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Abstract 

This paper is about the relationship between El Niño Southern Oscillation (ENSO) and world-

wide stock markets. We start by reviewing available ENSO data sources and find the Oceanic 

Niño Index to be most suitable. As previous researches conclude relationships between ENSO 

and macroeconomic indicators, we study the possible effects on stock markets of 21 countries 

globally. We find no significant results for any of the countries in the time-series dimension. 

We do find that an El Niño trading strategy is able to generate money in the long-run, but 

suspect the outperformance to be caused by luck, rather than skill. Furthermore, we study the 

possible relationship between ENSO and the S&P500 throughout time and conclude that the 

intensity of the event magnifies the results.  
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1. Introduction 

 

Extreme weather events like El Niño that cause hurricanes, drought and rainfall in the tropical pacific region 

are likely to have environmental and societal impact; during  El Niño Southern Oscillation (ENSO) cycles, the 

eastern pacific is dominated by abnormally cold sea-surface temperatures, while the far western Pacific is 

haunted by very warm conditions (Hoerling et al., 1997). Next to this, Cashin et al. (2014) show that the 

consequences of weather phenomena like El Niño can be economical either. They investigate the 

macroeconomic effects of El Niño shocks and find varying results. Expectedly, these severe conditions directly 

affect countries in the western pacific like Australia, Indonesia and New Zealand; rain-driven agricultural 

export is strained by sustained periods of drought, causing commodity prices to rise. Furthermore, fishery is 

limited along the coast of Peru by warm nutrient-poor water. On the other hand, there are also countries 

along the equatorial coast of South America that benefit due to an increased amount of rain and lower 

temperatures.  

According to Brunner (2002), inflation and GDP of advanced G-7 economies are significantly impacted  ENSO-

cycles. They state that over the period 1963 to 1997, 20% of the deviation in GDP growth and inflation is 

explained by these cycles. Moreover, they find explanatory power for non-oil commodity prices.  

Although El Niño (in)directly impacts world-wide economies through commodity prices, changes in economic 

growth and inflationary upticks, the resulting damage done to and/or benefits to affected companies (i.e. El 

Niño winners/losers) are heavily under-studied. The urge to understand the impact at a company-specific 

level raises naturally following one of the strongest El Niño events measured during 2014-2016. Adams et 

al. (1995) studied the US agricultural  sector and found the economic value of an imperfect ENSO forecast 

to be $96 million. Solow et al. (1998) highlight the urge by estimating the annual value of perfect forecasting 

to be $323 million.  

Despite the economic damage done by ENSO to specific sectors like agriculture seems significant, the 

relationship between El Niño events and stock returns is yet to be investigated into further detail. Since the 

real economy is clearly impacted, one might expect similar results for stock prices. In a broader sense, the 

relationship between the weather and stock markets has indeed been studied before. More specifically, 

researches like Saunders (1993), Hirschleifer and Schumway (2003), and Cao and Wei (2005) support the 

idea of irrational markets that are affected by local weather. The traditional view of efficient markets seems 

far but relevant in the existence of extreme weather events like El Niño. Let aside the psychological effect of 

temperature on mood (thereby creating the possibility of over-optimizing future prospects), weather 

deviations are likely to affect weather-related firms through the mere absence of sunlight or rain (i.e. 

agriculture). 

On the other hand, researches like Jacobsen and Marquering (2007) and Novy-Marx (2014) have posed a 

more skeptical view. They claim that several weather induced anomalies found to explain stock returns are 

possibly data-driven and/or caused by insufficient methods of research respectively. Moreover, they argue 
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that the commonly used methodology of citing several psychological studies, linking the mood change to 

risk aversion and/ or misattribution and finally testing the hypothesized relations is possibly not sound 

enough. Due to overlapping causes and small differences, the possible explanations are possibly premature. 

Taking into account the diverse conclusions mentioned above, we dedicate this research to further identifying 

possible effects of El Niño on stock markets world-wide. The main research question for that reason is:  

“How do El Niño events affect stock markets?” 

Now, to answer the main question we split it up into several sub questions. First of all, to intensively study 

the different results we are likely to find across countries: 

“Do El Niño influences on stock markets differ across countries?” 

Secondly, these extreme weather events occur once every 3 to 7 years and are closely followed by 

governments world-wide. Moreover, the most recent El Nino of 2014-2016 is known to be amongst the top 

three strongest events ever measured and as global warming leads to changing weather conditions, 

stakeholders might be curious how the effects on stock markets change through time.  

“How does the relationship between El Niño events and stock markets change through time?” 

We answer the first sub question by studying 21 countries in a time-series dimension. We find no significant 

result for any of the countries used in our dataset. We do however conclude that the stock indices are, to a 

large extent, affected in the same direction as the macroeconomic indicators used in previous studies.  The 

second is answered by studying the U.S. stock market throughout time using rolling-windows of 10 years. 

We find that the intensity of ENSO is related to the size of the impact on the S&P500 Index. Lastly, we 

construct a portfolio based on an El Niño trading strategy, that invests when the Oceanic Niño Index triggers 

a sea-surface temperature trigger. The strategy can be profitable if trading costs are excluded, but the 

outperformance may at the same time be caused by mere luck, rather than skill. 

