptive (i.e.,

asymptotically normal and efficient), RKDRE is adaptive too. Even though the asymptotic

properties of the estimators are the same, I show in a numerical study that RKDRE generally

attains higher mean-square-error-efficiency. The overall performance of RKDRE is also arguably

higher than any of the wide range of other adaptive estimators considered in the numerical study.

The practical relevance of RKDRE is illustrated with an application to experimental research

done in (Andrabi et al., 2017).
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1 Introduction

Consider the general linear regression model

yi = x′iβ0 + εi, (1)

where xi are known p × 1-vectors and β0 ∈ B ⊆ Rp is an unknown parameter vector including

an intercept. The error terms εi are i.i.d. realizations of the unknown error density f . The error

terms are independent of xi. Model (1) is semiparametric with β and f its parametric and non-

parametric part, respectively. It is well known that, under the true density, maximum likelihood

estimation (MLE) has several desirable properties such as consistency, asymptotic normality, and

asymptotic efficiency. However, the specific form of f is unknown in almost all practical instances.

In parametric regression, f is assumed to be the probability density function of a certain known

distribution. The normal distribution is a convenient choice as it can be shown that in that case

the MLE of β0 simplifies to the ordinary least squares estimate β̂OLS . Naturally, an invalid as-

sumption on the density function comes at a cost; in case of misspecification of the distribution,

the MLE is in general neither consistent nor asymptotically efficient (Pawitan, 2001, p. 372). To

overcome this problem, I suggest an adaptive estimator. That is, an estimator that has the same

asymptotic distribution as the MLE in case f were known. The intuition is as follows; if we obtain

an initial estimate that is roughly correct, the empirical distribution of the residuals corresponding

to that estimate approximates the true density of the error terms. Then, we can estimate the dis-

tribution of the residuals by a kernel density estimator and perform standard maximum likelihood

on the estimated kernel density. Then, we obtain residuals corresponding to a new estimate of β0

and, subsequently, perform maximum likelihood on the estimated density of those residuals. This

process is repeated until the estimates converge.

To formally define the algorithm, I first define fn(x) as the Rosenblatt-Parzen kernel density

estimator of the error terms (Rosenblatt et al., 1956; Parzen, 1962). That is,

fn(x) =
1

nhn

n∑
i=1

K

(
x− εi
hn

)
, (2)

where hn is called the bandwidth. Similarly, f̂n(x) is

f̂n(x) =
1

nhn

n∑
i=1

K

(
x− ε̂i
hn

)
, (3)

where ei = yi−x′iβ̂, i = 1, 2, .., n are the residuals in model (1) corresponding to a certain estimate

of β0.
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Then, the Repeated Kernel Density-Based Regression Estimator (RKDRE) is computed as follows:

1. Initialize with β̂(0) = β̂OLS . Obtain the corresponding residuals ei,OLS = yi − x′iβ̂OLS ,

i = 1, 2, .., n.

2. Estimate f(x) by f̂ (m)
n (x), the kernel density estimator based on the residuals corresponding

to β̂(m−1).

3. Compute β̂(m) = arg supβ∈B Q̂
(m) =

∑n
i=1 ln f̂

(m)
n (yi − x′iβ) subject to c(β(m)) = 0 where

c(β) = 1
n

∑n
i=1

[
yi − x′iβ

]
.

4. Repeat steps 2. and 3. until convergence.

To the best of my knowledge, none of the studies on semiparametric adaptive estimators have

examined the performance of a repetitive procedure as described above. Most of the previously

proposed estimators also use an initial estimate of β0, but then take only one final step to obtain

the adaptive estimate. Two-step methods are usually enough to obtain desirable theoretical prop-

erties such as consistency and asymptotic efficiency. However, Mammen et al. (1996) show that

the empirical distribution of the residuals depends strongly on the initial estimator. In particular,

if one uses a maximum likelihood estimator based on an incorrectly specified error distribution G,

the empirical distribution of the residuals is shifted toward G. Hence, by using β̂OLS as a con-

venient first-step estimator, the two-step method will be drawn towards the normal distribution

(since OLS is equivalent to MLE under the normal distribution). This observation forms the in-

tuition that, in finite samples, multi-step procedures may perform better than two-step procedures.

Only quite recently, Yao and Zhao (2013) researched the performance of the two-step version of the

algorithm and introduced the term Kernel Density-Based Regression Estimator (KDRE) (although

they do not impose the constraint that the residuals sum to zero in step 3). As far as I know, Yao

and Zhao (2013) have been the first (and, as of yet, only) to discuss the two-step maximum likeli-

hood procedure. In an extensive numerical study, I show that the performance (in the mean square

error sense) of RKDRE is substantially better than that of KDRE. In fact, I find that RKDRE

shows the best overall performance out of a wide range of investigated semiparametric adaptive

estimators. Under some distributions, such as the variance-contaminated normal distribution and

the log-normal distribution, the mean square error of RKDRE is up to two times lower than that of

the second best estimator. Under the other investigated distributions, it is either the most efficient

or close to the most efficient estimator. This corroborates the intuition that a two-step method

usually not suffices to fully exploit the information contained in the data.

Even regardless of the strong performance of RKDRE, I claim that the numerical study is in itself

a contribution to the literature. Most of the methods investigated have all been tested by means

of simulation in earlier studies (while some more extensively than others). However, almost all

of these simulations show the performance of the semiparametric estimator vis-à-vis a parametric

estimator. For instance, Yao and Zhao (2013) only compare KDRE with OLS. I argue that it is

more interesting to compare the performance of a semiparametric estimator against another as it
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is a well-established fact that OLS is not efficient under the conditions that would lead the econo-

metrician to adopt a semiparametric approach. Furthermore, the numerical study includes an

examination of the proper choice of bandwidth for kernel estimators such as (R)KDRE; with that

examination, I aim to fill another gap that has been left by the literature on adaptive estimators.

I build upon Yao and Zhao (2013) on a more technical note as well. First of all, I establish strong

(almost sure) convergence to β0 under relatively weak conditions, both for the two-step (KDRE)

and the proposed multi-step estimator (RKDRE). Yao and Zhao (2013) only prove asymptotic nor-

mality and efficiency for which they need stronger conditions. Another issue that is not touched

upon by Yao and Zhao (2013) is the question of how to obtain standard errors. I suggest two

different methods and prove consistency for both. In a subsequent numerical study, I compare the

root mean squared standard error (as estimated by the two methods) with the actual root mean

square error. I find that the methods estimate the standard error of the slope coefficient reasonably

well. However, the standard errors of intercept coefficients are usually underestimated, such that,

if these are of interest, bootstrapping is the preferred method.

Finally, I apply the adaptive estimators to the experimental research done in (Andrabi et al.,

2017). The experiment explores the effect of provision of information (in the form of so-called

report cards) to schools and households on test scores, school fees, and enrollment rates in 112

villages in Pakistan. In this paper, OLS is applied. However, I show that there is evidence to

believe that adaptive estimators may be more efficient. I find that two out of the three main

treatment effects found and described in the paper (i.e. the effect of the report cards on fees and

on test scores) are not significantly different from zero when adaptive estimation is applied. Most

interestingly, I find that the RKDRE estimate of the effect of the report cards on school fees is more

than forty times smaller than the OLS estimate. None of the other adaptive estimators adjust the

OLS estimate so dramatically. On top of that, I show that the prediction performance of RKDRE

is superior to the prediction performance of the other estimators considered.

In the following section, I describe and explain adaptive estimators that are previously proposed

in the literature. Then, in Section 3, I show the asymptotic properties of the RKDRE algorithm.

Section 4 describes how RKDRE is made computationally feasible using an EM algorithm that

performs the constrained maximization in step 3. of the algorithm. Section 5 shows a numerical

study of the efficiency of RKDRE and the adaptive estimators discussed in Section 2. It also

includes an analysis of the proper choice of bandwidth for the estimators that use kernel density

estimation and a comparison of computation time of the different methods. In Section 6 and

Section 7, I discuss the estimation of standard errors of the RKDRE algorithm and apply the

adaptive estimators to the research in (Andrabi et al., 2017), respectively. I conclude in Section 8.

4



2 Literature on adaptive estimation

It is well known that the asymptotic variance of the MLE under the true distribution attains the

Cramér-Rao lower bound (the lowest possible variance of an unbiased estimator): the inverse of the

Fisher’s information matrix Iββ . This means that MLE is asymptotically efficient. To formalize

this concept, I use the following notation:

Ln(yi|β) = ln f(yi|β) = ln f(yi − x′iβ) (4)

dβ(β) =
∂Ln
∂β

(β) = −f ′(yi|β)f−1(yi|β)xi (5)

dββ(β) =
∂2Ln
∂β∂β′

(β) =
f(yi|β)f ′′(yi|β)− f ′2(yi|β)

f2(yi|β)
xix
′
i, (6)

where f ′(u) = ∂f(u)/∂u, f ′′(u) = ∂f ′(u)/∂u, and f ′2(u) = f ′(u)f ′(u). Then the information

matrix can be defined as

Iββ = E[dβ(β0)dβ(β0)′]

= −E[dββ(β0)],
(7)

where the second equality holds under mild regularity conditions.1 It is well-established that under

Conditions (i)-(iv) of Theorem 3.5 below, and Conditions (i)-(v) of Theorem 3.3 in (Newey and

McFadden, 1994, p. 2146) (under which also the conditions of the information matrix equality are

satisfied (Newey and McFadden, 1994, p. 2146)), we obtain

√
n
(
β̂ML − β0

)
d→ N

(
0, I−1ββ

)
. (8)

In the context of linear regression, an estimator is adaptive if it attains the same asymptotic

distribution even if f is unknown (hence if it asymptotically normal and asymptotically efficient).

It can be shown that not all parameters are adaptively estimable. Necessary conditions are derived

by Begun et al. (1983); in the linear model in (1), the necessary condition for the slope estimates

in β0 to be adaptively estimable is satisfied if β0 contains an intercept. If f is symmetric around

zero, the necessary condition is also satisfied for the intercept (Pagan and Ullah, 1999, p.220). In

this section, I describe several semiparametric estimators with adaptive properties. The overview

presented is a comprehensive, but not exhaustive overview of the semiparametric methods that are

proposed in the context of adaptive estimation. However, as Pagan and Ullah (1999, p .226) note,

many other algorithms can be regarded as a special form of one of the methods below.
1Specifically, twice differentiability of ln f(yi|β) and the assumption that interchanging the order of integration

and differentiation is allowed, i.e. ∫
∂

∂β
f(y|β)dy =

∂

∂β

∫
f(y|β)dy = 0.
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2.1 SBS

Stone (1975); Bickel (1982); Schick (1993) (henceforth SBS) employed a two-step procedure. Denote

β̃ a certain
√
n-consistent estimator, i.e. β̃ − β0 = Op(n

− 1
2 ).2 Then, the infeasible two-step

estimator

β̂ = β̃ +
1

n
I−1ββ (β̃)dβ(β̃)

can be shown to be asymptotically as efficient as the MLE. Note that the infeasibility of this es-

timator follows from the fact that f is unknown and hence Iββ and dβ are unknown. The rather

intuitive approach of SBS is to replace dβ(β̃) by d̂β(β̃) =
∑n
i=1 f̂

′
n(yi|β̃)f̂−1n (yi|β̃)xi where f̂n(x)

is defined as in (3) and f̂ ′n(x) is its derivative with respect to x. Similarly, I−1ββ (β̃) is replaced

with n2
[∑

xix
′
i
∑(

f̂ ′n(yi|β̃)f̂−1n (yi|β̃)
)2]−1

(Pagan and Ullah, 1999, p .227). These estimates

are based on the residuals from an initial estimator of β which is usually chosen to be the OLS

estimator. The conditions under which this two-step approach can be shown to be asymptotically

efficient have been researched extensively (Bickel, 1982; Manski, 1984; Andrews, 1994). Most im-

portantly, the kernel estimator of the score function f ′(yi|β)f−1(yi|β) must be (i) i.i.d., and (ii)

independent of xi. These conditions are restrictive and not easy to verify in practice (Yuan and

De Gooijer, 2007, p. 845; Pagan and Ullah, 1999, p. 228). Bickel (1982) solved the i.i.d. problem

by splitting the sample in two; one sub-sample to estimate the score and another to solve for β.

However, perhaps not surprisingly, Manski (1984) finds by means of simulation that the estimator

works much better when the sample is not split (that is, if the estimated score and β̃ are both

computed using the entire sample). If (i) and (ii) are satisfied, a sufficient condition for adaptive-

ness is that (iii) E
[(
f ′(yi|β)f−1(yi|β)− f̂ ′n(yi|β̃)f̂−1n (yi|β̃)

)2]
→ 0.

Since f̂n(x) is present in the denominator of d̂β , unstable estimates may follow for near-zero values

of f̂n(x). Hence, Bickel (1982) suggest to trim the estimator of the kernel score as follows

f̂ ′n(yi|β̃)

f̂n(yi|β̃)
=


f̂ ′n(yi|β̃)

f̂n(yi|β̃)
, if

∣∣∣yi − x′iβ∣∣∣ ≤ t1, f̂n(yi|β̃) > t2, and
f̂ ′n(yi|β̃)

f̂n(yi|β̃)
< t3

0, otherwise.

This trimming mechanism ensures that near-zero values do not have unreasonably large influence

on the estimate. Also, Bickel (1982, p. 665) shows that if t1 → ∞, t2 → 0, t3 → ∞, hn → 0,
t1
nh3 , and hnt1 → ∞ as n → ∞ then (iii) is satisfied. Hence, adaptiveness is established under

the proper trimming parameters and condition (i) and (ii). Naturally, the growth rates of the

trimming parameters are of little use to the practitioner and as such the choice for the trimming

parameter is a practical disadvantage. Hsieh and Manski (1987) reduce the problem to selecting a

2If a sequence Xn = Op(an), this means that Xn
an

is bounded in probability. Formally, Xn
an

is bounded in
probability if for every ε > 0, there exist a finite M and finite N ∈ N such that for all n > N

Pr

(∣∣∣∣Xn

an

∣∣∣∣ > M

)
< ε.
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one-dimensional parameter t by suggesting the following relation between the trimming parameters:

t1 = t, t2 = exp

(
− t

2

2

)
, t3 = t.

Hsieh and Manski (1987) vary t between 3, 4, and 8. For a sample size of 50, they find that t = 8

works best in almost all considered case.

2.2 LGMM(S)

Newey (1988) describes a two-step method that avoids kernel estimation. His approach is based on

moment conditions that can be derived from certain assumptions on the error distribution. Two

situations are analyzed. First, the case where the error terms are i.i.d. and independent of xi.

This model implies the moment condition that any function of the errors are uncorrelated with any

function of the regressors.3 Second, the case where the distribution of εi is symmetric around zero

conditional on the regressor xi. This second model allows for conditional heteroskedasticity, i.e.

the variance of εi is allowed to depend on xi. The assumption that the errors are symmetrically

distributed around zero yields the moment conditions that any odd function of the errors are

uncorrelated with any function of the regressors. Hence, in both situations we can exploit moment

restrictions to construct what Newey (1988) calls the Linearized General Method of Moments

(LGMM) estimator. For later reference, I refer to the LGMM estimator based on the moment

conditions following from the errors being i.i.d. and independent of xi as LGMM, and to the

LGMM estimator based on the moment conditions following from symmetry as LGMMS. For

LGMM, natural moment conditions arise from the fact that E
[
xi

(
εji − E

[
εji

])]
= 0 for j =

1, 2, .., J . However, Newey (1988) finds that these high-order ‘raw’ moments, mj (εi) = εji , are

sensitive to a fat-tailed error distribution. Estimates that are more robust against fat tails are

obtained by using the ‘transformed’ powers, i.e.

mj (εi) =

(
εi

1 + |εi|

)j
,

or the ‘weighted’ powers, i.e.

mj (εi) = exp
(
−εi

2

)
εji .

Similarly, for LGMMS, we may use that E
[
xiε

2j−1
i

]
= 0 for j = 1, 2, .., J .4 As for LGMM, perfor-

mance may be improved if we use the odd powers of the ‘transformed’ method instead. Note that for

technical reasons the ‘weighted’ powers can not be used for LGMMS (Newey, 1988, p.315). In gen-

eral, both for LGMM and LGMMS, we use the moment conditions that E
[
xi (mj (εi)− µj)

]
= 0

for j = 1, 2, .., J where uj = E [mj (εi)]. To define the LGMM(S) estimator, I introduce the
3This result follows from the fact that functions of independent random variables are also independent.
4We do not subtract the mean here since for LGMMS the error terms are assumed to be symmetric around zero

and for such random variables all odd-order moments are equal to zero (if they exist).
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following notation:

ζ′i = [m1 (εi)− µ1,m2 (εi)− µ2, ..,mJ (εi)− µJ ] (9)

w′ = E [m1ε (εi) ,m2ε (εi) , ..,mJε (ε)] (10)

Vζζ = Cov (ζi) (11)

where mjε (ε) =
∂mj(ε)
∂ε . Let ε̂i denote the residuals of the initial estimate β̂, then the quantities

in (9), (10), and (11) can be estimated by

ζ̂′i = [m1 (ε̂i)− µ̂1,m2 (ε̂i)− µ̂2, ..,mJ (ε̂)− µ̂J ] (12)

ŵ′ =

[
1

n

∑
m1ε (ε̂i) ,

1

n

∑
m2ε (ε̂i) , ..,

1

n

∑
mJε (ε̂i)

]
(13)

V̂ζζ =
1

n

∑
ζ̂iζ̂
′
i, (14)

respectively, where µ̂j = 1
n

∑
mj (ε̂i). Then, the LGMM(S) estimator is constructed as

β̂LGMM(S) = β̂ +
[
(ŵ′ ⊗X′X)

(
V̂ −1ζζ ⊗ [X′X]

−1
)

(ŵ ⊗X′X)
]−1

× (ŵ′ ⊗X′X)
(
V̂ −1ζζ ⊗ [X′X]

−1
)

(IJ ⊗X′) vec
(
ζ̂
)

(15)

where ζ̂ is the n× J matrix
[
ζ̂′1, .., ζ̂

′
n

]′
. Under certain assumptions, Newey (1988) proves asymp-

totic normality of both the LGMM and LGMMS estimator. In particular, it should hold that

J → ∞ and J ln J
lnn → 0 as n → ∞. Only for LGMMS, asymptotic efficiency is obtained (but

not for LGMM). By means of simulation, Newey (1988) finds for LGMM that J = 3 performs

best for sample sizes between n = 50 and n = 200. However, the mean square error efficiency of

the estimator as a function of J flattens out as the sample size increases. Also, he finds that the

‘transformed’ method is in general preferred over the ‘weighted’ method. No numerical results for

the LGMMS estimator are shown by (Newey, 1988).
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2.3 KDRE

More recently, Yao and Zhao (2013) proposed the kernel density-based linear regression estimator

(KDRE). The estimator is the unconstrained two-step version of the proposed RKDRE algorithm.

That is, it follows from unconstrained maximization of the kernel likelihood function that is esti-

mated on the basis of the residuals corresponding to an initial estimate. Under some conditions on

the error terms, the regressors, the kernel, the bandwidth, and the initial estimator (i.e. Conditions

(i)-(viii) of Theorem 3.6) Yao and Zhao (2013) prove that the KDRE algorithm is adaptive;5 that

is, asymptotically normal and efficient. For technical reasons, these properties are proven for a

trimmed version. The untrimmed maximizer of the kernel likelihood is the solution to:

1

n

n∑
i=1

f̂ ′n(yi|β)

f̂n(yi|β)
x′i = 0.

