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Abstract

In this thesis I explore the benefits of adopting a Bayesian methodology when doing inference
for generalized autoregressive score (GAS) models. Although analytical results regarding the
form of the posterior or its conditional will generally not be available for this class of models, I
show that for most simple GAS models several novel Markov chain Monte Carlo methods can
be applied to enable accurate Bayesian inference in very reasonable time frames. I consider
three illustrative empirical applications of GAS models where particular emphasize is placed on
contrasting Bayesian inferences with those stemming from the traditional approach of estimating
GAS models using the Maximum Likelihood (ML) method. I argue that there are certain
complexities intrinsic to models in the GAS framework that can be dealt with far more naturally
under a Bayesian methodology, such as (i) the non-nestedness of comparable models that arises
as a consequence of the freedom of choice in scaling matrices and parametrization of GAS models
and (ii) the “curse of dimensionality” problem that occurs primarily for multivariate GAS models.
The logical Bayesian solution to the former is to apply Bayesian model comparison techniques
- which I explore in the context of dynamic intensity factor models applied to credit rating
data - whereas the later can be addressed by imposing additional structure on the parameter
space using hierarchical prior setups - which I illustrate on a time-varying covariance GAS
Student-t model. Additionally, I demonstrate how the typically high degree of non-linearity with
which parameters enter the likelihood for GAS models cause slow convergence to the normal
distribution for the parameters - as is highlighted for the Beta-Gen-t-EGARCH volatility model.
Implying that considerable sample sizes are necessary to allow for valid appeals to the asymptotic
convergence arguments used in ML estimation.

Keywords: Generalized autoregressive score (GAS) models, Bayesian inference, Markov chain
Monte Carlo, Bayesian model comparison, hierarchical multivariate GAS-t model
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1 Introduction

In financial econometrics the modeling of time series variables is often central to the research ob-
jective. Many of the models that prove most effective at describing financial time series utilize
time-varying specifications for one or more of the model parameters. Recently, Creal et al. (2013)
proposed a generic class of observation-driven, time-varying parameter models, dubbed Generalized
Autoregressive Score (GAS) models. GAS models are characterized by an update of the time-varying
parameters that is driven by the gradient of the log-likelihood with respect to these parameters; a
quantity known as the score in the statistics literature.

GAS models encompass many of financial econometrics’ most familiar time-varying parame-
ter models such as the generalized autoregressive conditional heteroskedastic (GARCH) model by
Bollerslev (1986) and Engle & Bollerslev (1986), autoregressive conditional duration (ACD) model
due to Russell & Engle (1998) and multiple time-varying parameter models such as the dynamic
conditional correlation (DCC) model and the autoregressive conditional multinomial (ACM) model
of Engle (2002) and Engle & Russell (1998) respectively. These models however, constitute a mere
subset of the wide-variety of useful model specification that the GAS framework allows for. The
original working paper by Creal et al. (2011b) illustrates the versatility of the GAS framework.

In this thesis I apply Bayesian methods to do inference on models that fall within the GAS
framework - as opposed to the usual approach of estimating GAS models with the method of Maxi-
mum Likelihood (ML). To my knowledge no preceding work has applied Bayesian methods to GAS
models, other than for the previously mentioned familiar time-varying parameter models which the
GAS framework encompasses. The arguments in favor of Bayesian methods over ML that are iden-
tified in the literature for GARCH models (Ardia & Hoogerheide, 2010, Virbickaite et al., 2015),
directly translate and arguably apply even more convincingly for the more general class of GAS
models.

First, although ML estimation of GAS models is relatively straightforward, the validity of stan-
dard asymptotic properties of ML estimators has thus far only been established for certain limited
classes of GAS models (see e.g. Blasques et al. (2014, 2016)). The challenges with generalizing
asymptotic properties are due to the in general highly nonlinear way in which the dependent vari-
able enters the update equation for the time-varying parameters. Moreover, even when asymptotic
properties of ML estimators apply, the empirically often high persistence of time-varying parameters
coupled with constraints to enforce stationarity or non-negativity, are likely to induce finite-sample
bias in time-varying parameter models (Hwang & Valls Pereira, 2006). Bayesian methods inherently
make no appeal to asymptotic convergence arguments and hence provide a logical alternative to
ML estimation.

Secondly, in practical applications of time-varying parameter models we are often interested in
nonlinear functions of the estimated parameters. Performing inference on such nonlinear functions of
the parameters is complicated using the ML method. Whereas using Bayesian methods, a nonlinear
transformation of the draws from the posterior can in most cases straightforwardly be interpreted as
draws from the posterior of the transformed quantities and can readily be used for inference. Con-
sider for instance the case of the Beta-Gen-t-EGARCH model of Harvey & Lange (2017), which falls
under the GAS framework. Its general application is to model the volatility or variance of financial
instruments, yet the second order central moment is a highly nonlinear function of the time-varying
scale parameter and the shape parameters. In disciplines such as risk management, predictions of
such volatility are highly relevant but dangerous to interpret without an indication of the associated
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uncertainty, as evidenced by the analysis in Section 4.1.3, which reveals a substantially long right
tail for the posterior of the volatility predicted by the Beta-Gen-t-EGARCH model.

Thirdly, the GAS framework contains several degrees of freedom in its model specification. This
can lead to a variety of models designed to describe the same phenomena, but for which standard
likelihood based model comparison tests can not be applied due to the non-nestedness of the models.
The popular Beta-t-EGARCH and t-GAS model by Harvey & Chakravarty (2008) and Creal et al.
(2011a) respectively, are for example both volatility models based on the assumption of a Student-
t distributed dependent variable, but the different link functions from time-varying parameter to
scale parameter limit formal model comparison based on the likelihood. Similarly, the appropriate
scaling of the score is still an open question and it is hard to determine based on model fit when
ML is used for estimation. Currently, such model comparisons are usually informal and based on
quantities such as the mode of the log-likelihood or information criteria such as the Bayesian infor-
mation criterion (BIC) that use standard penalties for the number of parameters. Bayesian model
comparison using Bayes factors allows such model specification choices to be formalized. Unlike the
traditional ML methods, Bayes factors take full account of the parameter uncertainty in the models
being compared. As illustrated in Section 4.2, comparison in terms of Bayes factors can therefore
lead to different conclusions as likelihood or information criterion based comparison.

Finally, as GAS models become more complex and the number of time-varying parameters in-
creases, the number of autoregressive parameters - for fully parameterized GAS models - increases
quadratically. Traditionally the approach to maintaining parsimonious models for which the like-
lihood optimization converges, is to impose parameter restrictions and factor structures on the
time-varying parameters. In a Bayesian framework a natural alternative approach to enforce par-
simony is by means of hierarchical priors. In Section 4.3 I apply a hierarchical prior setup to the
multivariate Student-t covariance model of Creal et al. (2011a), resulting in significant reductions in
parameter uncertainty while retaining most of the flexibility of an unrestricted model. The resulting
hierarchical model outperforms both restricted and unrestricted versions of the Student-t covariance
model in terms of Bayesian model probabilities.

Like for GARCH models, Bayesian inference on GAS models will in general be challenging due
to the recursive specification of the time-varying parameters which convolute the way the model
parameters interact with the dependent variable. Consequently, known forms for neither the full or
marginal posteriors are obtainable such that we need to rely on Markov chain Monte Carlo (MCMC)
methods that work on generic distributions. In addition the highly nonlinear way in which param-
eters enter the likelihood can cause irregularities in the posterior such as skewness, fat-tails and
nonlinear dependencies, which might challenge the effectiveness of standard MCMC methods. As
will be argued in Section 3, there are several promising choices among the existing MCMC meth-
ods for time-varying parameter models. Section 4.1 illustrates that the Hamiltonian Monte Carlo
(HMC) method proves particularly well suited to cope with the challenges posed by a typical GAS
model posterior.

I proceed by introducing the GAS model in its generic form along with the specific modeling
choices that are typical for GAS models in Section 2. Section 3 presents three MCMC algorithms -
the Griddy Gibbs of Ritter & Tanner (1992), AdMit-MH by Hoogerheide (2006) and HMC due to
Duane et al. (1987). All three have been successfully applied to time-varying parameter models in
the literature and can be applied more generally to GAS models. Section 3 also introduces Bayesian
model comparison and hierarchical modeling and discusses how these techniques enable inference
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generally unavailable in a frequentist setting. Section 4 discusses multiple illustrative empirical ap-
plications of GAS models. In Section 4.1 the Beta-Gen-t-EGARCH model is analyzed and serves as
a comparative example for the three MCMC methods. In Section 4.2 the dynamic pooled marked
point process models of Creal et al. (2013) with different factor specifications and a variety of scaling
matrices are compared by means of both Bayes factors and informal non-nested model comparison
tools such as the BIC. Section 4.3 demonstrates how Bayesian hierarchical modeling can be used in
the GAS-t covariance model of Creal et al. (2011a) to provide a more natural and effective way to
cope with the “the curse of dimensionality” problem typically associated with time-varying covari-
ance models, than the common approach of enforcing parameter restrictions. Section 5 concludes
with a review of the most important findings and a discussion of promising future applications of
Bayesian methods for GAS models.

2 The GAS Model

Following Creal et al. (2011b, 2013), I assume that the dynamics of a k × 1 vector of dependent
variables yt are governed by a probability distribution, which conditions on the set of preceding val-
ues of the dependent variables Yt−1 = {y1,y2, ...,yt−1}, the set of contemporaneous and preceding
time-varying parameters Ft = {f1,f2, ...,ft} and a d× 1 vector of static parameters denoted by θ.
Let this distribution be specified as

p(yt|Yt−1,Ft,θ), (1)

for t = 1, 2, ..., T . The update equation of the n× 1 time-varying parameter vector ft is defined as

ft = ω +Ast−1 +Bft−1, (2)

for t = 2, 3, ..., T , where ω, A and B are the autoregressive coefficients that are part of the set of
static parameters θ. The parameter matrices A and B can be dense, but are often restricted to
diagonal matrices. The process is initialized with f1 set to some fixed value usually inspired by
sample moments of the dependent variable. In several instances the time-varying parameter process
will be reparameterized as

ft = (In −B)ω̃ +Ast−1 +Bft−1, (3)

where In denotes the n-dimensional identity matrix. Doing so decorrelates the parameters ω and
B, which greatly improves the performance for certain MCMC methods.

The vector st is defined by
st = St∇t,

where ∇t = ∂`t/∂ft is the score of the time-varying parameters and St is a scaling matrix. Here
`t = log(p(yt|Yt−1,Ft,θ)) is used to denote the log-likelihood for a single observation yt. The
scaling matrix matrix is usually set equal to a power of the inverse Fisher information matrix for a
single observation,

St = I−at , (4)

for a = 0, 1/2, 1 and

It = −E

(
∂2`t
∂ft∂f ′t

)
. (5)

The specifications of a = 0 or a = 1 have the benefit of the convenient interpretations as a gradient
ascent or a Newton-Raphson type update respectively for `t. In the literature on GAS models the
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choice of scaling matrix centers around its implications for proving the stationarity and ergodicity
conditions of the time-varying parameter process (2) (Blasques et al., 2014). In this thesis I instead
consider how the choice of St affects model fit in terms of Bayesian posterior model probabilities.
Nelson (1996) for instance proves analytically the optimal filter properties for GARCH models when
a = 1/2. Intuitively it also seems advantageous to include second order information in the update.

