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ABSTRACT 

This paper compares different well-known volatility models in terms of the in-sample and 

out-of-sample fit for different horizons to see which models perform best at several 

horizons. The return series of the S&P500 and the Mexican IPC are used to answer this 

question. The volatility is forecasted at the one day, one month, six months, one year and 

two year horizon under different distributions. Besides individual forecasts, forecast 

combinations are used as well to forecast volatility. All these forecasts are evaluated with 

the MSE and compared with the Diebold Mariano test and the Model Confidence Set. It 

can be concluded that in the short run there is not one model that outperforms other 

models. Half of all models seem to perform equally. Forecast combinations based on the 

trimmed mean and MSE ranks provide the most accurate forecasts in forecasting 

volatility in one or two years from now for the S&P500. Forecasting in the long-run for 

the IPC can be done most accurately by using GJR-GARCH.  
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1. INTRODUCTION 

The return of almost every security is affected by fluctuations in the price. Therefore it is 

crucial to create tools to forecast these fluctuations called volatility for both financial 

institutions and researchers as well as for regulators. Volatility forecasting is one of the 

most important principles in risk management, asset allocation and option pricing. 

Volatility means a deviation from the mean which corresponds to risk. The more accurate 

the volatility forecast, the better one can determine the asset price which is very valuable.    

 

Due to the excessive activity in forecasting volatility, various researchers developed a 

large amount of (sophisticated) models that try to explain the movements in financial 

asset volatility. This makes it interesting to test different models against simple historical 

models to see whether they outperform or not. Existing research on this topic is 

ambiguous due to, among other things, different time series, sample periods, 

distributions, loss functions, forecast horizons and what proxy to use for realized 

volatility. Poon and Granger summarized 93 papers on the forecasting performance of 

many models in 2003 and found that in almost 50% of the cases, the regression-based 

models were not able to outperform historical, naïve models. In almost all other cases, the 

asymmetric ARCH models particularly performed best. 

 

A lot of research exists on forecasting volatility one day or one month ahead. Conclusions 

are based on forecasting in the short run but this does not mean the same is true for 

forecasting in the long run. Figlewski (2004) provided an extensive review on forecasting 

volatility in the long run and concludes that GARCH(1,1) is not good at forecasting in the 

long run but the simple historical methods actually are. More recently, Brownlees, Engle 

and Kelly (2012) showed that forecasting in the long run gets accompanied by more risk 

and therefore the loss functions will be higher.  

 

Forecasting longer horizons is interesting and beneficial. Most money managers will 

agree on the fact that forecasting volatility one day in advance is insufficient. Also, it is 

very plausible that the best way to predict volatility in two years is very different from 

the method to forecast volatility in two weeks. So there is not one answer to ‘what is the 

best forecasting method?’ Also, the expansion in trading derivatives increased interest in 

forecasting in the long run since the lengthening of the written contracts. The aim of this 

paper is therefore to research what models provide most accurate forecasts in the short 

run and what models could be best used to forecast one or wo years ahead from now. The 
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forecast horizon is extended to include one day, one month, six months, one year and two 

years ahead forecasts. To measure if the forecasting performance is statistically different 

among models, Diebold and Mariano’s (1995) test for equal predictive accuracy will be 

applied. This test compares the loss functions of two models. The loss function used in 

this study is the MSE.  

 

This paper also aims to conclude on whether the more complex models do provide more 

accurate forecasts than the simpler models. The models used in this study are the Simple 

and Exponential Moving Averages (SMA, EWMA), ARMA (Auto Regressive Moving 

Average), ARCH (Auto Regressive Conditional Heteroscedasticity), GARCH (Generalized 

ARCH), EGARCH (Exponential GARCH) and GJR-GARCH (Glosten-Jagannathan-

Runkle GARCH). All ARCH models are tested under three different distributions as well: 

the Normal, Student’s T and Generalized Error distribution. The return series of the 

S&P500 and the Mexican IPC from 01/03/2000 to 5/31/2017 are used to produce the 

results.  

 

Another purpose is to answer the question whether to combine multiple forecasts of the 

same variable or to identify one single best forecasting model. To answer these questions, 

all models need to be compared and evaluated for each maturity to determine which 

forecast(s) are most accurate. Since the number of forecasts is quite large, the Model 

Confidence Set introduced by Hansen, Lunde and Nason (2011) offers a solution to this. 

A Model Confidence Set is a set of ‘best’ models for a given level of significance. The Model 

Confidence Set procedure is applied to all individual forecasts.  

 

This paper is related to the extensive literature on volatility forecasting but it adds value 

in multiple ways. First of all not only individual forecasts at multiple horizons will be 

evaluated, forecast combinations will be examined as well to see if there is a difference 

between using combinations when forecasting in the short run or in the long run. 

Individual forecasts and forecast combinations are compared statistically, just like all 

other forecasts. Last but not least three different distributions are applied to see whether 

this improves accuracy.  

 

The main conclusion of this study is that using different distributions than the normal 

distribution yield high MSEs. Models that perform well in the short run like ARMA or 

EWMA are not likely to be a guarantee that they also perform well in the long run. At the 
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one day and one month horizon it is hard to draw conclusions. In the long run some clear 

results become visible. For the S&P500 the forecast combinations ‘trimmed mean’ and 

‘MSE ranks’ provide the most accurate forecasts. In case of the more volatile IPC it is the 

GJR-GARCH that outperforms all other models and forecast combinations.  

 

The remainder of this paper is structured as follows. The next section describes the 

theoretical framework, followed by a summary of the findings hitherto. Section 4 describes 

and analyses the data and section 5 explains the methods more closely and adds some 

literature about the methodology as well. Section 6 presents the results and the last 

section, section 7, summarizes and concludes. Thereafter the references and appendices 

can be found. 
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2. THEORETICAL FRAMEWORK 

Before reviewing the existing literature on volatility forecasting, the existing models and 

some important concepts are discussed. This section starts with explaining realized 

volatility, the historical volatility models and the stylized facts. Thereafter the ARCH 

model and some of its extensions will be presented.  

 

2.1 REALIZED VOLATILITY 

First of all, it is necessary to define volatility. Volatility in financial markets can be 

explained as the spread of all likely outcomes of uncertain asset returns. In practice, 

volatility is generally calculated as the sample standard deviation, 𝜎𝑡
2, which can be 

calculated as  

 

𝜎𝑡
2 =  

1

𝑇 − 1
∑(𝑟𝑡 − 𝜇)2

𝑇

𝑡=1

 

 

where 𝑟𝑡 denotes the return on day t and 𝜇 is the average return over the entire period T. 

Before high-frequency data became easily available, most researchers turned to the 

undesirable method of using daily squared returns as a proxy for daily volatility, 

assuming 𝜇 ≈ 0.  This is however shown to be a very noisy estimator by, among others, 

Lopez (2001), Andersen and Bollerslev (1998) and Blair, Poon and Taylor (2001). The 

latter point out that the use of intraday 5-minute squared returns as a proxy increases 

accuracy up to three to four times. This sum of squared intra-period returns are called 

Realized Volatility (Poon, 2005).  

 

The main advantage is that this proxy can be made readily accurate in a way that the 

interval over which the returns are calculated becomes negligibly small. This makes it 

possible to treat volatility as observable. More recent literature has concentrated on 

realized variance since high-frequency data has become widely and cheaply available. The 

additional information that intra-day data contains, makes it very attractive to use it 

(Andersen & Bollerslev, 1998). There are several other reasons why using realized 

variance (hereinafter RV) could be beneficial. For instance RV is non-parametric so there 

is no model risk. Also, RVs are simple to calculate. The only data one needs are market 

prices and most securities and instruments have this widely available. Finally, only 

information within the estimation interval is needed. So for instance in order to calculate 
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the volatility for a period of 48 hours, everything needed are the intraday returns within 

those 48 hours.  

 

2.2 SMA METHOD 

A very simple method to forecast volatility is to calculate it from historical data. Historical 

volatility models (HIS) or naïve models are relatively easy to build and adjust. Conditional 

volatility is not modelled based on returns but directly on realized volatility which makes 

these models less restrictive and more prepared to respond to changes in volatility. The 

simplest HIS model is the random walk model. This model states that today’s volatility 

predicts tomorrow’s volatility: 

 

𝜎𝑡+1
2 = 𝜎𝑡

2 

 

so only one variable is needed to predict tomorrow’s volatility. The simple moving average 

(SMA) is based on this, however it uses older information as well 

 

𝜎𝑡+1
2 =

1

τ
(𝜎𝑡

2 + 𝜎𝑡−1
2 + ⋯ + 𝜎𝑡−𝜏−1

2 ) 

 

where τ describes how many past observations will be used which makes this method very 

simple and with the improvement in intraday data, HIS models can provide very accurate 

forecasts.  

 

2.3 EWMA METHOD 

The exponentially weighted moving average (EWMA) is an expansion of the simple 

moving average by adding exponential weights so more weight is given to recent 

information and less to older 

 

𝜎𝑡+1
2 = ∑(1 − 𝜆)𝑖𝜎𝑡−𝑖−1

2

𝜏

𝑖=1

 

 

where λ is a constant and is sometimes called the ‘smoothing constant’. Choosing a value 

for λ is an empirical issue but it is usually set to 0.94 following RiskMetrics approach. For 

both moving averages, the forecast is flat and volatility remains constant which means 

the h-day ahead forecast is the same as the one day ahead forecast.  
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2.4 ARMA 

Besides the two moving averages above, there are autoregressive HIS models as well 

such as the simple regression method 

 

𝜎𝑡+1
2 =  𝛼 + 𝛽1𝜎𝑡

2 + 𝛽2𝜎𝑡−1
2 + ⋯ . +𝛽𝑛𝜎𝑡−𝑛+1

2  

 

in which volatility depends linearly on its own previous values. If one adds past errors 

as well, this results in the Auto Regressive Moving Average (ARMA) designed by Peter 

Whittle in 1951 

 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑗

𝑝

𝑗=1

𝜎𝑡−𝑗
2 + ∑ 𝛽𝑗𝛾𝑡−𝑗

𝑞

𝑗=0

 

 

where 𝛾t are volatility errors that can be called white noise. ARMA is a linear Gaussian 

model and because there is a lot of supportive literature available on linear equations and 

Gaussian models, ARMA has been a commonly used model for a long period of time. Also, 

working with ARMA is quite simple and the model is found to be successful in analysing 

and forecasting data. Unfortunately it has its limitations as well. One of the stylized facts 

discussed in the next section, is that we usually see changes in volatility when looking at 

financial data. Because ARMA assumes constant volatility, this feature cannot be 

captured. Another shortcoming is that these models underperform when using data with 

strong asymmetry or data exhibiting strong cyclicality or time irreversibility (Knight & 

Satchell, 2007).  

 

2.5 STYLIZED FACTS 

Figure 1 and 2 plot the intraday 5-minute squared returns of the S&P500 and the IPC 

between 2000 and 2004. It becomes very clear that volatility indeed changes over time 

and that it is not just a constant plus some random noise. We do see quite a few peeks in 

the data. For instance around May 2000, the first quarter of 2001 and larger peeks around 

September 2001 – which is probably due to 9/11 – and the first quarter of 2002. The latter 

two are less visible for the IPC. From 2002 to 2004 volatility is very low with only one 

peak at the end of 2002. Appendix A shows figures of the realized volatility between 2004 

and 2017 divided in periods of four years to see differences between the two indices. 
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Overall the IPC shows more short peaks in general, the peaks in the S&P500 take more 

time to disappear. The changes between high and low volatile periods are more subtle for 

the S&P500 compared to the sharp increases and decreases in IPC its volatility.  