The trimmed version is then defined as the solution to

1

n

n∑
i=1

f̂ ′n(yi|β)

f̂n(yi|β)
x′iGb

(
f̂n (yi|β)

)
= 0.

Here,

Gb(x) =


0, if x < b,∫ x
b
gb(z)dz if b ≤ x ≤ 2b,

1, if x > 2b,

(16)

where gb is a four times continuously differentiable function with support on [b, 2b] and b → 0

if n → ∞. This trimming function is introduced by Linton and Xiao (2007, p. 378) and they

suggest the use of the beta function. For the purpose of KDRE, the trimming parameter is only

used to simplify the proof, and is not used in the implementation. Yao and Zhao (2013) note that

in practice the difference between the actual and the trimmed version is minimal. To simplify

computation, Yao and Zhao (2013) develop an EM algorithm that is further discussed in Section

4.

2.4 YDG

Yuan and De Gooijer (2007) proposed another estimator based on estimating the error density by

means of a kernel. The maximization criterion (applied to linear regression) is

β̂ = arg max
β∈B

n∑
i=1

ln
1

(n− 1)hn

n∑
j 6=i

K


(
yi − x′iβ

)
−
(
yj − x′jβ

)
hn

 . (17)

Note that the kernel is based on (n−1) observations. This is to avoid that the log-likelihood would

contain artificial values of K(0) for all i = j. Note that this method is a one-step approach and

as such does not require an initial estimate. A disadvantage is the cancellation of the intercept

coefficient in the difference x′jβ−x
′
iβ in (17). To solve this, Yuan and De Gooijer (2007) proposed

5Conditions (i)-(viii) of Theorem 3.6 correspond to C1-C5 in (Yao and Zhao, 2013, p. 4506).
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estimating

β̂ = arg max
β∈B

n∑
i=1

ln
1

(n− 1)hn

n∑
j 6=i

K

r
(
yi − x′iβ

)
− r

(
yj − x′jβ

)
hn

 . (18)

Yuan and De Gooijer (2007) suggest to use r(z) = 10× exp z
1+exp z . However, as Yao and Zhao (2013)

note, this comes with an efficiency loss; r(z) = z as in (17) is efficient in the sense that even though

the intercept is cancelled out, the slope coefficients are adaptively estimated. Hence, Yao and Zhao

(2013) suggest to compute

β̂∗Y DG = arg max
β∗∈B∗

n∑
i=1

ln
1

(n− 1)hn

n∑
j 6=i

K


(
yi − x∗′i β

∗
)
−
(
yj − x∗′j β

∗
)

hn

 , (19)

where xi =
[
1,x∗i

]′
, and β̂Y DG =

[
α̂Y DG, β̂

∗
Y DG

]′
and α̂ is the estimate of the intercept coef-

ficient α. Subsequently, we set α̂Y DG = 1
n

∑[
yi − x∗′i β̂

∗
Y DG

]
. The intercept estimate is not in

general asymptotically efficient (Yao and Zhao, 2013, p.4503). However, despite this theoretical

disadvantage, Yao and Zhao (2013) show in a numerical study that this implementation of YDG

in general outperforms KDRE. Henceforth, if I refer to YDG, I refer to the estimate in (19).
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3 Asymptotic properties

In this section, I derive the asymptotic properties of RKDRE. Section 3.1 contains the lemmas

necessary for the proofs. In Section 3.2, I prove that the estimate of RKDRE converges almost

surely to β0. The result also holds for KDRE (but was not proven by Yao and Zhao (2013)).

Section 3.3 contains the proof that RKDRE belongs to the class of adaptive estimators, i.e. that

it possesses the desired properties of asymptotic normality and efficiency.

3.1 Lemmas

Lemma 3.1. If model (1) holds, ε1, ε2, .., εn are i.i.d. with unknown density f(x) where f is a

uniformly continuous function that satisfies

(i)
∫
xf(x)dx = 0

(ii) 0 <
∫
x2f(x)dx <∞,

{xi}
∞
i=1 satisfy,

(iii) ∃ 0 < M <∞ such that
∥∥xi∥∥ < M ∀ i = 1, 2, .., n

(iv) limn→∞ Sn = Q where Sn = 1
n

∑n
i=1 xix

′
i,

and the following assumptions on the kernel function K(x) hold:

(v) K(x) is uniformly bounded and ∃ 0 < ρ <∞ such that K(x) = 0 ∀ x : ‖x‖ ≥ ρ

(vi) K(x) is Riemann integrable on [−ρ, ρ]

(vii) when n→∞, 0 < hn → 0 and
√
nhn

lnn →∞,

then

sup
x∈R

∥∥∥f̂n,OLS(x)− f(x)
∥∥∥ a.s.→ 0 (20)

where f̂n,OLS(x) is the kernel density estimator based on the OLS residuals ei,OLS = yi−x′iβ̂OLS,

i = 1, 2, .., n.

Proof : see Theorem 5 in (Zhang, 1990).

Lemma 3.2. Under the assumptions of Lemma 3.1, if any estimator β∗ satisfies

(i) Pr
(
limn→∞max |β∗ − β0| ≤ max

∣∣S−1n ∣∣ ∥∥ln max
∣∣S−1n ∣∣∥∥) = 1 where max |A| = maxi,j |aij |

where aij are the elements of a matrix A

then

sup
x∈R

∥∥∥f̂∗n(x)− f(x)
∥∥∥ a.s.→ 0 (21)

where f̂∗n(x) denotes the kernel density estimator based on the residuals ei = yi−x′iβ
∗, i = 1, 2, .., n

Proof : This follows immediately from Theorem 5 and Lemma 4 in (Zhang, 1990) in conjunction

with Theorem 4 and (29) in (Chai et al., 1991).
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Lemma 3.3. If there is a function Q0(β) such that

(i) Q0(β) is uniquely maximized at β0

(ii) B is compact

(iii) Q0(β) is continuous

(iv) supβ∈B

∥∥∥Q̂n(β)−Q0(β)
∥∥∥ a.s.→ 0,

then

β̂
a.s.→ β0 (22)

where β̂ maximizes objective function Q̂n(β) subject to β ∈ B. The weak convergence result, i.e.

β̂
p→ β0 can be obtained by replacing Condition (iv) by supβ∈B

∥∥∥Q̂n(β)−Q0(β)
∥∥∥ p→ 0.

Proof: see Theorem 2.1 in (Newey and McFadden, 1994).

Lemma 3.4. If fn : B → R is a continuous function, B is compact, and fn
a.s.→ f , then

lim
n→∞

∫
B
fndu =

∫
B
fdu. (23)

Proof : since B is compact and fn is continuous, the image fn(B) is a compact subset of R and

hence, closed and bounded. Then, the result follows from the bounded convergence theorem (Wade,

1974).

3.2 Almost sure convergence

Theorem 3.5. Under the assumptions of Lemma 3.1 and

(i) if β̂ 6= β0, then f(yi|β̂) 6= f(yi|β0)

(ii) β ∈ B where B ⊆ Rp is compact

(iii) ln f(yi|β) are continuous at each β ∈ B with probability 1

(iv) E[supβ∈B|ln f(yi|β)|] <∞

then

β̂(m) a.s.→ β0 (24)

where β̂(m) maximizes the objective function
∑n
i=1 ln f̂

(m)
n (yi|β) subject to β ∈ B

Proof : as in Theorem 2.5 in (Newey and McFadden, 1994, p. 2131), I proceed by verifying the

conditions in Lemma 3.3. Note that Conditions (i), (ii), and (iii) of Lemma 3.3 are conditions on

the density and the parameter space of B; in Theorem 2.5, Newey and McFadden (1994) verify that

these hold under the usual regularity conditions of MLE (i.e. Conditions (i)-(iv) of this theorem).

Condition (iv) of Lemma 3.3 implies that we have to prove that

sup
β∈B

∥∥∥∥∥ 1

n

n∑
i=1

ln f̂ (1)n (yi|β)− E[ln f(yi|β)]

∥∥∥∥∥ a.s.→ 0. (25)
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To that end, first note that since f̂ (1)n = f̂n,OLS , we have by Lemma 3.1

sup
x∈R

∥∥∥f̂ (1)n (x)− f(x)
∥∥∥ a.s.→ 0. (26)

Now note that

sup
β∈B

∥∥∥f̂ (1)n (yi|β)− f(yi|β)
∥∥∥ ≤ sup

β∈Rp

∥∥∥f̂ (1)n (yi|β)− f(yi|β)
∥∥∥ ≤ sup

x∈R

∥∥∥f̂ (1)n (x)− f(x)
∥∥∥ (27)

implying that

sup
β∈B

∥∥∥f̂ (1)n (yi|β)− f(yi|β)
∥∥∥ a.s.→ 0. (28)

Condition (iii) implies that infβ∈B f(yi|β) > 0. Thus, ∃ ε > 0 such that infβ∈B f(yi|β) > ε. Also,

by (28) for any ε > 0,

Pr

(
lim
n→∞

sup
β∈B

∥∥∥f̂ (1)n (yi|β)− f(yi|β)
∥∥∥ < ε

)
= 1 =⇒ Pr

(
lim
n→∞

inf
β∈B

f̂ (1)n (yi|β) > 0

)
= 1. (29)

This, together with Condition (ii), ensures that for n large enough both ln f(yi|β) and ln f̂
(1)
n (yi|β)

are uniformly continuous with probability 1 such that by the uniform continuous mapping theorem

(Kasy, 2015, p. 9)

sup
β∈B

∥∥∥ln f̂ (1)n (yi|β)− ln f(yi|β)
∥∥∥ a.s.→ 0. (30)

Note that by Condition (ii) and (iii) ln f̂
(1)
n (yi|β) is bounded and we may invoke the uniform law

of large numbers such that,

sup
β∈B

∥∥∥∥∥ 1

n

n∑
i=1

ln f̂ (1)n (yi|β)− E[ln f̂ (1)n (yi|β)]

∥∥∥∥∥ a.s.→ 0. (31)

Also, by Lemma 3.4

lim
n→∞

E[ln f̂ (1)n (yi|β)] = E[ln f(yi|β)] (32)

Now define the following variables

A ,

∥∥∥∥∥ 1

n

n∑
i=1

ln f̂ (1)n (yi|β)− E[ln f(yi|β)]

∥∥∥∥∥ (33)

A1 ,

∥∥∥∥∥ 1

n

n∑
i=1

ln f̂ (1)n (yi|β)− E[ln f̂ (1)n (yi|β)]

∥∥∥∥∥ (34)

A2 ,
∥∥∥E[ln f̂ (1)n (yi|β)]− E[ln f(yi|β)]

∥∥∥ . (35)

Then, by the triangle inequality (‖u+ v‖ ≤ ‖u‖ + ‖v‖), we have A ≤ A1 + A2, and by (31) and

(32), supβ∈B A1
a.s.→ 0 and limn→∞ supβ∈B A2 = 0. Condition (iv) of Lemma 3.3 follows:

sup
β∈B

∥∥∥∥∥ 1

n

n∑
i=1

ln f̂ (1)n (yi|β)− E[ln f(yi|β)]

∥∥∥∥∥ a.s.→ 0. (36)
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Thus, by Lemma 3.3,

β̂(1) a.s.→ β0. (37)

For the sake of completeness, I prove also that the constraint c(β) = 1
n

∑n
i=1

[
yi − x′iβ

]
= 0

does not affect this result. Let C ⊆ B be the subset for which c(β) = 0. That is, C = {β ∈

B : c(β) = 0}. First note that the set C is the level set of the continuous function c(β) such

that C is closed. Also, C is bounded since C ⊆ B and B is bounded. Hence, C is compact such

that β̂(1) = arg supβ∈C
∑n
i=1 ln f̂

(1)
n (yi|β). Denote β̃ = arg supβ∈B

∑n
i=1 ln f̂

(1)
n (yi|β) as the global

maximizer of the objective function over B. Newey and McFadden (1994, p. 2122) show that for

(37) to hold, it suffices to prove that

1

n

n∑
i=1

ln f̂ (1)n (yi|β̂(1))
a.s.→ 1

n

n∑
i=1

ln f̂ (1)n (yi|β̃) (38)

holds. For that purpose, define:

B ,

∥∥∥∥∥sup
β∈C

1

n

n∑
i=1

ln f̂ (1)n (yi|β)− sup
β∈B

1

n

n∑
i=1

ln f̂ (1)n (yi|β)

∥∥∥∥∥ (39)

B1 ,

∥∥∥∥∥sup
β∈C

1

n

n∑
i=1

ln f̂ (1)n (yi|β)− sup
β∈C

E[ln f(yi|β)]

∥∥∥∥∥ (40)

B2 ,

∥∥∥∥∥sup
β∈C

E[ln f(yi|β)]− sup
β∈B

E[ln f(yi|β)]

∥∥∥∥∥ (41)

B3 ,

∥∥∥∥∥sup
β∈B

E[ln f(yi|β)]− sup
β∈B

1

n

n∑
i=1

ln f̂ (1)n (yi|β)

∥∥∥∥∥ . (42)

Again by the triangle equality, B ≤ B1 +B2 +B3. From (36), it is easy to show that B1
a.s→ 0 and

B3
a.s→ 0. To show that B2

a.s→ 0, first observe that by Conditions (i) and (ii) of Lemma 3.1 and the

strong law of large numbers,

Pr

(
lim
n→∞

[
1

n

n∑
i=1

[
yi − x′iβ0

]]
= 0

)
= 1. (43)

This implies

Pr
(

lim
n→∞

β0 ∈ C
)

= 1 =⇒ Pr

(
lim
n→∞

[
arg sup
β∈B

E[ln f(yi|β)]

]
∈ C

)
= 1 (44)

=⇒ Pr
(

lim
n→∞

B2 = 0
)

= 1 (45)

and the last implies by definition of almost sure convergence that B2
a.s→ 0. Hence, B a.s→ 0 and the

constraint does not affect the result.

Lastly, to show that the algorithm asymptotically converges to β0, remark that (37) implies by

Lemma 3.2 that supx∈R

∥∥∥f̂ (2)n (x)− f(x)
∥∥∥ a.s.→ 0 where f̂ (2)n (x) is the kernel density estimator based

on the residuals corresponding to β̂(1). Thus, by identical reasoning, we obtain β̂(m) a.s.→ β0 for

m = 1, 2, ..,M .
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Remark: Conditions (i)-(iv) are the regularity conditions that are necessary for the convergence

of MLE under the true density. Thus, the only additional conditions imposed are those in Lemma

3.1 of which Condition (i) of zero mean goes without loss of generality in the context of linear

regression as we can always adjust the intercept parameter in β if the center of f is not zero.

Condition (ii) may be restrictive in some cases as it rules out, for instance, the t(v)-distribution

with 1 < v ≤ 2. However, in the numerical study in Section 5.3, we observe that RKDRE performs

well for t(2). In fact, its performance is best of all considered estimators under that distribution.

Hence, the practical use of RKDRE does not seem to be restricted to distributions with finite

variance. Conditions (iii) and (iv) are easy to verify in practice, and Conditions (v)-(vii) are

technical requirements on the kernel and bandwidth. Note that (v) is not satisfied by the Gaussian

kernel since that kernel does not have bounded support. In practice, however, the Gaussian kernel

entails a significant computational advantage (see Section 4). As Silverman (1986, p. 43) notes,

the kernels vary little in performance and it is legitimate (and even desirable) to base the choice

of kernel on other considerations such as the computational effort involved.
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3.3 Asymptotic normality and efficiency

Theorem 3.6. If model (1) holds, ε1, ε2, .., εn are i.i.d. with unknown density f(x) where f is a

continuous function symmetric around zero with bounded continuous derivatives that satisfies

(i)
∫
xf(x)dx = 0

(ii) 0 <
∫ ∣∣x3∣∣ f(x)dx <∞,

(iii) E
[(

∂ ln f(x)
∂x

)2
+ ∂2 ln f(x)

∂x2 + ∂3 ln f(x)
∂x3

]
<∞

{xi}
∞
i=1 satisfy,

(iv) ∃ 0 < M <∞ such that
∥∥xi∥∥ < M ∀ i = 1, 2, .., n

(v) limn→∞ Sn = Q where Sn = 1
n

∑n
i=1 xix

′
i,

K(x) is a symmetric and four times continuously differentiable function such that

(vi) ∃ 0 < ρ <∞ such that K(x) = 0 ∀ x : ‖x‖ ≥ ρ

holds, and

(vi) when n→∞, nh4n →∞ and nh8n → 0,

(vii) β̂(0) − β0 = Op(n
− 1

2 ),

then β̂(m) for m = 1, 2..,M is asymptotically normal and efficient. That is,

√
n(β̂(m) − β0)

d→ N
(

0, I−1ββ

)
. (46)

Proof: To show that β̂(1) is asymptotically normal and efficient, see the proof of Theorem 2.1 in

(Yao and Zhao, 2013). Then, the normality and efficiency of the following iterations follow triv-

ially. The only condition on the initial estimator β̂(0) is that β̂(0) − β0 = Op(n
− 1

2 ). For β̂(1) this

follows from the proof in (Yao and Zhao, 2013). Hence, all following estimates also satisfy (46).

Remark: As Yao and Zhao (2013, p. 4506) note, under Condition (i), (ii) and (iv) of Theorem 3.6,

the condition on the initial estimate, i.e. Condition (viii) of Theorem 3.6, is satisfied for the OLS

estimator. In the proof of Theorem 3.6, I have made the simplification to disregard the effect of the

constraint that the residuals sum to zero. One might expect that this constraint yields a theoretical

disadvantage in the sense that the Cramér-Rao lower bound is not achieved. A derivation of the

effect of the constraint on normality and efficiency is not attempted here, and is as such left as a

topic of further study.
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4 EM algorithm

4.1 EM algorithm (Yao and Zhao, 2013)

I use an adapted version of the expectation-maximization (EM) algorithm suggested by Yao and

Zhao (2013) to render the proposed algorithm computationally feasible. For the purpose of this

section, let β̂(m)
(k) be the k-th iteration of the EM algorithm for the m-th step of the RKDRE algo-

rithm. Also, for brevity, Kh(x) = 1
hn
K
(
x
hn

)
. Then, Yao and Zhao (2013) update the parameter

as follows:

E-step:

p
(m)
ij,(k+1) =

Kh

(
yi − x′iβ

(m)
(k) − e

(m−1)
j

)
∑
l 6=iKh

(
yi − x′iβ

(m)
(k) − e

(m−1)
l

) , j 6= i (47)

M-step:

β̂
(m)
(k+1) = arg max

β

n∑
i=1

∑
j 6=i

[
p
(m)
ij,(k+1) lnKh

(
yi − x′iβ − e

(m−1)
j

)]
(48)

which has an analytical solution in case the Gaussian kernel, i.e. K(x) = 1√
2π

exp
{
− 1

2x
2
}
, is

used. Yao and Zhao (2013) show that the steps constitute an EM algorithm for the optimization

of the log-likelihood over a leave-one-out kernel density estimate defined as

f̃n(yi|β) =
1

(n− 1)hn

n∑
j 6=i

K

yi − x′iβ − e(m−1)j

hn

 . (49)

That is, Q̃(β̂
(m)
(k+1)) ≥ Q̃(β̂

(m)
(k) ) where

Q̃(β) =

n∑
i=1

ln
1

(n− 1)hn

n∑
j 6=i

K

yi − x′iβ − e(m−1)j

hn

 . (50)

The EM algorithm entails a significant computational advantage over optimization of 50 by means

of non-linear optimization routines.