The process (2) is in general covariance-stationary if the variance of st is finite and the eigenval-
ues of the matrix of autoregressive coefficients B are less than one in modulus. In case the scaling
matrix is of the form (4), the finite variance of st is guaranteed if a = 1/2 and follows for a = 0 or
a = 1 if the Fisher information matrix (5) is bounded (Creal et al., 2011b). For all models presented
in Section 4, the constraints on the eigenvalues of B are enforced during the estimation procedure.

Apart from the choice of scaling matrix and probability distribution, many variations of the
GAS model are obtained by the choice of parameterization of the model (1). Creal et al. (2011b)
describe the use of a link function to obtain more convenient and easier to estimate models. Since
the process (2) allows ft to range over the entirety of Rn, the link function is particularly useful if ft
needs to be constrained to a certain range. For example, exponential GARCH (EGARCH) models
specify ft = log(σ2

t ), where σt is a time-varying scale parameter (Harvey, 2010). The logarithmic
link function naturally ensures that the variance process remains positive.

Alternatively, the link function is commonly used for imposing a factor structure on the time-
varying parameters (see e.g Bartels & Ziegelmann (2016) or Creal et al. (2014)). This simplifies
estimation by reducing the number of time-varying parameters and in many cases it is also rea-
sonable to assume that the dynamics of a group of parameters is driven by a much smaller set
of time-varying factors. Since different factor specifications typically result in non-nested models,
determining the optimal number of factors is in most cases not straightforward using frequentist
methods. Bayesian model comparison does offer such a formal approach to comparing different
factor specifications, as will be illustrated in Section 4.2 on dynamic pooled marked point process
factor models.

Besides the use of factor structures, direct restrictions on the autoregressive coefficients such as
imposing A and B to be diagonal, is another common method for achieving more parsimonious
parameterizations. Such parameter restrictions are however a rather crude approach and might sig-
nificantly limit the models capacity to capture the dynamics of ft (see e.g. Burda & Maheu (2013)).
The hierarchical modeling approach explored in Section 4.3 offers a more intuitive alternative way
to induce parsimony while sacrificing considerably less in terms of flexibility.

The full specification of a GAS model thus involves four generic choices: 1.) the conditional
probability distribution of the dependent variables p(·|·), 2.) the scaling matrix St, 3.) the link
function and 4.) the number of free parameters in θ. Ordinarily, there will be many different viable
combinations to describe one particular time-varying parameter process. The resulting models are
often non-nested and traditional frequentist methods therefore typically fail to provide a coherent
evidence based approach to support such modeling decisions. In this thesis I focus extensively on
how Bayesian methods can improve how we navigate the four modeling choices inherent to the GAS
framework, either by means of Bayesian model comparison or by hierarchical prior specifications
that allow a subset of these choices (particularly the degree of parametric restriction) to be partially
incorporated into the model as lower level hyperparameters.
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3 Bayesian Inference

In a Bayesian setting the central object of interest is the posterior distribution of the parameters

p(θ|YT ) ∝ p(YT |θ)p(θ), (6)

which is the product of the likelihood p(YT |θ) and the prior p(θ), which reflects prior beliefs about
the parameters. The likelihood for GAS models can be further decomposed as

p(YT |θ) = ΠT
i=1p(yt|Yt−1,Ft,θ).

Bayesian inference typically involves the computation of expectations of some function of the
parameters g(θ) with respect to the posterior distribution

Eθ|YT (g(θ)) =

∫
Rd
g(θ)p(θ|YT )dθ. (7)

Nearly all quantities of interest, such as estimates of the parameters, but also model probabilities,
or highest posterior density intervals, all can be expressed as expectations of the form (7). Taking
such expectation however implies computing an integral. For GAS models the set of parameters
θ includes the autoregressive coefficients of the time-varying parameter process whose relations to
the dependent variables yt are highly convoluted. The implication is that the likelihood for GAS
models will generally be of a form that renders analytical solutions to the integral in (7) unobtain-
able. Numerical integration strategies are also infeasible for more complex GAS models since the
computational burden quickly turns restrictive as θ increases in dimension.

In order to compute these integrals efficiently, even when θ is of high dimension, therefore re-
quires the ability to simulate from the posterior. Using Monte Carlo integration the resulting draws
can then be converted to the desired expectations (Geweke, 1989, Hammersley et al., 1965). For
most empirically relevant GAS models, direct sampling from the posterior is not possible due to
the fact that the right hand-side of (6) will not be reducible to a distribution for θ that belongs
to a family of closed-form distributions. Luckily the class of algorithms known as Markov Chain
Monte Carlo (MCMC) enables sampling from such difficult posteriors. Below, I briefly describe the
principle of MCMC and discuss the methods applied in Section 4 in more detail.

3.1 MCMC methods

Given an initial state θ(1), MCMC methods generate a Markov chain θ(1),θ(2), ...,θ(M) whose dis-
tribution converges to a target distribution; that is the posterior of θ in this case. Markov chains
are constructed by the sequential application of a Markov transition kernel, which is defined as a
random map from a given state θ(m−1) to a new state θ(m). Alternatively it can be thought of as
a conditional probability distribution p(θ(m)|θ(m−1)). For MCMC methods the Markov transition
kernel needs to be carefully constructed so that it has the target distribution as its invariant distri-
bution, meaning that if we have a draw from the target distribution and sequentially applied the
transition kernel to generate a sample, this sample should be distributed according to the target
distribution. Due to the dependence on the previous state, the sample need however not consist
of independent draws and Markov chains in fact commonly display strong autocorrelation reducing
their effective sample size.
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Among the valid choices of transition kernels for MCMC methods there is significant variation
in the effectiveness with which the target distribution is explored; where I consider effectiveness as a
product of not just the autocorrelation in the Markov chain, but also the computational cost to ob-
tain a draw. The degree of autocorrelation in the chain, typically depends on how much information
of the target distribution a transition kernel can incorporate in its transitions. The popular Gibbs
sampler is for instance very effective as it exploits the information in the conditional posteriors,
which is especially effective if the parameters are largely independent since that would imply the
conditionals capture most of the full posterior distribution. On the opposite end of the spectrum, a
random walk Metropolis-Hastings (RW-MH) sampler uses a transition kernel that incorporates very
little information with regards to the target distribution. As the name suggest the result is a random
walk like Markov chain; meaning high autocorrelations in the draws and ineffective exploration of
the target distribution.

In applying MCMC to GAS model posteriors we are limited in our choices of methods by the fact
that we know very little about the posterior distributions. For instance, analytical expressions for
the conditionals are usually not available for observation driven time-varying parameter models (see
e.g. Bauwens & Lubrano (1998)) making the Gibbs sampler inapplicable. Also, as a result of the
likelihood being expensive to evaluate, algorithms such as the the RW-MH that require extremely
long chains - and thereby many function evaluations - to compensate for the high correlation among
consecutive draws, are likely to be inefficient. Effective MCMC methods for GAS models therefore,
devote part of their computational resources to extract information about the target distribution,
which then informs the Markov transitions. In doing so these methods balance a trade-off between
effectiveness in terms of low autocorrelation in the Markov chain and effectiveness in terms of
the computational cost per draw. The three methods that I focus on in this section and in the
comparative analysis of Section 4.1, the Griddy Gibbs sampler by Ritter & Tanner (1992), the
Adaptive Mixture of Student-t distributions - Metropolis-Hastings algorithm by (Hoogerheide, 2006)
and Hamiltonian Monte Carlo due to Duane et al. (1987), rely exactly on such a strategy of first
gathering information about the target distribution prior to producing a draw. All three have been
successfully applied to univariate GARCH models (see Ardia & Hoogerheide (2010), Bauwens &
Lubrano (1998) and Takaishi (2007)) and are naturally suitable for more general form GAS models.

3.1.1 Griddy Gibbs Sampler

The Griddy Gibbs method resolves the limitation with regards to not knowing the conditional
posteriors of θ, using numerical integration. Rather then applying numerical integration directly
to the full posterior (6) - which would require constructing a d-dimensional grid, where d denotes
the dimension of θ - the Griddy Gibbs sampler employs the more efficient strategy of numerically
integrating d one-dimensional integrals.1 Following Bauwens & Lubrano (1998) I use a trapezoidal
integration rule combined with linear interpolation to convert the numerical integration of the
conditionals to an approximation of the inverse conditional CDFs. The inverse CDF method then
enables sampling from the approximated conditional posteriors. Using the standard Gibbs transition
kernel, for m = 2, 3, ...,M , we draw the individual parameters θ(m)

i for all i = 1, ..., d, separately as

1Assuming we require 20 grid points per dimension, numerical integration requires 20d posterior evaluations as
opposed to 20d for Griddy Gibbs.

7



follows:

θm1 ∼ p(θm1 |θm−1
2 , θm−1

3 , ..., θm−1
d ),

θm2 ∼ p(θm2 |θm1 , θm−1
3 , ..., θm−1

d ),

...
θmd ∼ p(θmd |θm1 , θm2 , ..., θmd−1).

Jointly these draws constitute a draw θ(m) from the full posterior (6). More details on the imple-
mentation of Griddy Gibbs can be found in Bauwens & Lubrano (1998) and the original paper by
Ritter & Tanner (1992).

The Griddy Gibbs sampler is powerful in that it is effective regardless of the complexity of
the posterior. It can handle asymmetries, skewness, fat tails and even multi-modalities, making
it particularly attractive for GAS models. Strong correlations can stifle Griddy Gibbs, drastically
increasing the required number of grid points and inducing high autocorrelations in the chain.
Reparameterization such as in (3) can however often sufficiently decorrelate the parameters. Also,
in order to limit the number of grid points required it is necessary to restrict the grid to a range with
reasonable probability mass. For GAS models we usually have a reasonable idea as to a plausible
range for the parameters, but it might still be challenging to correctly tune the range of the grid.
A more serious limitation of Griddy Gibbs is that, although the algorithm is far more efficient
than full numerical integration, the computational cost per draw still far outweigh the costs per
draw for most other MCMC methods, as demonstrated in a comparative analysis by Asai (2006)
and confirmed by the analysis in Section 4.1. Also computational costs typically scale quadratically
with the dimension of θ, contrary to for instance HMC. For GAS models with multiple time-varying
parameters, which logically have more static parameters, Griddy Gibbs is thus unsuitable.