 

 

Aside from volatility being time-varying, financial data shows some other specific 

patterns which are called stylized facts. The following characteristics are usually observed 

when analysing financial data:  

 

Volatility clustering – A phenomenon in financial time series is that low volatility is 

more likely to be followed by low volatility and that one turbulent trading day tends to be 

followed by another (Poon, 2005).  
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Figure 1: Realized Volatility S&P500 in-sample data
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Figure 2: Realized Volatility IPC in-sample data
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Leverage effect – Negative news leads to a fall in the stock price which shifts a firm’s 

debt to equity ratio upwards. The firm has thus increased leverage i.e. higher risk. The 

corresponding stylized fact is that stock price volatility tend to increase more if the 

preceding day returns are negative relative to positive returns of the same magnitude 

(Christie, 1982). Not only the sign of the previous returns matters, the size does as well. 

Large negative and positive return shocks cause more volatility than small return shocks 

will (Engle & Ng, 1993).   

 

Excess kurtosis and skewness – Most financial time series show excess kurtosis 

skewness. This leads to data that does not follow the normal distribution. Especially fatter 

left tails and higher peaks are well known features of financial asset returns. The normal 

distribution has a skewness of zero and a kurtosis of approximately three. Most financial 

time series are (far) above these values (Knight & Satchell, 2007).  

 

Long memory – The autocorrelation of absolute or squared returns declines very slowly 

which means that volatility is highly persistent and that the effects of volatility shocks 

decay slowly. Poon (2005) shows that autocorrelation declines even slower for realized 

volatility. Figure 1 and 2 show that the long memory effect is more present in the returns 

of the S&P500 compared with those of the IPC.  

 

Weak form market efficiency – Asset returns are usually not autocorrelated. If there 

exists some autocorrelation, it is only at lag one due to thin trading. In other words, 

returns are not predictable.  

 

Co-movements in volatility – Returns and volatility across different markets or asset 

classes tend to move together. A shock in one currency can be matched with a shock in 

another currency. Or a shock in the stock market can be matched with a shock in the bond 

market. Especially correlation among volatility is strong and this effect is even bigger in 

bear markets or during financial crises (Poon, 2005).  

 

Stylized facts are the cause of forecasting volatility being a difficult but interesting topic. 

It is the art to detect the time series properties and to use or create a volatility model that 

accounts for the stylized facts of financial market data.  
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2.6 ARCH(q) MODEL 

In contrast to historical volatility models, the next models use asset returns as input 

instead of realized volatility. The Autoregressive Conditional Heteroscedasticity (ARCH) 

model is a more refined model that can be used in order to model volatility. ARCH(q) is 

designed by Engle in 1982 trying to capture volatility clustering, since this was a big 

shortcoming of ARMA. The model is, as the name says, Autoregressive because current 

volatility is related to previous period’s volatility, this feature captures the volatility 

clustering aspect. Conditional to capture the time-varying aspect of volatility and 

Heteroscedastic to incorporate the autocorrelation often found in the squared residuals. 

Before explaining the model statistically, write returns as 

 

𝑟𝑡 = 𝜇 + 𝜀𝑡 

𝑤𝑖𝑡ℎ 𝜀𝑡 = 𝜎𝑡𝑧𝑡   

 

with 𝑧𝑡  ~ 𝑁(0,1). The ARCH(q) model than calculates conditional variance, 𝜎𝑡
2, as  

 

𝜎𝑡
2 = 𝜔 + 𝛼1𝜀𝑡−1

2 + 𝛼2𝜀𝑡−2
2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞

2    𝑖. 𝑒.   𝜔 + ∑ 𝛼𝑗𝜀𝑡−𝑗
2

𝑞

𝑗=1

 

 

with q being the amount of lags and  being the ARCH parameters calculated through 

maximizing the likelihood of 𝜀𝑡 . Both 𝜔 and 𝛼𝑗 must be equal to or larger than zero to 

establish a positive conditional variance. If ∑ 𝛼𝑗
𝑞
𝑗=1 < 0, ARCH is stationary as well. 

Volatility is thus conditional on the squared residuals and because they differ in time, the 

model is time-varying. The formula above describes the one-step-ahead forecast. The 

multi-step-ahead forecast relies on the assumption that E[𝜀𝑡+𝜏
2 ] = 𝜎𝑡+𝜏

2 .  

 

In theory, one could choose any value for q. This study sets q equal to one. 𝜎𝑡
2 is actually 

a function of the information available at time t-1. In this case, the conditional variance 

only depends on one single observation: the past squared residual returns (Knight & 

Satchell, 2007). Despite the ability of the ARCH(q) model to capture volatility clustering, 

this model is not suited for variance effects that retain for a longer period of time. Trying 

to overcome this problem, Bollerslev and Taylor designed the Generalized ARCH 

(GARCH) model in 1986.  
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2.6.1 GARCH(p,q)  

The difference between ARCH(q) and GARCH(p,q) is that the latter includes more 

dependencies and therefore it allows changes in volatility to occur more slowly. GARCH 

tries to capture another stylized fact: the long memory effect. To be specific, it includes 

lagged values of 𝜎𝑡
2 as well, which results in the following identification 

 

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑗𝜀𝑡−𝑖

2 + ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

𝑞

𝑖=1

 

 

with ,  and  being non-negative and  +  smaller than, but close to 1 in order for the 

model to be stationary. Note that for all ARCH models, 𝜎𝑡−𝑗
2  is not the same as the realized 

variance used in the HIS models. It is the forecasted volatility in the previous period. So 

tomorrow’s volatility depends on today’s volatility that was forecasted yesterday. The past 

squared residuals capture the high frequency effects and the lagged variance captures 

long term influences. So the expected volatility is a combination of the long run volatility 

and the expected volatility for the last few days. A big advantage of the GARCH model 

relative to EWMA for instance is that if today is a day of high volatility, the EWMA 

predicts all future days to be highly volatile as well whereas GARCH assumes that 

variance will move towards its average value in the long run. If q and p are both equal to 

one, we can write GARCH(1,1). The one-step ahead forecast of GARCH(1,1) is known at 

time t and will be 

 

𝜎𝑡+1
2 = 𝜔 + 𝛼1𝜀𝑡

2 + 𝛽1𝜎𝑡
2 

 

The two-step-ahead forecasts can be calculated by assuming E[𝜀𝑡+1
2 ] =  𝜎𝑡+1

2  

 

𝜎𝑡+2
2 = 𝜔 + 𝛼1𝜀𝑡+1

2 + 𝛽1𝜎𝑡+1
2 =  𝜔 + (𝛼1 + 𝛽1)𝜎𝑡+1

2  

 

Similarly, 

𝜎𝑡+3
2 =  𝜔 + (𝛼1 + 𝛽1)𝜎𝑡+2

2  

 

and so on until eventually the long-horizon forecast i.e. two years ahead will be the long-

run average variance (Christoffersen, 2012). GARCH is simple and able to capture time 

variation and the long memory effect. One of the limitations however is that it can be 
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difficult to fit the data, especially when more than one lag is used. Another shortcoming 

is that this model does not take asymmetries into account. GARCH might forecast 

volatility too low after a large shock in the asset price and too high in the case of a positive 

return shock. Finally, the non-negativity constraints on ,  and  can create difficulties 

in estimating models. The next model, EGARCH, offers a solution to the latter problems.   

 

2.6.2 EGARCH(p,q) 

In 1991 Nelson presents the Exponential GARCH (EGARCH) model where the above 

mentioned constraints are not necessary because conditional variance is specified in 

logarithmic form 

 

ln(𝜎𝑡
2) = (1 − 𝛼1)𝛼0 + 𝛼1 ln(𝜎𝑡−1

2 ) + 𝜃 (
𝜀𝑡−1

𝜎𝑡−1
) + 𝛾 [ 

|𝜀𝑡−1|

𝜎𝑡−1
 ] 

 

where 𝛽, 𝛾 and 𝛼 are constants without constraints. 𝜃 is typically negative, so positive 

return shocks have less impact on volatility than negative shocks will have. 𝛾 captures 

the size effects because it depends on the absolute residual values. Larger shocks have a 

bigger influence on volatility than small shocks. Note that standard deviation is used as 

an input to calculate conditional variance. A reason for this could be that variance is less 

stable in computer estimation and standard deviation has the same unit as the mean 

instead of its square (Poon, 2005). Tsay (2002) illustrates how to define the one-step-ahead 

forecasts when the innovations are standard Gaussian, by taking exponentials 

 

𝜎𝑡+1
2 = 𝜎𝑡

2𝛼1 exp[(1 − 𝛼1)𝛼0] exp [𝜃 (
𝜀𝑡

𝜎𝑡
) + 𝛾 [ 

|𝜀𝑡|

𝜎𝑡
 ]] 

 

the 𝜏-step-ahead forecasts are defined as 

 

𝜎𝑡+𝜏
2 = 𝜎𝑡

2𝛼1 (𝜏 − 1) exp[(1 − 𝛼1)𝛼0] ∗ {exp[0.5(𝜃 + 𝛾)2] Φ(𝜃 + 𝛾) + exp[0.5(𝜃 − 𝛾)2] Φ(𝜃 − 𝛾)} 

 

where Φ is the cumulative density function of the standard normal distribution.  
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2.6.3 GJR-GARCH 

Another model that takes the asymmetry effect into account is the GJR-GARCH model 

designed by Glosten, Jagannathan and Runkle in 1993 where conditional variance is 

estimated as 

 

σt
2 = ω + ∑(𝛼𝑗𝜀𝑡−𝑗

2

𝑞

𝑗=1

+ δ𝑗𝐷𝑗,𝑡−1𝜀𝑡−𝑗
2 ) + ∑ 𝛽𝑖𝜎𝑡−𝑖

2

𝑝

𝑗=1

 

 

with δ𝑗 being the leverage term and D is a dummy variable which takes the value 1 if 𝜀𝑡−1 

< 0 and 0 if otherwise. In this model ,  and  must be non-negative and  +  must be 

smaller than one, but again still close to one for stationarity. An additional restriction is 

that γ should be equal to or larger than zero. For the one-step-ahead forecast the equation 

becomes 

 

𝜎𝑡+1
2 = 𝜔 + 𝛽1𝜎𝑡

2 + 𝛼1𝜀𝑡
2 + 𝛿1𝜀𝑡

2𝐷𝑡 

 

and the multi-step-ahead forecast is 

 

𝜎𝑡+𝜏
2 = 𝜔 + (0.5(𝛼1 + 𝛾1) + 𝛽1)𝜎𝑡+𝜏−1

2  

 

The GJR-GARCH model takes the asymmetric effect into account by adding the leverage 

term. The forecasted volatility will be higher when there was a loss instead of a positive 

return. Volatility persistence can change quite fast when the return changes sign.   
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3. LITERATURE REVIEW 

After discussing all the models and the stylized facts often found in financial time series 

data, this section summarizes some findings thus far. Since modelling and forecasting 

volatility is, and has for several decades been, a very attractive topic for researchers a lot 

of different outcomes have been published by a large volume of experts. Findings are 

ambiguous due to several reasons. Poon and Granger (2003) provide an extensive review 

of 93 published and working papers that study the forecasting performance of a broad 

range of models. They find that GARCH models outperform ARCH models but 

asymmetric models perform even better. They also show that the simple historical 

volatility models are able to outperform the more complex regression based models in 

almost half of the cases. Other researchers that prefer HIS models over ARCH models are 

Taylor (1986, 1987), Figlewski (1997), Figlewski and Green (1999), Andersen, Bollerslev, 

Diebold and Labys (2001) and Taylor (2004). The main conclusion they all draw is that 

when there is a change in the volatility level, parameter estimation gets unstable and the 

predictive power suffers.   