4.2 Constrained EM algorithm

In contrast to the approach of Yao and Zhao (2013) as described above, I use a full-kernel method

(where the kernel density is based on all n observations). The intuition behind that choice is as

follows; consider the case where a certain residual e(m−1)j is extremely large. In the full-kernel

method, p(m)
ij,(k+1) would in that case be close to zero for all i 6= j and close to one for i = j.

This implies that the effect of the extreme residual is limited to the observation for which the

following iteration of β is likely to lead to a residual that is similar in magnitude. Hence, the

effect of the large residual on the maximization in (48) is small. In the leave-one-out method, the

effect of the residual may be considerably larger as p(m)
ij,(k+1) is likely to have a substantial positive

value for several observations. Then, the extreme residual would have a much larger influence on

the estimation. This intuition is corroborated by numerical results. I find that in practice, the
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performance of the leave-one-out method is inferior to the full-kernel method. In fact, the results

of the numerical study shown in (Yao and Zhao, 2013) are also obtained by the full-kernel method

(even though it is reported that the leave-one-out kernel is used).6

Another difference to the algorithm above is the imposed constraint that the residuals sum to zero,

i.e. c(β) = 1
n

∑n
i=1(yi − x′iβ) = 0. This constraint is critical for the convergence of the algorithm

as the intercept may ‘wander off’ if it is not imposed. Thus, I maximize

Q̂(β) =

n∑
i=1

ln
1

nhn

n∑
j=1

K

yi − x′iβ − e(m−1)j

hn

 s.t.
n∑
i=1

[
yi − x′iβ

]
= 0. (51)

When K is the Gaussian kernel, this can be maximized by the following EM algorithm:

E-step:

p
(m)
ij,(k+1) =

exp

{
− 1

2h2
n

(
yi − x′iβ

(m)
(k) − e

(m−1)
j

)2}
∑n
l=1 exp

{
− 1

2h2
n

(
yi − x′iβ

(m)
(k) − e

(m−1)
l

)2} (52)

M-step:

β̂
(m)
(k+1) = β̂OLS −

[
n∑
i=1

xix
′
i

]−1 n∑
i=1

xi

n∑
j=1

p
(m)
ij,(k+1)e

(m−1)
j

− 1

n

[
n∑
i=1

xix
′
i

]−1 n∑
i=1

xi

n∑
i=1

n∑
j=1

p
(m)
ij,(k+1)e

(m−1)
j

(53)

Theorem 4.1. The objective function (51) decreases after each iteration of (52) and (53) until a

fixed point is reached.

Proof : under the Gaussian kernel, the constraint that c(β) = 0, and a full-kernel method, the

M-step in (48) becomes

β̂
(m)
(k+1) = arg min

β

n∑
i=1

n∑
j=1

[
p
(m)
ij,(k+1)

(
yi − x′iβ − e

(m−1)
j

)2]
s.t.

n∑
i=1

[
yi − x′iβ

]
= 0. (54)

This can be solved by Lagrangian optimization. Define the Lagrangian L as

L (β, λ) =

n∑
i=1

n∑
j=1

[
p
(m)
ij,(k+1)

(
yi − x′iβ − e

(m−1)
j

)2]
− λ

n∑
i=1

[
yi − x′iβ

]
(55)

with first-order conditions

∂L
∂β

=− 2

n∑
i=1

n∑
j=1

[
p
(m)
ij,(k+1)xi

(
yi − x′iβ − e

(m−1)
j

)]
− λ

n∑
i=1

xi = 0 (56)

∂L
∂λ

=

n∑
i=1

[
yi − x′iβ

]
= 0. (57)

6I thank Weixin Yao of the University of California, Riverside for sharing his Matlab code.
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Since the first element of each explanatory variable, xi1 = 1, the first element of the first-order

condition in (56) implies

λ =− 2

n

n∑
i=1

n∑
j=1

[
p
(m)
ij,(k+1)

(
yi − x′iβ − e

(m−1)
j

)]
=− 2

n

n∑
i=1

n∑
j=1

[
p
(m)
ij,(k+1)

(
yi − x′iβ

)]
− 2

n

n∑
i=1

n∑
j=1

p
(m)
ij,(k+1)e

(m−1)
j

=− 2

n

n∑
i=1

[
yi − x′iβ

] n∑
j=1

p
(m)
ij,(k+1) −

2

n

n∑
i=1

n∑
j=1

p
(m)
ij,(k+1)e

(m−1)
j

=− 2

n

n∑
i=1

n∑
j=1

p
(m)
ij,(k+1)e

(m−1)
j

(58)

where the last equality follows from (57). Then, by plugging λ in (56), rearranging terms and using

that
∑n
j=1 p

(m)
ij,(k+1) = 1, we obtain

β̂
(m)
(k+1) =

[
n∑
i=1

xix
′
i

]−1 n∑
i=1

x′iyi −

[
n∑
i=1

xix
′
i

]−1 n∑
i=1

xi

n∑
j=1

p
(m)
ij,(k+1)e

(m−1)
j

− 1

n

[
n∑
i=1

xix
′
i

]−1 n∑
i=1

xi

n∑
i=1

n∑
j=1

p
(m)
ij,(k+1)e

(m−1)
j .

(59)

Recognize that the first term is equal to β̂OLS . Then, the fact that (52) and (53) are the E- and

M-step, respectively, of an EM algorithm for (51) follows trivially from the proof of Theorem 2.2

in (Yao and Zhao, 2013, p.4511).

The EM algorithm is considered converged in case max
∣∣∣β̂(m)

(k) − β̂
(m)
(k+1)

∣∣∣ is smaller than a threshold

value where max |A| denotes the largest (absolute) element in A. In the m-th repetition of the

RKDRE algorithm, the EM algorithm is initialized by the estimate of the (m − 1)-th repetition.

That is, β̂(m)
(0) = β̂(m−1).
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5 Numerical study

To assess small sample performance of the RKDRE estimator (and other semiparametric adap-

tive estimators), I perform several simulation studies. For the purpose of this section, the data

generating process is

yi = x′iβ + εi, (60)

where β is a p × 1 vector containing an intercept and the parameters corresponding to p − 1

explanatory variables. In the comparative study in Section 5.3, I investigate performance for

p = 2, p = 5, and p = 10. For p = 10, β = [1,−1, 2,−0.5, 3, 1,−1, 2,−0.5, 3]
′. For p = 2 and p = 5,

β consists of the first two and five coefficients, respectively. The sample size n is varied over 50,

100, 500, and 1000. All simulation results are based on 500 replications. The explanatory variables

in xi are independent realizations of a standard normal distribution. For the error distributions,

I draw from Hsieh and Manski (1987) and Yao and Zhao (2013). The distributions considered are

(A) standard normal distribution

(B) variance-contaminated normal distribution; 0.9N (0, 19 ) + 0.1N (0, 9)

(C) t-distribution with two degrees of freedom

(D) bimodal (symmetric) mixture of normal distributions; 0.5N (−3, 1) + 0.5N (3, 1)

(E) uniform distribution on
[
− 1

2

√
12; 1

2

√
12
]

(F) Gamma(2,2)7

(G) skewed mixture of normal distributions; 0.3N (−1.4, 1) + 0.7N (0.6, 0.16)

(H) log-normal distribution; exp(Z) where Z ∼ N (0, 1).

The distributions are centered and scaled to have mean zero and variance one (where necessary

and possible). The t(2)-distribution is left unscaled as its variance is infinite. In Section 5.1 and

Section 5.2, I discuss the choices for various parameters used in the simulation study. The reader

that is less interested in such a discussion, may skip these subsections and proceed directly to the

results of the numerical study as described in Section 5.3. Lastly, in Section 5.4, I compare the

computation time of the different methods.

5.1 Implementation of existing semi-parametric estimators

All estimators discussed in Section 2 are implemented. Here, I discuss technical details on the

parameters of these estimators that are necessary for replicability. I use OLS wherever an initial

estimate is required. Also, I use the Gaussian kernel for all implemented kernel methods. The

choice of bandwidth is discussed in Section 5.2.

For the SBS estimator, the trimming parameter t (as defined in Section 2) has to be specified.

As Hsieh and Manski (1987), I find that t = 8 performs well for all investigated cases. Hsieh and
7Here, I use the shape-scale notation, i.e. if X ∼ Gamma(k, θ), E[X] = kθ and Var(X) = kθ2.
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Manski (1987) find for n = 50 and p = 2 that performance (in terms of mean square error) tends

to increase when t is increased from 3 to 8 and tends to remain stable when t is increased from 8

to 16 (or so). When t is increased further, very rare outlying values are admitted and performance

begins to deteriorate. Hsieh and Manski (1987) show that this pattern is relatively robust with

respect to the error distribution. By experimentation not reported here, I find that this same

pattern is observable for larger sample sizes and more explanatory variables as well such that I use

t = 8 throughout this section.

Newey (1988) finds for the LGMM estimator that J = 3 works best when n = 50 and p = 2. I

find that this holds for larger sample sizes and more explanatory variables as well. For certain

distributions, the performance is relatively stable over J , whereas for some distributions (such as

the bimodal mixture) a deviation from J = 3 leads to a sharp deterioration of performance. When

n rises, the performance of J between 4 and 7 increases relatively to the performance of J = 2 and

J = 3. However, for all cases included in the study, J = 3 performs either best or close to best

such that I use J = 3 for the purpose of the simulation. Also, experimentation corroborated the

finding of Newey (1988) that the LGMM estimator works better if it is based on the ‘transformed’

moments than if the ‘raw’ and/or ‘weighted’ moments are used. Hence, the results for the trans-

formed method are shown here. Lastly, I observed that the above conclusions hold similarly for

LGMMS such that I also use J = 3 transformed moments for the implementation of LGMMS.

Lastly, the implementation of YDG can be done by an EM algorithm and a non-linear optimization

method. In Appendix A.1, I prove that the following EM algorithm increases the maximization

criterion of YDG in (19) after each iteration.8

E-step:

pij,(k+1) =

exp

{
− 1

2h2
n

(
yi − yj −

(
x∗i − x

∗
j

)′
β∗
)2
}

∑n
j 6=i exp

{
− 1

2h2
n

(
yi − yj −

(
x∗
i
− x∗

j

)′
β∗
)2
} , j 6= i

M-step:

β̂∗Y DG,(k+1) =

 n∑
i=1

n∑
j 6=i

pij,(k+1)

(
x∗i − x

∗
j

)(
x∗i − x

∗
j

)′−1 n∑
i=1

n∑
j 6=i

(
x∗i − x

∗
j

)
(yi − yj)

A disadvantage of this EM algorithm compared to the EM algorithms of (R)KDRE as formed

by (52) and (53) is that it can not be simplified further, and hence computation is much slower.

In fact, only for p = 2, the EM algorithm for YDG is marginally faster than using a non-linear

optimization method (as in that case
(
x∗i − x

∗
j

)
is a scalar). In all other instances, using a quasi-

Newton optimization optimization method is faster. In the numerical study in Section 5.2 and 5.3,

I use the quasi-Newton optimization method (BFGS) implemented in the R function optim().
8Yao and Zhao (2013) note that an EM algorithm can be similarly used for the implementation of YDG, but

this procedure is not made explicit.
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The estimators are implemented by the R functions rkdre(), kdre(), rkdre(), ydg(), sbs(), and lgmm()

provided in Appendix B.1-B.5. Note that lgmm() implements both LGMM and LGMMS depending

on whether symmetric = FALSE or symmetric = TRUE, respectively. Also, even though I only show

results for the ‘transformed’ LGMM(S), the code allows for the implementation of the ‘raw’ and

‘weighted’ moments as well. Lastly, ydg() allows both for non-linear optimization and optimization

using the EM algorithm.

5.2 Choice of bandwidth

The problem of choosing the bandwidth parameter h is of crucial importance in density estimation

(Silverman, 1986, p. 43; Pagan and Ullah, 1999, p. 49). It determines the smoothness of the esti-

mated density. That is, if the bandwidth is low, the estimated density strongly ‘follows’ the data.

This may come at the cost of consisting spurious patterns that do not reflect the true distribution

but are merely a result of randomness. However, if the bandwidth is too high, the density will

be ‘oversmoothed’ in the sense that it obscures the underlying structure. As Pagan and Ullah

(1999) show, the oversmoothed (undersmoothed) estimate has smaller (larger) variance but larger

(smaller) bias with respect to the true distribution.

One possible choice is to specify h subjectively, finding by eye the balance between under- and

oversmoothing. This method is often used in data exploration (Silverman, 1986, p. 43). Surely,

with regard to the proposed semiparametric estimator, practitioners would be better served if this

subjective choice could be avoided by means of a rule-of-thumb. Silverman (1986) considers three

different possibilities:

hn = 1.06σn−
1
5 (h.1)

hn = 0.79Rn−
1
5 (h.2)

hn = 0.90An−
1
5 , (h.3)

where σ is the standard deviation, R is the inter-quartile range, and A = min
(
σ, R

1.34

)
. In practice,

these values can be estimated by their sample equivalents. The fact that hn ∝ n−
1
5 has a technical

reason; it can be shown that this choice of hn minimizes the (approximation of) the Mean Integrated

Square Error (MISE) defined as

MISE =

∫ [(
Bias f̂n

)2
+ Var

(
f̂n

)]
dx.

To render this intuitively plausible, Pagan and Ullah (1999, p. 25) show that
(
Biasf̂n

)2
= O

(
h4
)

and Var
(
f̂n

)
= O (nh)

−1 where O is the usual Big-O-notation. Hence, if these two terms are to

be of the same order of magnitude, it must hold that hn ∝ n−
1
5 . With respect to the proposed

RKDRE algorithm, an additional advantage of specifying the bandwidth according to hn ∝ n−
1
5

is that the requirements on the bandwidth for almost sure convergence (i.e.
√
nhn

lnn → ∞) and

22



Table 1: Mean (and standard deviation) of rule-of-thumb bandwidth under different distributions

(A) (B) (C) (D) (E) (F) (G) (H)

hn = 1.06σ̂n−
1
5

0.420 0.405 1.116 0.419 0.420 0.417 0.454 0.401
(0.028) (0.098) (0.787) (0.014) (0.019) (0.048) (0.041) (0.129)

hn = 0.79R̂n−
1
5

0.415 0.160 0.531 0.586 0.530 0.380 0.359 0.210
(0.049) (0.021) (0.088) (0.028) (0.054) (0.053) (0.100) (0.037)

hn = 0.90Ân−
1
5

0.341 0.136 0.452 0.356 0.357 0.318 0.300 0.178
(0.031) (0.018) (0.075) (0.012) (0.016) (0.040) (0.075) (0.031)

Standard deviations in parentheses. Results are based on 500 replications. Column headers (A)-(H) refer
to the distributions described in this section. Bandwidth is estimated on OLS residuals of the samples
considered in Table 2.

asymptotic normality and efficiency (i.e. nh4n →∞ and nh8n → 0) are satisfied.9

If we assume that f is the density of a normal distribution and the Gaussian kernel is used, it can

be shown that the rule-of-thumb in (h.1) minimizes the approximated MISE (AMISE). Naturally,

had we known that the errors are normally distributed, density estimation would not have been

necessary. Therefore, different rule-of-thumbs are proposed, especially to increase performance in

the presence of skewness, fat tails, and bi- or multi-modal distributions. Silverman (1986) finds

that (h.2) increases performance with respect to (h.1) in case of skewness and heavy tails, but

makes matters worse for bi-modal distributions. In that sense, he finds that (h.3) is the ‘best of

both worlds’, performing well for a wide range of range densities. Table 1 shows the mean (and

standard deviation) of the bandwidth obtained by the three different rules-of-thumb on the OLS

residuals for distribution (A)-(H). In general, we see that (h.2) and (h.3) are smaller than (h.1).

As Silverman (1986), we find that (h.2) fails for the bi-modal distribution (E), since it leads to

more smoothing than (h.1) whereas in general less smoothing is required to properly capture the

bimodality of the distribution.

Despite, the crucial importance of the bandwidth parameter, Yao and Zhao (2013) and Yuan and

De Gooijer (2007) do not investigate the effect of different bandwidth parameters on the per-

formance of YDG and KDRE, respectively. Also, even though Hsieh and Manski (1987) show

simulation results for different constant values of h, to the best of my knowledge, no study has

explored the performance of the SBS estimator under bandwidths based on rules-of-thumb. Hence,

Table 2 shows the root mean square error (RMSE) of the estimators under different bandwidth

parameters not only for RKDRE, but also for KDRE, YDG and SBS. The analysis is done for

n = 100 and p = 2. This choice is based on computational convenience. However, when testing for

several scenarios with larger sample size and/or a larger number of explanatory variables, I found

that conclusions do not depend on a specific choice for n and/or p. The ‘optimal’ bandwidth found

in this section is used in the analysis in Section 5.3.