3.1.2 Metropolis-Hastings samplers and the AdMit method

The Adaptive Mixture of Student-t densities (AdMit) is an algorithm developed by Hoogerheide
(2006) that fits a mixture of Student-t distributions to a target density. The fitted mixture is used
as a candidate density for either importance sampling (IS) or an independence chain Metropolis-
Hastings (MH) sampler. I consider just the MH variant. Like the Griddy Gibbs algorithm, AdMit-
MH is able to deal with challenging posteriors with properties such as skewness, fat tails and mul-
timodality (Ardia et al., 2009). Since a comparative review of MCMC methods for GARCH(1,1)
models proves a simpler version of the algorithm - with a proposal density based on a single fitted
Student-t distribution - to be the most efficient (Asai, 2006), the AdMit-MH algorithm is likely
among the more effective general purpose MCMC methods for GARCH and by extension GAS
models.

First, I briefly introduce the generic MH algorithm by Metropolis et al. (1953) and Hastings
(1970) and its two most popular variants: the random walk and independence chain sampler (see
Chib & Greenberg (1995) for a general reference on MH). MH consists of a proposal and an accept
or reject step. Let θ∗ denote the proposed new state, which is generated by a draw from a candidate
density q(θ|θ(m−1)). The proposal is accepted, meaning we set θ(m) = θ∗, with probability

α(θ∗|θ(m−1)) = min

(
1,

k(θ∗)/q(θ∗|θ(m−1))

k(θ(m−1))/q(θ(m−1)|θ∗)

)
,
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where k(θ) is a kernel of the posterior distribution. On the other hand, if we reject we set
θ(m) = θ(m−1).

Both the random walk and the independence chain rely on special cases of the candidate density.
For the random walk sampler the candidate density is symmetric in the preceding draw such that
q(θ∗|θ(m−1)) = q(θ(m−1)|θ∗). Proposals can therefore straightforwardly be generated as

θ∗ = θ(m−1) + ε%, (8)

where ε is a tuning parameter for the step size and % is a random variate drawn from a symmetric
distribution with zero mean vector and a scale matrix that is preferably set to the inverse Hessian
of the log kernel evaluated at its mode. Alternatively, one can generate an initial posterior sample
from a warm up run with an identity scale matrix and then reset the scale matrix to the sample co-
variance matrix and discarding the warm up run. This procedure can also be repeated several times
until reasonable convergence of the sample covariance estimator is achieved. Proposals are accepted
or rejected based on the simplified acceptance probability α(θ∗|θ(m−1)) = min(1, k(θ∗)/k(θ(m−1))).
The step size parameter should be tuned to target acceptance rates of around 0.5 for models with
few parameters and 0.25 for moderate to higher dimensional parameter spaces (Chib & Greenberg,
1995).

Given the description of the random walk sampler provided above, the sampler thus only utilizes
information regarding the covariance of the posterior to inform its Markov transitions. As a result,
the Markov chains of the random walk sampler typically display notoriously high autocorrelations
(Neal, 2011). For GAS models with computationally expensive likelihoods, the random walk sam-
pler is therefore likely to be inefficient relative to the independence chain algorithm described next.
Therefore I include only an independence chain algorithm in the comparison presented in Section
4.1. The random walk sampler is however applied in Section 4.2 because of the samplers ease of
implementation and the particular model having a somewhat less complex and expensive likelihood
as common for GAS models.

As the name suggests, the independence chain sampler uses a candidate density for which the
proposal density is independent of the previous draw. Under these conditions, the acceptance prob-
ability (8) simplifies to α(θ∗|θ(m−1)) = min((1, k(θ∗)q(θ(m−1))/k(θ(m−1))q(θ∗)). The effectiveness
of the transition kernel for the independence chain sampler is determined entirely by how well the
candidate density q(θ) fits the target density p(θ|YT ). This is where AdMit comes in, as it provides
an automated method for abstracting information from the target density and applying it in the
construction of an effective candidate density.

The mixture of Student-t candidate density takes the form

q(θ) = ΣS
s=1πstd(θ|µs,Σs, ν),

where S denotes the number of mixtures, td(·|·) the d dimensional Student-t density, πs the mixing
probabilities and µs and Σs the mean and scale matrix of the s-th Student-t mixture. The degrees
of freedom parameter ν is usually fixed at 1 for all components of the mixture distribution. This
ensures that the mixture is fatter tailed as the target distribution, which is vital to the success of
independence chain MH.
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The mixtures are fitted using a series of optimizations. The first mixture is obtained as
µ1 = argmaxθ log k(θ) and Σ1 = −[∂2 log k(θ)/∂θ∂θ′]−1

θ=µ1
. Initially the candidate density q(θ) is

set equal to the first mixture. Additional components are added to q(θ) by a series of optimizations
of the log of an importance sampling weights function logw(θ) = log k(θ)− log q(θ) with respect to
θ. At each optimization step the optimum and negative inverse Hessians of the weights function are
used as the mean and covariance matrix of the component that is added. The adding of components
stops when a statistic known as the coefficient of variation (CV) - defined as the standard deviation
over the mean - for the importance sampling weights (w(θ) = k(θ)/q(θ)) no longer improves by
more than a certain percentage by adding an additional component. I use the default value of 10%
for this percentage (Ardia et al., 2009). To compute the CV requires that we draw a sample from
q(θ) to estimate the mean and standard deviation of the importance sampling weights, each time
we decide whether to add a component to the candidate density. Additionally, after each time a
component is added the mixing probabilities πs need to be optimized, which requires another sample
from q(θ). The mixing probabilities are optimized with respect to the squared sample CV. For the
reader interested in the implementation, Ardia & Hoogerheide (2010) and Ardia et al. (2009) provide
detailed descriptions of AdMit and also motivate the choice of the stopping criteria based on the CV.

All in all, AdMit-MH will have substantial upfront computational cost, but low incremental cost
to obtain the draws once the mixture is fitted. A drawback is the fact that as with ML, we do
need to optimize the log-likelihood. In spite of the popularity of ML, the actual execution of the
numerical optimization is not always straightforward for GAS models (Ardia et al., 2016). The score
function can induce numerical instabilities in the likelihood function and even if the optimization is
numerically stable, solutions are often close to the boundaries imposed by the stationarity condition
resulting in poor convergence and leaving the Hessian non-positive definite. In practice I find this
challenges the universal applicability of the AdMit method for GAS models. Furthermore, little
is known about how the algorithm scales with dimensionality. In general, as the dimension of θ
increases, the majority of probability mass will rapidly center away from the mode (Betancourt,
2017) and if we combine this effect with lots of variation in curvature, the number of mixtures re-
quired to properly fit the posterior might quickly become unmanageable. Hence, like Griddy Gibbs,
AdMit-MH is probably not best suited for high dimensional GAS models such as the covariance
matrix model analyzed in Section 4.3.

3.1.3 Hamiltonian Monte Carlo

The methods described thus far are both likely to struggle in higher dimensions; a limitation that
the methods share with the traditional ML method. But currently higher dimensional time-varying
processes are receiving much research interest in financial econometrics (Bauwens et al., 2006). As
we are trying to advance our understanding of how financial instruments interact with each other,
the natural solution is to model groups of financial instruments jointly, explaining the rising interest
in multivariate GARCH models, copula models and multivariate intensity and duration models.
Models of multiple dependent variables logically come with increased dimension of the parameter
space. In contrast to the Griddy Gibbs and AdMit-MH sampler, Hamiltonian Monte Carlo (HMC)
is proving greatly successful in high dimensions.2 Moreover, like Griddy Gibbs and AdMit-MH,
HMC can be applied to any posterior, provided we can take the derivative of the log of its kernel -
where the functional form of the kernel is usually just the right-hand side of (6). This will generally

2 Neal (2011) shows that under fairly general assumptions, the amount of computation time for HMC will typically
grow in proportion to d5/4, whereas for RW-MH it grows in proportion to d2. These costs assume linear scaling of
the computational time for function and gradient evaluations w.r.t d.
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not be a restriction for GAS models however. HMC should therefore be uniquely positioned to
enable Bayesian inference in multivariate time-varying parameter processes, as also evidenced by
several recent studies (e.g. Burda & Maheu (2013) and Burda (2015)).

Similar as for the Griddy Gibbs and Admit-MH, I will focus on describing the mechanics of
HMC3, how it’s implemented in practice - with particular focus on how to tune the algorithm - and
the expected efficiency of the HMC transition kernel relative to other MCMC methods. For readers
unfamiliar with the method, but interested in gaining more intuition and insight for how and why the
method works so well I recommend a relatively recent introduction to HMC by Betancourt (2017),
where HMC is motivated on the basis of the inherent geometric properties of high-dimensional
probability distributions. The ideas presented there in a relatively easy to understand manner are
mostly based on a more formal foundation of the algorithm in terms of differential geometry which
is presented in Betancourt et al. (2017), although that particular discussion is not as accessible
without a working knowledge of the field of differential geometry.

HMC is inspired by a theory from physics known as Hamiltonian mechanics. As a consequence
much of the terminology used to describe HMC in the statistical literature has carried over from
physics. To stay consistent with preceding work, I too use this terminology. HMC augments the
parameter space with an additional d momentum variables γ - one for each parameter in θ - that
are Gaussian distributed Nd(0,M) and where the covariance of the momenta M is known as the
mass matrix. The momenta are independent from the parameters θ, implying that the negative log
of the kernel of their joint distribution, known as the Hamiltonian, is of the following form

H(θ,γ) = − log k(θ) +
1

2
γ ′M−1γ.

The Hamiltonian decomposes in two parts, the negative log of the posterior kernel k(θ) and the
negative log of the kernel of the momenta. The former is labeled the potential energy function
U(θ) = − log k(θ) and the latter as the kinetic energy function K(γ) = 1

2γ
′M−1γ.

Each draw using HMC starts with a sampling of the momenta variable from Nd(0,M). Starting
with θ equal to the previous draw θm−1, a new proposal is generated by following along a vector field
defined by a set of differential equations known as Hamilton’s equations. In these equations, both
θ and γ are modeled as changing with respect to time. Since this conception of time is continuous,
I use τ to denote this continuous time concept, distinguishing it from t, which is reserved for the
indexing of time series observations. Hamilton’s equations are defined as

dθ
dτ

=
∂

∂γ
H(θ,γ) = M−1γ,

dγ
dτ

= − ∂

∂θ
H(θ,γ) = − ∂

∂θ
log k(θ). (9)

By integrating Hamilton’s equations, starting from an initial state (θ(m−1),γ), for some fixed amount
of integration time T we end up at a new state (θ∗,γ∗). Since θ is independent of the momenta
γ, we can discard the momenta γ∗ and treat θ∗ as a draw from the posterior. See e.g. Pakman &
Paninski (2014) for a proof of how this procedure serves as a valid Markov transition kernel that

3More specifically, I describe - and use throughout this thesis - Euclidean HMC, where the specification refers to
the fact that the algorithm uses a Gaussian kinetic energy function that is independent of the parameters θ. The
distinction is due to Betancourt (2013), but since most applications of HMC in applied statistics use this Euclidean
adaption of the HMC algorithm I will forgo the specification throughout the main text.
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preserves the target distribution.