 

The ARCH models however, have a lot of proponents as well. Akgiray (1989) was one of 

the first researches who tested the predictive power of ARCH models and finds that 

GARCH outperforms EWMA and SMA in all different periods and under all sorts of 

evaluation measures. Figlewski (1997) agrees on this but only when forecasting over a 

short horizon. If ARCH models outperform HIS models, it is usually the conclusion that 

asymmetric models perform best. Brownlees, Engle and Kelly (2012) find that asymmetric 

models, especially GJR-GARCH perform well across assets. Hansen and Lunde (2005) 

compared 330 ARCH-type models and find no evidence that GARCH(1,1) is outperformed 

when forecasting exchange rate volatility, but models that incorporate the leverage effect 

such as GJR-GARCH or EGARCH are preferred when analyzing stock return volatility. 

Differences between GJR-GARCH and EGARCH seem inconclusive. For instance Pagan 

& Schwert (1990) and Cao and Tsay (1992) favor the EGARCH model, while Brailsford 

and Faff (1996) and Taylor (2004) prefer GJR-GARCH. Studies that find no pronounced 

results are most often studies that use squared daily returns to proxy actual volatility. 

Due to the noise in this proxy, the (small) differences between models become 

indiscernable (Poon, 2005).  

 

A lot of papers focus on short-term forecasting like one-day or one-week ahead forecasts. 

Also, the most widely used risk measures Value-at-Risk (VaR) and Expected Shortfall 
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(ES) focus on short-term risks while they are often misused in measuring long-term risks. 

Figlewski (2004) is one the researchers who focuses on predicting long horizon volatility. 

He  examines the performance of GARCH(1,1) and finds difficulty in forecasting volatility 

over long horizons with this model. When forecasting with GARCH(1,1) for more than one 

period ahead, the forecasts do not incorporate new information about future shocks. It 

will just converge to the long run variance at a rate determined by 𝛼1 + 𝛽1. Figlewski 

(1997) showed that forecasts from simple historical methods are more accurate at 

horizons longer than six months than model-based forecasts. Alford and Boatsman (1995) 

agree on this. Figlewski (1997) concludes that forecast accuracy is higher for longer 

horizons than for shorter horizons because it seems to be true that today’s variance will 

move towards its long run variance in a couple of years from now.   

 

Brownlees et al. (2012) do not agree with this and say forecasts deviate more from reality 

because there is always an extra type of risk that the risk itself will change. They also 

state that asymmetric models provide more accurate one-day and one-week ahead 

forecasts. At the one-month horizon the difference between asymmetric and symmetric 

models becomes less visible because recent negative news has a lower influence on 

predicting volatility a few weeks ahead.  They also do not deny the presence of fat tails in 

financial time-series data but they do not find benefits to use a Student’s t-distribution 

instead of a normal distribution. Franses and Ghijsels (1999) even find that the 

performance of the GARCH model under the Student’s t-distribution performs a lot worse 

than using the normal distribution in terms of out-of-sample performance. Hansen and 

Lunde (2005) come up with the same conclusion for IBM stock return data. Wilhelmsson 

(2006) studies the performance of the GARCH model under nine different error 

distributions. He shows that the chosen loss function can have a lot of impact on the 

results and concludes that using a leptokurtic but symmetric distribution i.e. the 

Student’s t-distribution, improves results substantially. The Mean Absolute Error (MAE) 

and the Heteroscedasticity-adjusted MAE (HMAE) are used as loss functions to evaluate 

the use of different distributions because, according to him, the MSE criterion is sensitive 

to large return shocks.  

 

Besides comparing individual forecasts, this study discusses forecast combinations as 

well. Forecast combining, or sometimes called forecast averaging, is a method to combine 

different forecasts into one forecast. Many studies have shown that combinations of 

forecasts have lower loss functions than the one best individual model. Makridakis and 
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Winkler (1983) were one of the first who find large gains from averaging the forecasts  

with simple methods and more recently Stock and Watson (2001) agree on this as well. 

They find that especially the average or median forecast and forecasts weighted based on 

the inverse MSE perform very well.  They add that forecast combinations have a superior 

performance at the one, six and twelve month horizons and that it is best to combine as 

many forecasts as possible.  

 

One explanation of why forecast combinations might work has to do with the difference 

in degrees of adaptability. One model may adapt quickly where another model adjusts 

very slowly. The combination of this probably works better than one model in isolation. 

The second possible explanation has to do with the misspecification bias. It is quite 

dubious to believe that the same model outperforms all other models at all times. It can 

be expected that the best performing model changes over time. Combining forecasts can 

create a more robust forecast, protected against such misspecification. Another somewhat 

similar argument is that the risk of choosing the wrong method can be very serious. When 

averaging forecasts, the choice of the methods become less important. The outcome does 

not depend on one model anymore (Makridakis & Winkler, 1983).  

 

Of course besides reasons why one should combine forecasts, there are also arguments 

against using forecast combinations. Estimation errors that harm combination weights is 

one of the main problems for many combination techniques. Also, non-stationarity in the 

underlying is one of the reasons to combine forecasts but on the other hand this 

phenomenon creates unstable combination weights as well. Therefore it can be very hard 

to find a set of weights that perform well.  

 

Empirical findings are different among studies but there are some general conclusions 

that can be drawn. Most researchers suggest that simple combination schemes are 

actually better than more complex weighting schemes. Examples of simple combinations 

are the arithmetic average or weights based on the inverse MSE. Combinations based on 

in-sample performance usually lead to poor predictive ability. Simple combinations are 

combinations that do not require estimating (many) parameters since the weights are 

already known. This is exactly the reason why they are preferred over more complex 

combinations. If the weights need to be estimated, parameter estimation errors are likely 

to arise (Timmermann, 2006).  
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4. DATA 

The data used is gathered from the Oxford-Man Institute’s Realized Library which 

contains daily (close to close) financial returns and daily measures of how volatile 

financial assets or indexes were in the past. Data is originally from the Reuters DataScope 

Tick History database. Realized measures ignore the variation of prices overnight and 

sometimes the variation in the first few minutes of the trading day when recorded prices 

may contain large errors. In the realized library, data is available from 01-03-2000 up 

until today. The S&P500 and the Mexican IPC will be used as equity indices. The S&P500 

represents 500 large-cap companies traded on American stock exchanges. The IPC is an 

index of 35 companies that trade on the Mexican Stock Exchange. This provides some 

interesting insights in the differences between an index representing a developed country 

and one that represents a developing country. Since they have approximately the same 

number of transactions in the Realized Library, a fair comparison can be made.    

 

An important consideration is the length of the in-sample data. Either a longer sample 

which implies more precise estimates but probably structural breaks are included, or a 

short sample which is less precise but there is less risk of estimating across a structural 

break. Alford and Boatsman (1995), Figlewski (1997) and Figlewski and Green (1999) all 

agree on the importance of having at least a long enough estimation period to make 

accurate volatility forecasts. But maybe instead of using the same in-sample data for all 

forecasting horizons, it might be better to use shorter samples in trying to forecast 

volatility over the next day or month and longer samples when trying to predict volatility 

in one or two years from now. Figlewski (2004) finds that using long historical samples 

(i.e. 4 to 5 years of data) turned out to be the most accurate in all cases. Therefore following 

Figlewski (2004) and Christoffersen (2012) 1,000 daily observations i.e. approximately 4 

years (from 01-03-2000 to 01-26-2004) are used for the in-sample data which is said to be 

a fairly good general rule of thumb. The out-of-sample forecasted period is 01-27-2004 to 

05-31-2017. This period covers both calm and stormy periods.  

 

4.1 DESCRIPTIVE STATISTICS 

Table 1 presents the descriptive statistics of the daily returns series from 01-03-2000 to 

05-31-2017 obtained from the Realized Library. In total there are 4,351 observations of 

which 1,000 in sample and 3,351 out of sample for both indices. The table shows that the 

S&P 500 and IPC are clearly not normally distributed. The Jarque-Bera test is used to 
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test whether a sample follows a normal distribution. The JB test statistic is respectively 

11,266 and 4,768 with a p-value of 0.000 which means the null hypothesis can be rejected 

at any level of significance. The excess kurtosis is definitely higher than three for both 

indices as well , which means there are more chances of extreme outcomes compared to a 

normal distribution.  

 

Figure 2 plots the daily returns of the S&P 500 for the entire period. What can be seen 

immediately is that relatively calm periods are followed by more stormy periods which is 

one of the stylized facts discussed before. Around 2009 and 2011/2012 we see a very 

turbulent period as well as from 2000 up until 2004. This is not very different for the IPC.  

 

 

 

4.2 STATISTICAL TESTS 

Analysing data and testing for stylized facts are important first steps in determining 

which model forecasts best since the out-of-sample forecast performance might be 

influenced by the in-sample fit. Besides testing for normality it is convenient to test for 

ARCH effects i.e. whether the data is non-linear. Next it is useful to test whether the 
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Figure 2: Daily returns S&P500 from 01/03/2000 to 5/31/2017

Table 1: Descriptive statistics of the daily return series from 01-03-2000 to 05-31-2017.  

  

Daily 

Average Maximum Minimum 

Daily  

Variance Skewness Kurtosis JB statistic JB p-value 

S&P 500 0.010 10.220 -9.351 1.379 -0.171 10.882 11,285 0.000 

IPC 0.038 9.953 -8.261 1.676 -0.003 8.128 4,768 0.000 

Statistic are reported in percentages except the JB statistic and its p-value. Daily average and daily variance are both 

unconditional. In total there are 4,351 observations for both indices. Outliers are not removed from the dataset. 
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leverage effect is present in the time-series or not with the sign bias test by Engle and Ng 

(1993) which demonstrates whether the residuals in the GARCH-model are sign biased 

or not. Finally the Augmented Dickey-Fuller test for unit root (1979) is used to test if a 

time-series is stationary. 

 

4.2.1 ENGLE’S ARCH LM TEST 

Engle’s ARCH test is a Lagrange multiplier test to determine the significance of ARCH 

effects by running a regression of the squared residuals on lagged squared residuals and 

a constant 

 

𝜀𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + ⋯ + 𝛼𝑗𝜀𝑡−𝑗
2  

 

with the null suggesting that there is no autocorrelation in the squared residuals: 

 

𝐻0 =  𝛼0 =  𝛼1 = ⋯ = 𝛼𝑗 = 0 

 

This can be done on the residuals of an ARMA(1,1) model or an ARCH model. Table 2 

presents the results of the ARCH LM test at lag five for both series. The results are based 

on a regression of the residuals on an ARCH test, but was performed on the residuals of 

an ARMA(1,1) model as well but the outcome did not change neither do they change if 

lags differ.  

 

Table 2: Engle's ARCH LM test results at lag 5 

  Engle’s LM Test Statistic P-value 

S&P 500 67.248 0.000 

IPC 68.493 0.000 

The in-sample data is fitted to an ARCH model and this 

table presents regression results with the squared 

residuals as dependent variable and the lagged squared 

residuals (up until the fifth lag) as independent variables.   

 

For both series the null gets rejected which means there is autocorrelation in the squared 

residuals. In other words this means that there is conditional heteroscedasticity in both 

time series. This suggests that models which do not assume constant variance could 

provide more accurate forecasts.    