The remainder of this paper is as follows: in section 2 we review the possible ENSO data sources. In section 

3 we describe the relevance of the data we use. Section 4 addresses the models used in our regressions and 

section 5 included the results. Finally, we conclude our findings in section 6.  
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2. El Niño Southern Oscillation 

 

On average, every 3 to 7 years the pacific is home to El Niño Southern Oscillation, changing weather events 

significantly. The schematic picture on the left of Figure 1 displays the ‘normal’ scenario, where warm water 

flows across the equatorial line from west to east. The water is blown by wind into this direction as a result 

of high pressure areas in the east (displaying the eastern Pacific Ocean, near South America) and low 

pressure areas in the west (displaying the western Pacific Ocean, near Asia). As the surface water is warmer 

and evaporates more quickly, rainfall hits Australia and Indonesia. Oppositely, due to ocean surface currents 

and coastal winds, the thermocline (approximately the location of water that is about 20ºC) is pushed 

upward along the coast of South America. An upwelling of colder, nutrient-rich water thereby offers 

fishermen opportunities.  

The alternative scenario1 is the occurrence of an El Niño; due to high pressure and low pressure zones shifting 

around, the equatorial counter current accumulates warm surface water from west to east. The result of a 

declined thermocline slope is less upwelling of cold, nutrient-rich water. This directly impacts fishing. Next to 

this, extreme rainfall circles around the equatorial region of South America and extreme drought haunts the 

western Pacific. Agriculture and commodity prices are affected as a result either. Not only are the effects 

local, but reach as far as 8000 km across the equatorial region of the pacific through teleconnections. 

Examples of these connections are found amongst others in precipitation: lower than normal activity across 

western Oceania, southeastern Africa, northeastern South America and India, and higher than normal 

activity in western South America and eastern equatorial Africa (Rosenzweig & Hillel, 2008). 

Figure 1: Southern Oscillation 

 

Source: National Oceanic and Atmospheric Administration (NOAA) United States Department of Commerce 

  

                                                           
1A second alternative phase, La Niña, to a certain extent mirrors the El Niño phase. But, as the focus of this study is 
connected to the effects of El Niño activity, we exclude further details regarding the mirroring phase. 
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As EL Niño events usually last several months and occur quasi-periodically, data is available in abundance. 

However, as the impact of the event is global, variability exists within the way of measuring both the 

occurrence and the intensity. As a means of clarifying what data is available and to motivate what we find 

suitable to this research, we investigate multiple data sources in this section.  

 

Southern Oscillation Index (SOI) 

One of the most widely known and oldest ways of measuring El Niño activity is through the Southern 

Oscillation Index. It uses air pressure differences at sea level between Tahiti (French Polynesia) and Darwin 

(Australia), and hereby studies the atmospheric conditions associated with ENSO (Walker & Bliss, 1932). As 

air pressure rises above average in Darwin and below average in Tahiti during El Niño events, sustained 

negative values of the SOI indicate it’s occurrence. Furthermore, to exclude seasonal influences and short-

term deviations, the index is standardized in the following matter:  

𝑆𝑂𝐼 = 10
[𝑃𝑑𝑖𝑓𝑓 − 𝜇𝑃𝑑𝑖𝑓𝑓]

𝜎𝑃𝑑𝑖𝑓𝑓
 

where: 𝑃𝑑𝑖𝑓𝑓 =  𝜇Mean Sea Level Pressure in Tahiti −  𝜇Mean Sea Level Pressure in Darwin , and the 

multiplication by 10 is applied to have whole numbers. The data is measured on a monthly basis. 

Figure 2: SOI (Geographical) 

 

Source: National Oceanic and Atmospheric Administration (NOAA) United States Department of Commerce 

A weakness of this index is the location of Tahiti and Darwin: 18˚S and 12˚S respectively, while the largest 

component of El Niño activity is located along the equator. The Equatorial Southern Oscillation Index is not 

exposed to this problem, as the regions are located at 5˚S to 5˚N. However, this index started in 1949, while 

in contrast, the regular SOI started in the late 1800s (Barnston, 2015).  
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Oceanic Niño Index (ONI)  

Another way of measuring the intensity and occurrence of El Niño events is through the Oceanic Niño Index. 

It studies sea surface temperatures in the eastern and central pacific ocean. NOAA uses the region presented 

in figure 3 as Niño 3.4: 120˚W to 170˚W longitude, as it was shown to be the most representative for ENSO-

activity2 (Barnston et al., 1997).  

Figure 3: ONI (Geographical) 

 

Source: National Oceanic and Atmospheric Administration (NOAA) United States Department of Commerce 

To investigate sea surface anomalies, the ONI tracks running 3-month averages and compares these with 

30-year averages. El Niño events are indicated by values significantly higher than 0.5. As expected by the 

increased thermocline during these events, the water temperature increases significantly as one goes further 

east in the observed are. The data goes back to 1950. 

 

Outgoing Longwave Radiation Indexes (OLR) 

A third method for measuring ENSO-activity is by studying outgoing radiation from cloud tops. It is an 

indicator of thunderstorm activity across the tropical Pacific. Regions with above-average sea surface 

temperatures are usually home to above-average amounts of thunderstorm activity and rainfall. Because of 

reliable satellite data becoming available in 1979, this source of information contains less observations. 

There are several other ways to study ENSO activity, for example through wind indexes, but as these only 

sometimes have significant impact in triggering an El Niño event, we leave these out of scope. 