By construction the trajectory described by Hamilton’s equation initially guide the parameters
θ away from their starting point (θ(m−1)) allowing for coherent exploration of the parameter space
(Betancourt, 2017). Empirically, the resulting transitions often prove to result in nearly indepen-
dent draws if the integration time T is properly tuned and the kinetic energy is not too poorly chosen.

In practice the application of HMC is however hindered by the fact that we are rarely able
to find exact solutions to Hamilton’s differential equations and we need to rely on numerical in-
tegration schemes to approximate the trajectories. Proofs, of the validity of the HMC transition
kernel all depend critically on a property of Hamilton’s equations known as the conservation of the
Hamiltonian, which is violated as a result of the numerical approximations. The conservation of the
Hamiltonian means H(θ(m−1),γ) = H(θ∗,γ∗) for any T , which follows from observing the change
of the Hamiltonian with respect to time

dH
dτ

=
dθ
dτ

∂H

∂θ
+

dγ
dτ

∂H

∂γ
=
∂H

∂γ

∂H

∂θ
+
∂H

∂θ

∂H

∂γ
= 0,

where the second equality follows from (9). The joint probability of θ and γ hence remains un-
changed if Hamilton’s equations could be integrated exactly.

To correct for the potential of lower joint probabilities resulting from the numerical integration,
a MH acceptance-rejection step is used. The probability of accepting θ∗, generated by means of a
numerical integration of Hamilton’s equations is determined as

α(θ∗|θ(m−1)) = min(1, exp(H(γ,θ(m−1))−H(γ∗,θ∗))). (10)

The common choice for the numerical integrator is the Leapfrog integration scheme, which,
considering we wish to integrate for one discretized time interval (i.e. time τ to τ + ε), looks as
follows:

γ(τ + ε/2) = γ(τ)− (ε/2)
∂

∂θ
log k(θ(τ)),

θ(τ + ε) = θ(τ) + εM−1γ(τ + ε/2),

γ(τ + ε) = γ(τ + ε/2)− (ε/2)
∂

∂θ
log k(θ(τ + ε)).

This scheme is applied for L steps so that εL = T .

The tuning of the step size ε and the number of Leapfrog steps L is guided by the fact that their
product, the integration time T , should be such that the autocorrelation in the chain is as low as it
can be, while at the same time targeting a theoretically optimal acceptance rate (10) between 0.6
and 0.8 (Betancourt et al., 2014). A favorable property of the Leapfrog integration scheme is that
for relatively well behaved posteriors and a step size sufficiently small to produce stable trajectories,
the approximation error does not increase with the number of Leapfrog steps L, and depends only
on the step size ε (Leimkuhler & Reich, 2004). A straightforward strategy of finding the right ε
and L is therefore to first fix ε to some safe value that produces high acceptance rates and then
increase L to the point that the resulting chain no longer improves in terms of autocorrelation.
Next, increase ε while simultaneously lowering L keeping the integration time T constant, until the
acceptance rate is in the desired range.
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The target acceptance rates optimally balance the number of costly gradient evaluations required
for the Leapfrog integration, with the efficiency of the draws. The gradient computations typically
constitute the main computational costs for the HMC algorithm. This is particularly true for GAS
models where, just as the likelihood is expensive to evaluate due to the recursive formulation of the
time-varying parameters, the gradient is expensive to evaluate as well - and typically even more so
as the likelihood itself.

The final tuning parameter in HMC is the mass matrix M . For a posterior distribution that is
relatively well-behaved, meaning it is roughly elliptically shaped like a Gaussian, the mass matrix
is optimized by setting it to the inverse of the covariance matrix of θ under the posterior (6). The
reason for this is that the space of the momenta variable can be regarded as dual to the parameter
space, so when the parameter space is endowed with some Euclidean structure this suggest that the
momenta space should be induced with an inverse Euclidean structure, which is naturally achieved
by specifying a Gaussian with covariance equal to the inverse of the posterior covariance for the
momenta (Betancourt et al., 2017). The effect of setting the mass matrix in this way is comparable
to the use of the posterior covariance for the scale matrix in the proposal density of a RW-MH
sampler, since both effectively rotate and rescale the parameter space so that the parameters are
roughly posteriorly uncorrelated and identically scaled (see Neal (2011)).

The mass matrix is estimated during the warm up period. As an example, I do this in the
application for Section 4.1 as follows: for the first 50 draws M is set to the identity matrix; at
that point the last 40 of these are used to estimate the mass matrix; the mass matrix is then re-
estimated once using draws 50 to 100 to obtain a sufficiently accurate approximation of the true
posterior covariance. For models with a much larger number of parameters longer warm ups are
obviously required and more than one re-estimation of the mass matrix can be used. The step size
and number of Leapfrog steps need to be tuned after each re-estimation of the mass matrix. This
procedure proved sufficient for the models considered in Section 4. In certain cases, for instance if
much posterior mass is located close to a constraint or if there is much variation in curvature, the
use of a dense mass matrix can be detrimental to HMC’s performance. In such cases I restrictM−1

to a diagonal matrix with the estimated posterior variances of θ on the diagonal.

GAS models often require the enforcements of parameter constraints. MH samplers usually
impose constraints through priors that are zero on the domain of parameter values that violate the
constraints. Meaning that proposals that fall outside the constrained region are simply rejected,
essentially resulting in a draw wasted. In the case of simple upper and lower bounds, HMC offers
a more efficient alternative approach described in Neal (2011, Sec 5.1) in which the trajectory of
a parameter is reversed as soon as a Leapfrog step results in the crossing of a bound. Consider
for example a parameter θi, which violates a lower bound lb. The reversal is achieved by resetting
θi = lb+ (lb− θi) and negating the momentum variable γi = −γi.

HMC is known to have trouble exploring the tails of a distribution if the posterior is heavy-
tailed. In order to properly explore the tail regions of such heavy-tailed posteriors, might require
unreasonably long integration times (Betancourt, 2017). For the applications considered in Section
4, I did not find the posteriors of GAS-models to be sufficiently heavy-tailed to significantly limit
HMC, unless the model parameters were not all well identified. For example in the unrestricted
multivariate covariance model analyzed in Section 4.3, identification issues caused extremely high
posterior kurtosis for several of the parameters and relatively long travel times proved necessary to
properly explore the posterior.

13



3.2 Bayesian Model Comparison

Next I discuss two popular Bayesian techniques that facilitate inferences that are generally not
available in a frequentist setting or would at the least be considerably more difficult. The focus
will be on highlighting why these approaches are relevant in particular for GAS models. First the
Bayesian model comparison approach is introduced. Bayesian model comparison is of interest for
GAS model inference as unlike most frequentist model comparison techniques, it allows for compar-
ison of non-nested models. As discussed in Section 2 the different choices of link functions, scaling
matrices and factor structures imply that non-nested models for which comparison is likely desired,
are very common in the GAS framework .

Consider the case where we are interested in comparing the two models M1 and M0 and we
assume them to be a priori equally likely to be correct. The posterior odds ratio of these models is
known as the Bayes factor (BF1|0) and is defined as

BF1|0 =
p(Yt|M1)

p(Yt|M0)
, (11)

where p(Yt|Mi) is known as the marginal likelihood of model i. In the Bayesian model comparison
framework, the Bayes factor is the basis upon which to formulate conclusions regarding the strength
of evidence in favor of model 1 relative to model 0 - or in favor of model 0 relative to model 1 de-
pending on the interpretation.

As can be derived from (11), the marginal model likelihoods are critical inputs, but they are
typically challenging quantities to obtain. They are defined as

p(YT |Mi) =

∫
p(YT |θi,Mi)p(θi)dθi. (12)

where p(YT |θi,Mi) is the likelihood of the data under model i. The expression under the integral
sign is simply the unnormalized posterior for model i, which will again be denoted with k(θi). It is
important to note that the prior for θi must be proper for the parameters that are not shared between
model 1 and model 0. By integrating over the parameters θ, the log marginal likelihood reflects the
full extent of parameter uncertainty. Explicit analytical expressions for the marginal likelihood will
generally not be obtainable for GAS models and efficient ways of approximating or estimating them
is an area of active research and debate. With the improvements in computing power, estimations
of the marginal likelihood using MCMC samples has become increasingly popular relative to crude
approximations such as the Bayesian information criterion (BIC, see Kass & Raftery (1995) for
a treatment of several of such approximating identities). I choose to use one of such simulation
approaches.

3.2.1 Bridge Sampling for Marginal Likelihood Estimation

Throughout this paper I use the bridge sampling method for marginal likelihood estimation intro-
duced by Meng & Wong (1996). Bridge sampling makes use of an importance or candidate density
q(θi) that should reasonably approximate the posterior p(θi|YT ) and a so-called bridge function
h(θi). The key identity in the bridge sampling method is

p(YT |Mi) =
Eq(h(θi)k(θi))

Ep(h(θi)q(θi))
, (13)
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where Eq(·) and Ep(·) denote the expectations with respect to the candidate density q(θi) and the
proper posterior density p(θi|YT ) respectively. By simulating a sample from both the candidate
density and the posterior density we can use the identity 13) to construct a simple Monte Carlo
estimator of the marginal likelihood for model i as

p̂(YT |Mi) =

1
Mq

Σ
Mq

mq=1h(θ
(mq)
i )k(θ

(mq)
i )

1
Mp

Σ
Mp

mp=1h(θ
(mp)
i )q(θ

(mp)
i )

, (14)

where Mq and Mp are the sample sizes from the candidate and posterior respectively. I follow stan-
dard procedure and use equal sample sizes from both densities. The sample from the posterior is
typically generated using a MCMC algorithm such as one of the algorithms described in Section 3.1.

For the bridge function h(·), Meng & Wong (1996) present an optimal form, which minimizes
the relative mean squared error of the marginal likelihood estimator p̂(YT |Mi). It is defined up to
a constant as

h(θi) ∝
1

Mpq(θi) +Mqp(θi|YT )
.

The challenge with applying this optimal bridge function comes from the fact that we need to
know the normalized posterior p(θi|YT ) to compute it and to obtain this we need its integrating
constant, which is the marginal likelihood p(YT |Mi) - the exact quantity we are trying to estimate
using bridge sampling. The implementation of the bridge sampling estimator with optimal bridge
function, therefore requires an iterative estimation procedure for the marginal likelihood p̂(YT |Mi),
which is obtained as the limit of p̂(j)(YT |Mi) for j = 1, 2, ..., where the j+1-th iteration is computed
using the following estimate of the normalized posterior

p̂(θi|YT ) =
k(θi)

p̂(j)(YT |Mi)
.

The iterative scheme can be initialized with p̂(θi|YT ) set to k(θi). The recursion is then given by

p̂(j+1)(YT |Mi) =

1
Mq
ΣMq

mq=1

k(θ
(mq)

i )

Mpq(θ
(mq)

i )+Mq p̂(θ
(mq)

i |YT )

1
Mp
ΣMp

mp=1

q(θ
(mp)

i )

Mpq(θ
(mp)

i )+Mq p̂(θ
(mp)

i |YT )

,

The estimator typically converges in under 10 iterations and the method can therefore be imple-
mented relatively fast. For GAS models the main computational costs come from theMq evaluations
of the unnormalized posterior of model i, which only need to be performed once.