 



 21 

4.2.2 SIGN AND SIZE BIAS TEST BY ENGLE AND NG 

A sign bias test can be performed to test whether positive and negative shocks have a 

different impact on volatility. A more extensive test involves testing if volatility depends 

on both the size and sign of shocks introduced by Engle and Ng in 1993. The regression 

looks as follows 

 

𝜀𝑡̂
2 = 𝛼0 + 𝛼1𝑆𝑡−1

− + 𝛼2𝑆𝑡−1
− 𝜀𝑡̂−1 + 𝛼3𝑆𝑡−1

+ 𝜀𝑡̂−1 𝑤𝑖𝑡ℎ 𝑆𝑡−1
+ = 1 − 𝑆𝑡−1

−   

 

with the dummy variable, 𝑆𝑡−1
− , indicating the sign bias that takes the value of one if the 

past residual is negative and zero if it is positive. 𝑆𝑡−1
− 𝜀𝑡̂−1 indicates the negative size bias 

and 𝑆𝑡−1
+ 𝜀𝑡̂−1 the positive size bias. The null, H0: 𝛼1 = 𝛼2 = 𝛼3 = 0, suggess there is no 

asymmetry at all in the residuals. A significant 𝛼1 suggests sign bias and a significant 𝛼2 

and 𝛼3 suggest negative size bias and positive size bias respectively. The sign bias test 

examines if positive and negative shocks affect future volatility in a different way. 

Literature points out that negative returns have a larger influence on volatility than 

positive returns of the same magnitude. The negative size bias tests whether large and 

small negative shocks have a different impact on future volatility and the positive size 

bias does the same except than for positive shocks.  

 

The results are reported in table 3. The S&P500 shows no significant sign bias or positive 

size bias but it does indicate negative size bias which means large negative shocks have 

a larger influence on future volatility than small shocks. The IPC shows both significant 

negative and positive size bias and no significant sign bias either, thus both large negative 

and positive shocks have a larger influence on volatility than small shocks. Both indices 

do not show evidence that negative returns influence volatility more than positive returns. 

The null however can be rejected at the 1% significance level for both series which gives 

reason to assume there is a leverage effect. This gives reason to use asymmetric models.  

 

Table 3: Engle and Ng's Sign and Bias test results.  

  Sign Bias Negative Size Bias Positive Size Bias Joint Effect 

S&P 500 -1.039(0.299) -4.94(0.00***) 0.598(0.550) 9.59(0.00***) 

IPC 1.499(0.134) -3.76(0.00***) 3.12(0.0***) 10.19(0.00***) 

Sign and Bias test is based on fitting a symmetric GARCH(1,1) model to the in-sample data ranging from 01/03/2000 to 

01/26/2004. The obtained squared residuals are used as dependent variable in the regression. T-values are shown with p-values 

in brackets. ***corresponds to a significance level of 1%.   

 



 22 

4.2.3 AUGMENTED DICKEY-FULLER TEST 

Finally the Augmented Dickey-Fuller (ADF) test for stationarity is important to choose a 

suitable model. The regression underlying the test looks as follows 

 

𝑦𝑡 = 𝛼 + 𝛿𝑡 + 𝜙𝑦𝑡−1 + 𝛽1∆𝑦𝑡−1 + ⋯ + 𝛽𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡 

 

where 𝑦𝑡−1 is the absolute (lagged) return and p the amount of lags. The null of a unit root 

is H0: 𝜙 = 1 and the alternative hypothesis is 𝜙 < 1. The ADF tests the in-sample absolute 

returns and accepting the null means the series is non-stationary and thus assume it 

follows a random walk. The DF statistic reported below is calculated as  

 

𝐷𝐹 =  
∅̂ − 1

𝑆𝐸(∅̂)
 

 

Table 4 shows that for both the S&P500 and the IPC the P-value is significant at the 1% 

level so the null can be rejected suggesting the time series do not follow a random walk 

but they are stationary.   

 

Table 4: Augmented Dickey-Fuller test results 

  Statistic P-value 

S&P 500 -15.593 0.001 

IPC -15.697 0.001 

The in-sample absolute returns are tested. In-sample 

data ranges from 01/03/2000 to 1/26/2004.  

 

 

The theory behind the ARMA model is based on stationary time series, so therefore it is 

especially important to consider this feature when applying an ARMA model. Since both 

series are stationary, the ARMA model can be used to forecast volatility.   

 

After analysing the data, one can conclude that both time series are not normally 

distributed, they are stationary, there is some conditional heteroscedasticity in the data 

and the leverage effect is present. The following section fits the data to the models and 

describes the methods used to compare the in-sample fit and the out-of-sample forecasts. 
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5. METHODOLOGY 

What can be concluded from the literature review and the data analysis is that volatility 

is time-varying and predictable. After a thorough discussion of the several models and 

analysing the data, the next step is to estimate the parameters in the models. The 

difficulty with estimating the autoregressive models is that the conditional variance 

should be estimated together with the parameters of the model. The method used to find 

the parameters is the maximum likelihood estimation. This method maximizes the most 

likely parameters through an iterative procedure given a log-likelihood function. The 

estimated parameters can be found in appendix B. When the model fitting is completed, 

the goodness of fit can be compared. In other words, how well does each of the models fit 

the in-sample data. The comparison can be found in section 5.1. Afterwards the 

parameters are then used in order to forecast volatility using a rolling window which will 

be discussed in the section 5.2.  

 

5.1 IN-SAMPLE MODEL FITTING AND EVALUATION 

A general method to evaluate the model fitting is to use an information criteria.  A very 

well-known critera is the Akaike Information Criteria (1973) which is defined by 

 

𝐴𝐼𝐶 =  −2𝑙𝑜𝑔𝐿(𝜃) + 2𝑘 

 

where 𝑙𝑜𝑔𝐿(𝜃) is the maximized log-likelihood function and k is the number of parameters. 

Table 5 shows the AIC for all the autoregressive models. The smaller the value of AIC, 

the better the model fits the in-sample data. Of all models, EGARCH under the Student’s 

T distribution has the lowest AIC so the in-sample data fits this model at best. ARMA(1,1) 

provides the worst in-sample fit. For all models, the non-normal distribution provides a 

better fit than the normal distribution. Something that was already expected from the 

data analysis before. 

Table 5: Akaike Info Criterion (AIC) of all ARCH models.    

Model 

ARCH(1) 

Normal  

ARCH(1) 

Student's T 

ARCH(1) 

GED 

GARCH(1,1) 

Normal  

GARCH(1,1) 

Student's T 

GARCH(1,1) 

GED 

S&P500 3.441 3.412 3.411 3.328 3.317 3.320 

IPC 3.648 3.564 3.565 3.493 3.457 3.460 

Model 

EGARCH(1,1) 

Normal 

EGARCH(1,1) 

Student's T 

EGARCH(1,1) 

GED 

GJR-GARCH(1,1) 

Normal 

GJR-GARCH(1,1) 

Student's T 

GJR-GARCH(1,1) 

GED 

S&P500 3.264 3.261 3.264 3.280 3.274 3.278 

IPC 3.457 3.438 3.438 3.465 3.442 3.444 

In-sample return data of S&P 500 and IPC ranging from 01-03-2000 to 01-27-2004 is fitted to all the ARCH models and the average AIC 

is reported. ARMA(1,1) is excluded because this model is fitted to realized volatility instead of returns.   
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5.2 FORECASTING PROCEDURE  

The volatility in the out-of-sample period is forecasted through the in-sample data using 

a rolling window with a fixed number of observations. For example when forecasting on a 

daily basis, the first forecasted day uses the entire in-sample data. For the next day, the 

oldest day of the in-sample data is excluded and the  first realized daily value is used in-

sample to produce the next forecast. This is more accurate than using just a growing 

window because it ignores information from the distant past and the calculations are 

manageable since the number of observations stays the same. This procedure is repeated 

throughout the whole out-of-sample period.  

 

Lastly, all models are analysed under three distribution assumptions: the Normal-, 

Student’s t-, and General Error- distribution to see whether this provides more proper 

forecasts. h denotes the forecast horizon, so for each model the 1-step to h-step ahead 

forecast is computed. If h = 1, it means the 1-day ahead volatility is forecasted. If h = 21, 

the 1-month ahead forecasts are forecasted since there are approximately 21 trading days 

each month. This paper predicts volatility one day, one month, six months, one year and 

two years ahead which results in a daily volatility forecast path {𝜎𝑡+ℎ|𝑡
(𝑚)

 } where m denotes 

the model used. This method produces an array of overlapping forecast paths, with each 

path drafted from different conditioning information.  

 

5.3 FORECAST EVALUATION 

The volatility obtained must be evaluated to see how accurate the estimates are. 

Therefore the forecast errors must be calculated for each of the 1- to h-step ahead forecasts 

i.e. the difference between the forecasted volatility and the ‘actual’ volatility. If all 

forecasts and corresponding forecast errors for all models have been calculated, a loss 

function is necessary to assess all these forecasts. The model that yields a smaller average 

loss is more accurate and thus favoured. This sounds easy, but the difficulty is that an ex 

post proxy of volatility is needed as actual volatility.  

 

5.3.1 MSE AND DIEBOLD MARIANO TEST 

Section 2 presented the use of 5-minute intraday squared returns or Realized Volatility 

(RV). RV is an estimate of the true out-of-sample volatility used in this paper as a proxy 

of the actual volatility.. Knight and Satchell (2007) define this as the sum of squared intra-

period returns from a Gaussian diffusion process.  
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This paper uses RVs which are calculated using five-minute returns. Using a shorter 

interval creates market microstructure problems i.e. noise in the data due to bid-ask 

spreads, non-trading and serial correlation (Figlewski, 1997). Liu, Patton and Sheppard 

(2015) studied the accuracy of almost 400 realized measures and find little to no evidence 

that the 5-minute RV is outperformed by any of the other measures.  

 

To evaluate the forecasts, a large amount of statistical criteria is available. One of the 

most popular loss functions is the Mean Squared Error (MSE) which is defined by 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝜎̂𝑡 − 𝜎𝑡)2

𝑛

𝑡=1

 

 

which results in an average for the deviation of the estimated and realized standard 

deviation (𝜎̂𝑡 − 𝜎𝑡) and can be compared between the different models. Squaring the error 

gives larger weight to greater errors.  

 

The model that performs best is the model with the lowest value for the MSE but without 

tests of significance, one cannot draw a conclusion. To overcome this problem, the Diebold 

Mariano (1995) (DM) test can be applied to determine which one of the two forecasts is 

significantly better. The DM test takes the difference between two loss functions resulting 

in a series 𝑑𝑖𝑗 with average 𝑑̅. This average is zero if there is no difference between the 

forecasts which is the null hypothesis. The DM statistic looks as follows using a standard 

t-test 

𝐷𝑀 =  
𝑑̅

√𝑉𝑎𝑟̂(𝑑̅)
  

 

For h-step ahead forecasts, the DM statistic must take autocorrelation into account 

because multi-period forecast errors are very likely to show this. Using Semin Ibisevic’s 

Toolbox in Matlab the DM statistic is retrieved, taking into account autocorrelation and 

the sample variance is estimated using a Newey-West type estimator since they are robust 

to both heteroscedasticity and autocorrelation. Another option is to regress 𝑑𝑡 on a 

constant and check whether this constant is significant or not, again with Newey-West 

standard errors. Both the MATLAB Tool and the regression are used to compare loss 

functions.  
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5.3.2 THE MODEL CONFIDENCE SET 

Since this paper studies seven models in total under different distributions, it is more 

convenient to use the Model Confidence Set introduced by Hansen, Lunde and Nason 

(2011). A model confidence set (MCS) can be seen as a serial Diebold-Mariano test and is 

a set of best models, ℳ∗, out of the whole set of competing models, ℳ0, for a given level 

of significance 𝛼. Most of the time there is not a single model that dominates all other 

models and therefore it can be favourable to identify a set of best models instead of just 

one. The forecasts are evaluated based on their relative performance to the other forecasts 

by means of the squared forecast error. The difference between two loss functions i and j 

is then called 𝑑𝑖𝑗, just like the Diebold Mariano test does. Likewise, the assumption 𝜇𝑖𝑗 =

𝐸(𝑑𝑖𝑗,𝑡 ) is made. The lower the MSE the better, thus model i is preferred to model j if μij< 

0. The set of superior models is defined by 

 

ℳ∗ = {𝑖 ∈  ℳ0: 𝜇𝑖𝑗 ≤ 0 for all j ∈ ℳ0} 

 

The MCS procedure is based on two tests. First, an equivalence test, 𝛿ℳ, which tests the 

following hypothesis 

𝐻0: 𝜇𝑖𝑗 = 0 for all i, j ∈  ℳ  

 

where ℳ ⊆ ℳ0. The null suggests that the models in the set perform equally ‘well’ and is 

based on t-statistics. Second, an elimination rule, 𝑒ℳ, which eliminates models from the 

set if 𝛿ℳis rejected. This procedure continues until 𝛿ℳ = 0 and thus accepted. All the 

residual ‘surviving’ models in that set perform equally. The MCS algorithm works as 

follows: 

 

1. Originally set ℳ = ℳ0. 

2. Test the null hypothesis using 𝛿ℳ at the level of significance 𝛼. 

3. If 𝐻0 is accepted, define ℳ∗ = ℳ. Otherwise use the elimination rule 𝑒ℳto eliminate a 

model from ℳ and repeat step 2.  