 

  

                                                           
2 Region 3.4 is formed by parts of (and overlapping) regions 3 and 4. Regions 1 and 2 were removed to accurately 
study the deviations in sea surface temperature.    
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Multivariate ENSO Index (MEI) 

Next to the individual methodologies mentioned above, the variables correlated with ENSO activities are 

often combined to form a composite index. NOAA compresses six variables that they believe are most 

associated with ENSO: sea-level air pressure (SOI), sea surface temperature (ONI), cloudiness fraction of the 

sky (OLR), surface wind (zonal, as well as meridional) and surface air temperature. Sustained positive values 

indicate El Niño activity.  A strength of this method is that the ENSO effects are caused by aggregated sources. 

This, at the same time, poses a shortfall: by using multiple indices, which use data from different 

geographical regions, tracing back ENSO activity to a specific region is not allowed. For this reason, keeping 

the indices separated is often preferred when studying the effect of one variable on a specific region, i.e. one 

might prefer using the ONI rather than the SOI when studying activity around the equator. (Barnston, 2015). 
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3. Data  

 

To answer the main research question and study the effects of El Niño on worldwide stock markets, we gather 

data from several sources. First of all, we include all countries used in Cashin et al. (2014) and take monthly 

closing prices from the corresponding stock indices. Figure 3 displays what conclusions were made based on 

how shocks to the Southern Oscillation Index anomaly affected the countries both in the short-term (first and 

second quarter following a shock) as well as in the long-term (third and fourth quarter). As inflation-based 

influences are subject to expectations and targets, we prefer basing the overall effect mainly on GDP-based 

influences (real output). 

 
Table 1: Overview Indices 

 
Note: in the case of long-term spillover effects, as a result of international trade for example, reversing the initial shock, 

we marked it as ‘-/+’. If no significant influence was concluded, we left the spot empty.  

 

Not all data stretches back in time to the same extent (Table 2). For that reason we divide the dataset into 

two separate parts. To incorporate as much El Niño events as possible, we first of all study the S&P500 

starting in 1927. We take monthly closing prices to calculate the returns. The second part exists of all indices 

mentioned in table 1. All returns are calculated in the same fashion and in their respective currencies, as we 

want to exclude currency effects that could lead to spurious results. Finally, we subtract the risk-free rate 

supplied by the Fama and French website from all returns to solely investigate excess returns. 

  

Country Index GDP Inflation Overal effect

Argentina Merval + + +

Australia S&P/ASX 200 - - -

Brazil Bovespa -/+ - -/+

Canada S&P/TSX + - +

Chile IPSA -/+ -/+

China SSE Composite + + +

Europe MSCI Europe + +

India NIFTY 50 - + -

Indonesia Jakarata Composite - + -

Japan Nikkei 225 -/+ + -/+

South Korea KOSPI +

Malaysia KLCI +

Mexico IPC + + +

New Zealand S&P/ NZX 50 Gross - - -

Peru S&P Lima Select -/+ - -/+

Philippines PSEi Composite +

South Africa Dow Jones South Africa  - + -

Saudi Arabia Tadawul All Share +

Singapore STI Index + - +

Thailand SET +

United States US SPX 500 + + +
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Table 2: Descriptive Statistics Stock Indices  

 

Obviously, the datasets differ in size to a large extent. However, as the most recent El Niño phase of 2015-

2016 was of above-average intensity, every dataset contains at least one sustained period of relevant 

observations. Not surprisingly, emerging markets like Argentina, Brazil, China and Saudi-Arabia behaved 

more volatile than most of the other countries. The means are calculated using monthly excess returns.  

As the control variables we mention in section 3.2 started appearing later than the corresponding stock 

returns in some situations, we choose to only add an observation to the dataset if both are available.  

Country Start Observations Mean Volatility Skewness Kurtosis

Argentina 30-9-2003 166 2.44 9.51 -0.13 4.02

Australia 31-5-2000 206 0.24 3.70 -0.65 3.37

Brazil 31-10-2012 57 0.28 6.09 0.32 2.90

Canada 29-7-1994 276 0.37 4.17 -1.02 6.41

Chile 28-4-2006 135 0.59 4.38 0.32 3.48

China 29-7-2005 144 1.34 9.28 -0.15 3.81

Europe 29-6-2001 193 -0.09 5.37 -0.47 3.9

India 28-2-2001 197 1.12 6.68 -0.17 4.87

Indonesia 29-8-2003 167 1.56 5.94 -1.01 8.41

Japan 31-7-2000 204 0.1 5.61 -0.51 3.77

South Korea 28-2-2002 185 0.69 5.53 -0.43 4.53

Malaysia 30-11-1999 212 0.36 4.25 -0.21 4.51

Mexico 28-9-2001 190 1.11 4.84 -0.53 4.14

New Zealand 31-12-1999 211 0.21 3.32 -0.63 3.81

Peru 29-2-2012 65 0.02 6.02 0.10 2.72

Philippines 29-2-2000 209 0.7 5.9 -0.39 4.36

South Africa 31-12-1999 211 0.91 4.84 -0.07 3.42

Saudi Arabia 31-8-2006 131 -0.10 7.18 -0.27 4.17

Singapore 31-3-2008 112 0.18 5.33 -0.35 8.10

Thailand 28-2-2001 197 0.87 6.06 -0.73 6.32

United States 28-2-1992 305 0.46 4.07 -0.68 4.46
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3.1 ENSO data 

 

As mentioned earlier in this study, several different ways of measuring the intensity and occurrence of El Niño 

events exist. We gather the datasets from the National Oceanic & Atmospheric Administration. Based on 

their applicability, relevance and size, we restrict our scope to the Southern Oscillation Index, Oceanic Niño 

Index, Outgoing Longwave Radiation Index and a Multivariate ENSO Index used by NOAA. As all methods 

have their respective strengths and weaknesses, we first explore to what extent they are correlated. We use 

a correlation matrix in this process. 