9See Condition (vii) of Lemma 3.1 and C4 in (Yao and Zhao, 2013, p. 4506)
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Table 2: Root mean square error of kernel-based estimators for different bandwidth values

Intercept Slope

RKDRE KDRE YDG SBS RKDRE KDRE YDG SBS

(A) Standard normal distribution
h = 0.1 0.1015 0.1014 0.1067 0.1021 0.1270 0.1023 0.3505 0.1134
h = 0.2 0.1023 0.1014 0.1015 0.1026 0.1368 0.1061 0.2036 0.1230
h = 0.3 0.1021 0.1027 0.1015 0.1049 0.1209 0.1072 0.1383 0.1180
h = 0.4 0.1019 0.1039 0.1015 0.1066 0.1109 0.1057 0.1174 0.1118
h = 0.5 0.1017 0.1048 0.1016 0.1084 0.1061 0.1041 0.1084 0.1078
h = 0.6 0.1017 0.1056 0.1016 0.1107 0.1037 0.1029 0.1045 0.1056
h = 0.7 0.1016 0.1063 0.1016 0.1136 0.1025 0.1022 0.1027 0.1042
h = 0.8 0.1016 0.1068 0.1016 0.1167 0.1019 0.1017 0.1020 0.1034
h = 0.9 0.1015 0.1070 0.1016 0.1201 0.1015 0.1015 0.1016 0.1028
hn = 1.06σ̂n−

1
5 0.1018 0.1039 0.1016 0.1066 0.1093 0.1054 0.1136 0.1106

hn = 0.79R̂n−
1
5 0.1018 0.1038 0.1017 0.1067 0.1100 0.1056 0.1160 0.1112

hn = 0.9Ân−
1
5 0.1020 0.1031 0.1017 0.1054 0.1154 0.1068 0.1267 0.1153

(B) Variance-contaminated normal distribution
h = 0.1 0.1011 0.1029 0.1657* 0.1028 0.0462 0.0773 1.4372* 0.0512
h = 0.2 0.1012 0.1034 0.1358* 0.1031 0.0410 0.0500 1.0093* 0.0491
h = 0.3 0.1012 0.1038 0.1140 0.1060 0.0404 0.0436 0.4915 0.0687
h = 0.4 0.1013 0.1046 0.1029 0.1109 0.0409 0.0429 0.2027 0.0990
h = 0.5 0.1013 0.1058 0.1014 0.1188 0.0421 0.0437 0.0618 0.1356
h = 0.6 0.1013 0.1075 0.1013 0.1303 0.0439 0.0452 0.0562 0.1741
h = 0.7 0.1013 0.1095 0.1013 0.1457 0.0462 0.0474 0.0518 0.2110
h = 0.8 0.1013 0.1117 0.1013 0.1643 0.0487 0.0497 0.0509 0.2426
h = 0.9 0.1013 0.1141 0.1013 0.1848 0.0513 0.0522 0.0504 0.2627
hn = 1.06σ̂n−

1
5 0.1013 0.1047 0.1016 0.1123 0.0413 0.0431 0.0856 0.1293

hn = 0.79R̂n−
1
5 0.1011 0.1033 0.1667* 0.1023 0.0418 0.0539 1.2722* 0.0465

hn = 0.9Ân−
1
5 0.1011 0.1032 0.1581* 0.1025 0.0433 0.0594 1.3013* 0.0459

(C) t-distribution with two degrees of freedom
h = 0.1 0.3367 0.3374 0.2720* 0.3377 0.2890 0.3105 1.9816* 0.3059
h = 0.2 0.3359 0.3375 0.3394* 0.3364 0.2255 0.2996 2.6408* 0.2701
h = 0.3 0.3320 0.3406 0.3483* 0.3364 0.1716 0.2764 2.8149* 0.2275
h = 0.4 0.3313 0.3420 0.4024* 0.3375 0.1543 0.2446 3.3200* 0.1936
h = 0.5 0.3312 0.3463 0.4203* 0.3384 0.1466 0.2127 3.3655* 0.1751
h = 0.6 0.3311 0.3440 0.3846* 0.3394 0.1428 0.1766 3.1670* 0.1659
h = 0.7 0.3312 0.3445 0.3824* 0.3406 0.1408 0.1669 3.0522* 0.1618
h = 0.8 0.3313 0.3449 0.3504* 0.3422 0.1403 0.1605 2.7421* 0.1620
h = 0.9 0.3314 0.3453 0.3650* 0.3444 0.1407 0.1566 2.6561* 0.1662
hn = 1.06σ̂n−

1
5 0.3330 0.3402 0.3713 0.4004 0.1478 0.1533 1.6033 1.3975

hn = 0.79R̂n−
1
5 0.3314 0.3436 0.4141* 0.3384 0.1451 0.1725 3.4324* 0.1538

hn = 0.9Ân−
1
5 0.3314 0.3443 0.3895* 0.3377 0.1503 0.1852 3.2577* 0.1586

(D) Bi-modal mixture of normal distributions
h = 0.1 0.1067 0.1071 0.1070 0.1071 0.0438 0.0621 0.0532 0.0518
h = 0.2 0.1068 0.1063 0.1069 0.1066 0.0361 0.0375 0.0358 0.0525
h = 0.3 0.1069 0.1061 0.1069 0.1065 0.0345 0.0349 0.0344 0.0899
h = 0.4 0.1069 0.1053 0.1069 0.1050 0.0341 0.0347 0.0343 0.1498
h = 0.5 0.1069 0.1032 0.1069 0.0983 0.0344 0.0356 0.0344 0.2246
h = 0.6 0.1069 0.0992 0.1069 0.0827 0.0359 0.0384 0.0355 0.2850
h = 0.7 0.1068 0.0931 0.1068 0.0670 0.0404 0.0445 0.0393 0.2790
h = 0.8 0.1068 0.0859 0.1068 0.0684 0.0498 0.0543 0.0486 0.1993
h = 0.9 0.1069 0.0796 0.1068 0.0714 0.0623 0.0656 0.0626 0.1095
hn = 1.06σ̂n−

1
5 0.1069 0.1051 0.1069 0.1046 0.0341 0.0347 0.0577 0.1617

hn = 0.79R̂n−
1
5 0.1069 0.1002 0.1069 0.0864 0.0353 0.0373 0.0590 0.2804

hn = 0.9Ân−
1
5 0.1069 0.1058 0.1069 0.1061 0.0342 0.0346 0.0577 0.1194

Continued on next page
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Table 2 – continued from previous page

Intercept Slope

RKDRE KDRE YDG SBS RKDRE KDRE YDG SBS

(E) Uniform distribution
h = 0.1 0.0955 0.0949 0.0955 0.0927 0.0831 0.0942 0.0689 0.0921
h = 0.2 0.0956 0.0908 0.0956 0.0858 0.0677 0.0771 0.0596 0.0841
h = 0.3 0.0957 0.0861 0.0957 0.0752 0.0657 0.0727 0.0633 0.0883
h = 0.4 0.0958 0.0817 0.0958 0.0650 0.0704 0.0748 0.0688 0.0888
h = 0.5 0.0958 0.0780 0.0959 0.0574 0.0755 0.0786 0.0744 0.0869
h = 0.6 0.0959 0.0755 0.0959 0.0528 0.0806 0.0827 0.0801 0.0841
h = 0.7 0.0960 0.0739 0.0960 0.0514 0.0853 0.0868 0.0857 0.0817
h = 0.8 0.0960 0.0733 0.0960 0.0524 0.0896 0.0906 0.0912 0.0814
h = 0.9 0.0960 0.0733 0.0961 0.0542 0.0932 0.0938 0.0962 0.0835
hn = 1.06σ̂n−

1
5 0.0958 0.0808 0.0958 0.0630 0.0712 0.0754 0.0697 0.0887

hn = 0.79R̂n−
1
5 0.0958 0.0773 0.0959 0.0561 0.0763 0.0793 0.0751 0.0835

hn = 0.9Ân−
1
5 0.0958 0.0834 0.0958 0.0689 0.0683 0.0735 0.0662 0.0897

(F) Gamma(2,2)
h = 0.1 0.1072 0.1071 0.1162* 0.1062 0.0881 0.0970 0.6053* 0.0930
h = 0.2 0.1069 0.1079 0.1086 0.1122 0.0714 0.0804 0.2804 0.0790
h = 0.3 0.1068 0.1151 0.1074 0.1377 0.0680 0.0738 0.1420 0.0764
h = 0.4 0.1069 0.1257 0.1067 0.1715 0.0695 0.0731 0.0824 0.0771
h = 0.5 0.1070 0.1366 0.1068 0.2062 0.0720 0.0747 0.0771 0.0788
h = 0.6 0.1071 0.1463 0.1069 0.2389 0.0749 0.0771 0.0765 0.0807
h = 0.7 0.1071 0.1541 0.1070 0.2685 0.0779 0.0797 0.0777 0.0825
h = 0.8 0.1071 0.1600 0.1071 0.2950 0.0808 0.0822 0.0794 0.0841
h = 0.9 0.1072 0.1642 0.1071 0.3189 0.0834 0.0845 0.0813 0.0854
hn = 1.06σ̂n−

1
5 0.1069 0.1331 0.1068 0.1890 0.0704 0.0735 0.0800 0.0786

hn = 0.79R̂n−
1
5 0.1069 0.1294 0.1068 0.1779 0.0690 0.0734 0.0864 0.0775

hn = 0.9Ân−
1
5 0.1069 0.1224 0.1072 0.1555 0.0680 0.0736 0.1231 0.0773

(G) Skewed mixture of normal distributions
h = 0.1 0.1156 0.1161 0.1185 0.1176 0.0693 0.0940 0.2290 0.0789
h = 0.2 0.1156 0.1199 0.1160 0.1219 0.0541 0.0640 0.0764 0.0582
h = 0.3 0.1156 0.1260 0.1157 0.1362 0.0506 0.0557 0.0538 0.0666
h = 0.4 0.1156 0.1351 0.1157 0.1655 0.0506 0.0550 0.0503 0.0868
h = 0.5 0.1157 0.1469 0.1157 0.2141 0.0524 0.0570 0.0507 0.1089
h = 0.6 0.1157 0.1611 0.1157 0.2805 0.0554 0.0604 0.0524 0.1249
h = 0.7 0.1158 0.1766 0.1158 0.3561 0.0595 0.0648 0.0551 0.1303
h = 0.8 0.1159 0.1921 0.1158 0.4298 0.0645 0.0698 0.0588 0.1257
h = 0.9 0.1159 0.2063 0.1158 0.4925 0.0701 0.0749 0.0634 0.1144
hn = 1.06σ̂n−

1
5 0.1157 0.1453 0.1157 0.2012 0.0511 0.0557 0.0502 0.1010

hn = 0.79R̂n−
1
5 0.1157 0.1428 0.1157 0.1895 0.0499 0.0554 0.0518 0.0842

hn = 0.9Ân−
1
5 0.1156 0.1337 0.1156 0.1567 0.0500 0.0564 0.0547 0.0717

(H) Log-normal distribution
h = 0.1 0.1049 0.1064 0.1256* 0.1106 0.0259 0.0624 0.8594* 0.0508
h = 0.2 0.1049 0.1120 0.1488* 0.1260 0.0279 0.0387 1.0176* 0.0660
h = 0.3 0.1050 0.1176 0.1541* 0.1650 0.0321 0.0371 1.0343* 0.0923
h = 0.4 0.1051 0.1238 0.1432* 0.2056 0.0366 0.0399 0.7955* 0.1129
h = 0.5 0.1051 0.1296 0.1372* 0.2448 0.0410 0.0435 0.8963* 0.1309
h = 0.6 0.1052 0.1347 0.1425 0.2824 0.0450 0.0472 0.3867 0.1475
h = 0.7 0.1052 0.1390 0.1381 0.3178 0.0487 0.0506 0.3093 0.1634
h = 0.8 0.1052 0.1426 0.1349 0.3513 0.0520 0.0537 0.2910 0.1793
h = 0.9 0.1052 0.1454 0.1057 0.3834 0.0551 0.0566 0.0579 0.1956
hn = 1.06σ̂n−

1
5 0.1051 0.1308 0.1057 0.2294 0.0377 0.0404 0.0807 0.1412

hn = 0.79R̂n−
1
5 0.1050 0.1163 0.1377* 0.1430 0.0283 0.0374 0.9028* 0.0721

hn = 0.9Ân−
1
5 0.1049 0.1145 0.1452* 0.1306 0.0271 0.0394 0.9646* 0.0624

The sample size n = 100 and the number of variables (including intercept) p = 2. Results are based on 500
replications. For scenarios marked with *, the YDG estimator failed for some replications. In that case, the results
are averages over the replications where it did not fail.
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For RKDRE, we observe that the accuracy of the intercept estimate is very much robust against

different values of the bandwidth. This is likely to be due to the fact that RKDRE uses the con-

straint that the residuals sum to zero (and the intercept mostly accounts for the satisfaction of

this constraint). Hence, the bandwidth choice should be based on the effect on the accuracy of

the slope parameter. For that matter, we see that for the standard normal distribution (A), the

RMSE is a roughly monotonically decreasing function of h. To see why this makes sense, note

that the Gaussian kernel is used such that the larger h, the closer the density represents a normal

density. In Table 3 in Section 5.3, one may verify that the RMSE of OLS under this scenario is

roughly 0.100. Hence, we see that if h increases the RMSE of the slope approaches the RMSE of

OLS which is the MLE under (A), and thus, asymptotically efficient. In general, Table 2 shows

that the rule-of-thumb based on the normal distribution as in (h.1) performs reasonable for RK-

DRE. However, for the skewed distribution, i.e. (F), (G), and (H), the robust rule-of-thumb as

in (h.3) works best. Therefore, with regards to the RKDRE, I use (h.1) and (h.3) for symmetric

and skewed distributions, respectively. I argue that such a distinction is reasonable since skewness

can be detected relatively easily in practice. I also experimented with updating the bandwidth

parameter of RKDRE after each step of the algorithm, but I found that this does not entail a

meaningful change in performance. As an advantage of RKDRE over the other kernel estimators,

we find that its performance is generally least sensitive to the value of the bandwidth.

As for RKDRE, KDRE performs best under the normal rule-of-thumb (h.1) for symmetric dis-

tributions. However, for asymmetric distributions we do not see an improvement (on the slope

estimation) if we use (h.2) or (h.3) instead such that I use (h.1) throughout all distributions.

Table 2 shows that (h.1) works best for the YDG estimator, too. In particular, we find that the

estimator may fail to obtain an estimate for lower values of the bandwidth if the distribution has

heavy tails, i.e. for (B), (C), (F), and (H). To see why, consider the maximization criterion in (19)

and let β̂∗(1) be a starting value for the optimization routine. In case observation i is an outlier,(
yi − x∗′i β̂

∗(1)
)
−
(
yj − x∗′j β

∗(1)
)
will be large (in absolute terms) for all i 6= j. This term is then

divided by hn, leading to a stronger inflation the closer hn is to zero. Recall that I use the Gaussian

kernel K(x) ∝ exp
{
− 1

2x
2
}
, which for |x| ' 40 is smaller than the ‘smallest non-zero normalized

floating-point number’ in R. If that is the case for all i 6= j, the density estimated at i is equal to

zero. Hence, taking the logarithm leads to a negative infinite value of the first function evaluation,

causing the optimization routine to break down. Errors occurred in all scenarios marked with * in

Table 2. For those scenarios, the percentage of replications that failed varied between 0.2% (one

replication) and 57.2% (under (C)). In case of errors, the results shown are based on replications

where the estimator did not fail. Not surprisingly, we see that the YDG estimator, even if it does

not fail, performs in general badly in the presence of outliers. This fact is likely to explain why

Yuan and De Gooijer (2007, p .856) shows performance of the estimator under a normal mixture

distribution that is truncated on both tails.

Lastly, the SBS estimator generally shows the smallest RMSE for (h.3). In fact, the difference in
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performance between (h.2) and the other two rules-of-thumb can be quite large, e.g. for (C), (D),

(G), and (H). In general, we see that SBS is relatively sensitive to an improper value of the band-

width. For instance, using (h.2) instead of (h.3) on the bi-modal distribution more than doubles

the RMSE for SBS. For the other three estimators, we also see that (h.2) performs worst (on the

slope) under (D), but the deterioration is not nearly as large.

Naturally, there are many more ways in which one can estimate a bandwidth value h from the data

than the three rules-of-thumb considered. However, I also considered more complicated and data-

based methods such as the method of Sheather and Jones (1991) (as implemented in R by bw.SJ())

and unbiased and biased cross-validation (as implemented by bw.ucv() and bw.bcv(), respectively),

and found no substantial improvement over the simple rules-of-thumb considered here. Thus,

considering the increased computation time that these methods entail, I have left them out of the

analysis done here. As the values of RMSE for h = 0.1, 0.2, .., 0.9 serve to show, the fast and simple

rule-of-thumb methods are generally already close (enough) to the ‘optimal’ bandwidth.

5.3 Comparative study

Table 3 and Table A1 (Appendix A.2) show for all investigated scenarios the RMSE of the slope

and intercept coefficients, respectively. For p = 5 and p = 10, there are multiple slope coefficients;

in that case, the reported RMSE on the slope is defined as:

RMSE
(
β̂
)

=

√√√√ 1

p− 1

p∑
j=2

MSE
(
β̂j

)
.

Several conclusion can be drawn from Table 3. First and foremost, I argue that RKDRE shows the

best overall performance of all estimators considered. It improves upon KDRE for almost all inves-

tigated scenarios except the normal distribution. The performance for the variance-contaminated

distribution (B) and the log-normal distribution (H) is especially remarkable. Under (H), the

RMSE of the second most efficient estimators (KDRE and LGMM) is approximately 40% larger

even for n = 1000, which means that the RKDRE is almost twice as efficient in the mean square

error sense. Under (B) and (C), the RKDRE is also most efficient, but here the efficiency is gained

mostly in the smaller samples (n = 50 and n = 100). Note especially the superior performance

(R)KDRE in small samples of t(2)-distribution. By experimentation not reported here, I found

that the comparative advantage of (R)KDRE over the other estimators is even higher when the

degrees of freedom approach one. Furthermore, RKDRE performs best or close to best for distribu-

tions (D)-(G) as well. This is not to say of any other considered estimator. YDG performs well for

(D), (E), and (G), but fails quite dramatically for distributions with fat tails such as (B), (C), and

(H). Efficiency of the SBS estimator is in general low with respect to alternatives, but performance

is especially weak under (C) and (D). LGMM is a reasonable estimator overall, but we see that

efficiency is lost under distributions (E) and (F). This efficiency loss persists even for n = 1000.

Also, it performs weaker than RKDRE under (B), (D), and (H) and its RMSE is up to two times

larger than that of (R)KDRE in small samples of (C). Lastly, the LGMMS is by construction inef-
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ficient when the error distribution is skewed (F)-(H). More surprisingly, however, its slope estimate

is usually also no improvement over LGMM under symmetric distributions. Table A2 (Appendix

A.2) shows the bias of the slope coefficients; we see that in general all estimators are virtually un-

biased for n ≥ 100. Only for the rather extreme t(2)-distribution, some bias still exists for n = 500.

Table A1 (Appendix A.2) shows that LGMMS does improve upon LGMM (and, in fact, upon all

other estimators) in terms of the intercept coefficient. The RMSE of the intercept is up to three

times as low as for the other estimators. Usually, the slope parameters of a regression model are

of most interest to the researcher. However, if the intercept is of special interest the LGMMS

estimator might be preferable. As may be expected, the efficiency of the LGMMS on the intercept

vanishes when the distribution is not symmetric. The intercept estimators of the RKDRE, LGMM,

YDG, and OLS show almost identical efficiency. Under the uniform distribution (E), KDRE and

SBS are slightly more efficient on the intercept, but these two methods are, in turn, less efficient

under the skewed distributions (F), (G), and (H). From Table A3 (Appendix A.2), we learn that

the intercept bias of the different estimators is usually of similar magnitude in the symmetric cases.

Under the asymmetric distributions, the bias of the intercept is much larger for KDRE, SBS and

LGMMS than for the other estimators.

In conclusion, I find that the RKDRE estimator performs best, all things considered. It shows

superior performance for almost all scenarios (other than the normal distribution). Only for a

few scenarios, such as for n = 50 and p = 5 and/or p = 10 under (E) and (F), it shows some

efficiency loss with respect to other estimators. However, note that for larger n, RKDRE is

actually most efficient under (E) and (F). Also, the slight loss of efficiency of RKDRE under the

normal distribution disappears when n increases.