 

The MCS procedure produces p-values as well for each of the models. The MCS p-value 

for model 𝑒ℳ𝑗
∈ ℳ0 is defined by 𝑝̂𝑒ℳ𝑗

= 𝑚𝑎𝑥𝑖≤𝑗𝑃𝐻0,ℳ𝑖
 . With 𝑃𝐻0,ℳ𝑖

  being the p-value 

associated with the null hypothesis 𝐻0,ℳ𝑖
. If 𝑝̂𝑖 ≥ 𝛼, the model will be included in ℳ∗. 



 27 

Models with small p-values are thus likely to be not included in the set of best models and 

if they are, they are probably not one of the best alternatives. The p-value should not be 

interpreted as if some particular model is the best model. Hansen, Lunde and Nason 

(2011) provide a table to show how MCS p-values are calculated: 

Table 6: Computation of MCS p-values.  

p-value for 𝐻0,ℳ𝜅
  MCS p-value 

𝑃𝐻0,ℳ1 = 0.01 𝑃𝑒ℳ1
= 0.01 

𝑃𝐻0,ℳ2 = 0.04 𝑃𝑒ℳ2
= 0.04 

𝑃𝐻0,ℳ3 = 0.02  𝑃𝑒ℳ3
= 0.04 

𝑃𝐻0,ℳ4 = 0.03 𝑃𝑒ℳ4
= 0.04 

𝑃𝐻0,ℳ5
 = 0.07 𝑃𝑒ℳ5

= 0.07 

𝑃𝐻0,ℳ6 = 0.04 𝑃𝑒ℳ6
= 0.07 

𝑃𝐻0,ℳ7 = 0.11 𝑃𝑒ℳ7
= 0.11 

𝑃𝐻0,ℳ8 = 0.25 𝑃𝑒ℳ8
= 0.25 

… … 

𝑃𝐻0,ℳ0 = 1.00 𝑃𝑒ℳ0
= 1.00 

This table is copied from ‘The Model 

Confidence Set’ written by Peter R. Hansen, 

Asger Lunde and James M. Nason in 2011. 

Source: Econometrica, Vol. 79(2) pp. 453-497. 

This table is reported on page 462 in their paper.  

 

One can see that some p-values for the null hypotheses do not coincide with the MCS p-

values. For example the MCS p-value for 𝑒ℳ3
, which is the third model that must be 

eliminated from the set, is larger than the p-value for 𝐻0,ℳ3
. This is because the p-value 

of the null hypothesis tested before, 𝐻0,ℳ3
, is already larger. If 𝛼 would be five percent in 

this case, the first four models would be excluded from ℳ∗.    

 

An estimate of the variance of 𝑑𝑖𝑗 must be made using a bootstrap. This paper uses a 

block-bootstrap procedure of 10,000 replications and a block length l long enough to 

capture the autocorrelation, if any, in the loss functions. The longer the horizon, the longer 

the block length should be due to losses at longer horizons tend to persist longer 

(Quaedvlieg, 2017). In this case, this means block lengths equal the forecast horizon. For 

instance when forecasting volatility one month ahead, the block length is 21. Using longer 

block lengths does not change the outcomes. The model confidence sets are all constructed 

with a confidence level of 95% which corresponds to an 𝛼 of 0.05. 
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5.4 FORECAST COMBINATIONS 

After identifying a single dominant forecast it is also interesting to create a combination 

of forecasts because forecast combinations gain from diversification benefits. The 

challenging part of this is the determination of the combination weights. Suppose some 

forecast, 𝜎̂𝑡+1,1
2  is significantly better than another forecast, 𝜎̂𝑡+1,2

2 . So the expected loss is 

lower under , 𝜎̂𝑡+1,1
2  than under 𝜎̂𝑡+1,2

2 . This means no one would choose 𝜎̂𝑡+1,2
2  over 𝜎̂𝑡+1,1

2  in 

isolation but a combination of those two forecasts can generate a smaller expected loss 

than just 𝜎̂𝑡+1,1
2 . Apparently it seems that when 𝜎𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1 >  𝜎𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2 and the 

correlation between the two loss functions is not equal to 
𝜎𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛2

𝜎𝑙𝑜𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛1
, it would be optimal 

to combine those two forecasts (Timmermann, 2006). As stated in section 3, it has often 

been found that the sophisticated combinations are dominated by the more simple 

methods, therefore this paper only contains simple weighting schemes. The methods used 

in this study will be discussed briefly, starting with the simple mean.  

 

The simple mean method calculates the arithmetic average of the forecasts at each point 

in time. In other words, the forecasts are equally weighted. The trimmed mean is like the 

simple mean with one difference. The forecasts are ordered and at each observation the 

highest % and the lowest % of the forecast values are removed before calculating the 

mean. The selection of forecasts that need to be removed is recalculated at each 

observation, so the weights are time-varying. This study uses different levels of trimming, 

depending on what is optimal for each model. Another similar method is the simple 

median method which calculates the median of the forecasts at each point in time.  

 

A somewhat different method is the least squares weighting method. Using this method, 

the weights are calculated by regressing the forecasts against the actual values i.e. the 

realized variance. The coefficients from the regression serve as weights. The regression 

includes an intercept which adjust any bias and therefore it is not necessary that the 

individual forecasts are unbiased.   
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The last two methods involve the mean squared error. Stock and Watson (2001) propose 

MSE weighting in their paper where they compare models for forecasting macroeconomic 

time series. The MSEs are computed and forecast weights are calculated as 

 

𝜔𝑖 =
1/𝑀𝑆𝐸𝑖

𝑘

∑ 1/𝑀𝑆𝐸𝑗
𝑘𝑁

𝑗=1

 

 

where k is set to one. A similar and also last method is the MSE Ranks method introduced 

by Aiolfi and Timmermann (2006). In this method, the MSEs are ranked and the forecast 

models are weighted inversely to their rank. 
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6. EMPIRICAL RESULTS AND DISCUSSION 

6.1 INDIVIDUAL FORECASTS 

This section presents the out-of-sample predictive power at different horizons of the 

individual models described in section 2. Table 7 shows the MSE of all models when 

forecasting volatility one day ahead, one month, six months, one year and two years 

ahead. The lowest MSEs are indicated by bold figures. A lot of conclusions can be drawn 

from this table. When forecasting tomorrow’s volatility of, the ARMA(1,1) model provides 

the best forecasts for both indices and for forecasting volatility in one month, it is best to 

use the EWMA model or the SMA with a twelve month lookback for the S&P500 and the 

IPC respectively. Focussing on the S&P500, one can see that for all the longer horizons 

EGARCH(1,1) with normally distributed errors has the lowest MSE compared to the other 

models. The MSEs of ARCH(1) and GARCH(1,1) with Student’s t-distributed errors were 

calculated as well, but horizons longer than one month created very high MSEs so they 

are omitted because there is no doubt about whether to use these models. GARCH(1,1) 

with generalized error distributed errors shows some very high MSEs as well and again 

especially for the longer horizons. Even though the in-sample data showed high values for 

skewness, these results can be quite confusing. Wilhelmsson (2006) provides a possible 

solution for this by examining that only a few outliers are the cause of the observed 

skewness and those outliers have a huge positive impact on the log-likelihood of models 

that allow for skewness. This is very likely since the S&P500 shows larger outliers than 

the IPC. It coincides with Christoffersen (2012) too who states that when using a large 

enough sample (i.e. 1,000 observations) the distribution of the errors does not matter 

anymore and the normal distribution can be used in order to get the most accurate 

forecasts. It corresponds to Brownlees et al. (2012)  as well who neither find any evidence 

for using other distributions other than the normal distribution.  

 

The MSEs of ARCH(1) and GARCH(1,1) with Student’s t-distributed errors of the IPC are 

included because they fall within ‘acceptable’ ranges, but they are still very high at the 

longer horizons relative to the other MSEs. One can also see that at the shorter horizons, 

HIS models provide lower MSEs than any of the ARCH models. A difference between the 

S&P500 and the IPC is that GJR-GARCH under the normal distribution shows the lowest 

MSE at the one and two year horizon instead of EGARCH. Another difference can be 

found when looking at the overall values. The MSEs of the IPC are lower than those of 

the S&P500 at all horizons. Probably because the volatility peaks take less time to 
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recover. For all models, the MSE increases as the forecast horizons gets longer which is 

different than Figlewski (2004) stated in his paper. This could be due to him using another 

period of time (1947-1995), because these results come from using daily data instead of 

using monthly data or because he uses another measure of RV as benchmark which is 

probably much more noisy as the RV used in this paper. It does coincides with Brownlees 

et al. (2012).  

Table 7: MSEs of all models at different horizons.  

Panel A: S&P 500 

 

One-day 

ahead 

One month 

ahead 

Six months 

ahead 

One year 

ahead 

Two years 

ahead 

SMA 6 months 6.607 7.727 9.851 10.738 12.514 

SMA 12 months 7.260 7.901 9.269 10.135 11.070 

EWMA 4.343 6.911 10.903 12.061 14.278 

ARMA (1,1) 3.107 8.897 10.388 11.562 12.462 

ARCH(1,1) - normal distribution 6.430 8.458 9.356 9.956 10.869 

ARCH(1,1) - generalized error distribution 6.221 8.579 9.353 9.920 10.830 

GARCH(1,1) - normal distribution 3.928 7.428 10.212 10.547 11.579 

GARCH(1,1) - generalized error distribution 4.023 8.235 14.958 18.908 29.511 

EGARCH(1,1) - normal distribution 6.074 8.086 8.864 9.197 10.161 

EGARCH(1,1) - student's t distribution 6.604 8.107 8.973 9.307 10.230 

EGARCH(1,1) - generalized error distribution 5.987 8.111 8.963 9.288 10.216 

GJR-GARCH(1,1) - normal distribution 3.546 7.959 9.129 9.448 10.422 

GJR-GARCH(1,1) - student's t distribution 3.692 8.423 9.549 9.970 10.975 

GJR-GARCH(1,1) - generalized error distribution 3.501 8.202 9.412 9.769 10.702 

 
Panel B: IPC 

 

One-day 

ahea 

One month 

ahead 

Six months 

ahead 

One year 

ahead 

Two years 

ahead 

SMA 6 months 3.460 3.748 4.140 4.507 5.194 

SMA 12 months 3.559 3.729 4.063 4.418 4.987 

EWMA 2.897 3.838 4.520 4.893 5.805 

ARMA (1,1) 2.374 4.175 4.391 4.724 5.374 

ARCH(1,1) - normal distribution 3.771 4.715 5.040 5.330 5.853 

ARCH(1,1) – student’s t distribution 4.454 7.003 7.558 7.950 8.787 

ARCH(1,1) - generalized error distribution 3.703 4.658 4.972 5.258 5.769 

GARCH(1,1) - normal distribution 3.307 4.171 4.891 5.747 6.974 

GARCH(1,1) – student’s t distribution 3.361 4.311 5.355 7.082 11.53 

GARCH(1,1) - generalized error distribution 3.308 4.186 4.796 5.513 6.474 

EGARCH(1,1) - normal distribution 3.051 3.852 4.305 4.444 4.823 

EGARCH(1,1) - student's t distribution 3.053 3.863 4.333 4.483 4.798 

EGARCH(1,1) - generalized error distribution 3.053 3.867 4.335 4.474 4.835 

GJR-GARCH(1,1) - normal distribution 2.926 3.923 4.253 4.383 4.735 

GJR-GARCH(1,1) - student's t distribution 2.920 3.914 4.235 4.367 4.698 

GJR-GARCH(1,1) - generalized error distribution 2.923 3.975 4.294 4.427 4.762 

MSEs are calculated as 
1

𝑛
∑ (𝜎̂𝑡 − 𝜎𝑡)2𝑛

𝑡=1  with 5-minute intraday squared returns as proxy for actual volatility. n is 3,352, 3,332, 3,227,3,101 

and 2,849 for the one day, one month, six months, one year and two years horizon respectively.  
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Besides comparing the MSEs in table 7, it is important to compare the models in a 

statistical way using the Diebold Mariano (1995) test discussed in the previous section. 