The main advantage of using bridge sampling over most alternative marginal likelihood estima-
tors is that the choice of candidate density q(·) is a slightly less precarious one. Since the estimator
(14) uses draws from both the candidate and the posterior, the variance of the estimator is not
overly sensitive to one of the densities being more heavy tailed as the other. Alternative sampling
methods often impose requirements on the tail behavior of the candidate density relative to that of
the posterior - such as the importance sampling estimator requiring fatter-tailed candidate densities
or reciprocal importance sampling requiring a thinner tailed candidate - in order for the variance
of the estimator to be finite (Frühwirth-Schnatter, 2004). The bridge sampling estimator has finite
variance regardless of the tail behavior of the candidate. This is an important advantage that I
find particularly relevant for its applicability to GAS models. For GAS models the tail behavior
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often varies significantly among the marginal posteriors of θ (i.e. certain sets of parameters in θ
can differ greatly in terms of their posterior kurtosis). Since candidate densities are generally con-
structed with similar tail behavior in all dimensions, we would have to adjust the tail behavior to
the most extreme elements in θ. Experience showed however that for instance taking the approach
of constructing a candidate density - even using a relatively advanced method such as the AdMit
procedure with ν = 1 to be on the safe side - typically did not result in a good fit to the posterior
(acceptance rates in independence chain MH of merely 0.25). Not having a good fitting candidate
density also greatly inflates the variance of the marginal likelihood estimator.

Using bridge sampling there are thus no requirements on the tail behavior of the density and
we can therefore adopt the common approach of simply using a multivariate normal density. The
mean and covariance are set equal to the sample estimates of the posterior means and covariance
matrix of θ based on an additional independent sample ofMp draws from the posterior. The separate
independent sample is necessary to avoid possible downward bias in the marginal likelihood estimate
Gronau et al. (2017). Given that a good fit is still important for the effectiveness of the estimator
and the relatively high potential for non-normalities in GAS model posteriors, I also utilize the so
called warp 3 transformation described in Meng & Schilling (2002) to account for skewness. This is
done by constructing a mixture of the unnormalized posterior

k̃(θi) =
1

2
(k(θi) + k(2θi,0 − θi)),

.
which is symmetric around θi,0 and where θi,0 is typically set equal to the posterior sample mean. It
is straightforward to see that k̃(θi) has the same integrating constant as k(θi), implying that k̃(θi)
can also be used in (14) to estimate the marginal likelihood. The resulting estimator does require
twice as many evaluations of the likelihood and is thereby roughly twice as computationally expen-
sive. In section 4.2 and 4.3 I implement the bridge sampling estimator with warp 3 transformation
as described above using the R package “bridgesampling” by Gronau et al. (2017).

3.2.2 Prior Sensitivity

When applying Bayesian model comparison it is important to be aware of one major criticism of the
approach, which is its sensitivity to the prior specification for θi. Since the prior in (12) must be
proper for non shared parameters, it is not possible to use overly diffuse or uninformative priors as
the excessive probability mass placed on very unlikely values of θi will bias the Bayes factor to favor
the model with less parameters (Kass & Raftery, 1995). In addition to thus requiring reasonably
informative priors, the influence of the prior is also known to diminish less rapidly with the number
of observations as it does for common posterior inferences such as posterior means or confidence
intervals for the parameters (Kass, 1993).

So, although GAS models are typically used for applications with considerably large samples,
we should be particularly careful with the prior specification when it comes to model comparison.
To assess the impact of prior specifications on the conclusions implied by Bayes factors, I consider
the approach suggested in Kass & Raftery (1995) to perform a sensitivity analysis with respect to
the degree of informativeness of the priors. This requires that Bayes factors are computed for a
selection of different prior specification with varying degrees of informativeness and compared for
meaningful differences. I apply such a sensitivity analysis in Section 4.2, where Bayesian model
comparison is central to the problem considered.
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Some final notes on Bayesian model comparison regard terminology and the BIC as an ap-
proximation to the Bayes factor. Bayesian model comparison is often referred to as the Bayesian
approach to hypothesis testing. The compared models are therefore also often labelled as the alter-
native model or hypothesis (M1) and the null model or hypothesis (M0) (Kass & Raftery, 1995).
However, instead of accepting or rejecting hypothesis at certain levels of significance, it is more
natural in a Bayesian framework to make statements regarding the strength of evidence in favor of
certain models or hypotheses. A common quantity to base such statements regarding the strength
of evidence on is 2 logBF1|0. This quantity is of the same scale as the likelihood-ratio statistic
popular in ML settings and also as the ∆BIC statistic discussed in Carlin & Louis (2000), which is
simply the difference in the BIC for model 1 and model 0. The BIC for model i is defined as

BICi = −2 log p(YT |θi,ML,Mi) + di log(T ), (15)

where di is the number of parameters in model i and θi,ML is the ML estimate of θi (i.e. the
parameter value for which the likelihood for model i obtains its optimum). The BIC is thus equal to
double the negative of the maximal log likelihood plus a penalty term for the number of parameters.
The BIC is an approximation to the negative of double the log marginal likelihood and as T →∞
the two should converge. In most cases, when the likelihood is not strongly peaked and symmetric,
the approximation is however rather crude and often displays specific biases relative to the true log
marginal likelihood (see e.g. Miazhynskaia & Dorffner (2006)). Since the BIC is a popular tool for
informal non-nested model comparison in an ML setting, I use both Bayes factors and the ∆BIC
statistic for comparison in Section 4.2.

3.3 Hierarchical Priors

Bayesian model comparison thus allows for a coherent approach for testing hypothesis or making
model selection decisions among non-nested models, while accounting for the full extent of parameter
uncertainty. Hierarchical modeling is an approach to alleviating parametric uncertainty, typically
achieved in a Bayesian framework by imposing hierarchical priors on a subset of the parameter
in θ that share certain characteristics. The hierarchical prior allows the information in the data
regarding certain parameters to be shared across the parameters in the group to which they belong.
The approach is particularly powerful in more complex models where the parameter space is of such
a dimension that the data is insufficient to properly identify all parameters.

Hierarchical prior specifications extend the typical Bayesian setup (6) presented in Section 3, by
specifying an additional layer of prior distributions for the static parameters of the prior distribution
of θ. Under a hierarchical prior the posterior is characterized as

p(θ, δ) ∝ p(Y |θ)p(θ|δ)p(δ),

where δ is a vector of parameters that governs the prior distribution of θ. The parameters in δ are
known as hyperparameters.

Currently hierarchical modeling is mostly applied for generalized linear models in the form of
random effects and mixed effects models, and also spike-and-slab regression relies on a hierarchical
prior setup. Applications to non-linear models such as time-varying parameter models are notably
more scarce (one example is Brownlees (2015)), most likely as a result of the substantial computa-
tional costs associated with models of large numbers of time-varying parameters. Regardless, there
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seems considerable potential for natural extensions of hierarchical modeling techniques for general-
ized linear models to enable inference in time-varying parameter models of greater complexity than
previously attainable.

Although conjugate hierarchical priors that allow for analytical expression of the posterior will
likely not be attainable for GAS models, the basic motives for grouping sets of parameters that we
a priori know to have common features are still valid. The benefits of pooling information to re-
duce parameter uncertainty are also especially relevant for GAS models where significant parameter
uncertainty arises relatively quickly. Advancements in computational power of desktop computers,
combined with relatively recent MCMC techniques such as HMC that allow for efficient sampling
in high dimensional parameter spaces, imply that inference in hierarchical models is possible even
when the posterior is not known in closed-form (Betancourt & Girolami, 2015).

A popular application of GAS models is to model time-varying covariance matrices and these
models serve as a good example of models where the number of time-varying parameters might
quickly cause the number of parameters in θ to exceed that what the data can support. Common
resolutions to this problem are to either simply consider only very small time-varying covariance
matrix models or to impose parametric restrictions. In Section 4.3 I show how applying a hierarchi-
cal normal prior for the subset of autoregressive parameter that govern the correlation dynamics -
similar to the priors used for the regression coefficients in random effects models - to provide a more
elegant solution to the parameter uncertainty problem that occurs for time-varying covariance mod-
els. Comparison by means of Bayes factor also support the hierarchical model over the restricted
(and unrestricted) version, particularly as the number of assets under consideration increases. In
the discussion I also consider several possible other applications of hierarchical priors for models in
the GAS framework.

4 Empirical Applications

In this section I apply the above described Bayesian methods for inference to three different types of
GAS models. Although the first serves mostly as a test case to compare the three MCMC methods
described in Section 3.1, all three applications illustrate the benefits that Bayesian methods offer
in handling the uncertainty associated with implementing GAS models. Besides the comparison
of MCMC methods, the first application also highlights how the considerable model complexity,
typical of highly non-linear GAS models, affect parameter uncertainty and the associated slow con-
vergence to a normal distribution for the static parameters. The second application uses Bayesian
model comparison to account for parameter uncertainty in a non-nested model selection problem
prominent in many applications for GAS models due to the multitude of different model specifi-
cation options described in Section 2. Finally, the third application explores Bayesian hierarchical
modeling as a promising approach to dealing with the substantial parameter uncertainty in more
complex models. The hierarchical modeling approach is applied to enable inference on a flexible
time-varying covariance model of a large number of assets.

4.1 MCMC Method Comparisons: Beta-Gen-t-EGARCH

To illustrate the relative strengths and weaknesses of the three MCMC methods Griddy Gibbs,
AdMit-MH and HMC, I apply all three to the Beta-Gen-t-EGARCH by Harvey & Lange (2017)
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estimated on daily returns data from the S&P 500 Index for the period 2012-04-16 to 2017-04-21
(source: <https://finance.yahoo.com/quote/%5EGSPC/history?p=%5EGSPC>, see Figure 1).

Figure 1: S&P 500 daily returns for the period 2012-04-16 to 2017-04-21.

4.1.1 The Beta-Gen-t-EGARCH Model

The Beta-Gen-t-EGARCH model specifies a generalized Student-t distribution4 for a univariate
dependent variable yt with time-varying scale parameter ϕt

p(yt|µ, ϕt, η̄, υ) =
1

ϕt

υη̄1/υ

2B
(

1
υη̄ ,

1
υ

)(1 + η̄

∣∣∣∣yt − µϕt

∣∣∣∣)− η̄+1
υη̄

, (16)

ϕt = eft ,

where ft follows the time-varying parameter process (2) and B(·, ·) denotes the beta function. In
the Beta-Gen-t-EGARCH model the scaling matrix (4) is set to the identity matrix and thus st
simply equals the score for ft

∇t =
η̄ + 1

η̄
bt − 1, (17)

bt =
η̄(|yt − µ|e−ft)υ

η̄(|yt − µ|e−ft)υ + 1
, (18)

where bt is distributed Beta(1/υ, 1/υη̄).