Table 3: Correlation Matrix ENSO  

 

We take absolute values of the correlations and sum these to be able to rank the data sources. One important 

aspect of the methodologies applied in the SOI and ONI, is that they require sustained negative and positive 

values respectively to indicate the occurrence of El Niño events. Hence, they are negatively correlated and 

stress the importance of using absolute values when adding up the scores.  

Despite all four indices capture the movements of the remaining three rather well, the Oceanic Niño Index 

performs best. Surprisingly, the Multivariate ENSO Index, which by construction consists of all other three 

indices, comes second to the ONI. The OLR and SOI follow in third and fourth place respectively. As the 

difference between first and second place is rather small, we follow NOAA in that their primary indicator of 

ENSO climate patterns is the ONI. As figure 4 shows, temperature anomalies that sustainably cross the 0.5 

threshold implicate the occurrence of an El Niño event (displayed red in Figure 4). Higher peaks implicate 

that the event was stronger. Values smaller than, but greater than 0.5 and -0.5 respectively have been 

blurred, as these observations neither indicate El Niño events, nor mirroring La Niña events. 

Figure 4: ONI 

 

SOI ONI OLR MEI

Southern Oscillation Index

Oceanic Niño Index -0.74713

Outgoing Longwave Radiation 0.70363 -0.79444

Multivariate ENSO Index -0.77004 0.91772 -0.7689
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3.2 Control variables 

 

The Oceanic Niño Index observes sea surface temperature anomalies, which we assume are strictly caused 

by nature’s forces and independent of any variables causing deviations in stock returns. We therefore treat 

the ONI variable as being exogenous. However, El Niño events are related to commodity markets world-

wide. In their turn, commodity prices will impact company earnings and will thereby most likely affect stock 

prices as a consequence. For this reason, it is important to add commodity prices to our datasets. We do 

however not follow Cashin et al. (2014) in the same fashion, i.e., they divide the commodity price variable 

into two: a fuel commodity variable (as a proxy to crude oil prices) and a non-fuel commodity variable. As 

we are interested in how stock prices of companies are affected, we choose not to split it up in our research 

and stick with a single commodity variable supplied by the International Monetary Fund3: All Commodity 

Price Index. The indices used in our datasets consist of several thousand underlying companies, each one 

more or less connected to commodity prices of some sort.  For this reason, we do not see any added value 

in splitting the variable up into sub-categories.  

Stock indices react intensively to over- and undervaluation mostly observed during ending phases of 

economic cycles. To absorb some of the variability caused by periods of contraction and expansion, we 

include the valuation variable price-to-earnings ratio of the countries used in our dataset. Furthermore, to 

tell us something about the quality of these earnings, we add the average dividend payed over the past 12 

months. Finally, we follow Cashin et al. (2014) in that sense, that we include interest rates. However, while 

they split short-term and long-term rates up into two variables, we subtract the former from the latter to 

create one variable that covers the total interest rate structure: Yield Spread. More specifically, we subtract 

the yield on government bonds with 2 years (we took 3 years as a substitute if 2 year bonds were missing) 

to maturity from that of bonds with 10 years to maturity. This number tells us something about the slope of 

the yield curve; it tells us something about economic conditions. Contracting yield curves usually indicate a 

worsening of economic conditions, while a widening indicates stable economic conditions. 

 

  

                                                           
3 See http://www.imf.org/external/np/res/commod/index.aspx for more details on the composition of this 
index. 
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4. Methodology 

 

To intensively study the effects of El Niño on stock markets world-wide, we split this section up into two parts.  

First of all, we look at the relationship throughout time by taking into regard the complete dataset and by 

breaking it up into separate windows of time. Thereafter, we deviate from the time dimension and study the 

effects in a cross-sectional dimension to establish an understanding of the relationship across countries.  

4.1 Time-series 

 

In an effort to capture the effect of El Niño on stock markets throughout time, we construct an Ordinary Least 

Squares (OLS) regression and start with the following model: 

𝑅𝑖,𝑡 − 𝑅𝐹𝑡 = 𝛼𝑖 +  𝛽0𝑖𝑂𝑁𝐼𝑡 +  𝛽1𝑖𝑂𝑁𝐼𝑡−1 +  𝛾𝑖𝑃𝐸𝑡 +   𝛿𝑖𝑌𝑆𝑡 +   𝜇𝑖𝐷𝐼𝑉𝑡 +  𝜋𝑖𝐶𝑂𝑀𝑡 + 𝜖𝑖,𝑡 (1) 

where 𝑅𝐹𝑡 represents the risk-free rate, 𝑃𝐸𝑡 the Price-to-Earnings Ratio, 𝑌𝑆𝑡 the spread between yields on 

government bonds with a maturity of 10 years and with a maturity of 2 years, 𝐶𝑂𝑀𝑡 the price of the All 

Commodity Price Index and  𝐷𝐼𝑉𝑡 the 12-month average dividend yield. All data is measured on a month-

to-month basis. 