Because comparing each model as a pair is not the most appropriate method when 

evaluating multiple models, The Model Confidence Set by Hansen, Lunde and Nason 

(2011) is an easier way to determine the ‘best’ forecasts at each horizon. Still the Diebold 

Mariano (1995) test statistics for the S&P500 are reported in appendix C to show 

conclusions are the same. The test statistics are calculated in two ways but the results 

coincide, so only the regression-based statistics will be reported in the appendix. 

 

According to table 7 panel A, the ARMA(1,1) model outperforms all other models based 

on their MSEs. However when looking at the Diebold Mariano test statistics, there is no 

significant difference between the loss function of the ARMA(1,1) model and any of the 

other models except for both SMA. For the one day ahead forecast it becomes clear that 

almost all models are significantly better than the simple moving averages. When 

comparing all other models, there is no overall conclusion that can be made. All models 

perform quite the same and there are not many significant p-values. What can be noted 

is that GARCH(1,1), normally distributed, outperforms the ARCH(1) models and that 

GJR-GARCH under a generalized error distribution outperforms many models as well. At 

the one month horizon, EWMA shows the lowest MSE. However, when looking at the test 

statistics, EWMA is only significant better than SMA and EWMA at the 5% level. Another 

outcome is that the ARCH(1) model under a generalized error distribution is significantly 

worse than seven other models. At the one day ahead forecast, both simple moving 

averages were outperformed by almost all models. At a longer horizon, i.e. one month, 

this is no longer the case. Maybe because variance tend to move towards its average value 

in the longer term.  

 

Where it is hard to see one model being better than others at the shorter horizons, at the 

longer horizons there is a clear pattern. First of all, using the GARCH(1,1) model under 

a generalized error distribution is probably not a good idea since it performs statistically 

worse than all other models at all horizons longer than one month. The same holds for 

ARMA(1,1), which is outperformed by almost all other models as well. For six months, 

one year and two year horizons it is best to forecast volatility with a normally distributed 

EGARCH(1,1) model as evidenced by table 6. This confirmed by the Diebold Mariano test 

as well. At the one and two year horizon this model performs significantly better than all 
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other models. At the six months horizon it outperforms all models except for the simple 

moving averages.  

 

An overall striking result is that moving averages i.e. the historical volatility models, 

perform not as badly as stated in the existing literature. Perhaps this is not so surprising 

since there is a lot of improvement in creating realized data which is used as an input in 

the moving averages. The simple moving averages only fail at forecasting tomorrow’s 

volatility or the volatility in two years. For all other horizons it has equal predictive ability 

as all other models except for EGARCH and GJR-GARCH.   

 

The main outcome is that EGARCH performs significantly best at the longer horizons, 

especially under the normal distribution. At the shorter horizons however, EGARCH does 

not perform outstanding at all. At the one month horizon it is outperformed by both ARCH 

models and compared to all other models its predictive ability is not statistically better or 

worse. When looking at the goodness of fit test done in section 5, EGARCH also showed 

the lowest AIC of all. So a good fit of the in-sample data might suggest a higher predictive 

ability as well.  

 

Table 8 panel A reports the MSE and MCS p-values for each of the individual forecasts of 

the S&P500 volatility. The models included in ℳ∗ are identified by an asterisk. At the 

one month horizon only three models are excluded from the set so it is not possible to 

determine a few models which perform best. At the one day horizon, half of the models is 

included in the set: the GARCH models, GJR-GARCH models, EWMA and ARMA. At 

almost every horizon the ARCH model is excluded from the set. At the long horizon, only 

the EGARCH model under the normal distribution is included in the set. Even for 

different block lengths and/or bootstrap replications these results stay the same. This is 

some more evidence that at the longer horizons it is best to use the EGARCH model under 

the normal distribution. EGARCH under the normal distribution belongs to the set at 

every other horizon as well, except for the one day ahead.  

 

Panel B reports the results of the IPC. Again, the ARCH model under all three different 

distributions is excluded from the set. At the two year horizon there is a clear-cut result 

that the GJR-GARCH performs best since ℳ∗ only consists of GJR-GARCH models. At 

all other horizons except for the one month horizon, the set consists of all three GJR-

GARCH models as well. EGARCHN performs well for the IPC as well. It is included in all 
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other sets except the set of best performing models at the two years horizon. The fact that 

GJR-GARCH performs slightly better could be due to the fact that GJR-GARCH can 

change volatility quite fast when the return changes sign. This is some feature we saw in 

figure 2.  

 

Table 8: MCS p-values for individual volatility forecasts at different forecast horizons. 

Panel A: S&P 500  

One day ahead One month ahead Six months ahead One year ahead Two years ahead 

Model                                    PMCS Model                PMCS Model PMCS Model PMCS Model                 PMCS 

SMA12 0.000 ARMA 0.017 GARCHGED 0.046 GARCHGED 0.029 GARCHGED 0.034 

SMA6 0.000 ARCHGED 0.017 ARMA 0.046 ARMA 0.029 EWMA 0.034 

EGARCHT 0.000 GJRGARCHT 0.017 GARCHN 0.046 GARCHN 0.029 ARMA 0.034 

ARCHN 0.000 ARCHN 0.11* EWMA 0.046 EWMA 0.029 SMA6 0.034 

ARCHGED 0.000 GJRGARCHGED 0.11* GJRGARCHT 0.046 SMA6 0.029 GJRGARCHT 0.034 

EGARCHN 0.000 EGARCHGED 0.11* GJRGARCHGED 0.046 GJRGARCHT 0.029 GARCHN 0.034 

EGARCHGED 0.048 EGARCHT 0.51* SMA6 0.05* ARCHN 0.029 GJRGARCHGED 0.034 

EWMA 0.10* EGARCHN 0.51* ARCHN 0.05* GJRGARCHGED 0.029 SMA12 0.034 

GARCHGED 0.10* GARCHGED 0.51* ARCHGED 0.05* ARCHGED 0.029 ARCHN 0.034 

GJRGARCHT 0.10* GJRGARCHN 0.59* GJRGARCHN 0.05* SMA12 0.029 ARCHGED 0.034 

GARCHN 0.30* SMA12 0.59* SMA12 0.05* GJRGARCHN 0.029 GJRGARCHN 0.034 

GJRGARCHN 0.73* SMA6 0.59* EGARCHT 0.05* EGARCHT 0.029 EGARCHT 0.034 

GJRGARCHGED 0.73* GARCHN 0.59* EGARCHGED 0.05* EGARCHGED 0.029 EGARCHGED 0.034 

ARMA 1.00* EWMA 1.00* EGARCHN 1.00* EGARCHN 1.00* EGARCHN 1.00* 

 

Panel B: IPC 

One day ahead One month ahead Six months ahead One year ahead Two years ahead 

Model                                    PMCS Model                PMCS Model PMCS Model PMCS Model                 PMCS 

ARCHT 0.000 ARCHT 0.000 ARCHT 0.009 ARCHT 0.011 ARCHT 0.004 

ARCHN 0.000 ARCHN 0.000 GARCHT 0.009 GARCHT 0.011 GARCHT 0.004 

ARCHGED 0.000 ARCHGED 0.000 ARCHN 0.009 ARCHN 0.011 GARCHN 0.004 

SMA12 0.000 ARMA 0.003 ARCHGED 0.009 GARCHN 0.011 GARCHGED 0.004 

GARCHT 0.000 GARCHT 0.003 GARCHN 0.009 ARCHGED 0.011 ARCHN 0.004 

GARCHGED 0.001 GARCHGED 0.003 GARCHGED 0.009 GARCHGED 0.011 ARCHGED 0.004 

SMA6 0.001 GARCHN 0.003 EWMA 0.009 ARMA 0.011 ARMA 0.004 

GARCHN 0.08* GJRGARCHGED 0.003 EGARCHGED 0.009 EWMA 0.011 EWMA 0.004 

EGARCHT 0.39* GJRGARCHN 0.003 EGARCHT 0.021 EGARCHT 0.011 SMA6 0.004 

EGARCHGED 0.39* GJRGARCHT 0.003 ARMA 0.24* EGARCHGED 0.024 EGARCHGED 0.004 

EGARCHN 0.39* EGARCHGED 0.003 EGARCHN 0.24* SMA6 0.15* SMA12 0.004 

GJRGARCHGED 0.39* EGARCHT 0.11* GJRGARCHGED 0.84* EGARCHN 0.15* EGARCHN 0.004 

GJRGARCHN 0.39* EGARCHN 0.62* GJRGARCHN 0.89* GJRGARCHGED 0.81* EGARCHT 0.026 

GJRGARCHT 0.39* EWMA 0.85* GJRGARCHT 0.89* SMA12 0.87* GJRGARCHGED 0.72* 

EWMA 0.39* SMA6 0.85* SMA6 0.89* GJRGARCHN 0.87* GJRGARCHN 0.72* 

ARMA 1.00* SMA12 1.00* SMA12 1.00* GJRGARCHT 1.00* GJRGARCHT 1.00* 

The model confidence set algorithm uses a block-bootstrap procedure with 1,000 bootstrap replications and at the one day ahead horizon a block length of 

2 is used, at the one month horizon, six months horizon, one year horizon and two year horizon, a block length of 21, 126, 252 and 504 is used respectively. 

The models included in ℳ∗ are identified by an asterisk. The MCS p-value for model 𝑒ℳ𝑗
∈ ℳ0 is defined by 𝑝̂𝑒ℳ𝑗

= 𝑚𝑎𝑥𝑖≤𝑗𝑃𝐻0,ℳ𝑖
 . 
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6.2 FORECAST COMBINATIONS 

Besides identifying the single best forecasting model at each horizon, it might be better 

to combine forecasts in order to get lower MSEs. Table 9 shows MSEs of different methods 

to combine forecasts of the S&P500. All these loss functions are compared to the 

individual best performing model (shown in the last column) with the Diebold Mariano 

(1995) test to see whether they have indeed superior predictive power or not.   

     

 

Tabel 9: MSEs of forecast combinations at different horizons for the S&P 500. 