Table 3: Comparison of root mean square error of the slope coefficient

p 2 5 10

n 50 100 500 1000 50 100 500 1000 50 100 500 1000

(A) Normal distribution
RKDRE 0.156 0.106 0.045 0.032 0.172 0.111 0.046 0.033 0.194 0.119 0.047 0.033
KDRE 0.149 0.103 0.044 0.033 0.158 0.106 0.046 0.033 0.165 0.109 0.046 0.032
YDG 0.162 0.113 0.047 0.032 0.178 0.115 0.049 0.034 0.198 0.125 0.049 0.034
SBS 0.166 0.111 0.046 0.033 0.178 0.114 0.047 0.033 0.181 0.117 0.047 0.033
LGMM 0.153 0.103 0.044 0.031 0.161 0.108 0.046 0.032 0.168 0.109 0.046 0.032
LGMMS 0.157 0.106 0.044 0.032 0.163 0.108 0.047 0.032 0.172 0.111 0.045 0.032
OLS 0.145 0.100 0.043 0.031 0.153 0.102 0.045 0.032 0.161 0.105 0.045 0.032

(B) Variance-contaminated normal distribution
RKDRE 0.057 0.041 0.017 0.012 0.061 0.041 0.017 0.012 0.069 0.043 0.017 0.012
KDRE 0.063 0.044 0.017 0.012 0.073 0.045 0.018 0.012 0.098 0.051 0.018 0.012
YDG 0.213 0.099 0.019 0.014 0.185 0.095 0.021 0.014 0.180 0.089 0.021 0.014
SBS 0.067 0.044 0.018 0.013 0.074 0.046 0.018 0.013 0.095 0.052 0.019 0.013
LGMM 0.058 0.041 0.017 0.013 0.070 0.043 0.018 0.012 0.093 0.049 0.018 0.012
LGMMS 0.063 0.042 0.017 0.013 0.074 0.044 0.018 0.012 0.096 0.050 0.018 0.012
OLS 0.141 0.104 0.044 0.033 0.147 0.104 0.046 0.033 0.162 0.109 0.046 0.032

Continued on next page
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Table 3 – continued from previous page

p 2 5 10

n 50 100 500 1000 50 100 500 1000 50 100 500 1000

(C) t-distribution with two degrees of freedom
RKDRE 0.217 0.142 0.064 0.041 0.234 0.154 0.064 0.043 0.257 0.161 0.064 0.044
KDRE 0.225 0.148 0.065 0.042 0.258 0.163 0.066 0.043 0.320 0.186 0.066 0.045
YDG 1.779 1.331 0.149 0.087 1.544 2.665 0.301 0.096 1.098 2.022 0.336 0.099
SBS 0.244 0.151 0.064 0.042 0.703 0.181 0.066 0.045 1.108 1.278 0.070 0.100
LGMM 0.277 0.152 0.060 0.040 0.399 0.172 0.063 0.041 0.413 0.383 0.069 0.044
LGMMS 0.325 0.159 0.060 0.040 0.425 0.176 0.065 0.041 0.440 0.368 0.084 0.045
OLS 0.507 0.330 0.164 0.107 0.515 0.350 0.159 0.114 0.516 0.512 0.180 0.117

(D) Bi-modal mixture of normal distributions
RKDRE 0.052 0.033 0.015 0.010 0.053 0.034 0.014 0.010 0.076 0.035 0.015 0.010
KDRE 0.061 0.034 0.015 0.010 0.070 0.037 0.014 0.010 0.108 0.042 0.015 0.010
YDG 0.053 0.034 0.015 0.010 0.052 0.035 0.014 0.010 0.066 0.035 0.015 0.010
SBS 0.187 0.111 0.031 0.019 0.146 0.096 0.031 0.018 0.133 0.079 0.029 0.018
LGMM 0.063 0.037 0.015 0.010 0.075 0.039 0.015 0.011 0.111 0.048 0.015 0.011
LGMMS 0.070 0.037 0.015 0.010 0.082 0.041 0.015 0.011 0.119 0.050 0.015 0.011
OLS 0.155 0.096 0.044 0.031 0.151 0.103 0.044 0.032 0.161 0.104 0.045 0.032

(E) Uniform distribution
RKDRE 0.116 0.069 0.025 0.015 0.132 0.076 0.025 0.016 0.170 0.084 0.025 0.016
KDRE 0.122 0.073 0.025 0.016 0.134 0.081 0.026 0.017 0.154 0.088 0.027 0.017
SBS 0.141 0.084 0.041 0.029 0.148 0.086 0.036 0.027 0.167 0.093 0.033 0.024
YDG 0.109 0.068 0.025 0.016 0.127 0.074 0.025 0.016 0.161 0.083 0.026 0.016
LGMM 0.125 0.082 0.035 0.025 0.134 0.085 0.034 0.025 0.152 0.089 0.035 0.025
LGMMS 0.113 0.065 0.027 0.018 0.127 0.075 0.026 0.018 0.151 0.083 0.028 0.019
OLS 0.150 0.102 0.045 0.032 0.151 0.104 0.045 0.033 0.162 0.105 0.045 0.032

(F) Gamma(2,2)
RKDRE 0.104 0.068 0.026 0.017 0.124 0.072 0.027 0.018 0.151 0.083 0.027 0.017
KDRE 0.108 0.071 0.029 0.019 0.120 0.076 0.029 0.019 0.139 0.082 0.029 0.019
YDG 0.122 0.078 0.030 0.020 0.136 0.084 0.030 0.020 0.160 0.090 0.031 0.020
SBS 0.125 0.079 0.031 0.020 0.132 0.081 0.030 0.020 0.149 0.086 0.030 0.020
LGMM 0.106 0.071 0.031 0.021 0.118 0.076 0.031 0.021 0.137 0.081 0.031 0.021
LGMMS 0.144 0.094 0.042 0.028 0.150 0.099 0.043 0.029 0.163 0.101 0.042 0.029
OLS 0.142 0.098 0.046 0.030 0.149 0.103 0.047 0.032 0.161 0.104 0.045 0.032

(G) Skewed mixture of normal distributions
RKDRE 0.079 0.052 0.022 0.015 0.087 0.054 0.022 0.015 0.115 0.058 0.022 0.015
KDRE 0.085 0.056 0.022 0.015 0.099 0.059 0.022 0.015 0.122 0.064 0.023 0.015
YDG 0.079 0.053 0.022 0.015 0.087 0.053 0.022 0.015 0.109 0.056 0.022 0.015
SBS 0.108 0.069 0.026 0.015 0.114 0.068 0.025 0.017 0.132 0.071 0.025 0.016
LGMM 0.077 0.052 0.021 0.015 0.120 0.057 0.022 0.015 0.125 0.063 0.023 0.015
LGMMS 0.125 0.088 0.035 0.025 0.147 0.094 0.036 0.026 0.178 0.100 0.039 0.026
OLS 0.142 0.104 0.050 0.034 0.149 0.102 0.049 0.036 0.174 0.105 0.050 0.035

(H) Log-normal distribution
RKDRE 0.047 0.026 0.011 0.007 0.052 0.030 0.010 0.007 0.069 0.035 0.011 0.007
KDRE 0.066 0.037 0.015 0.010 0.074 0.043 0.015 0.010 0.095 0.052 0.016 0.010
YDG 0.108 0.172 0.022 0.013 0.163 0.144 0.023 0.013 0.168 0.130 0.023 0.013
SBS 0.098 0.060 0.029 0.017 0.085 0.052 0.022 0.015 0.097 0.053 0.019 0.014
LGMM 0.054 0.032 0.014 0.010 0.066 0.039 0.014 0.010 0.090 0.048 0.015 0.010
LGMMS 0.082 0.049 0.023 0.017 0.093 0.059 0.024 0.017 0.109 0.066 0.025 0.017
OLS 0.134 0.112 0.046 0.031 0.145 0.100 0.046 0.032 0.156 0.105 0.046 0.032

Results are based on 500 replications.
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5.4 Computation time

Figure 1 shows average computation time (in seconds) over 50 simulations for the different esti-

mators under varying values for n and p. I have left LGMMS out as its computational procedure

(and hence computation time) is almost identical to LGMM. The left figure shows the computation

time when p = 2 and n is increased. For the right figure n = 500, and the number of variables p is

varied as specified. The computation time for YDG is obtained using the EM algorithm if p = 2

and using the optimization routine optim() if p > 2 (since this minimizes computation time). First,

we see that for one explanatory variable, computation time of RKDRE, KDRE and YDG are in

the same order of magnitude. For n = 5000, YDG is approximately two times slower than RKDRE

and KDRE. Furthermore, we observe that the computation times of RKDRE and KDRE converge

if n increases. To explain why, denote an iteration of the EM algorithm in RKDRE for a certain

estimated density an ‘EM-iteration’ (i.e. an iteration in the maximization defined in Step 3 in

Section 1), and an iteration from one estimated density to the next estimated density a β-iteration

(i.e. an iteration of Step 2 in Section 1). Then, if n increases, the number of β-iterations generally

decreases. For n = 5000, the RKDRE algorithm is usually converged after one β-iteration. Also,

for later β-iterations, the number of EM-iterations are generally lower. This further decreases the

difference in computation time between RKDRE and KDRE. For n = 5000, the RKDRE algorithm

is still feasible (as it costs less than two minutes). However, considering that Table 3 shows that

the difference in performance of the algorithms is small for large n, LGMM, being by far the fastest

algorithm, might be preferred for large datasets (e.g. n ' 5000).
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Figure 1: Average computation time in seconds for different values of n and p

In the right panel of Figure 1, we clearly observe that the computation time of YDG increases

severely for an increasing number of explanatory variables, where the other estimators are less

sensitive. Clearly, the non-linear optimization routine used in YDG becomes slower, the higher

the dimensionality.
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6 Standard errors

In this section, I investigate the estimation of standard errors of the RKDRE algorithm. In

Theorem 3.6, we found the asymptotic distribution of the RKDRE algorithm. This suggests to

estimate the standard errors accordingly. For that purpose, consider Theorem 6.1 and 6.2 below.

Theorem 6.1. Under the assumptions of Theorem 3.6, the standard error of β̂(m) can be consis-

tently estimated by

[
n∑
i=1

(
Ψ̂(m+1)
n

(
yi|β̂(m)

))2
Gb

(
f̂ (m+1)
n

(
yi|β̂(m)

))
xix
′
i

]−1
p→ 1

n
I−1ββ , (61)

where

Ψ̂(m)
n (yi|β) =

f̂
′(m)
n (yi|β)

f̂
(m)
n (yi|β)

, (62)

and where Gb is defined as in (16).

Proof: By (46), β̂(m) d→ N
(
β0,

1
nI
−1
ββ

)
. Yao and Zhao (2013, p. 4508) show in the proof of

Theorem 3.6 that

C , − 1

n

n∑
i=1

(
Ψ̂(1)
n (yi|β0)

)2
Gb

(
f̂ (1)n (yi|β0)

)
xix
′
i
p→ −Iββ . (63)

Since matrix inversion is a continuous transformation, by the continuous mapping theorem, this

implies that −C−1 p→ I−1ββ . By definition of consistency of the initial estimator (C3) in (Yao and

Zhao, 2013), β̂(0) p→ β0. Thus, by the fact that the kernel function K is four times continuously

differentiable and continuity of Gb(x), we may again invoke the continuous mapping theorem to

conclude that [
1

n

n∑
i=1

(
Ψ̂(1)
n

(
yi|β̂(0)

))2
Gb

(
f̂ (1)n

(
yi|β̂(0)

))
xix
′
i

]−1
p→ −C−1. (64)

To come to the final result, I first use that convergence in probability to a sequence converging

in distribution implies convergence to the same distribution. That is, if Yn
p→ Xn and Xn

d→ X,

then Yn
d→ X. Since convergence in probability implies convergence in distribution, we have that

−C−1 d→ I−1ββ . Thus, by (64), we obtain

[
1

n

n∑
i=1

(
Ψ̂(1)
n

(
yi|β̂(0)

))2
Gb

(
f̂ (1)n

(
yi|β̂(0)

))
xix
′
i

]−1
d→ I−1ββ . (65)

Hence, [
n∑
i=1

(
Ψ̂(1)
n

(
yi|β̂(0)

))2
Gb

(
f̂ (1)n

(
yi|β̂(0)

))
xix
′
i

]−1
d→ 1

n
I−1ββ . (66)

Lastly, note that 1
nI
−1
ββ is a constant (as it is an expectation), and that convergence in distribution

to a constant implies convergence in probability to that constant. This proves (61) for the first

iteration. The result holds similarly for further iterations by the same argument as in Theorem

3.6.
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Theorem 6.2. Under the assumptions of Theorem 3.6, the standard error of β̂(m) can also be

consistently estimated by[
n∑
i=1

(
Ψ̂(m+1)
n

(
yi|β̂(m)

))2
Gb

(
f̂ (m+1)
n

(
yi|β̂(m)

))
xix
′
i −

n∑
i=1

Φ̂(m+1)
n

(
yi|β̂(m)

)
Gb

(
f̂ (m+1)
n

(
yi|β̂(m)

))
xix
′
i

]−1
p→ 1

n
I−1ββ

(67)

where

Φ̂(m)
n (yi|β) =

f̂ ′′n
(m) (yi|β)

f̂
(m)
n (yi|β)

. (68)

Proof: By the result in Theorem 6.1, we know that

n∑
i=1

(
Ψ̂(m+1)
n

(
yi|β̂(m)

))2
Gb

(
f̂ (m+1)
n

(
yi|β̂(m)

))
xix
′
i
p→ nIββ . (69)

Also, (Yao and Zhao, 2013, p. 4509) show that

n∑
i=1

Φ̂(1)
n (yi|β0)Gb

(
f̂ (1)n (yi|β0)

)
xix
′
i
p→ 0. (70)

By the same reasoning as in Theorem 6.1, we obtain that

n∑
i=1

Φ̂(m+1)
n

(
yi|β̂(m)

)
Gb

(
f̂ (m+1)
n

(
yi|β̂(m)

))
xix
′
i
p→ 0. (71)

Combining (69) and (71) leads to

n∑
i=1

(
Ψ̂(m+1)
n

(
yi|β̂(m)

))2
Gb

(
f̂ (m+1)
n

(
yi|β̂(m)

))
xix
′
i −

n∑
i=1

Φ̂(m+1)
n

(
yi|β̂(m)

)
Gb

(
f̂ (m+1)
n

(
yi|β̂(m)

))
xix
′
i
p→ nIββ .

(72)

The result in (67) follows from the continuous mapping theorem.

Essentially, what Theorem 6.2 shows is that the term that is added with respect to Theorem 6.1

is op(1) and that this addition does not affect the consistency proven in Theorem 6.1.10 To see

why adding this term may be sensible, recall the information matrix Iββ as in (7) that we aim to

estimate:

Iββ = −E [dββ (β0)] = E

[
f ′2(yi|β)− f(yi|β0)f ′′(yi|β0)

f2(yi|β0)
xix
′
i

]
= E

[
(Ψ (yi|β0))

2
xix
′
i

]
− E

[
Φ (yi|β0)xix

′
i

]
.

Even though the (approximation of) the second term is shown to converge to zero, in finite samples

it may differ from zero. Hence, I separately investigate the accuracy of the estimated standard

errors both when this term is excluded (Theorem 6.1) and when it is included (6.2).

10By definition, a random variable Xn = op(1) if Xn
p→ 0.
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Table 4: Ratio of root mean square standard error and actual root mean square error

Intercept Slope

n 50 100 500 1000 50 100 500 1000

(A) Normal distribution
SE1 1.250 1.187 1.065 1.085 1.171 1.171 1.082 1.014
SE2 0.911 0.935 0.942 0.990 0.811 0.894 0.952 0.922
Bootstrap 0.994 1.096 - - 1.062 1.096 - -

(B) Variance-contaminated normal distribution
SE1 0.486 0.416 0.369 0.374 1.273 1.157 0.974 1.002
SE2 0.320 0.289 0.279 0.290 0.821 0.791 0.738 0.778
Bootstrap 1.018 0.969 - - 1.133 1.041 - -

(C) t-distribution with two degrees of freedom
SE1 0.502 0.534 0.301 0.356 1.032 1.002 0.900 0.909
SE2 0.340 0.384 0.228 0.272 0.680 0.714 0.685 0.694
Bootstrap 0.969 1.102 - - 1.049 1.062 - -

(D) Bi-modal mixture of normal distributions
SE1 0.524 0.436 0.381 0.354 1.598 1.344 1.188 1.141
SE2 0.361 0.332 0.330 0.318 1.069 1.004 1.027 1.020
Bootstrap 1.011 0.965 - - 1.453 0.990 - -

(E) Uniform distribution
SE1 1.239 1.203 0.957 0.847 1.733 1.918 1.913 1.664
SE2 0.760 0.743 0.602 0.535 1.003 1.134 1.193 1.050
Bootstrap 0.983 0.996 - - 1.264 1.202 - -

(F) Gamma(2,2)
SE1 1.005 0.935 0.827 0.725 1.387 1.424 1.341 1.304
SE2 0.640 0.632 0.608 0.547 0.835 0.931 0.981 0.975
Bootstrap 0.994 0.999 - - 1.257 1.176 - -

(G) Skewed mixture of normal distributions
SE1 0.575 0.488 0.332 0.288 1.226 1.131 1.064 1.016
SE2 0.384 0.355 0.277 0.249 0.784 0.810 0.883 0.875
Bootstrap 0.963 0.902 - - 1.292 1.095 - -

(H) Log-normal distribution
SE1 0.437 0.372 0.284 0.270 1.510 1.436 1.300 1.242
SE2 0.246 0.219 0.182 0.178 0.818 0.832 0.825 0.812
Bootstrap 0.997 0.988 - - 1.376 1.205 - -

The number of replications is 500. p = 2, and β = [1,−1]′. The bandwidth suggested
by Sheather and Jones (1991) as implemented in R by bw.SJ() is used. The number of
bootstraps per replication is 100.

In Table 4, I show the ratio of the estimated root mean square standard error and the actual root

mean square error.11 SE1 and SE2 denote the standard errors computed based on Theorem 6.1

and 6.2, respectively. Even though the trimming parameter was necessary for technical reasons, in

practice it entails no improvement and, hence, the reported standard errors are of the untrimmed

version. Furthermore, I find that the accuracy of the standard errors is relatively sensitive to the

bandwidth parameter. By experimentation, I find that the data-based bandwidth suggested by

Sheather and Jones (1991) works best such that these are used in Table 4.12 This is somewhat

surprising as this bandwidth did not substantially improve upon the result when it was used in

the estimation of β. An explanation might lie in the fact that for the estimation of the standard

error the kernel density (derivative) directly influences the result; in the estimation of β the kernel
11This procedure is adopted from Newey (1988).
12A technical explanation of the method of Sheather and Jones (1991) goes beyond the scope of this research,

but the essence of the method is the inclusion of a non-stochastic term that reduces the bias without increasing
variance.
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density is used only to be maximized with respect to the parameter vector.

Indeed, we see that SE1 and SE2 can differ substantially. Under distributions that differ strongly

from normal (e.g., (D), (E), (F), and (H)), SE2 performs in general better than SE1 with respect

to the slope coefficient. The standard errors of the intercept term are underestimated for most

considered distributions. For the skewed distributions, this does not come as a surprise; recall (from

Section 2) that the intercept term is not in general adaptively estimable if f is not symmetric, and

hence does not attain the Cramér-Rao lower bound. Under the symmetric distributions, based on

theoretical results, one expects the RKDRE (and other estimators) to attain the CRLB for the

intercept too. However, in finite samples, we see that this holds only (approximately) for LGMMS.