Furthermore, possible correlation in the errors found in our model might lead to biased results. More 

specifically, the standard errors will not be valid and better estimators exists. We therefore test the model 

using a Breusch-Godfrey test.  

𝜇𝑡 = 𝜌1𝜇𝑡−1 + 𝜌2𝜇𝑡−2+. . +𝜌𝑟𝜇𝑟−1 + 𝜏𝑡 and: 𝜏𝑡~ N(0,𝜎𝜏
2)    (2) 

where 𝜌𝑡 indicates the relationship between residual 𝜇𝑡 and a previous value 𝜇𝑡−𝑟. We study monthly 

observations and therefore apply 12 lagged values. The null hypothesis states that there is no significant 

relationship between the errors; there is no sign of autocorrelation. 

 Second, we check the model for heteroscedasticity, i.e. non-constant variance of the residuals, by means of 

the White’s test (White, 1980). Under the null-hypothesis the errors are homoscedastic. 

Based on the combined results of the two tests named above, we adjusted the models if necessary. More 

specifically, if the model included heteroscedasticity and/or serial correlation, we adjusted the model using 

Newey-West Standard errors. If the model solely included heteroscedasticity, we applied White’s robust 

standard errors. 
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 Table 4: Breusch-Godfrey test (left) & Table 5: White’s test (right)  

 

Finally, as we are dealing with prices of stocks and commodities, which are commonly known to include 

trends over time, we check the datasets for non-stationarity. The problem of non-stationarity in stock prices 

is easily resolved by studying returns, rather than prices. However, the All Commodity Price Index is still 

vulnerable and therefore, we apply the Augmented Dickey-Fuller test. The null-hypothesis is that the process 

contains a unit root. The alternative hypothesis in this case, indicates stationarity. The more negative the 

results the test, the stronger the rejection of the null-hypothesis.  

By visual inspection, the indexed data (2005 = 100) is likely to include a positive trend throughout time 

(Appendix 1). For that reason, we include a trend in the Augmented Dickey-Fuller test. The results supports 

the statement of non-stationarity, as the null-hypothesis of a unit root cannot be rejected (see Appendix 2). 

To solve this problem in the data, we create a substituting variable by taking the returns of the ACPI (see 

Appendix 3). 

 

 

 

Country P-value Test statistic

Argentina 4.87 0.96 37.12 0.01

Australia 10.92 0.54 53.59 0.00

Brazil 9.76 0.64 22.49 0.71

Canada 3.78 0.99 50.47 0.00

Chile 10.41 0.58 57.86 0.00

China 18.18 0.11 48.96 0.01

Europe 12.27 0.42 78.62 0.00

India 11.18 0.51 63.59 0.00

Indonesia 10.50 0.57 88.58 0.00

Japan 6.91 0.86 48.77 0.01

South Korea 9.29 0.68 52.63 0.00

Malaysia 15.61 0.21 53.71 0.00

Mexico 16.74 0.16 50.23 0.00

New Zealand 14.96 0.24 30.41 0.30

Peru 8.39 0.75 30.58 0.29

Philippines 4.99 0.96 57.24 0.00

South Africa 8.04 0.78 44.51 0.02

Saudi Arabia 9.97 0.62 30.88 0.06

Singapore 12.82 0.38 54.71 0.00

Thailand 9.17 0.69 83.00 0.00

United States 14.13 0.29 75.55 0.00

BG White
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To investigate how the results differ throughout time, we apply the following time-varying model to the 

United States dataset because of the abundance of observations: 

𝑅𝑖,𝑡 − 𝑅𝐹𝑡 = 𝛼𝑖,𝑡 +  𝛽𝑖,𝑡𝑂𝑁𝐼𝑡 +  𝛽1𝑖,𝑡𝑂𝑁𝐼𝑡−1 +  𝛾𝑖,𝑡𝑃𝐸𝑡 +   𝛿𝑖,𝑡𝑌𝑆𝑡 +   𝜇𝑖,𝑡𝐷𝐼𝑉𝑡 +  𝜋𝑖,𝑡𝐶𝑂𝑀𝑡 + 𝜖𝑖,𝑡(3) 

We take rolling windows of 120 months to establish an understanding of how the relationship between the 

stock returns and EL Niño changes throughout time.  

4.2 Cross-section 

 

To study how the effects of El Niño differ across countries, we construct portfolios of El Niño ‘winners’ and 

‘losers’. More specifically, stock indices that are positively correlated to the strength of El Niño events leads 

to the classification of that country being a ‘winner’. Reversely, a negative relationship leads to the 

classification of being a ‘loser’. We go as far back as possible regarding the pricing data of the stock indices. 

To makes sure all countries are a possible investment object, we therefore start the portfolio data at June 

2003 (start of the S&P/ NZX 50 Gross Index in USD). As the data required earlier in the time-series regression 

go less far back because of availability problems in the control variables, the exact dates are in small conflict. 

We do however make the assumption that the conclusions following the time-series regressions are 

representative as well to the cross-section datasets. A benefit of this approach is that the dataset will 

incorporate more El Niño/ La Niña observations. 