Panel A: One day ahead forecasts       

  Simple Mean Trimmed Mean (10%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 3.652 3.853 4.032 4.822 3.285 3.064 3.107 

Panel B: One month ahead forecasts     

  Simple Mean Trimmed Mean (10%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 6.754 6.860 7.397 7.605 6.723 6.604 6.911 

Panel C: Six months ahead forecasts     

  Simple Mean Trimmed Mean (30%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 8.460 8.354 8.425 11.651 8.407 8.391 8.864 

Panel D:  One year ahead forecasts     

  Simple Mean Trimmed Mean (85%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 9.116 8.832 8.832 9.197 8.995 8.897 9.197 

Panel E:  Two years ahead forecasts     

  Simple Mean Trimmed Mean (55%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 10.284 9.855 9.890 9.950 10.010 9.839 10.161 

For each horizon, another level of trimming is used which is reported in brackets. The last column reports the lowest MSE of the individual 

forecasts for comparison. The lowest MSEs are indicated by bold figures. Different horizons are separated by panel A, B, C, D and E. 

 

What becomes clear is that at every horizon, at least one of the forecast combinations provides a 

lower MSE than the lowest MSE of the best individual forecast, especially at the one and two year 

ahead forecasts. MSE ranks provides the lowest MSE in three out of five horizons. Timmermann 

(2006) concluded that the trimmed mean often improves performance as well. The trimmed mean 

combination weights are calculated with different levels of trimming. The optimal percentage is 

given in the table as well. These results suggest that trimming indeed improves performance 

except for the shorter horizons. This might be due to the fact that there is not much of a difference 

between the predictive power of the models in forecasting volatility in the short run.  

 

Table 11 provides some more insights on whether the best performing forecast combination, 

statistically beats the best performing individual forecast. EGARCH is outperformed by the 

forecast combinations at the longer horizons. At the shorter horizons, the individual best 

performing model is not beaten by the forecast combinations.  
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Table 11: Diebold Mariano Test (1995) T-statistics S&P500 forecast combinations versus individual forecasts.  

  

 One day ahead 

ARMA 

One month ahead 

EWMA 

Six months ahead 

EGARCHN 

One year ahead 

EGARCHN 

Two years ahead 

EGARCHN 

MSE Ranks  -0.042 -0.544   -3.914*** 

Trimmed Mean   -4.600*** -3.731***  
The left column shows the forecast combinations methods with the lowest MSE at each horizon. For the six months and 

one year horizon the trimmed mean provides the lowest MSE and for the other horizons MSE Ranks performs best. These 

MSEs are compared with the individual best performing methods. *** indicates significance at the 1% level.  

 

Table 10 shows the results for the IPC. Again MSE Ranks shows the lowest MSEs in four out of 

five times. Also, at none of these horizons, the individual forecasts provide the lowest MSE no 

more. Table 12 shows the Diebold Mariano (1995) test statistics and only ARMA is statistically 

outperformed. All other forecast combinations are not statistically better than the individual 

forecast.  

 

 

Tabel 10: MSEs of forecast combinations at different horizons for the IPC.  

Panel A: One day ahead forecasts       

  Simple Mean Trimmed Mean (10%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 2.523 2.548 2.709 1.949 2.475 2.377 2.374 

Panel B: One month ahead forecasts     

  Simple Mean Trimmed Mean (30%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 3.620 3.584 3.600 3.662 3.585 3.548 3.729 

Panel C: Six months ahead forecasts     

  Simple Mean Trimmed Mean (75%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 4.006 3.910 3.920 4.344 3.959 3.906 4.063 

Panel D:  One year ahead forecasts     

  Simple Mean Trimmed Mean (50%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 4.288 4.170 4.207 4.876 4.207 4.130 4.367 

Panel E:  Two years ahead forecasts     

  Simple Mean Trimmed Mean (50%) Simple Median Least Squares MSE Weights MSE Ranks Individual 

MSE 4.829 4.661 4.777 5.869 4.673 4.558 4.698 

For each horizon, another level of trimming is used which is reported in brackets. The last column reports the lowest MSE of the individual 

forecasts for comparison. The lowest MSEs are indicated by bold figures. Different horizons are separated by panel A, B, C, D and E.  

 

 

Table 12: Diebold Mariano Test (1995) T-statistics IPC forecast combinations versus individual forecasts.  

  

 One day ahead 

ARMA 

One month ahead 

SMA12 

Six months ahead 

SMA12 

One year ahead 

GJR-GARCHT 

Two years ahead 

GJR-GARCHT 

MSE Ranks   -0.105 -0.086 -0.174 -0.460 

Least Squares -2.815***     

The left column shows the forecast combinations methods with the lowest MSE at each horizon. For the six months and 

one year horizon the trimmed mean provides the lowest MSE and for the other horizons MSE Ranks performs best. These 

MSEs are compared with the individual best performing methods. *** indicates significance at the 1% level.  
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7. SUMMARY AND CONCLUSIONS 

This study focusses on the forecasting performance at multiple horizons. First the data 

was analysed too see if the theory about stylized facts hold for the data used in this paper 

as well. In-sample tests showed that both series are stationary at the 1% level, volatility 

clustering exists and volatility is definitely time-varying. Engle and Ng’s (1993) sign and 

bias test showed there is an asymmetry or leverage effect as well. The negative size bias 

is present in the S&P500 time series and both negative and positive size bias is present 

in the IPC returns. Besides this, both time series coincide with theory about the presence 

of conditional heteroscedasticity as well.  

 

A large part of the existing literature shows that financial time series data exhibit 

skewness and excess kurtosis as well as the Jarque-Bera test suggested in this study. 

This has been taken into account by using a Student’s t- and a Generalized Error 

distribution in addition to the normal distribution. Unfortunately this does not improve 

the accuracy of the forecasts. At every horizon and for every model it is best to use the 

normal distribution. Especially forecasting volatility of the S&P500 with models under 

the Student’s t- or Generalized Error distribution provides very high values of MSE.  

 

The applied models can be classified into historical volatility models: SMA, EWMA and 

ARMA(1,1) which uses conditional variance as inputs and regression-based models 

containing ARCH(1), GARCH(1,1), EGARCH(1,1) and GJR-GARCH. To evaluate those 

individual models, the loss function MSE is used and intraday 5-minute squared returns 

as proxy for actual volatility. The preferred models have been selected by applying the 

Diebold Mariano (1995) test and the Model Confidence Set. One general conclusion is that 

the MSE increases as the forecast horizon lengthens.   

 

At the one day horizon it is hard to draw conclusions. A lot of models seem to produce 

statistically the same loss functions. The MCS algorithm includes more than half of the 

evaluated models in the best set of both indices.  For the S&P500 the result at the longer 

horizons is very clear-cut. The best set only includes EGARCH under the normal 

distribution. No other model performs equally. For the IPC it is the GJR-GARCH model 

under all distributions that is included solely in the best set at the two year horizon. The 

results coincide with existing literature that asymmetric models seem to perform best and 

that historical models definitely provide accurate forecasts as well.  
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Besides the individual forecasts, different forecast combinations were evaluated as well. 

Between the different methods, MSE Ranks provided the lowest MSEs in most cases. The 

Diebold Mariano test showed that statistically there is not much of a difference between 

choosing the best individual forecast in isolation or to combine forecasts. Except for the 

S&P500. The test statistics show that the MSE Ranks and the Trimmed Mean produce 

statistically lower MSEs than EGARCH under the normal distribution which was initially 

the best performing individual model.   

 

Research shows that is it fruitful to incorporate the stylized facts. Especially models that 

take the leverage effect into account seem to perform well. Based on this results, GJR-

GARCH works well for return series that show very short volatile periods like the IPC. 

EGARCH works better for the S&P500 index which exhibits slowly decaying volatility. 

The profits from taking stylized facts into account come forward especially at the longer 

horizons. At the shorter horizons it is hard to draw conclusions except that simple 

historical models suffice and models that perform well in the long run are not a guarantee 

that they also perform well in the short run. Using other distributions than the normal 

distribution is not recommended but for further research I would suggest to use other loss 

functions as well since this might highlight the benefits of using different distribution 

than the normal distribution.  
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APPENDIX A: REALIZED VOLATILITY 
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Figure A1: Realized volatility S&P500 from 1/26/2004 to 6/5/2008
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Figure A2: Realized volatility IPC from 1/26/2004 to 6/5/2008
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Figure A4: Realized Volatility IPC 6/9/2008 to 10/31/2012 
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Figure A3: Realized Volatility S&P500 6/9/2008 to 10/31/2012 
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Figure A5: Realized Volatility S&P500 11/1/2012 to 5/31/2017 
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Figure A6: Realized Volatility IPC 11/1/2012 to 5/31/2017
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APPENDIX B: IN-SAMPLE PARAMETER ESTIMATES 

S&P500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table B1: In-sample parameter estimates of all models forecasting volatility of the S&P500 returns.  

ARMA (1,1) Estimate 
 

GARCH(1,1) Normal Estimate GARCH(1,1) t-dist Estimate GARCH(1,1) GED Estimate 

𝛼0 1.502 
 

𝜔 0.027 𝜔 0.027 𝜔 0.026 

𝛼𝑗  0.926 
 

𝛼𝑗  0.080 𝛼𝑗  0.079 𝛼𝑗  0.079 

𝛽𝑗  -0.613 
 

𝛽𝑗  0.906 𝛽𝑗  0.907 𝛽𝑗  0.907 

ARCH(1) Normal Estimate ARCH(1) t-dist Estimate ARCH(1) GED Estimate 

𝜔 1.573 𝜔 1.648 𝜔  1.605 

𝛼𝑗  0.157 𝛼𝑗 0.120 𝛼𝑗  0.132 

EGARCH(1,1) Normal Estimate EGARCH(1,1) t-dist Estimate EGARCH(1,1) GED Estimate 

𝛼0 -0.042 𝛼0 -0.041 𝛼0 -0.042 

𝛼1 0.060 𝛼1 0.058 𝛼1  0.059 

𝜃 -0.129 𝜃 -0.134 𝜃 -0.131 

𝛾 0.980 𝛾 0.980 𝛾 0.980 

GJRGARCH(1,1) Normal Estimate GJRGARCH(1,1) t-dist Estimate GJRGARCH(1,1) GED Estimate 

𝜔 0.027 𝜔 0.026 𝜔 0.026 

𝛼𝑗  0.019 𝛼𝑗 0.027 𝛼𝑗  0.023 

𝛿𝑗 0.170 𝛿𝑗  0.170 𝛿𝑗  0.169 

𝛽𝑗 0.922 𝛽𝑗  0.930 𝛽𝑗  0.926 
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IPC 

 

 

 

Table B2: In-sample parameter estimates of all models forecasting volatility of the S&P500 returns. 

ARMA (1,1) Estimate 
 

GARCH(1,1) Normal Estimate GARCH(1,1) t-dist Estimate GARCH(1,1) GED Estimate 

𝛼0 0.896 
 

𝜔 0.013 𝜔 0.017 𝜔 0.014 

𝛼𝑗  0.997 
 

𝛼𝑗  0.045 𝛼𝑗  0.054 𝛼𝑗  0.049 

𝛽𝑗  -0.957 
 

𝛽𝑗  0.947 𝛽𝑗  0.937 𝛽𝑗  0.943 

ARCH(1) Normal Estimate ARCH(1) t-dist Estimate ARCH(1) GED Estimate 

𝜔 1.754 𝜔 1.856 𝜔 1.746 

𝛼𝑗  0.285 𝛼𝑗 0.300 𝛼𝑗 0.277 

EGARCH(1,1) Normal Estimate EGARCH(1,1) t-dist Estimate EGARCH(1,1) GED Estimate 

𝛼0 -0.043 𝛼0 -0.068 𝛼0 -0.058 

𝛼1 0.0640 𝛼1 0.100 𝛼1  0.085 

𝜃 -0.080 𝜃 -0.080 𝜃 -0.079 

𝛾 0.983 𝛾 0.980 𝛾 0.981 

GJRGARCH(1,1) Normal Estimate GJRGARCH(1,1) t-dist Estimate GJRGARCH(1,1) GED Estimate 

𝜔 0.021 𝜔 0.030 𝜔 0.024 

𝛼𝑗  0.010 𝛼𝑗 0.008 𝛼𝑗  0.000 

𝛿𝑗 0.073 𝛿𝑗  0.085 𝛿𝑗  0.077 

𝛽𝑗 0.959 𝛽𝑗  0.932 𝛽𝑗  0.946 
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APPENDIX C: DIEBOLD MARIANO TEST STATISTICS 

 

 

 

 

 

 

 

 

 

 

 

Table C1: Diebold Mariano (1995) test statistics of the S&P500 comparing all models at the one day horizon.  