In fact, using Table A1, we find for the scenarios for which the standard error of the intercept is

underestimated, this underestimation is almost exactly accounted for by the difference in efficiency

between LGMMS and the other estimators. Hence, the underestimation of the standard error is

not so much a result of inaccurate estimation of the information matrix, but simply a result of

the fact that RKDRE (and all other estimators except LGMMS) do not seem to attain the CRLB

for the intercept, at least not in finite samples. Therefore, if the standard error of the intercept

is of interest, it is recommended to obtain the standard error by other methods. In that respect,

Table 4 shows that bootstrapping performs reasonable. Note that for computational reasons, the

number of bootstrap replicates is limited to 100 and the bootstrap method is evaluated only for

n = 50 and n = 100.
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7 Application

In this section, I apply RKDRE to the research described in (Andrabi et al., 2017), recently

published in the American Economic Review. This research involves an experiment on the impact

of providing information in the form of report cards on educational outcomes such as test scores,

prices, and the enrollment rate. 56 out of n = 112 analyzed Pakistani villages were randomly

assigned treatment. The report cards, given to both households and schools in treatment villages,

included information on the performance of the child, the average score of different schools in the

village, and the average village score in mathematics, English, and Urdu.13 The main findings

are: (1) private school fees decreased by 17 percent, (2) test scores increased by 0.11 standard

deviations, and (3) primary enrollment increased with 4.5 percent. The models of interest are

specified as followed:

Fm2 = α1d + β1 ·RCm + γ1 · Fm1 + δ1 ·Xm1 + εm, (Model 1)

Tm2 = α2d + β2 ·RCm + γ2 · Tm1 + δ2 ·Xm1 + εm, (Model 2)

Em2 = α3d + β3 ·RCm + γ3 · Em1 + δ3 ·Xm1 + εm, (Model 3)

where Fm2, Tm2, and Em2 are average fees, test scores, and enrollment rate in the post-intervention

year of village m, respectively. Fm1, Tm1, and Em1 denote the baseline measurement of the same

variables. αid are district fixed effects for model i; RCm is the treatment dummy assignment to

village m, which makes βi the variable of interest, an estimate of the impact of the report card

assignment. Xm1 is a vector of village-level controls measured at baseline. All models in the paper

are estimated using OLS. As Andrabi et al. (2017) note, under random assigment of treatment, the

OLS coefficient is an unbiased estimate of the treatment effect. However, we have seen in Section

5.3, that adaptive methods may be more efficient if the error terms are not normally distributed.

Figure 2 shows residual diagnostics of Model 1 after applying OLS; indeed, we see that the sample

has fatter tails than we would expect based on normality.
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Figure 2: Residual diagnostics for Model 1

13In Appendix A.3, an example of an anonymized report can be found.
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Furthermore, recall that Mammen et al. (1996) showed that the residuals of OLS (as the maximum

likelihood estimator of the normal distribution) will usually be drawn towards the normal distri-

bution, such that the residuals may even show closer resemblance to the normal distribution than

the actual error distribution. For Model 2 and Model 3, the same diagnostics of the OLS residuals

are shown in Figure A3 and A4, respectively. For Model 2, we find evidence of slight skewness,

and the residuals of Model 3 seems to have fat tails too. However, the deviance from normality

seems to be most pronounced for Model 1.

Table 5: Estimated effect of report cards for respective estimators

OLS RKDRE KDRE YDG SBS LGMM LGMMS

β̂1
-187.0 -4.418 -85.55 -154.4 -47.74 -172.3 -182.9
(65.91) (38.76) (63.42) (59.90) (73.34) (64.54) (67.65)

β̂2
0.114 0.084 0.092 0.094 0.088 0.088 0.099
(0.046) (0.050) (0.048) (0.060) (0.054) (0.045) (0.050)

β̂3
0.032 0.028 0.030 0.018 0.030 0.029 0.027
(0.014) (0.014) (0.012) (0.019) (0.013) (0.012) (0.012)

OLS coefficients are as shown in Table 3 (1) Panel C, Table 3 (4) Panel C, and Table 4
(1) Panel C in (Andrabi et al., 2017). Standard errors (in parentheses) for OLS are as
reported in the paper; standard errors of other methods are obtained by bootstrap using
500 replications.

Table 5 shows the treatment effect in the three models as estimated by the investigated estimators.

The OLS coefficients are as reported in (Andrabi et al., 2017). Clearly, we see that the adaptive

estimators pull the estimated treatment effect towards zero for all models. The results for Model

1 are especially striking. The RKDRE estimate is more than forty times lower than OLS. Also,

for Model 1, the estimates of the adaptive methods differ substantially. In that respect, it is

interesting too investigate the prediction performance of the respective methods as reported in

Table 6. We see that RKDRE shows the lowest median absolute prediction error (MAPE) for

Model 1. Furthermore, observe that prediction performance is generally better for the estimators

with a lower estimate of β1, such as SBS and KDRE. Hence, we observe quite strong evidence

to believe that the effect of the report cards on school fees, if it exists at all, is much lower than

reported.

Table 6: Median absolute prediction error relative to OLS

RKDRE KDRE YDG SBS LGMM LGMMS

Model 1 0.720 0.858 0.906 0.769 0.992 1.001
Model 2 1.002 1.016 0.998 1.005 0.997 1.020
Model 3 0.972 0.975 1.029 0.963 0.965 0.971

The values are the ratio of the MAPE of the respective estimator and the MAPE of
OLS. Hence, the lower the value, the better the prediction performance relative to
OLS. The training set is a random sample of the data of size d0.8ne. The number of
replications is 500.

For Model 2 and 3, there is less difference between the estimates of the adaptive methods. Also,

the estimate is adjusted less strongly with respect to OLS. Table 7 shows 95% confidence intervals

for βi as estimated by RKDRE using different standard errors; SE1 and SE2 are as defined in

Section 6. For the bootstrap method, two confidence intervals are shown. The first is based on
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(approximate) normality; that is, the confidence interval is the estimated coefficient β̂i± 1.96×SE

where SE is the standard deviation of the bootstrap estimates. The percentile method is obtained

by taking the 0.025th and 0.975th quantile of the bootstrapped estimates as lower and upper bound,

respectively.

Table 7: 95% confidence intervals of the effect of report cards

Bootstrap

SE1 SE2 Normal Percentile

Model 1 [−120.2, 111.3] [ 76.87, 68.03] [−80.38, 71.55] [−88.11, 59.25]
Model 2 [−0.017, 0.184] [ 0.004, 0.164] [−0.015, 0.183] [−0.011, 0.187]
Model 3 [−0.003, 0.060] [ 0.006, 0.050] [ 0.001, 0.055] [ 0.002, 0.055]

For SE1, SE2, and the normal bootstrap, confidence intervals are computed as β̂i ± 1.96× SE.
For the percentile bootstrap confidence interval, the lower and upper bound are equal to the
0.025th and 0.975th quantile of the bootstrapped estimates of β, respectively. I use 500 boot-
strap replicates.

The estimated treatment effect for Model 1 is clearly not significantly different from zero. For

Model 2 and Model 3, the significance depends on the standard error of choice. From Table 4,

we know that, for n ≈ 100, SE2 usually slightly underestimates the standard error, whereas SE1

slightly overestimates the uncertainty, in particular for distributions with fat-tails such as (B), (C),

and (H). The bootstrap standard errors are generally in between SE1 and SE2, such that these

may be considered most reliable here.

The analysis in this section demonstrates the practical relevance of adaptive estimation in general

and that of the proposed RKDRE algorithm in particular. None of the other adaptive estimators

adjusted the treatment effect on school fees as far towards zero as RKDRE, while prediction

performance provides evidence for the belief that RKDRE is in fact the preferred method for this

model. Using RKDRE, we find that out of the three main findings described in (Andrabi et al.,

2017), one can be considered not significant on any reasonable significance level. Also, Table 5

shows that the adaptive estimators find that the effect of report cards on test scores, which is the

second out of the three result, is not significant on the 5% significance level. Lastly, the effect on

the enrollment rate seems, even though marginally significant for RKDRE, also questionable.
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8 Discussion

The proposed RKDRE algorithm is shown to have the adaptive property. That is, it is asymp-

totically normal and its asymptotic variance is equal to the Cramér-Rao lower bound. Also, I

establish almost sure convergence. More importantly from a practical point of view, I find that the

performance of RKDRE in simulation studies is second to none of the other considered adaptive

estimators. For several distributions, it is up to twice as efficient in the mean square error sense

than the second best estimator. Furthermore, for any other distribution, it is either the most

efficient or very close to the most efficient estimator. All of the other estimators show a loss of

efficiency for certain specific distributions. Furthermore, the use of RKDRE is made convenient by

an EM algorithm that allows for fast computation and the availability of consistent standard errors.

Several avenues of further research may still be considered in the context of linear regression. First

of all, other estimators can be adjusted to multi-step procedures as well. The intuition behind

the importance of multiple steps is arguably less appealing for LGMM(S) and SBS than it is

for (R)KDRE, as the maximum likelihood estimator of an estimated density that is likely to be

adjusted towards the true error density in the process of repeated kernel density estimation. Re-

gardless, one may also expect improvement of performance when these other methods use multiple

steps instead of only two. Also, for the purpose of this research, the initial estimate was set equal

to the OLS estimate. This choice was primarily based on computational convenience. Perhaps,

efficiency may be further enhanced by a more prudent choice of the initial estimator. At last,

the choice of bandwidth might be a source of further efficiency gain for the kernel estimators (i.e.

(R)KDRE, SBS, and YDG). I have considered a vast range of bandwidth selection methods and

found that the performance of the more complicated (and computationally intensive) methods is

usually not an advantage over simple and fast rules-of-thumb. However, the bandwidth selection

methods are constructed such as to minimize a certain loss function with respect to the true den-

sity; they are not tailored for the use in adaptive regression estimators. It is not unthinkable that,

in this context, more appropriate bandwidth rules can be developed.

Lastly, the concept of RKDRE can be straightforwardly extended to nonlinear regression. It is

expected that, as long as the nonlinear regression function is of known form, the asymptotic prop-

erties of adaptiveness continue to hold. However, the EM algorithm (at least in its present form)

can only be applied to linear regression. This means that research in the direction of non-linear

regression will be faced with computational issues, too.

Despite the fact that I focus on the advantages of RKDRE over existing adaptive estimators, I

would like to conclude with the remark that in general all such estimators are considerably more

efficient than OLS under distributions other than the normal distribution. By applying these

methods to the research in (Andrabi et al., 2017), I show that their practical implications can be

large. Therefore, it is the more remarkable that adaptive estimation is seldom applied in practice.

Indeed, one may verify that articles on adaptive estimation, e.g. (Bickel, 1982) and (Newey, 1988),
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are almost exclusively cited in research of methodological nature. I suppose that the difficulty of

implementation may impede the use of adaptive methods in applied research. In that respect, I

find it odd that (as far as I am aware) no software package exists that supports standard methods

such as described in these papers. Also, as of yet, no practitioner’s guide to adaptive methods

is available. With such tools, the current existing gap between theory and practice may be bridged.
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A Appendix

A.1 EM algorithm for YDG

Recall that YDG is the solution to the following maximization criterion:

β̂∗Y DG = arg max
β∗∈B∗

n∑
i=1

1

nhn

n∑
j 6=i

K

yi − yj −
(
x∗i − x

∗
j

)′
β∗

hn

 (73)

where xi =
[
1,x∗i

]′
, and β̂Y DG =

[
α̂Y DG, β̂

∗
Y DG

]′
and α̂ is the estimate of the intercept coefficient

α. When K is the Gaussian kernel, this can be maximized by the following EM algorithm:

E-step:

pij,(k+1) =

exp

{
− 1

2h2
n

(
yi − yj −

(
x∗i − x

∗
j

)′
β∗
)2
}

∑n
j 6=i exp

{
− 1

2h2
n

(
yi − yj −

(
x∗
i
− x∗

j

)′
β∗
)2
} , j 6= i (74)

M-step:

β̂∗Y DG,(k+1) =

 n∑
i=1

n∑
j 6=i

pij,(k+1)

(
x∗i − x

∗
j

)(
x∗i − x

∗
j

)′−1 n∑
i=1

n∑
j 6=i

(
x∗i − x

∗
j

)
(yi − yj) (75)

Theorem A.1. The objective function (73) decreases after each iteration of (74) and (75) until

a fixed point is reached.

Proof : when we adjust (48) to the criterion in , under the Gaussian kernel, the M-step becomes

β̂Y DG,(k+1) = arg min
β

n∑
i=1

n∑
j 6=1

pij,(k+1)

(
yi − yj −

(
x∗i − x

∗
j

)′
β∗
)2

The first order condition yields

n∑
i=1

n∑
j 6=1

pij,(k+1)

(
x∗i − x

∗
j

)(
x∗i − x

∗
j

)′
β̂∗Y DG,(k+1) =

n∑
i=1

n∑
j 6=1

pij,(k+1)

(
x∗i − x

∗
j

)′
(yi − yj) ,

and thus

β̂∗Y DG,(k+1) =

 n∑
i=1

n∑
j 6=1

pij,(k+1)

(
x∗i − x

∗
j

)(
x∗i − x

∗
j

)′−1 n∑
i=1

n∑
j 6=1

pij,(k+1)

(
x∗i − x

∗
j

)′
(yi − yj)

Then, the fact that (74) and (75) are the E- and M-step, respectively, of an EM algorithm for (73)

follows trivially from the proof of Theorem 2.2 in (Yao and Zhao, 2013, p.4511).
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A.2 Additional tables

Table A1: Comparison of root mean square error of the intercept

p 2 5 10

n 50 100 500 1000 50 100 500 1000 50 100 500 1000

(A) Normal distribution
RKDRE 0.145 0.105 0.043 0.032 0.149 0.107 0.045 0.031 0.155 0.103 0.043 0.033
KDRE 0.148 0.107 0.043 0.032 0.151 0.108 0.045 0.031 0.154 0.104 0.044 0.033
YDG 0.146 0.105 0.043 0.034 0.151 0.107 0.045 0.031 0.161 0.105 0.043 0.033
SBS 0.151 0.108 0.044 0.033 0.155 0.109 0.045 0.031 0.158 0.106 0.044 0.033
LGMM 0.146 0.105 0.043 0.031 0.148 0.107 0.045 0.031 0.153 0.103 0.043 0.033
LGMMS 0.156 0.110 0.043 0.032 0.160 0.113 0.045 0.031 0.162 0.110 0.044 0.033
OLS 0.146 0.105 0.043 0.031 0.148 0.106 0.045 0.031 0.152 0.102 0.043 0.033

(B) Variance-contaminated normal distribution
RKDRE 0.142 0.101 0.044 0.032 0.137 0.101 0.044 0.031 0.139 0.099 0.044 0.031
KDRE 0.144 0.103 0.045 0.033 0.145 0.105 0.045 0.031 0.154 0.106 0.045 0.031
YDG 0.145 0.102 0.044 0.032 0.146 0.102 0.044 0.031 0.156 0.103 0.044 0.031
SBS 0.143 0.102 0.044 0.033 0.140 0.103 0.044 0.031 0.144 0.102 0.044 0.031
LGMM 0.142 0.101 0.044 0.032 0.137 0.102 0.044 0.031 0.141 0.100 0.044 0.031
LGMMS 0.059 0.042 0.017 0.012 0.066 0.042 0.018 0.012 0.083 0.049 0.018 0.013
OLS 0.144 0.102 0.044 0.032 0.139 0.102 0.044 0.031 0.151 0.104 0.046 0.033

(C) t-distribution with two degrees of freedom
RKDRE 0.492 0.333 0.163 0.116 0.520 0.378 0.164 0.116 0.486 0.482 0.240 0.239
KDRE 0.508 0.343 0.168 0.118 0.545 0.392 0.171 0.120 0.520 0.501 0.243 0.241
YDG 0.513 0.340 0.122 0.094 0.526 0.577 0.138 0.085 0.576 0.487 0.127 0.090
SBS 0.765 0.338 0.164 0.116 1.772 0.482 0.164 0.116 1.382 3.317 0.568 2.025
LGMM 0.488 0.332 0.163 0.116 0.505 0.379 0.164 0.116 0.496 0.432 0.239 0.239
LGMMS 0.486 0.332 0.163 0.116 0.509 0.382 0.163 0.116 0.496 0.449 0.239 0.238
OLS 0.488 0.334 0.163 0.116 0.515 0.385 0.164 0.115 0.516 0.447 0.238 0.229

(D) Bi-modal mixture of normal distributions
RKDRE 0.145 0.099 0.043 0.032 0.140 0.100 0.044 0.031 0.142 0.105 0.044 0.031
KDRE 0.142 0.099 0.043 0.032 0.138 0.100 0.044 0.032 0.154 0.114 0.046 0.031
YDG 0.144 0.099 0.043 0.032 0.140 0.100 0.044 0.031 0.155 0.131 0.045 0.031
SBS 0.143 0.101 0.044 0.032 0.139 0.102 0.044 0.032 0.148 0.109 0.045 0.031
LGMM 0.145 0.099 0.043 0.032 0.140 0.100 0.044 0.031 0.143 0.105 0.044 0.031
LGMMS 0.057 0.035 0.014 0.010 0.069 0.038 0.015 0.010 0.131 0.079 0.033 0.010
OLS 0.147 0.098 0.043 0.032 0.145 0.102 0.044 0.032 0.144 0.109 0.045 0.031

(E) Uniform distribution
RKDRE 0.141 0.101 0.043 0.034 0.145 0.101 0.045 0.033 0.156 0.104 0.043 0.032
KDRE 0.120 0.085 0.036 0.029 0.131 0.087 0.038 0.029 0.146 0.093 0.037 0.028
YDG 0.141 0.101 0.043 0.034 0.145 0.101 0.045 0.033 0.157 0.104 0.043 0.032
SBS 0.104 0.072 0.032 0.026 0.131 0.083 0.034 0.027 0.149 0.095 0.035 0.026
LGMM 0.141 0.102 0.043 0.034 0.146 0.101 0.045 0.033 0.153 0.104 0.043 0.032
LGMMS 0.100 0.062 0.024 0.017 0.112 0.073 0.025 0.018 0.146 0.081 0.027 0.018
OLS 0.142 0.102 0.043 0.034 0.147 0.102 0.045 0.033 0.155 0.105 0.044 0.032

Continued on next page
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Table A1 – continued from previous page

p 2 5 10

n 50 100 500 1000 50 100 500 1000 50 100 500 1000

(F) Gamma(2,2)
RKDRE 0.138 0.104 0.041 0.032 0.138 0.102 0.044 0.032 0.155 0.104 0.046 0.033
KDRE 0.153 0.126 0.076 0.065 0.154 0.126 0.080 0.066 0.165 0.127 0.080 0.065
YDG 0.138 0.104 0.041 0.032 0.138 0.102 0.045 0.032 0.156 0.106 0.046 0.033
SBS 0.173 0.150 0.094 0.080 0.159 0.135 0.092 0.077 0.168 0.122 0.083 0.070
LGMM 0.139 0.104 0.041 0.032 0.138 0.101 0.045 0.032 0.152 0.105 0.046 0.033
LGMMS 0.220 0.180 0.125 0.117 0.198 0.172 0.120 0.116 0.181 0.156 0.117 0.116
OLS 0.139 0.104 0.041 0.032 0.141 0.103 0.044 0.032 0.155 0.108 0.046 0.033

(G) Skewed mixture of normal distributions
RKDRE 0.172 0.114 0.067 0.055 0.161 0.113 0.069 0.054 0.166 0.116 0.066 0.056
KDRE 0.202 0.145 0.091 0.075 0.187 0.140 0.093 0.075 0.197 0.145 0.089 0.077
YDG 0.171 0.114 0.067 0.055 0.161 0.113 0.068 0.054 0.167 0.116 0.066 0.056
SBS 0.236 0.157 0.086 0.068 0.204 0.148 0.089 0.068 0.200 0.150 0.085 0.070
LGMM 0.171 0.114 0.067 0.055 0.160 0.113 0.069 0.054 0.168 0.116 0.066 0.056
LGMMS 0.380 0.311 0.245 0.229 0.331 0.292 0.242 0.216 0.258 0.263 0.208 0.208
OLS 0.171 0.115 0.067 0.055 0.166 0.115 0.069 0.054 0.179 0.122 0.067 0.056