The generalized Student-t distribution has two shape parameters, η̄ which controls the tails of
the distribution, and υ which controls the peak of the distribution. These two shape parameters
make the Beta-Gen-t-EGARCH model remarkably versatile and allow it to generalize the Beta-
t-EGARCH and Gamma-GED-EGARCH models (Harvey, 2010). In case υ = 2 the generalized

4In Harvey & Lange (2017) the generalized Student-t distribution is introduced with the parameterization η = 1/η̄,
but I consider only the parameterization with η̄ as it greatly simplifies Bayesian inference and prior specification.
See Bauwens & Lubrano (1998) for the need for informative priors on the degrees of freedom parameters to maintain
integrability of the posterior (6).
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Student-t distribution reduces to a Student-t distribution with 1/η̄ degrees of freedom and in the
limiting case where η̄ → 0 the distribution collapses to the generalized error distribution (GED).
Since Harvey & Lange (2017) find that the Beta-Gen-t-EGARCH significantly outperforms the
more restrictive Beta-t-EGARCH, the popular Student-t based volatility models are arguably too
restrictive meaning that the extra flexibility afforded by the additional shape parameter is needed to
capture the complex distributions of financial asset returns. The additional parameter and the high
degree of nonlinearities inherent in the log-likelihood of the Beta-Gen-t-EGARCH model, do imply
that asymptotic convergence to the normal density for the parameters θ = (ω,A,B, µ, η̄, υ)′ likely
require considerably large samples. The analysis in this section suggest that the 5 years of daily
data (1256 observations) used here is insufficient. Although Harvey & Lange (2017) use closer to 10
years of daily data, it would probably still seem quite reasonable to expect the 1256 observations
to be adequate, considering that - based on a study of the small sample properties of ML estimates
of ARCH type models by Hwang & Valls Pereira (2006) - the suggestion for a standard GARCH
model is to use a minimum of 500 observations.

I impose priors on the parameters that are as uninformative as possible while imposing the
stationarity constraint that |B| < 1 and making sure that the variance of yt remains bounded
to enable the volatility analysis in Section 4.1.3. The bounded variance constraint requires that
η̄ < 1/2. This thus implies the following improper flat priors

p(ω) ∝ 1,

p(A) ∝ 1,

p(B) ∝ I[−1<B<1],

p(η̄) ∝ I[0<η̄<1/2],

p(υ) ∝ I[0<υ<∞],

where I[·] denotes the indicator function, which equals one if the parameter in brackets is in the
specified range and is zero otherwise. Note that due to the parameterization with η̄ - which can be
likened to the inverse of the degrees of freedom parameter for a regular Student-t distribution - the
issues with flat priors on the full support for degrees of freedom parameters mentioned in Bauwens
& Lubrano (1998) are avoided. The uninformative priors imply that the kernel of the posterior (6)
simplifies to the likelihood of the Beta-Gen-t-EGARCH on the intervals for which the priors are not
zero.

4.1.2 Comparing MCMC Methods

For the Griddy Gibbs sampler, the high correlation between ω and B in the Beta-Gen-t-EGARCH
model (see the lower-left plot in Figure 2b), requires that the time-varying parameter process is
re-parameterized according to the specification (3). To facilitate comparison, the reported results
are for the re-transformed variable ω = ω̃(1 − B). Also, the boundaries of the grid, which need to
be limited to regions of high posterior mass, imply that for the Griddy Gibbs the priors are in fact
flat on the integration region determined by the upper and lower bounds of the grid.

For convenience I determine the upper and lower bounds of the grids as appropriate multi-
ples of the minimum and maximum values of the parameter draws from a preceding run of the
AdMit-MH algorithm. I find that 50 grid points resulted in sufficiently smooth histograms for each
variable. The AdMit-MH method is implemented using the R package “AdMit” by Ardia et al.
(2009). The fitting procedure resulted in a mixture of 2 Student-t distributions. For HMC the
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final tuned step size and number of Leapfrog steps after the first 100 warm up draws is 0.5 and 4
respectively. For the first 100 draws I capped the number of Leapfrog steps at 20 and used a step
size of 0.005 for the first 50 and 0.1 for the second 50 draws. Derivatives for the log-likelihood of
the Beta-Gen-t-EGARCH model as required for HMC, are reported in Appendix A. In the HMC
algorithm, the constraints are enforced using the method of Neal (2011) described in Section 3.1.3.
The HMC and Griddy Gibbs algorithms as well as the kernel function used as input to the “AdMit”
package are implemented in the C language with an R interface on a 2.6 GHz Intel Core i5 processor.

I let all three samplers generate 40, 000 draws after discarding a 1, 000 draw warm up sample.
The main results are summarized in Table 1. The estimates of the parameters are quite close for
all three methods. For comparison purposes results on ML estimates are also reported. The ML
estimates clearly do deviate from the posterior expectations - both in terms of the point estimates
and the ML estimates of the standard errors. These differences are largely due to the skewness of the
marginal posteriors displayed in the histograms of Figure 2a. Especially for the estimate of η̄, which
the histogram shows is clearly constrained at 0, this leads to biased estimates. The applicability
of the asymptotic convergence properties of the ML estimates are therefore questionable given this
sample size.

In terms of efficiency, HMC is superior to the other methods for a MCMC chain of this size.
The Effective Sample Size (ESS) normalized for computation time of HMC is at least 5 times that
of AdMit-MH and roughly 75 times that of the Griddy Gibbs sampler. The Effective Sample Size
gives an autocorrelation adjusted estimate of the sample size (number of posterior draws)

ESS = M(1 + 2Σ∞j=1ρj(θ)),

where ρj is j-th autocorrelation of the draws of a parameter θ. The estimates of the ESS and also the
Geweke Convergence Diagnostic (CD) reported in Table 1 are computed using the R package “coda”.

For AdMit-MH and HMC the reported computation times include the initial mixture fitting and
the estimation of the mass matrix. For HMC these up-front computational cost are negligible but
for AdMit-MH they make up roughly 90% of total cost. For longer runs the relative computational
efficiency of AdMit-MH would thus improve. In this scenario however, with the numerical stan-
dard errors (NSEs) of the posterior means (NSE(θ) =

√
var(θ|YT )/ESS(θ)) all well below 0.01, the

40, 000 draws seem more than adequate.

To check whether the Markov chains have converged to the posterior I use the diagnostic of
Geweke (1992)

Geweke CD =
E(θ1|YT )− E(θ2|YT )√
NSE(θ1)2 + NSE(θ2)2

,

where θ1 and θ2 represent draws of the same parameter but of a different fraction of the Markov
chain. I use the default setting in the “coda” package which use the first 10% of the full sample as
the first fraction and the last 50% as the second fraction. The diagnostic is essentially a z-score
and is used to test for a difference in means between the two fractions of the chain. Applying a
5% significance level, all chains apart from the ω and B chains produced by the Admit-MH method
seem to have converged. This is likely just due to the high correlation between the two parameters
combined with the generally low efficiency per draw of the AdMit-MH method that causes these
chains to have the lowest ESS providing insufficient evidence to support the null-hypothesis of con-
vergence. A visual inspection of trace plots suggests that the AdMit-MH algorithm indeed has no
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Table 1: Parameter Estimates and MCMC Diagnostics for the Beta-Gen-t-EGARCH Model

MCMC Methods

θ Griddy Gibbs AdMit-MH HMC ML

ω

E(ω|YT ) 0.243 0.264 0.266 ω̂ 0.236√
var(ω|YT ) 0.073 0.074 0.076

√
v̂ar(ω) 0.066

ESS 21,701 4,967 34,327
ESS/time 7.8 84.8 640.5

Geweke CD (z-score) -1.14 -2.10* 0.64

A

E(A|YT ) 0.098 0.100 0.100 Â 0.093√
var(A|YT ) 0.017 0.016 0.017

√
v̂ar(A) 0.016

ESS 19,255 5,183 42,927
ESS/time 7.0 88.5 801.0

Geweke CD (z-score) -0.72 0.35 -0.54

B

E(B|YT ) 0.900 0.891 0.890 B̂ 0.903√
var(B|YT ) 0.030 0.030 0.031

√
v̂ar(B) 0.027

ESS 21,734 4,951 34,044
ESS/time 7.9 84.5 635.2

Geweke CD (z-score) 1.09 2.00* -0.54

µ

E(µ|YT ) 1.189 1.189 1.186 µ̂ 1.146√
var(µ|YT ) 0.333 0.329 0.329

√
v̂ar(µ) 0.345

ESS 32,064 5,798 49,677
ESS/time 11.6 99.0 926.9

Geweke CD (z-score) 0.82 1.54 -0.26

η̄

E(η̄|YT ) 0.063 0.062 0.060 ̂̄η 0.036√
var(η̄|YT ) 0.040 0.038 0.039

√
v̂ar(η̄) 0.046

ESS 6,022 5,434 25,515
ESS/time 2.2 92.7 476.1

Geweke CD (z-score) 0.23 -0.74 0.91

υ

E(υ|YT ) 1.508 1.503 1.498 υ̂ 1.423√
var(υ|YT ) 0.163 0.157 0.158

√
v̂ar(υ) 0.166

ESS 6,088 5,077 29,427
ESS/time 2.2 86.7 462.7

Geweke CD (z-score) 0.11 -1.57 1.41

Time (s) 2768 59 54 0.4
Accept rate _ 0.26 0.80

Notes: Estimation Results for the parameters in the Beta-Gen-t-EGARCH model and Diagnostics for the Markov
chains of the three MCMC methods Griddy Gibbs, Adaptive Mixture of Student-t distributions -
Metropolis-Hastings (AdMit-MH) and Hamiltonian Monte Carlo (HMC). All three Markov chains are 40, 000 draws
long and for all samplers an initial 1, 000 draw warm up sample is discarded. Reported for all three samplers and
for all parameters ω,A,B, µ, η̄ and υ are posterior mean (E(·|YT )) and standard deviation (

√
var(·|YT )) estimates;

the Effective Sample Size (ESS) and the ESS normalized for time in seconds (ESS/time); and the z-score of the
Geweke Convergence Diagnostic (CD), where a * is used to denote rejection of the null hypothesis of converged
chains at the 5% significance level. Also reported for all parameters are the Maximum Likelihood (ML) point
estimates ( ·̂ ) and the ML standard deviation estimates (

√
v̂ar(·)). For all MCMC chains the computation time in

seconds and the proportion of accepted proposals is reported.

problems exploring the marginal posteriors of ω and B.