We then contribute the weight equally across the countries. We go long El Niño winners and short El Niño 

losers during periods of El Niño activity. During the mirroring phase, La Niña, we reverse the weights: we go 

long El Niño losers and short El Niño winners. During periods that indicate neither the occurrence of El Niño, 

nor the occurrence of La Niña,  we are not invested and assume no further growth of the portfolio.  
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5 Results 

 

In this section we discuss the results in an effort to answer the main research questions and the two sub-

questions. First of all, we look at the time-series results on a global scale. Second, we study the results for 

the time -varying dataset from the United States. Lastly, we look at the hypothetical portfolio created using 

an El- Niño strategy.   

5.1 Time-Series 

 

We ran the regressions mentioned in section 4.1 separately for all countries in our dataset. We then 

corrected, if needed, the standard errors to increase the validity of our results. We corrected all countries for 

heteroscedasticity, except Brazil, New-Zealand, Peru and Saudi-Arabia, by using White’s robust standard 

errors.  

We start with the regressions that solely link the ONI and it’s lagged value to the excess returns (see Appendix 

4). As these results might include some of the variability caused by other variables, we thereafter include the 

control variables (see Appendix 5). Only the control variables that show a significant relationship to the 

excess returns at a 90% confidence level, i.e. the p-value is smaller than 0.10, are kept. Finally, we add the 

relevant control variables to the first regression (see Table 6). 

In general, we do not find any significant relationships between ENSO and the stock returns in our data. We 

do find a significant result for Peru, however, after adding the control variables the connection is no longer 

significant. This indicates that some of the variability seemingly caused by the ONI in the first regression, is 

partly caused by the control variables through the ONI. Moreover, we were not able to reject the null-

hypothesis that the ONI and it’s first-order lagged value have significant impact on the excess returns of the 

investigated stock indices.  

If we match the results (Table 6) to table 1 and focus on the coefficients of the Oceanic Niño Index (not the 

lagged values) we do see comparisons with the results found by Cashin et al. (2014). All countries that were 

found to be positively impacted on a macroeconomic scale display positive coefficients: Argentina, Canada, 

China, Europe, Mexico, Singapore and the United States. Due to the lower temperatures and heavy rainfall 

these countries seem to be positively affected. More specifically, it might boost agricultural companies in 

Argentina and the United States. As a result of spillover effects, Mexican, Canadian and European companies 

may therefor trade more internationally and see their profits rise.  

Coefficients of companies that were identified to have differing macroeconomic results throughout time are 

often multidirectional. Peru for example, shows a strong negative relationship for the ordinary ONI value. 

The lagged value however, is strongly positive. This difference may be caused by the effects El Niño has in 

this region, i.e. positive to agriculture as a result of rainfall, but negative to fishery as a result of the upwelling 

of warm nutrient-poor water. It is also the model with the highest R-squared: 0.30, indicating that 30% of 
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the variability in the excess stock-returns is caused by the dependent variables. The relatively high R-squared 

values for Brazil and Saudi-Arabia may also be caused by a strong correlation between the fuel-commodity 

party of the All Commodity Price Index variable and the returns on companies in these oil-exporting 

countries. Note that the ACPI is also significant in both countries (see Appendix 5). Furthermore, when the 

adjusted R-squared is available, we see that in all four cases it is lower than the usual R-squared value. The 

reason behind this is that the usual R-squared by definition increases by adding variables. The adjusted R-

squared however, penalizes adding extra variables. If we compare the R-squared values in Appendix 1 to 

Table 6, we see that most of the variability is actually caused by the control variables, rather than the ONI. 

These results may be biased however, as the companies that are truly affected by El Niño possibly make up 

just a small part of the total index.  

Table 6: Time-series results  

Note: In case White standard errors were applied, the adjusted R-squared is omitted. If usual errors were 

applied, the adjusted R-squared is mentioned below the regular R-squared in parenthesis.  

Country ONI ONI(t-1) Price-to-Earnings Dividend ACPI Yield Spread R-Squared

Argentina 2.32 -2.39 -1.75 0.34 0.08

(0.53) (0.50) (0.03) (0.10)

Australia 0.21 0.16 -0.80 0.13 0.07

(0.88) (0.91) (0.06) (0.05)

Brazil -1.63 2.09 0.64 0.23

(0.67) (0.59) (0.00) (0.18)

Canada 0.57 -0.52 0.25 0.08

(0.66) (0.67) (0.00)

Chile 0.82 -0.29 0.20 0.65 0.10

(0.66) (0.87) (0.00) (0.26)

China 0.96 0.05 0.51 3.52 0.11

(0.83) (0.99) (0.00) (0.02)

Europe 1.12 -1.63 -1.17 1.23 0.04

(0.63) (0.45) (0.03) (0.05)

India 1.72 -1.48 0.00

(0.51) (0.57)

Indonesia 0.46 0.24 0.34 0.09

(0.84) (0.91) (0.03)

Japan 3.14 -3.04 0.24 -1.78 0.06

(0.16) (0.16) (0.03) (0.10)

South Korea -0.32 0.33 0.04 0.22 0.07

(0.88) (0.87) (0.00) (0.05)

Malaysia 1.87 -1.46 0.18 0.19 -1.62 0.11

(0.18) (0.28) (0.01) (0.01) (0.03)

Mexico 0.46 -0.32 -2.34 0.04

(0.79) (0.86) (0.06)

New Zealand 1.24 -0.88 -0.92 0.08

(0.31) (0.47) (0.00) (0.07)

Peru -4.78 5.91 0.48 0.41 0.30

(0.18) (0.09) (0.18) (0.09) (0.30)