(H) Log-normal distribution
RKDRE 0.147 0.110 0.044 0.032 0.146 0.098 0.046 0.029 0.144 0.101 0.045 0.032
KDRE 0.176 0.136 0.079 0.068 0.173 0.121 0.081 0.067 0.169 0.130 0.081 0.070
YDG 0.148 0.111 0.043 0.031 0.146 0.101 0.045 0.029 0.151 0.108 0.044 0.031
SBS 0.178 0.138 0.082 0.078 0.160 0.106 0.074 0.077 0.154 0.108 0.063 0.072
LGMM 0.148 0.110 0.044 0.032 0.145 0.098 0.046 0.029 0.146 0.102 0.045 0.032
LGMMS 0.189 0.137 0.072 0.058 0.191 0.149 0.082 0.061 0.175 0.154 0.098 0.069
OLS 0.148 0.108 0.044 0.032 0.149 0.100 0.046 0.030 0.152 0.107 0.046 0.032

Results are based on 500 replications.
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Table A2: Comparison of bias of the slope coefficients

p 2 5 10

n 50 100 500 1000 50 100 500 1000 50 100 500 1000

(A) Normal distribution
RKDRE 0.003 0.000 0.000 0.000 0.005 0.003 0.001 0.001 0.006 0.003 0.002 0.002
KDRE 0.003 0.001 0.000 0.000 0.003 0.002 0.001 0.001 0.004 0.003 0.002 0.002
YDG 0.000 0.002 0.000 0.000 0.005 0.002 0.001 0.001 0.006 0.004 0.002 0.002
SBS 0.001 0.001 0.000 0.000 0.004 0.003 0.001 0.001 0.006 0.004 0.002 0.002
LGMM 0.004 0.000 0.000 0.000 0.004 0.002 0.001 0.001 0.003 0.004 0.002 0.002
LGMMS 0.006 0.000 0.000 0.000 0.004 0.002 0.001 0.001 0.004 0.004 0.002 0.002
OLS 0.004 0.002 0.001 0.000 0.004 0.003 0.001 0.001 0.003 0.004 0.002 0.002

(B) Variance-contaminated normal distribution
RKDRE 0.002 0.002 0.000 0.000 0.002 0.000 0.001 0.000 0.003 0.002 0.001 0.000
KDRE 0.002 0.001 0.000 0.000 0.003 0.001 0.001 0.000 0.004 0.002 0.001 0.000
YDG 0.008 0.000 0.000 0.000 0.007 0.001 0.001 0.000 0.005 0.003 0.001 0.000
SBS 0.001 0.002 0.000 0.000 0.002 0.001 0.000 0.000 0.002 0.002 0.001 0.000
LGMM 0.000 0.001 0.000 0.000 0.002 0.001 0.001 0.000 0.003 0.002 0.001 0.000
LGMMS 0.000 0.002 0.000 0.000 0.002 0.001 0.000 0.000 0.002 0.002 0.001 0.000
OLS 0.001 0.001 0.000 0.002 0.005 0.004 0.002 0.001 0.006 0.003 0.002 0.001

(C) t-distribution with two degrees of freedom
RKDRE 0.003 0.001 0.008 0.001 0.001 0.006 0.002 0.001 0.006 0.003 0.003 0.001
KDRE 0.002 0.003 0.009 0.001 0.001 0.007 0.002 0.001 0.009 0.004 0.003 0.001
YDG 0.008 0.039 0.010 0.003 0.042 0.090 0.012 0.005 0.014 0.036 0.010 0.002
SBS 0.001 0.002 0.011 0.001 0.007 0.006 0.001 0.001 0.029 0.021 0.002 0.003
LGMM 0.004 0.004 0.009 0.002 0.007 0.004 0.001 0.001 0.011 0.009 0.003 0.002
LGMMS 0.006 0.004 0.008 0.002 0.006 0.005 0.002 0.001 0.010 0.008 0.003 0.001
OLS 0.001 0.011 0.009 0.005 0.010 0.007 0.008 0.003 0.013 0.012 0.009 0.007

(D) Bi-modal mixture of normal distributions
RKDRE 0.001 0.000 0.001 0.001 0.002 0.001 0.000 0.000 0.003 0.001 0.001 0.000
KDRE 0.002 0.000 0.001 0.001 0.002 0.001 0.000 0.000 0.003 0.001 0.001 0.000
YDG 0.000 0.000 0.001 0.001 0.003 0.001 0.000 0.000 0.003 0.001 0.001 0.000
SBS 0.003 0.003 0.001 0.002 0.007 0.003 0.001 0.000 0.002 0.001 0.001 0.001
LGMM 0.000 0.000 0.001 0.001 0.004 0.001 0.000 0.000 0.002 0.001 0.001 0.000
LGMMS 0.000 0.000 0.001 0.001 0.003 0.001 0.000 0.000 0.003 0.001 0.001 0.000
OLS 0.005 0.003 0.002 0.001 0.005 0.003 0.001 0.001 0.005 0.003 0.002 0.002

(E) Uniform distribution
RKDRE 0.007 0.001 0.000 0.000 0.008 0.002 0.001 0.001 0.003 0.002 0.001 0.001
KDRE 0.009 0.002 0.000 0.000 0.008 0.002 0.001 0.001 0.004 0.003 0.001 0.001
YDG 0.007 0.001 0.000 0.000 0.008 0.002 0.002 0.001 0.004 0.002 0.001 0.001
SBS 0.005 0.003 0.000 0.000 0.005 0.003 0.001 0.001 0.003 0.003 0.002 0.001
LGMM 0.010 0.003 0.001 0.001 0.006 0.003 0.002 0.001 0.005 0.003 0.002 0.002
LGMMS 0.005 0.001 0.001 0.000 0.007 0.002 0.002 0.001 0.005 0.003 0.001 0.001
OLS 0.011 0.005 0.001 0.001 0.010 0.004 0.002 0.001 0.006 0.004 0.002 0.002

Continued on next page
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Table A2 – continued from previous page

p 2 5 10

n 50 100 500 1000 50 100 500 1000 50 100 500 1000

(F) Gamma(2,2)
RKDRE 0.005 0.002 0.000 0.001 0.008 0.002 0.001 0.000 0.004 0.004 0.001 0.001
KDRE 0.006 0.003 0.000 0.001 0.008 0.003 0.001 0.000 0.005 0.005 0.001 0.001
YDG 0.001 0.002 0.002 0.001 0.007 0.003 0.001 0.001 0.006 0.005 0.001 0.001
SBS 0.003 0.001 0.000 0.002 0.006 0.003 0.001 0.001 0.006 0.005 0.001 0.000
LGMM 0.004 0.000 0.000 0.002 0.007 0.003 0.001 0.000 0.004 0.004 0.001 0.001
LGMMS 0.006 0.005 0.000 0.001 0.009 0.006 0.001 0.001 0.005 0.005 0.001 0.002
OLS 0.010 0.005 0.000 0.001 0.009 0.005 0.001 0.002 0.005 0.004 0.001 0.002

(G) Skewed mixture of normal distributions
RKDRE 0.005 0.001 0.001 0.000 0.003 0.002 0.001 0.000 0.004 0.003 0.001 0.001
KDRE 0.005 0.001 0.000 0.000 0.004 0.002 0.000 0.000 0.005 0.002 0.001 0.000
YDG 0.004 0.002 0.001 0.000 0.004 0.003 0.000 0.000 0.004 0.003 0.001 0.000
SBS 0.007 0.003 0.001 0.001 0.005 0.002 0.000 0.000 0.005 0.003 0.001 0.001
LGMM 0.005 0.000 0.001 0.000 0.002 0.002 0.000 0.000 0.005 0.003 0.001 0.000
LGMMS 0.006 0.001 0.003 0.000 0.001 0.003 0.001 0.000 0.005 0.004 0.001 0.001
OLS 0.003 0.000 0.001 0.001 0.005 0.005 0.001 0.001 0.005 0.004 0.002 0.001

(H) Log-normal distribution
RKDRE 0.003 0.002 0.000 0.000 0.002 0.001 0.001 0.000 0.004 0.001 0.000 0.000
KDRE 0.002 0.002 0.000 0.001 0.005 0.002 0.001 0.000 0.005 0.003 0.001 0.000
YDG 0.003 0.007 0.001 0.000 0.009 0.007 0.001 0.001 0.004 0.005 0.001 0.001
SBS 0.001 0.001 0.003 0.001 0.005 0.002 0.001 0.000 0.006 0.002 0.001 0.001
LGMM 0.002 0.003 0.000 0.000 0.005 0.002 0.001 0.000 0.005 0.002 0.001 0.001
LGMMS 0.004 0.001 0.003 0.001 0.006 0.002 0.001 0.001 0.006 0.004 0.001 0.001
OLS 0.004 0.006 0.003 0.000 0.007 0.003 0.002 0.001 0.007 0.005 0.002 0.001

Results are based on 500 replications. For p = 5 and p = 10, the bias of the slope coefficients is defined as the mean of
the absolute bias of the p− 1 slope coefficients.

46



Table A3: Comparison of bias of the intercept coefficient

p 2 5 10

n 50 100 500 1000 50 100 500 1000 50 100 500 1000

(A) Normal distribution
RKDRE 0.008 0.001 0.002 0.001 0.003 0.000 0.002 0.003 0.008 0.002 0.001 0.002
KDRE 0.007 0.000 0.001 0.001 0.003 0.001 0.002 0.002 0.009 0.002 0.001 0.002
YDG 0.008 0.001 0.002 0.001 0.002 0.000 0.002 0.003 0.009 0.002 0.000 0.002
SBS 0.005 0.000 0.001 0.001 0.003 0.001 0.002 0.002 0.007 0.002 0.001 0.003
LGMM 0.008 0.001 0.002 0.001 0.003 0.001 0.003 0.003 0.009 0.003 0.000 0.002
LGMMS 0.008 0.002 0.001 0.001 0.002 0.000 0.002 0.002 0.009 0.001 0.000 0.002
OLS 0.008 0.001 0.002 0.001 0.002 0.001 0.003 0.003 0.008 0.002 0.000 0.002

(B) Variance-contaminated normal distribution
RKDRE 0.003 0.001 0.000 0.001 0.013 0.001 0.001 0.002 0.003 0.007 0.000 0.002
KDRE 0.003 0.000 0.000 0.001 0.013 0.001 0.001 0.003 0.004 0.007 0.001 0.002
YDG 0.002 0.002 0.000 0.001 0.012 0.001 0.001 0.002 0.001 0.008 0.000 0.002
SBS 0.003 0.001 0.001 0.001 0.014 0.001 0.001 0.003 0.005 0.005 0.000 0.002
LGMM 0.003 0.001 0.000 0.001 0.013 0.001 0.001 0.002 0.004 0.007 0.000 0.002
LGMMS 0.001 0.000 0.000 0.000 0.000 0.003 0.001 0.000 0.002 0.003 0.001 0.001
OLS 0.003 0.001 0.000 0.001 0.014 0.001 0.001 0.002 0.004 0.007 0.000 0.002

(C) t-distribution with two degrees of freedom
RKDRE 0.015 0.002 0.001 0.002 0.005 0.004 0.000 0.006 0.019 0.011 0.008 0.010
KDRE 0.015 0.002 0.002 0.002 0.007 0.004 0.000 0.005 0.022 0.013 0.008 0.011
YDG 0.017 0.001 0.006 0.002 0.003 0.008 0.004 0.006 0.009 0.002 0.004 0.003
SBS 0.021 0.003 0.002 0.002 0.038 0.006 0.000 0.006 0.050 0.075 0.025 0.091
LGMM 0.015 0.002 0.001 0.002 0.004 0.005 0.000 0.006 0.019 0.010 0.008 0.010
LGMMS 0.015 0.002 0.001 0.002 0.004 0.005 0.000 0.006 0.020 0.011 0.008 0.010
OLS 0.015 0.001 0.001 0.002 0.006 0.004 0.001 0.006 0.025 0.012 0.009 0.010

(D) Bi-modal mixture of normal distributions
RKDRE 0.000 0.005 0.002 0.000 0.008 0.000 0.001 0.000 0.004 0.006 0.000 0.000
KDRE 0.001 0.004 0.001 0.000 0.010 0.000 0.001 0.000 0.005 0.007 0.000 0.000
YDG 0.000 0.005 0.002 0.000 0.008 0.000 0.001 0.000 0.004 0.006 0.000 0.000
SBS 0.001 0.004 0.001 0.000 0.008 0.000 0.000 0.000 0.008 0.007 0.000 0.001
LGMM 0.000 0.005 0.002 0.000 0.007 0.000 0.001 0.000 0.006 0.006 0.000 0.000
LGMMS 0.002 0.001 0.001 0.000 0.004 0.001 0.000 0.000 0.006 0.003 0.002 0.000
OLS 0.000 0.004 0.002 0.000 0.008 0.000 0.001 0.000 0.007 0.006 0.001 0.002

(E) Uniform distribution
RKDRE 0.014 0.004 0.003 0.002 0.013 0.003 0.003 0.002 0.007 0.001 0.000 0.001
KDRE 0.010 0.004 0.002 0.002 0.012 0.003 0.003 0.001 0.005 0.001 0.000 0.001
YDG 0.014 0.004 0.003 0.002 0.013 0.003 0.003 0.002 0.007 0.002 0.000 0.001
SBS 0.008 0.004 0.001 0.002 0.014 0.002 0.002 0.001 0.004 0.002 0.000 0.000
LGMM 0.014 0.004 0.003 0.002 0.013 0.004 0.003 0.002 0.005 0.001 0.000 0.001
LGMMS 0.008 0.001 0.002 0.001 0.011 0.003 0.003 0.000 0.003 0.003 0.002 0.000
OLS 0.013 0.004 0.003 0.002 0.012 0.004 0.003 0.002 0.006 0.001 0.000 0.001

Continued on next page
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Table A3 – continued from previous page

p 2 5 10

n 50 100 500 1000 50 100 500 1000 50 100 500 1000

(F) Gamma(2,2)
RKDRE 0.011 0.007 0.000 0.001 0.009 0.000 0.003 0.000 0.008 0.000 0.003 0.002
KDRE 0.048 0.060 0.062 0.055 0.047 0.063 0.064 0.057 0.050 0.058 0.064 0.055
YDG 0.011 0.007 0.002 0.001 0.009 0.001 0.003 0.000 0.003 0.001 0.003 0.002
SBS 0.073 0.090 0.082 0.073 0.051 0.072 0.077 0.069 0.042 0.050 0.067 0.060
LGMM 0.011 0.008 0.000 0.001 0.009 0.001 0.003 0.000 0.007 0.000 0.003 0.002
LGMMS 0.107 0.123 0.115 0.112 0.103 0.113 0.109 0.110 0.057 0.094 0.107 0.110
OLS 0.011 0.008 0.000 0.001 0.008 0.000 0.003 0.000 0.004 0.000 0.003 0.002

(G) Skewed mixture of normal distributions
RKDRE 0.046 0.047 0.046 0.043 0.033 0.042 0.048 0.041 0.054 0.040 0.043 0.045
KDRE 0.097 0.091 0.075 0.066 0.076 0.084 0.077 0.065 0.096 0.081 0.071 0.068
YDG 0.047 0.047 0.046 0.043 0.033 0.042 0.048 0.041 0.056 0.040 0.043 0.045
SBS 0.107 0.089 0.066 0.057 0.079 0.082 0.068 0.056 0.095 0.078 0.063 0.060
LGMM 0.046 0.047 0.046 0.043 0.031 0.043 0.048 0.041 0.053 0.040 0.043 0.045
LGMMS 0.079 0.127 0.187 0.201 0.092 0.066 0.187 0.180 0.020 0.010 0.133 0.177
OLS 0.045 0.047 0.046 0.043 0.030 0.044 0.048 0.041 0.055 0.042 0.043 0.045

(H) Log-normal distribution
RKDRE 0.003 0.002 0.000 0.001 0.000 0.009 0.001 0.001 0.003 0.001 0.002 0.002
KDRE 0.063 0.062 0.061 0.058 0.056 0.052 0.061 0.058 0.047 0.061 0.063 0.060
YDG 0.004 0.002 0.000 0.001 0.001 0.009 0.001 0.000 0.001 0.003 0.000 0.002
SBS 0.073 0.068 0.068 0.072 0.036 0.033 0.059 0.071 0.020 0.028 0.047 0.066
LGMM 0.003 0.002 0.001 0.001 0.000 0.009 0.001 0.001 0.001 0.002 0.002 0.024
LGMMS 0.040 0.038 0.032 0.032 0.108 0.009 0.050 0.040 0.110 0.113 0.075 0.050
OLS 0.003 0.003 0.000 0.001 0.010 0.008 0.001 0.001 0.001 0.001 0.002 0.003

Results are based on 500 replications.
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A.3 Example of report card

Figure A1: Card 1 of the report card

Source: Andrabi et al. (2017, Online appendix)

Figure A2: Card 2 of the report card

Source: Andrabi et al. (2017, Online appendix)
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A.4 Residual diagnostics for Model 2 and Model 3
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Figure A3: Residual diagnostics for Model 2
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Figure A4: Residual diagnostics for Model 3
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B R code

B.1 rkdre()

1 rkdre <- function(data , formula , tol_beta = 1e-12, tol_EM = 1e-12, max.iter = 100,

2 bandwidth = c("normal","robust1","robust2","SJ","bcv","ucv"),

3 update_bw = FALSE){

4

5 n <- nrow(data)

6 resid <- NULL

7 h <- NULL

8 std_error_trimmed <- NULL

9 std_error_untrimmed <- NULL

10

11 #compute OLS estimate

12 OLS_model <- lm(data = data , formula = formula)

13 beta_OLS <- OLS_model$coefficients

14

15 #set initial estimate

16 beta <- beta_OLS

17

18 #set initial bandwidth

19 if (bandwidth == "normal"){

20 h <- 1.06 * sd(OLS_model$residuals) * n^(-0.2)

21 } else if (bandwidth == "robust1"){

22 h <- 0.79 * IQR(OLS_model$residuals) * n^(-0.2)

23 } else if (bandwidth == "robust2"){

24 h <- 0.9 * min(sd(OLS_model$residuals),IQR(OLS_model$residuals)/1.34) * n^(-0.2)

25 } else if (bandwidth == "SJ"){

26 h <- bw.SJ(OLS_model$residuals)

27 } else if (bandwidth == "bcv"){

28 h <- bw.bcv(OLS_model$residuals)

29 } else if (bandwidth == "ucv"){

30 h <- bw.ucv(OLS_model$residuals)

31 }

32

33 #create matrix of explanatory variables with intercept

34 X <- model.matrix(formula , as.data.frame(data))

35

36 #column of dependent variable

37 y <- data[,which(colnames(data) == all.vars(formula )[1])]