Figure 2c presents the trace plots for a subsection of the Markov chains. Clearly, the HMC chains
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(a) Histograms of Marginal Posteriors (b) Bivariate posteriors

(c) Trace plots (d) Autocorrelations

Figure 2: Diagnostic plots of the Markov chains produced by the three MCMC methods Griddy Gibbs, Adaptive
Mixture of Student-t distributions - Metropolis-Hastings (AdMit-MH) and Hamiltonian Monte Carlo (HMC). All
three Markov chains are 40, 000 draws long. The top left corner (a) displays histograms of 50 bins for the marginal
posteriors for the parameters B, η̄ and υ from all three Markov chains. The top right corner (b) contains scatter plots
of the draws form the joint posteriors of the parameter pairs B and ω̃ (from the Griddy Gibbs chain), B and A, B
and ω, and υ and η̄ (all from the HMC chain). In the bottom left (c) are trace plots of 500 draw long subsamples
from the chains of all three MCMC methods, for the parameters B and η̄. Finally, the bottom right (d) shows plots
of autocorrelations up to the 50-th lag for all three chains of the parameters B and η̄.

mix best. The autocorrelation plots in Figure 6d show that for HMC the autocorrelation drops off to
zero almost immediately, and for certain parameters the first-order autocorrelation is even negative.
This explains the super-efficient sampling of the A and µ parameters - meaning the ESS is greater
then the number of draws M . The much higher rejection rate for the AdMit-MH algorithm implies
that the chains it produces have much higher autocorrelation. The Griddy-Gibbs suffers when the
parameters are highly correlated. This is evidenced by the high autocorrelation for the η̄ variable,
whose correlation with the other shape parameter υ (0.811 in the sample produced by HMC) can
not be resolved through re-parameterization. The remarkably high correlation between ω and B of
−0.996 does on the other hand seem to be effectively resolved through the re-parameterization (3),
as evidenced by the lower and upper plots in Figure 2b. The joint distribution of ω̃ and B still has
an odd shape however.

The histograms and distribution plots of the marginal and bivariate posteriors shown in Figure
2a and 2b, reveal the asymmetries and nonelliptical shapes of the posterior indicating that the
5 years of daily data are inadequate to make the posterior converge to a Gaussian distribution.
Excluding the marginal of the µ parameter (not displayed in Figure 2) - which seems to be a partic-
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ularly Gaussian and easy parameter to estimate - the average skewness of the marginals in absolute
terms is 0.6 and 3.5 for the kurtosis. The posterior is therefore not too heavy-tailed, explaining why
HMC is not noticeably limited in its ability to explore the tails of the distribution.

Also note that since the Griddy Gibbs and HMC have higher ESSs relative to AdMit-MH,
their chains produce smoother histograms. For the Griddy Gibbs the histogram of υ however has a
slightly jagged left side as a result of the finite number of grid points. This is why I choose to use the
grid of 50 points, which is high relative to previous work (e.g. Bauwens & Lubrano (1998) and Asai
(2006)), but necessary considering the significant correlation between υ and η̄. Trials with fewer
grid points, particularly without the reparameterization (3), produced far more pronounced jagged
patterns in the histograms even to the extent that the resulting sample was significantly biased. It
is possible that more advanced integration or interpolation rules could improve the performance of
Griddy Gibbs and reduce the number of required grid points.

4.1.3 The Posterior Distribution of Volatility

One of the benefits of operating in a Bayesian framework is that it is possible to do inference on
essentially arbitrary functions of the parameters. Here I consider the posterior of the volatility of
returns on the S&P 500 Index. Although the Beta-Gen-t-EGARCH is designed to model volatility,
the variance of the generalized Student-t distribution is a highly nonlinear function of the parame-
ters. Probabilistic statements regarding volatility in a frequentist setting are therefore challenging.

From Harvey & Lange (2017) we have

var(yt|ft,θ) =
Γ
(

3
υ

)
Γ
(1−2η̄

υη̄

)
Γ
(

1
υ

)
Γ
(

1
υη̄

) 1

η̄
2
υ

e2ft , (19)

where Γ(·) denotes the gamma function5. The volatility is then defined as the standard deviation
of returns; the square root of (19). Here I consider the Highest Posterior Density (HPD) regions
for the volatilities as predicted by the Beta-Gen-t-EGARCH. A HPD region is defined as the set of
values that contains (1 − α)100% of the posterior probability mass, for some α ∈ (0, 1). Contrary,
to the quantile based confidence intervals that are common in frequentist studies, the HPD region
is not necessarily equal-tailed and has the intuitively appealing property that any value outside the
region has lower posterior probability as any value inside the region (Gelman et al., 2014, Ch 2.3).
The posterior of volatility is easily computed by applying the square root of the formula (19) with
draws from the posterior of θ as input. In this case I use the 40, 000 draws from the chain produced
by the HMC algorithm.

Figure 3a depicts the 99% Highest Posterior Density (HPD) region of the volatility as pre-
dicted by the Beta-Gen-t-EGARCH, plotted against the absolute value of returns for the last year
of the sample period. For comparison a similar plot of volatilities as predicted by the popular
Beta-t-EGARCH of Harvey & Chakravarty (2008) - a simpler restricted version of the Beta-Gen-t-
EGARCH obtained by fixing υ to 2 - is shown in Figure 3c. The Bayesian analysis is carried out in
the same manner and with the same priors as for the corresponding Beta-Gen-t-EGARCH param-
eters. The HPD regions are particularly noteworthy when the preceding return is abnormally large

5In the limit as η̄ → 0 numerical evaluation of the gamma function results in overflow. This typically occurred
for values of η̄ ≤ 0.005 and for these values I compute the variance using the variance formula for the limiting GED,
which is var(yt|ft,θ) = Γ

(
3
υ

)
υ

2
υ e2ft/Γ

(
1
υ

)
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(a) Beta-Gen-t-EGARCH - HPD of predicted volatilities

(b) Score functions

(c) Beta-t-EGARCH - HPD of predicted volatilities

(d) One-day-ahead VaR 99% histogram

(e) Degrees of freedom histogram

Figure 3: The 99% highest posterior density (HPD) regions of volatility for the S&P 500 daily returns as predicted
by the Beta-Gen-t-EGARCH (top left (a)) and Beta-t-EGACRH (bottom left (c)) plotted in conjunction with absolute
returns on the S&P 500, the posterior mode of volatility and the Maximum Likelihood (ML) estimate of volatility for
the period 2016-04-21 to 2017-04-21. For illustration, a histogram with fitted density of the volatility on the date 2016-
09-12 is also displayed. On the right, other plots for the volatility as predicted by the Beta-Gen-t-EGARCH on the
date 2016-09-12 such as the preceding day’s score based on the draws corresponding to the minimum and maximum
predicted volatilities for the day 2016-09-12 are plotted as a function of the standardized residuals (yt−1 − µ)e−ft−1

(b) and a histogram of the posterior of the one-day-ahead 99% value at risk (VaR) (d). The score for the maximum
volatility adjusted for A (plotted in b) is defined as a rescaled score obtained by multiplying with the value of A for
the maximum draw and dividing by the value of A for the minimum draw to indicate the true relative difference in
impact of the score (Ast−1) on the next day’s ft. The values for η̄ and υ are 0.002 and 1.45 for the maximum volatility
and 0.21 and 1.97 for the minimum volatility. Also plotted in the bottom right (e) is a histogram of the degrees of
freedom η. HPD regions, extrema and histograms are all based on a 40, 000 draw sample from a Hamiltonian Monte
Carlo Markov chain.

relative to the predicted level of volatility. The HPD regions for the Beta-Gen-t-EGARCH clearly
widen considerably more following such large observations as for the Beta-t-EGARCH. Furthermore,
the posteriors of the volatilities as predicted by the Beta-Gen-t-EGARCH are also significantly more
positively skewed following large observations, as is evidenced by the position of the mode relative
to the 99% HPD region boundaries. As a case in point a histogram of the posterior draws for
the predicted volatility on September 12th, 2016 is plotted to illustrate the positive skewness and
heavy right tail of predicted volatility (skewness equals 1.1 and kurtosis is 5.0 for the Beta-Gen-t-
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EGARCH) following a large negative return of -53 on the S&P500. On the other hand, the average
skewness and kurtosis for the volatilities predicted by the the Beta-Gen-t-EGARCH over the entire
five year sample (2012-04-16 to 2017-04-21) are only 0.2 and 3.2 respectively, suggesting that the
large uncertainty and lack of convergence to a normal distribution is characteristic for the volatilities
predicted in response to large absolute returns. For the Beta-t-EGARCH the predicted volatilities
following large observations also seem to have larger uncertainty and greater non-normality (see the
histogram in Figure 3c), but noticeably less so as for the Beta-Gen-t-EGARCH.

For the Beta-Gen-t-EGARCH, the response to large observations is mostly determined by the
shape parameters η̄ and υ and the large uncertainty in this response can be traced back to the
considerable posterior range of the shape parameters. The bottom right plot in Figure 2b shows
that the posterior ranges from what is almost a Laplace distribution with η̄ near zero and υ close
to one, to a Student-t distribution with 4 degrees of freedom (η̄ equal to 0.25 and υ around 2).
Both these extremes of the posterior range represent different ways of making the score function of
volatility less sensitive to outliers, explaining their high posterior correlation. Typically the effect
of a lower degrees of freedom (high η̄) leads to greater robustness to outliers as the effect of a lower
υ. Consequently we find that the lowest values of predicted volatility on dates following extreme
observations correspond to draws for which υ is close to two and η̄ is in the higher end of its posterior
range and the highest volatilities correspond to draws for which η̄ is near zero and υ is closer to one.
These effects are evidenced by the plot in Figure 3b where the score functions for the minimum and
maximum predicted volatilities (based on the 40,000 HMC draws) and for the date of 2016-09-09
(the Friday preceding 2016-09-12) are displayed. The values of η̄ and υ corresponding to the plotted
score functions are reported in the captions. Clearly the posterior support for the shape parameters
encompasses a wide range of score functions or news impact curves, as they are sometimes referred
to, which causes the large variation in how strongly the model responds to large absolute returns.

The inverse degrees of freedom parameter therefore seems to be the main determinant of pre-
dicted volatility following large observations. To understand the skewness and kurtosis of these
predicted volatilities it is more natural to consider the usual - i.e. uninverted - degrees of freedom
parameter η, whose posterior range is rather extreme (sampled values range from 4.3 to 8.2× 105),
whilst its mode is around 9.7. Although, as η increases the differences become less and less mean-
ingful, there is still considerable range for which the generalized Student-t distribution transitions
to a GED, but where posterior mass is very thinly distributed (see Figure 3e).

The resulting skewness and kurtosis in the posterior of predicted volatilities has significant im-
plications for the application of ML estimates of volatility. As is evident from Figure 3a and 3c
the ML estimates for volatility - obtained by plugging in the ML estimates for θ - are very close to
the posterior mode, which is in line with expectation. In practice these ML volatility estimates are
often straightforwardly plugged in to compute quantities of interest such as the the VaR or portfolio
weights. As demonstrated in Figure 3d, the non-normality of the volatility does carry over into the
posterior of the one-day-ahead 99% VaR6 . The benefits of a Bayesian approach to VaR in which
parameter uncertainty can be fully accounted for versus the traditional frequentist plug-in approach
is discussed in great detail in e.g. Ardia (2008).