Philippines -0.73 1.40 0.01

(0.70) (0.46)

South Africa 0.21 0.02 -1.58 0.15 0.07

(0.90) (0.99) (0.04) (0.03)

Saudi Arabia -2.98 1.74 0.67 0.40 0.19

(0.32) (0.56) (0.01) (0.00) (0.17)

Singapore 1.76 -2.44 0.53 0.35 -2.02 0.26

(0.45) (0.26) (0.04) (0.01) (0.03)

Thailand -0.99 0.53 0.36 0.24 0.11

(0.61) (0.77) (0.00) (0.07)

United States 0.87 -0.80 0.00

(0.52) (0.53)
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5.2 Time-Varying 

 

As the dataset containing stock returns from the United States, or more specifically, the S&P500 Index 

contains the largest amount of observations, we use this index to investigate the relationship between El 

Niño and stock markets throughout time. By taking a window of 120 observations (10 years) and rolling this 

forward throughout time, we are able to study the coefficients in the presence and absence of an El Niño 

phase. The first observation contains information from March 1992 until February 2002. The second from 

April 1992 until March 2002 and so forth.  

Figure 5: OCI beta  

 

As figure 5 shows, the beta coefficient of both the ONI depends strongly on what point in time we 

observe. The dotted line expresses the temperature anomaly observed in the Oceanic Niño Index. As 

the intensity of the events grow, i.e. as the temperature anomaly is larger, the ONI seems to have a bigger 

coefficient. This makes sense, as stronger events have more severe impact on the affected regions. The US, 

according to Cashin et al. (2014), is positively affected by El Niño activity. A stronger event may enlarge the 

magnitude of these effects. Furthermore, as the effects grow stronger, and part of the positive US effect is 

caused by international trading with Canada and Mexico, it might even further be reinforced. 
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5.3 Cross-Section 

 

To investigate how El Niño affects stock returns in the cross-section, we construct a hypothetical portfolio. As 

none of the countries in the time-series regression were significantly connected to ENSO, we deliberately let 

go of this fact and focus solely on the direction of the coefficients. The fact that most of the countries in our 

results followed the results of Cashin et al. (2014) in a sense of direction, supports this decision. Countries 

that scored well in the time-series regression in this paper, i.e. countries that have a positive coefficient, are 

invested in during periods of El Niño activity. Reversely, we short countries that performed less well in the 

time-series dimension. The ONI serves as a trigger: if the value crosses 0.5 the portfolio is constructed. If the 

value drops below 0.5 again, we liquidate the portfolio until the next trigger. Should the value drop below -

0.5, then we reverse the weights; we short the winners and long the losers.  

As opposed to the time-series section, we calculated all stock returns in one currency: United States Dollar. 

Previously, all currency influences had to be excluded to focus on the local impact of El Niño. Now, we 

deliberately include the currency effect to be able to express the total return on the portfolio throughout 

time. However, we assume interest rates to be negligible as we are not invested through periods where the 

ONI moves between -0.5 and 0.5. 

In total we end up with 11 ‘winners’ and 9 ‘losers’. The weights are equally distributed amongst the 

countries. The expected return on portfolio P is equal to: 

𝐸(𝑅𝑃) =  Σ𝑖𝑥𝑖𝑅𝑖           (4) 

where ‘x’ resembles the weight of index ‘i’ and R resembles the return. 

Figure 6: Portfolio development 

  

As figure 6 shows, the portfolio starts out losing money. However, as soon as the events occur with greater 

intensity the portfolio starts growing. This is an expected result, as the affected regions and their respective 

countries are more severely impacted both in a positive or negative sense. A more severe El Niño may 
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trigger an above-average amount of rainfall, even for this phase, and thereby boost sectors like agriculture 

even more. Based on the above, an El Niño strategy can be profitable. However, it is important to notice 

that this is a hypothetical portfolio, thereby disregarding transaction costs and other restrictions. To further 

investigate the excess returns, we statistically test the significance of the results and compare the 

performance to the Risk-free rate supplied by Fama and French. 

Table 7: Portfolio statistics 

*Annualized Sharpe Ratio 

We find that although the average monthly return is positive, we do not have enough evidence to reject 

the null-hypothesis that the mean is actually equal to zero. The Sharpe Ratio, a number that tells us to 

what extent the excess return can be justified in a sense of risk, indicates that the strategy is indeed 

profitable. The combination of having both a low Sharpe Ratio and a low t-statistic indicates that the profit 

made following this strategy may be caused by luck, rather than skill.  

 

 

 

  

Returns

Mean 0.63%

Volatility 8.98%

Excess Returns

Mean 0.54%

Volatility 8.96%

Observations 168

Sharpe Ratio* 0.21

T-statistic 0.78
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6 Conclusion 

 

In this paper we investigate how El Niño events are related to stock returns on a global scale. We review 

possible data sources of El Niño Southern Oscillation (ENSO) and conclude that the Oceanic Niño Index is 

best suitable. First of all, we study the effects on 21 countries in a time-series dimension. Second, we zoom-

in unto the United States and take rolling-windows to study the relationship throughout time. Thereafter, we 

construct a portfolio of El Niño winners and losers; countries that are positively affected or negatively 

affected, respectively. We find no significant relationship for any of the countries in our dataset. We do 

however find coefficients that are mostly in line with previous research. They indicate that Argentina, Canada, 