38

39 #create A for in EM loop

40 A <- solve( t(X) %*% X )

41
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42 converged_beta <- 0

43 counter <- 0

44

45 while (converged_beta == 0 && counter < max.iter ){ #start beta loop

46

47 counter <- counter + 1

48 beta_prev <- beta

49 beta_EM <- beta_prev

50 converged_EM <- 0

51

52 #create residuals

53 resid <- y - X %*% beta_prev

54

55 if (update_bw == TRUE){

56 #update bandwidth

57 if (bandwidth == "normal"){

58 h <- 1.06 * sd(resid) * n^(-0.2)

59 } else if (bandwidth == "robust1"){

60 h <- 0.79 * IQR(resid) * n^(-0.2)

61 } else if (bandwidth == "robust2"){

62 h <- 0.9 * min(sd(resid),IQR(resid)/1.34) * n^(-0.2)

63 } else if (bandwidth == "SJ"){

64 h <- bw.SJ(resid)

65 } else if (bandwidth == "bcv"){

66 h <- bw.bcv(resid)

67 } else if (bandwidth == "ucv"){

68 h <- bw.ucv(resid)

69 }

70 }

71

72 resid_matrix <- do.call(rbind , replicate(n, t(resid), simplify=FALSE ))

73

74 while (converged_EM == 0){ #start EM loop

75

76 beta_prev_EM <- beta_EM

77

78 resid_EM <- y - X %*% beta_prev_EM

79

80 p_matrix <- matrix(rep(resid_EM,n), nrow = n, ncol = n) - resid_matrix

81

82 p_matrix <- exp( -0.5 * (p_matrix / h )^2 )

83

84 p_matrix <- p_matrix / ( rowSums(p_matrix) )

85
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86 #split beta_update in two parts (beta_OLS and A %*% (B-C))

87 #A is solve( t(X) %*% X) is created outside the loops

88

89 PE_sum <- p_matrix %*% resid

90

91 B <- colSums(X * as.vector(PE_sum))

92

93 C <- mean(PE_sum) * colSums(X)

94

95 #update beta

96 beta_EM <- beta_OLS - A %*% (B - C)

97

98

99 if(max((beta_EM - beta_prev_EM)^2) < tol_EM){

100 converged_EM <- 1

101 beta <- beta_EM

102 print(beta)

103 }

104

105 } #end of EM loop

106

107 if (max((beta - beta_prev )^2) < tol_beta){

108 converged_beta <- 1

109 resid <- y - X %*% beta

110 }

111 } #end of beta loop

112

113 if (counter >= max.iter ){

114 warning(’RKDRE did not converge in specified maximum number of iterations ’)

115 }

116

117 return(list(coefficients = beta , iterations = counter , residuals = resid ))

118 }
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B.2 kdre()

1 kdre <- function(data , formula , tol_EM = 1e-12,

2 bandwidth = c("normal","robust1","robust2","SJ","bcv","ucv")){

3

4 beta <- NULL

5 h <- NULL

6 resid <- NULL

7 n <- nrow(data)

8

9 OLS_model <- lm(data = data , formula = formula)

10 beta_OLS <- OLS_model$coefficients

11

12 #set initial bandwidth

13 if (bandwidth == "normal"){

14 h <- 1.06 * sd(OLS_model$residuals) * n^(-0.2)

15 } else if (bandwidth == "robust1"){

16 h <- 0.79 * IQR(OLS_model$residuals) * n^(-0.2)

17 } else if (bandwidth == "robust2"){

18 h <- 0.9 * min(sd(OLS_model$residuals),IQR(OLS_model$residuals)/1.34) * n^(-0.2)

19 } else if (bandwidth == "SJ"){

20 h <- bw.SJ(OLS_model$residuals)

21 } else if (bandwidth == "bcv"){

22 h <- bw.bcv(OLS_model$residuals)

23 } else if (bandwidth == "ucv"){

24 h <- bw.ucv(OLS_model$residuals)

25 }

26

27 #create matrix of explanatory variables with intercept

28 X <- model.matrix(formula , as.data.frame(data))

29

30 #column of dependent variable

31 y <- data[,which(colnames(data) == all.vars(formula )[1])]

32

33 #create A for in EM loop

34 A <- solve( t(X) %*% X )

35

36 #initialize EM algorithm

37 beta <- beta_OLS

38 converged_EM <- 0

39

40 #create residuals

41 resid_OLS <- y - X %*% beta

42

43 resid_matrix_OLS <- do.call(rbind , replicate(n, t(resid_OLS), simplify=FALSE))
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44

45 while (converged_EM == 0){ #start EM loop

46

47 beta_prev <- beta

48

49 resid <- y - X %*% beta_prev

50

51 #create matrix of classification probabilities

52 p_matrix <- matrix(rep(resid ,n), nrow = n, ncol = n) - resid_matrix_OLS

53 p_matrix <- exp( -0.5 * (p_matrix / h )^2 )

54 p_matrix <- p_matrix / ( rowSums(p_matrix) )

55

56 PE_sum <- p_matrix %*% resid_OLS

57

58 #update beta

59 beta <- beta_OLS - A %*% colSums(X * as.vector(PE_sum))

60

61 if(max((beta - beta_prev )^2) < tol_EM){

62 converged_EM <- 1

63 resid <- y - X %*% beta

64 }

65

66 } #end of EM loop

67

68 return(list(coefficients = beta , residuals = resid))

69 }
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B.3 ydg()

1 ydg <- function(data , formula , tol_EM = 1e-7, optim = c("EM", "ML"),

2 bandwidth = c("normal","robust1","robust2","SJ","bcv","ucv")){

3

4 beta <- NULL

5 h <- NULL

6 n <- nrow(data)

7

8 OLS_model <- lm(data = data , formula = formula)

9 beta_OLS <- OLS_model$coefficients

10 p <- length(beta_OLS)

11

12 #set initial bandwidth

13 if (bandwidth == "normal"){

14 h <- 1.06 * sd(OLS_model$residuals) * n^(-0.2)

15 } else if (bandwidth == "robust1"){

16 h <- 0.79 * IQR(OLS_model$residuals) * n^(-0.2)

17 } else if (bandwidth == "robust2"){

18 h <- 0.9 * min(sd(OLS_model$residuals),IQR(OLS_model$residuals)/1.34) * n^(-0.2)

19 } else if (bandwidth == "SJ"){

20 h <- bw.SJ(OLS_model$residuals)

21 } else if (bandwidth == "bcv"){

22 h <- bw.bcv(OLS_model$residuals)

23 } else if (bandwidth == "ucv"){

24 h <- bw.ucv(OLS_model$residuals)

25 }

26

27 #create matrix of explanatory variables with intercept

28 X <- model.matrix(formula , as.data.frame(data))

29

30 #column of dependent variable

31 y <- data[,which(colnames(data) == all.vars(formula )[1])]

32

33 if (optim == "EM"){

34

35 if (p == 2){

36

37 #create matrix of differences in explanatory variables (xi- xj)

38 X_diff <- rep(X[,2],n) - do.call(rbind , replicate(n, t(X[,2]), simplify=FALSE))

39

40 #create matrix of differences in dependent variable (yi - yj)

41 y_diff <- rep(y,n) - do.call(rbind , replicate(n, t(y), simplify=FALSE))

42

43 beta_EM <- beta_OLS[-1]
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44 converged_EM <- 0

45

46 while (converged_EM == 0){

47

48 beta_prev_EM <- beta_EM

49

50 #create residual matrix

51 resid_matrix <- y_diff - X_diff * beta_prev_EM

52

53 #create matrix of classification probabilities

54 p_matrix <- exp(-0.5 * ( resid_matrix / h )^2 )

55 #use leave one out

56 diag(p_matrix) <- 0

57 #divide by sum of the rows such that probabilities sum to 1

58 p_matrix <- p_matrix / rowSums(p_matrix)

59

60 #update beta

61 beta_EM <- 1/( sum(p_matrix * X_diff^2 )) * sum(p_matrix * X_diff * y_diff)

62

63 if(max((beta_EM - beta_prev_EM)^2) < tol_EM){

64 converged_EM <- 1

65 beta <- beta_EM

66 }

67 } # end of EM loop

68 }

69

70 if (p > 2){

71 #create three -dimensional array of differences in indep. variables (xi - xj)

72 X_diff <- array(0,dim = c(n,n,(p-1)))

73 for (i in 1:(p -1)){

74 X_diff[,,i] <- rep(X[,(i+1)],n) -

75 do.call(rbind , replicate(n, t(X[,(i+1)]), simplify=FALSE))

76 }

77

78 #create matrix of differences in dependent variable (yi - yj)

79 y_diff <- rep(y,n) - do.call(rbind , replicate(n, t(y), simplify=FALSE))

80

81 beta_EM <- beta_OLS[-1]

82 converged_EM <- 0

83

84 while (converged_EM == 0){ #start EM loop

85

86 beta_prev_EM <- beta_EM

87 resid <- y - as.matrix(X[,-1]) %*% beta_prev_EM
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88

89 #create residual matrix

90 resid_matrix <- matrix(rep(resid ,n), nrow = n, ncol = n)

91 resid_matrix <- resid_matrix -t(resid_matrix)

92

93 #create matrix of classification probabilities

94 p_matrix <- exp(-0.5 * ( resid_matrix / h )^2 )

95 #use leave one out

96 diag(p_matrix) <- 0

97 #divide by sum of the rows such that probabilities sum to 1

98 p_matrix <- p_matrix / rowSums(p_matrix)

99

100 #the inner apply computes the outer product of X_diff[i,j,]

101 #the outer products are structured with array

102 #sweep multiplies each outer product element with p[i,j]

103 #the outer apply sums over the matrices of outer products

104 A <- apply(sweep(array(apply(X_diff , c(1,2), function(x){x %*% t(x)}),

105 dim = c(p-1,p-1,n,n)), c(3,4), FUN = "*",p_matrix), c(1,2), sum)

106 B <- apply(sweep(X_diff , c(1,2), FUN = "*", (y_diff * p_matrix)),3,sum)

107

108 #update beta

109 beta_EM <- solve(A) %*% B

110

111 if(max((beta_EM - beta_prev_EM)^2) < tol_EM){

112 converged_EM <- 1

113 beta <- beta_EM

114 }

115 } #end of EM loop

116 }

117 }

118

119 if (optim == "ML"){

120

121 fn <- function(beta , y, X, n, h){

122

123 #create residuals

124 resid <- y - as.matrix(X[,-1]) %*% beta

125

126 #create matrix of differences

127 resid_matrix <- matrix(rep(resid ,n), nrow = n, ncol = n)

128 resid_matrix <- ( resid_matrix - t(resid_matrix) ) / h

129

130 #compute Gaussian kernel scores

131 K_matrix <- exp(-0.5 * resid_matrix ^2)
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132 #use leave one out density

133 diag(K_matrix) <- 0

134

135 #compute leave one out density estimates

136 f_vector <- 1/( (n-1) * h ) * rowSums(K_matrix)

137

138 #compute (negative) likelihood

139 fn <- -1*sum(log(f_vector ))

140 fn

141 }

142

143 #if initial value is infinite , return NULL

144 if ( is.infinite(fn(beta = beta_OLS[-1],y = y, X = X, n = n, h = h)) == TRUE ){

145 return(list(coefficients = rep(NaN ,(nvar +1))))

146 warning(’initial estimated log -likelihood in YDG is (minus) infinite ’)

147 }

148

149 beta <- optim(par = beta_OLS[-1], fn = fn , method = "BFGS",

150 y = y, X = X, n = n, h = h)$par

151 }

152

153 #compute intercept term

154 intercept <- mean(y - as.matrix(X[,-1]) %*% beta)

155 beta <- c(intercept ,beta)

156

157 return(list(coefficients = beta))

158 }

59



B.4 sbs()

1 sbs <- function(data , formula , t = 8,

2 bandwidth = c("normal","robust1","robust2","SJ","bcv","ucv")){

3

4 n <- nrow(data)

5 h <- NULL

6

7 #compute trimming parameters

8 a <- t

9 b <- exp(-0.5*t^2)

10 c <- t

11

12 OLS_model <- lm(data = data , formula = formula)

13 beta <- OLS_model$coefficients

14

15 #set initial bandwidth

16 if (bandwidth == "normal"){

17 h <- 1.06 * sd(OLS_model$residuals) * n^(-0.2)

18 } else if (bandwidth == "robust1"){

19 h <- 0.79 * IQR(OLS_model$residuals) * n^(-0.2)

20 } else if (bandwidth == "robust2"){

21 h <- 0.9 * min(sd(OLS_model$residuals),IQR(OLS_model$residuals)/1.34) * n^(-0.2)

22 } else if (bandwidth == "SJ"){

23 h <- bw.SJ(OLS_model$residuals)

24 } else if (bandwidth == "bcv"){

25 h <- bw.bcv(OLS_model$residuals)

26 } else if (bandwidth == "ucv"){

27 h <- bw.ucv(OLS_model$residuals)

28 }

29

30 #create matrix of explanatory variables with intercept

31 X <- model.matrix(formula , as.data.frame(data))

32

33 #column of dependent variable

34 y <- data[,which(colnames(data) == all.vars(formula )[1])]

35

36 #compute OLS residuals

37 resid <- y - X %*% beta

38

39 #create matrix for score computation

40 resid_matrix <- matrix(rep(resid ,n), nrow = n, ncol = n)

41

42 resid_matrix <- ( resid_matrix - t(resid_matrix) ) / h

43
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44 exp_resid_matrix <- exp( -0.5 * (resid_matrix ^2) )

45

46 #compute kernel density (up to scale factor)

47 f_u <- rowSums( exp_resid_matrix )

48

49 #compute derivative of kernel density (up to scale factor)

50 df_u <- rowSums( -1 * resid_matrix * exp_resid_matrix )

51

52 #compute score function

53 score <- 1/h * df_u / f_u

54

55 #trim score

56 trim_matrix <- cbind(resid ,f_u,score)

57

58 trimmed_score <- apply(trim_matrix , 1, function(x){

59 if (abs(x[1]) < a && x[2] > b && abs(x[3]) < c ){

60 x <- x[3]

61 }

62 else{

63 x <- 0

64 }

65 return(x)

66 })

67

68 score_X <- X * trimmed_score

69

70 #compute the SBS estimator

71 beta <- beta - n / sum(trimmed_score ^2) * solve(t(X) %*% X) %*% colSums(score_X)

72

73 resid <- y - X %*% beta

74

75 return(list(coefficients = beta , residuals = resid , h = h))

76 }
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B.5 lgmm()

1 lgmm <- function(data , formula , J = 3, symmetric = TRUE ,

2 transformed = TRUE , weighted = FALSE){

3

4 n <- nrow(data)

5 resid_transformed <- NULL

6 resid_weighted <- NULL

7 zeta_matrix <- NULL

8 w_matrix <- NULL

9

10 #create matrix of explanatory variables with intercept

11 X <- model.matrix(formula , as.data.frame(data))

12

13 #column of dependent variable

14 y <- data[,which(colnames(data) == all.vars(formula )[1])]

15

16 #starting values for optimization routine

17 OLS_model <- lm(data = data , formula = formula)

18 beta <- OLS_model$coefficients

19 sigma <- sd(OLS_model$residuals)

20

21 #create residuals

22 resid <- y - X %*% beta

23

24 if (symmetric == TRUE){

25 if (transformed == FALSE && weighted == FALSE){

26

27 #create zeta matrix

28 zeta_matrix <- resid

29 for (j in 2:J){

30 zeta_matrix <- cbind(zeta_matrix ,resid^( 2*j -1 ))

31 }

32

33 #create w_matrix

34 w_matrix <- rep(1,n)

35 for (j in 2:J){

36 w_matrix <- cbind(w_matrix ,( 2*j-1 )*resid^( 2*j - 2 ))

37 }

38 } else if (transformed == TRUE){

39

40 resid_transformed <- resid / (1 + abs(resid ))

41

42 #create zeta matrix

43 zeta_matrix <- resid_transformed
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44 for (j in 2:J){

45 zeta_matrix <- cbind(zeta_matrix ,resid_transformed ^( 2*j -1 ))

46 }

47

48 zeta_matrix <- scale(zeta_matrix , center = TRUE , scale = FALSE)

49

50 #create vector that is 1 (-1) for positive (negative) residuals

51 ind <- rep(-1,n)

52 ind[which(resid >= 0)] <- 1

53

54 #compute ’inner ’ derivative of w

55 w_deriv <- ( rep(1,n) + abs(resid) - resid * ind ) / ( 1 + abs(resid) )^2

56 w_matrix <- w_deriv

57 for (j in 2:J){

58 w_matrix <- cbind(w_matrix ,( 2*j-1 ) * resid_transformed ^( 2*j - 2 )

59 * w_deriv)

60 }

61

62 }

63 } else if (symmetric == FALSE ){

64 if (transformed == FALSE && weighted == FALSE){

65

66 #create zeta matrix

67 zeta_matrix <- resid

68 for (j in 2:J){

69 zeta_matrix <- cbind( zeta_matrix ,resid^j )

70 }

71 zeta_matrix <- scale(zeta_matrix , center = TRUE , scale = FALSE)

72 #create w_matrix

73 w_matrix <- rep(1,n)

74 for (j in 2:J){

75 w_matrix <- cbind(w_matrix , j * resid^( j - 1 ))

76 }

77

78 } else if (transformed == TRUE){

79

80 resid_transformed <- resid / (1 + abs(resid ))

81

82 #create zeta matrix

83 zeta_matrix <- resid_transformed

84 for (j in 2:J){

85 zeta_matrix <- cbind(zeta_matrix ,resid_transformed^j)

86 }

87
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88 zeta_matrix <- scale(zeta_matrix , center = TRUE , scale = FALSE)

89

90 #create vector that is 1 (-1) for positive (negative) residuals

91 ind <- rep(-1,n)

92 ind[which(resid >= 0)] <- 1

93

94 #compute ’inner ’ derivative of w

95 w_deriv <- ( rep(1,n) + abs(resid) - resid * ind ) / ( 1 + abs(resid) )^2

96 w_matrix <- w_deriv

97 for (j in 2:J){

98 w_matrix <- cbind(w_matrix , j * resid_transformed ^( j-1 ) * w_deriv)

99 }

100 } else if (weighted == TRUE){

101

102 #create weights of residuals

103 resid_weights <- as.vector(exp(-0.5 * resid ^2))

104

105 zeta_matrix <- resid

106 for (j in 2:J){

107 zeta_matrix <- cbind(zeta_matrix ,resid^( 2*j -1 ))

108 }

109 zeta_matrix <- zeta_matrix * resid_weights

110

111 zeta_matrix <- scale(zeta_matrix , center = TRUE , scale = FALSE)

112

113 w_matrix <- ( c(1,n) - resid ^2 ) * resid_weights

114 for (j in 2:J){

115 w_matrix <- cbind(w_matrix , ( j * resid^(j-1) - resid^(j+1) )

116 * resid_weights )

117 }

118 }

119 }

120

121 #create covariance matrix of moments

122 V <- ( n-1 ) / n * cov(zeta_matrix)

123

124 #compute sample moments

125 w <- colMeans(w_matrix)

126

127 #precompute some matrices

128 A <- t(X) %*% X

129 wX <- kronecker(t(w),A)

130 VinvAinv <- kronecker(solve(V),solve(A))

131
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132 #update beta

133 beta <- beta + solve( wX %*% VinvAinv %*% t(wX) ) %*% wX %*% VinvAinv %*%

134 kronecker(diag(J),t(X)) %*% as.vector(zeta_matrix)

135

136 return(list(coefficients = beta))

137 }
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