 SMA 6 SMA 12 EWMA ARMA ARCHN ARCHG GARCHN GARCHG EGARCHN EGARCHT EGARCHG GJRGARCHN GJRGARCHT GJRGARCHG 

SMA 6 - -2.145* 2.43** 1.518 0.412 1.071 2.234** 2.071* 1.723 0.007 2.058* 2.196* 2.024* 2.177* 

SMA 12  - 2.655* 1.714 1.625 2.172* 2.479* 2.334* 4.132*** 1.511 4.260*** 2.413** 2.256** 2.393** 

EWMA   - 0.801 -2.129* -2.038* 1.207 0.766 -1.792 -2.312** -1.757 1.425 1.063 1.431 

ARMA(1,1)    - -1.457 -1.381 -0.634 -0.917 -1.317 -1.566 -1.294 -0.4145 -0.572 -0.387 

ARCH(N     - 1.455 2.125* 1.977* 0.811 -0.319 1.025 2.091* 1.928 2.073* 

ARCHGED      - 2.004* 1.846 0.361 -0.745 0.591 1.988* 1.821 1.973* 

GARCHN       - -1.041 -1.808 -2.249** -1.778 1.344 0.728 1.346 

GARCHGED        - -1.673 -2.101* -1.639 1.711 1.085 1.666 

EGARCHN         - -1.556 2.675** 1.840 1.684 1.831 

EGARCHT          - 1.829 2.231* 2.064* 2.215* 

EGARCHG           - 1.815 1.656 1.806 

GJRGARCHN            - -1.844 0.709 

GJRGARCHT             - 2.201* 

GJRGARCHG              - 

A regression is run with the difference between column model and row model as dependent variable and a constant as independent variable. T-statistics are reported. Negative values of the Diebold–Mariano test show that the 
squared errors of the model listed first (column models) are lower than those of the model listed last (row models). ARCH and GARCH under the t-distribution are omitted due to very large MSEs. The significance levels are 

indicated by *, ** and ***, and correspond to a significance level of 10%, 5% and 1% respectively, using a two-tailed test. Each model produces 3,352 forecasts.   
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Table C2: Diebold Mariano (1995) test statistics of the S&P500 comparing all models at the one month horizon.  

 SMA 6 SMA 12 EWMA ARMA ARCHN ARCHG GARCHN GARCHG EGARCHN EGARCHT EGARCHG GJRGARCHN GJRGARCHT GJRGARCHG 

SMA 6 - -0.626 1.169 -2.9** -1.851 -2.072* 0.318 -0.407 -0.829 -0.887 -0.889 -0.699 -1.931 -1.371 

SMA 12  - 1.258 -2.5** -1.840 -2.122* 0.461 -0.252 -0.497 -0.557 -0.563 -0.198 -1.595 -0.949 

EWMA   - -2.7** -1.704 -1.811 -1.542 -1.902 -1.239 -1.268 -1.267 -1.256 -1.777 -1.538 

ARMA(1,1)    - 1.043 0.727 1.504 0.512 1.539 1.512 1.496 2.184* 1.063 1.582 

ARCH(N     - -3.63*** 0,911 0,158 1.967* 1.849 1.827 2.427** 0.151 1.178 

ARCHGED      - 1.010 0.244 2.860** 2.709** 2.689** 2.967** 0.681 1.722 

GARCHN       - -2.125* -0.567 -0.586 -0.588 -0.495 -0.917 -0.720 

GARCHGED        - 0.104 0.090 0.087 0.202 -0.137 0.024 

EGARCHN         - -1.655 -3.37*** 0.764 -1.736 -0.636 

EGARCHT          - -0.434 0.938 -1.696 -0.548 

EGARCHG           - 0.931 -1.641 -0.514 

GJRGARCHN            - -3.769*** -2.451** 

GJRGARCHT             - 1.600 

GJRGARCHG              - 

A regression is run with the difference between column model and row model as dependent variable and a constant as independent variable. T-statistics are reported. Negative values of the Diebold–Mariano test show that the 

squared errors of the model listed first (column models) are lower than those of the model listed last (row models). ARCH and GARCH under the t-distribution are omitted due to very large MSEs. The significance levels are 

indicated by *, ** and ***, and correspond to a significance level of 10%, 5% and 1% respectively, using a two-tailed test. Each model produces 3,332 forecasts.   
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Table C3: Diebold Mariano (1995) test statistics of the S&P500 comparing all models at the six months horizon.  

 SMA 6 SMA 12 EWMA ARMA ARCHN ARCHG GARCHN GARCHG EGARCHN EGARCHT EGARCHG GJRGARCHN GJRGARCHT GJRGARCHG 

SMA 6 - 1.359 -1.111 -0.792 0.858 0.852 -0.551 -2.665** 1.584 1.393 1.408 1.122 0.459 0.684 

SMA 12  - -1.640 -2.23* -0.283 -0.269 -1.655 -2.868** 1.057 0.754 0.780 0.342 -0.654 -0.346 

EWMA   - 0.504 1.510 1.511 1.107 -3.575** 1.995* 1.883 1.893 1.718 1.302 1.447 

ARMA(1,1)    - 2.372** 2.387** 0.285 -2.345** 2.880** 2.631** 2.650** 2.300** 1.512 1.777 

ARCH(N     - 0.294 -1.675 -2.812** 2.480** 1.829 1.882 1.055 -0.810 -0.248 

ARCHGED      - -1.677 -2.813** 2.445** 1.801 1.853 1.033 -0.822 -0.262 

GARCHN       - -3.170** 2.544** 2.321** 2.341** 2.010** 1.219 1.490 

GARCHGED        - 3.059** 3.003** 3.008** 2.922** 2.713** 2.791** 

EGARCHN         - -7.524*** -6.806** -5.037*** -5.122*** -4.920*** 

EGARCHT          - 3.625** -3.403** -4.407*** -4.051*** 

EGARCHG           - -3.666** -4.489*** -4.149*** 

GJRGARCHN            - -3.152** -2.559** 

GJRGARCHT             - 0.917 

GJRGARCHG              - 

A regression is run with the difference between column model and row model as dependent variable and a constant as independent variable. T-statistics are reported. Negative values of the Diebold–Mariano test show that the 

squared errors of the model listed first (column models) are lower than those of the model listed last (row models). ARCH and GARCH under the t-distribution are omitted due to very large MSEs. The significance levels are 
indicated by *, ** and ***, and correspond to a significance level of 10%, 5% and 1% respectively, using a two-tailed test. Each model produces 3,332 forecasts.   
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Table C4: Diebold Mariano (1995) test statistics of the S&P500 comparing all models at the one year horizon.  

 SMA 6 SMA 12 EWMA ARMA ARCHN ARCHG GARCHN GARCHG EGARCHN EGARCHT EGARCHG GJRGARCHN GJRGARCHT GJRGARCHG 

SMA 6 - 1.320 -1.202 -1.068 1.312 1.344 0.316 -3.322*** 2.422** 2.240** 2.269** 1.994* 1.168 1.510 

SMA 12  - -1.647 -2.5** 0.659 0.769 -1.075 -3.433*** 3.086*** 2.687** 2.752** 2.157** 0.481 1.120 

EWMA   - 0.419 1.724 1.745 1.448 -4.168*** 2.331** 2.239** 2.255** 2.116* 1.684 1.863 

ARMA(1,1)    - 3.294*** 3.372*** 1.955 -2.912** 4.290*** 4.058*** 4.097*** 3.775*** 2.826** 3.204*** 

ARCH(N     - 2.299** -2.127* -3.464*** 3.927*** 3.223*** 3.339*** 2.460** -0.060 0.867 

ARCHGED      - -2.224* -3.471*** 3.707*** 3.017** 3.131*** 2.265** -0.224 0.692 

GARCHN       - -3.574*** 3.979*** 3.609*** 3.672*** 3.179*** 1.662 2.256 

GARCHGED        - 3.722*** 3.679*** 3.687*** 3.624*** 3.430*** 3.518*** 

EGARCHN         - -8.644*** -7.882*** -4.932*** -5.555*** -5.047*** 

EGARCHT          - 3.6649*** -3.112*** -4.834*** -4.168*** 

EGARCHG           - -3.554*** -4.961*** -4.330*** 

GJRGARCHN            - -3.767*** -2.859*** 

GJRGARCHT             - 1.289 

GJRGARCHG              - 

A regression is run with the difference between column model and row model as dependent variable and a constant as independent variable. T-statistics are reported. Negative values of the Diebold–Mariano test show that the 

squared errors of the model listed first (column models) are lower than those of the model listed last (row models). ARCH and GARCH under the t-distribution are omitted due to very large MSEs. The significance levels are 
indicated by *, ** and ***, and correspond to a significance level of 10%, 5% and 1% respectively, using a two-tailed test. Each model produces 3,101 forecasts.   
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Table C5: Diebold Mariano (1995) test statistics of the S&P500 comparing all models at the two year horizon.  

 SMA 6 SMA 12 EWMA ARMA ARCHN ARCHG GARCHN GARCHG EGARCHN EGARCHT EGARCHG GJRGARCHN GJRGARCHT GJRGARCHG 

SMA 6 - 3.04*** -1.399 0.058 2.495** 2.494** 1.308 -4.201*** 3.332*** 3.228*** 3.2511*** 2.943*** 2.121* 2.567** 

SMA 12  - -2.40** -2.01* 0.649 0.752 -1.231 -4.447*** 2.457** 2.255** 2.298** 1.736 0.236 0.959 

EWMA   - 1.292 2.424** 2.436** 1.950 -4.579*** 2.917*** 2.867*** 2.878*** 2.726** 2.321** 2.536** 

ARMA(1,1)    - 2.753** 2.822*** 1.411 -4.125*** 3.291*** 3.185*** 3.206*** 2.883*** 2.090* 2.484** 

ARCH(N     - 2.014* -3.224*** -4.471*** 2.729** 2.433** 2.492** 1.671 -0.369 0.605 

ARCHGED      - -3.407*** -4.475*** 2.580** 2.286** 2.344** 1.526 -0.511 0.461 

GARCHN       - -4.404*** 4.389*** 4.147*** 4.195*** 3.576*** 1.862 2.682** 

GARCHGED        - 4.588*** 4.571*** 4.575*** 4.526*** 4.406*** 4.475*** 

EGARCHN         - -8.538*** -7.647*** -5.051*** -5.102*** -4.484*** 

EGARCHT          - 2.964*** -3.726*** -4.674*** -3.910*** 

EGARCHG           - -4.0192*** -4.766*** -4.035*** 

GJRGARCHN            - -3.402*** -2.216* 

GJRGARCHT             - 1.501 

GJRGARCHG              - 

A regression is run with the difference between column model and row model as dependent variable and a constant as independent variable. T-statistics are reported. Negative values of the Diebold–Mariano test show that the 

squared errors of the model listed first (column models) are lower than those of the model listed last (row models). ARCH and GARCH under the t-distribution are omitted due to very large MSEs. The significance levels are 
indicated by *, ** and ***, and correspond to a significance level of 10%, 5% and 1% respectively, using a two-tailed test. Each model produces 2,849 forecasts.   