Chile, China, Europe, India, Japan, Malaysia, Mexico, New-Zealand, Singapore and the United States are 

positively correlated, though not significantly, to ENSO. Australia, Brazil, Indonesia, South Korea, Peru, 

Philippines, South Africa, Saudi-Arabia and Thailand are negatively correlated, not significantly neither, to 

ENSO. The rolling U.S. data indicates that the strength of the sea-surface temperature anomaly caused by El 

Niño is to some extent related to the size of the impact on stock returns. Finally, we find that the El Niño 

trading strategy can be profitable, but suspect the outperformance to be associated with luck rather than 

skill. 
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8 Appendix 

 

Appendix 1: ACPI 

 

Appendix 2: Augmented Dickey-Fuller test on All Commodity Price Index 

 

 

Appendix 3: Returns ACPI 

 

 

  

Variable: ACPI

Observations: 305

Test Statistic 1% Critical Value 5% Critical Value 10% Critical Value

Z(t) -1.000 -3.988 -3.428 -3.130

P-value: 0.9442
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Appendix 4: Results Oceanic Niño Index 

 

  

Country ONI ONI(t-1) R-Squared

Argentina 3.01 -2.44 0.01

(0.44) (0.50)

Australia 0.22 0.03 0.00

(0.88) (0.98)

Brazil -7.09 6.73 0.06

(0.07) (0.09) (0.02)

Canada 0.77 -0.91 0.00

(0.58) (0.49)

Chile 1.23 -0.65 0.01

(0.53) (0.73)

China 0.14 0.60 0.00

(0.97) (0.86)

Europe 1.56 -1.67 0.00

(0.49) (0.44)

India 1.72 -1.48 0.00

(0.51) (0.57)

Indonesia 0.29 0.07 0.00

(0.90) (0.97)

Japan 2.91 -2.87 0.01

(0.20) (0.20)

South Korea 0.38 -0.57 0.00

(0.86) (0.78)

Malaysia 0.83 -0.80 0.00

(0.57) (0.57)

Mexico 0.85 -0.55 0.00

(0.61) (0.74)

New Zealand 0.92 -0.16 0.03

(0.46) (0.90) (0.02)

Peru -9.13 9.43 0.10

(0.02) (0.01) (0.07)

Philippines -0.73 1.40 0.01

(0.70) (0.46)

South Africa 0.02 -0.18 0.00

(0.99) (0.92)

Saudi Arabia -0.64 -0.71 0.02

(0.84) (0.82) (0.01)

Singapore 3.42 -3.44 0.02

(0.19) (0.18)

Thailand 0.80 -1.03 0.00

(0.69) (0.59)

United States 0.87 -0.80 0.00

(0.52) (0.53)
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Appendix 5: Results Control variables 

Note: As yield spreads were not available for Argentina and Saudi-Arabia, they are omitted from the 
results. 

Country Price-to-Earnings Dividend ACPI Yield Spread R-Squared

Argentina 0.00 -1.72 0.34 0.08

(0.45) (0.02) (0.08)

Australia 0.02 -1.03 0.13 0.86 0.08

(0.67) (0.03) (0.05) (0.19)

Brazil 0.01 -2.34 0.52 0.75 0.27

(0.50) (0.12) (0.10) (0.30) (0.21)

Canada 0.04 -0.38 0.24 0.58 0.09

(0.52) (0.25) (0.00) (0.19)

Chile 0.09 -0.72 0.16 0.99 0.10

(0.58) (0.46) (0.03) (0.08)

China 0.52 3.88 0.10 -0.50 0.11

(0.00) (0.01) (0.65) (0.77)

Europe -0.00 -1.03 0.07 1.19 0.04

(0.77) (0.06) (0.46) (0.07)

India 0.39 1.39 0.16 1.06 0.05

(0.16) (0.66) (0.21) (0.24)

Indonesia 0.19 0.03 0.29 0.72 0.11

(0.12) (0.98) (0.03) (0.28)

Japan -0.00 -0.97 0.24 -2.32 0.05

(0.82) (0.37) (0.03) (0.10)

South Korea 0.03 -1.05 0.21 1.03 0.09

(0.00) (0.32) (0.06) (0.39)

Malaysia 0.14 -0.58 0.17 -1.78 0.11

(0.06) (0.28) (0.01) (0.01)

Mexico -0.03 -2.27 0.11 0.53 0.07

(0.47) (0.06) (0.24) (0.21)

New Zealand 0.05 -0.90 0.04 -0.02 0.08

(0.14) (0.00) (0.41) (0.93) (0.07)

Peru 0.47 -0.04 0.44 -0.13 0.24

(0.03) (0.95) (0.00) (0.88) (0.19)

Philippines -0.01 -0.98 0.16 -0.09 0.05

(0.26) (0.10) (0.14) (0.72)

South Africa -0.03 -1.62 0.15 0.54 0.08

(0.51) (0.03) (0.04) (0.10)

Saudi Arabia 0.90 2.42 0.44 0.19

(0.01) (0.12) (0.00) (0.17)

Singapore 0.42 -0.47 0.36 -1.83 0.25

(0.06) (0.57) (0.01) (0.07)

Thailand 0.32 -0.46 0.23 0.02 0.11

(0.00) (0.50) (0.05) (0.98)

United States 0.05 -0.31 0.12 0.07 0.02

(0.31) (0.58) (0.11) (0.80)