6As mentioned in Harvey & Lange (2017), the one-day-ahead VaR can be computed for the Beta-Gen-t-EGARCH
by expressing εt = (yt − µ)e−ft as a function of 1 − bt = 1

η̄ευt +1
. Since 1 − btis Beta(1/υη̄, 1/υ) distributed we can

use the inverse CDF of a beta distribution to compute quantiles for yt.
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It is important to note that in order to capture the full extent of the uncertainty in the response
to extreme observations the uninformative prior on η̄ is imperative. More than half of the predicted
volatilities on 2016-09-12 above the upper bound of the 99% HPD region corresponded to draws
for which η̄ is less than 0.01 (i.e. more than 100 degrees of freedom). Preceding work that applied
Bayesian inference methods to volatility models based on Student-t distributions considered the
likelihood as parameterized with the regular (non inverted) degrees of freedom parameter and are
thereby limited to weakly informative priors that restrict the upper range of the degrees of freedom
parameter (see Bauwens & Lubrano (1998)). Even though the intention is usually to be as uninfor-
mative as possible, these priors might actually be quite informative as they fully exclude the limiting
normal distribution (or the GED in case of the generalized Student-t) and could thereby considerably
underestimate the uncertainty in volatility predictions following large observations. The inference
presented here on the S&P500 returns suggests that at least for the Beta-Gen-t-EGARCH such a
scenario where there is considerable posterior mass for η̄ close to zero is not necessarily uncommon
in practice.

It is however likely that similar uncertainty and high values for the degrees of freedom parameter
are less common for simpler Student-t based GAS models such as the GAS-t or Beta-t-EGARCH.
Given that for these models there is no second shape parameter that fulfills a similar function in
making the model more robust to outliers, the data might be more informative regarding the lo-
cation of the degrees of freedom parameter. For the Beta-t-EGARCH the range of the degrees of
freedom parameter in the 40,000 draw sample is for instance 3.86 to 19.18 and thus much narrower
as for the Beta-Gen-t-EGARCH. This also justifies much of the notably smaller and more symmetric
HPD regions following large observations shown in Figure 3c relative to Figure 3a.

The analysis presented here shows that using the Beta-Gen-t EGARCH model there is con-
siderably more uncertainty and non-normality in the predicted volatilities following large returns
compared to when a simpler model with a single shape parameter such as the Beta-t-EGARCH
is used. This is a result of the interactions between the two shape parameters of the generalized
Student-t distribution causing significant uncertainty in the marginal posterior of the inverse de-
grees of freedom parameter. The slower convergence to normality of the volatilities predicted by
the Beta-Gen-t-EGARCH suggest that the uncertainty caused by the added shape parameter is not
fully accounted for by traditional frequentist methods - at least given the 5 years of return data
considered here. The Beta-Gen-t-EGARCH is thus an example of how the model complexity that
the GAS framework allows for, might cause larger sample sizes to be required to achieve the degree
of convergence to the normal distribution desired in an ML setting.

4.2 Model Comparisons: Dynamic Pooled Marked Point Process Models

Point process models have been gaining traction in financial econometrics in recent decades for
their use in modeling time series of events that occur at irregularly spaced time intervals (see e.g.
Bauwens & Hautsch (2009) for a review of point process models for high-frequency data). One of
point process models applications is to describe the time-varying intensities of credit rating transi-
tions. With this application in mind, Creal et al. (2013) introduced a class of factor GAS models.
The models are named dynamic pooled marked point process (which I abbreviate to DPMP) models
and represent an easier to estimate observation driven alternative to the parameter driven models
with stochastically evolving intensities developed by Koopman et al. (2008) and Bauwens & Hautsch
(2006).
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In this section the DPMP models are applied to model the intensities of the credit rating
transition processes for firms included in Compustats database of Standard & Poor credit ratings.
Because Creal et al. (2013) state that no theory for formal comparison of the different DPMP
factor models currently exists, there is a very compelling case for considering these models in a
Bayesian framework since, as mentioned in Section 3.2, the Bayesian approach to model comparison
is not limited to nested models. The focus will therefore be on comparing DPMP models with
a variety of factor specifications and I also consider the effects of different scaling matrices. To
facilitate comparison with the results obtained in Creal et al. (2013), I stick closely to the factor
specifications considered in the work of these authors.

4.2.1 The Model

In order to properly describe DPMP models I need to introduce the counting processes and in-
tensity functions that they describe, both of which are defined in continuous time. Upholding the
convention introduced in Section 3.1.3, I use τ to denote continuous time. In addition, we will be
interested in the (continuous) time points at which rating class transition events occur, which will
be denoted by τt for events t = 1, ..., T . The index t is thus used to count all events irrespective of
event type.

Consider the left-continuous counting processes Nij(τ), which make unit size jumps at the time
an event j occurs for firm i, for event types - or rating class transitions in this applications -
j = 1, ..., k and firms i = 1, ..., l. The counting processes Nij(τ) are assumed to be orderly, meaning
only one event of type j occurs at time t for firm i (Koopman et al., 2008). In the DPMP models
the intensities of these counting processes λij(τ) are specified as functions of time. It should be
noted however, that the intensities of these processes are naturally only defined at times that firm
i is actually at risk of a rating transition of type j occurring. This leads to the following definition
of the intensities

λij(τ) = lim
∆↓0

Pr(Nij((τ + ∆)−)−Nij(τ
−)|Fτ−)

∆
,

as given in Koopman et al. (2008), where the superscript minus (·−) is used to denote the time an
arbitrary small amount before the point in time to which it is applied (i.e. τ− < τ and τ − τ− is
arbitrarily small) and Fτ denotes the filtration of the process at time τ , meaning the set of all infor-
mation up to time τ . The intensity processes λij(τ) completely characterize the counting processes
Nij(τ) at time τ (Bauwens & Hautsch, 2006).

Specifying separate dynamics for the l times k intensity processes is generally considered infea-
sible when modeling credit rating transitions since the number of rating events per firm is normally
insufficient. Most datasets typically contain only a few rating events per firm. The DPMP models
of Creal et al. (2013) therefore assume the same dynamics for all firms, which is a common approach
in the credit risk literature (Koopman et al., 2008). Given this assumption the risk process can be
summed across the firm dimension resulting in the k pooled risk processes Nj(τ) = Σl

i=1Nij(τ),
which have intensity processes λj(τ).

In the DPMP models the intensity processes are updated only when an event - for any firm
and any event type - occurs. Accordingly, it is useful to introduce λj,t to denote the value of the
intensity process λj(τ) during the time interval (τt−1, τt]. During this interval, the process behaves
as a simple Poisson process with intensity λj,t. Letting λt = (λ1,t, ..., λk,t)

′, we can specify the
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dynamics for the intensities7 as
log◦(λt) = w +Cft, (20)

where the operator log◦ is used to express the element-wise application of the natural logarithm,
w is a vector of baseline log intensities and C a k × r matrix that maps a set of r ≤ k time-
varying factors ft to k dimensions. The matrix C is constructed so that the intensities of the risk
processes are driven by particular combinations of the time-varying factors that reflect underlying
beliefs regarding the interdependencies between the k competing risk processes. The freedom in
the structure of the matrix C and the choice of the number of factors gives this class of models its
versatility. However, care has to be taken in that C is constructed in such a way that the model
parameters remain identified (see Creal et al. (2011b)) and therefore contains at least a single one
per per column, whilst the remaining entries are usually filled with a combination of zeros and
parameters that need to be estimated. The time-varying factors follow the process as defined in (2)
with A and B restricted to diagonal matrices. In addition, to further ensure model identification,
the parameters ω are set to zero since they interfere with the w parameters.

Karr (1991) showed it is possible to define a likelihood for counting processes based purely on
their intensity process. Based on that result and following Koopman et al. (2008), Creal et al.
(2013) define the log-likelihood function at event time τt for the DPMP models as

`t = y′t log◦(λt)− (τt − τt−1)K ′tλt, (21)

where I define yt = (y1,t, ..., yk,t), with yj,t a discrete valued variable equal to the number of firms for
which event type j occurred at time τt andKt = (K1,t, ...,Kk,t)

′, with Kj,t a discrete valued variable
equal to the number of firms which are actually subject to the risk of event type j occurring at time
tτ . At the firm level the likelihood is intuitive to interpret. On the one hand, there is the probability
of survival (i.e. the probability of the event not occurring) for risk process j if firm i is actually at
risk of process j occurring during (τt−1, τt] - which is reflected in (21) through the term multiplied
by the spell length (τt− τt−1). On the other hand, in the case that an event of type j does occur for
firm i at time τt, the probability of survival during the time interval (τt−1, τt) is multiplied by the
hazard rate (i.e. the rate or probability of the event occurring) for risk process j (see Koopman et
al. (2008)). Note that the latter probability of event j occurring for a certain firm, can alternatively
be interpreted as the probability of the time difference between events (τt − τt−1), which is known
to be distributed Exp(λj,t) given that event j occurred at time τt.8 In the log-likelihood (21), the
log of all these probabilities are simply pooled (summed) over all firms and all event types.

Given the definition of `t, the score and the information matrix with respect to the time-varying
parameters for the DPMP models are given by

∇t =C ′
(
yt − (τt − τt−1)Kt � λt

)
,

It =C ′PtC,

where the operator � denotes the Hadamard product and Pt is a k × k diagonal matrix with its
j-th element defined as pj,t = Kj,tλj,t/K

′
tλt, which represents the probability that the event that

7The specification used here defers in notation from that used in Creal et al. (2013) in that I specify the dynamics
directly for the intensity of the pooled (across firms) process. This is possible since I do not include firm-specific
exogenous regressors in the specification for the time-varying intensities, resulting in entirely identical predicted
intensities for each firm. The intensity process specifications are thus equivalent to those used by Creal et al. (2013)
aside from the fact that no exogenous regressors are used.

8This is based on the notion that the risk processes are Poisson in nature in between events and the interarrival
times for Poisson processes are exponentially distributed.
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occurs at time τt is of type j given that the next event occurs at time τt. The effect of using
an inverse or inverse square root Fisher information matrix as scaling matrix for the time-varying
parameter update is thus to amplify the relative impact of the score if the probability of event j
being the next to occur is low relative to the other risk processes. The score for the log intensities
is negative if at time τt the event of type j did not occur for any firm and can be either positive or
negative if event type j did occur at time τt. Jointly the effect of the score and a scaling matrix
based on the information matrix is to amplify the updates of the intensities regardless of whether
corresponding event type actually occurs, resulting in a generally more responsive auto-regressive
process for the intensities, at times that the probability of event j being the next to occur is low
relative to the other risk processes. This effect also shows in the empirical application (see Figure
4). Logically such an update makes sense because low probabilities for a certain event type will
generally result from very few events of the type occurring; implying that the events that do occur
are more informative relative to the type of events that occur more frequently and should therefore
be attributed more weight in the update for the time-varying intensities.

To see that the score ∇t is still zero in expectation, we need to recognize that - without con-
ditioning on event j occurring at time τt - the interarrival time of the pooled process (τt − τt−1)
is distributed as the minimum of the interarrival times of the k risk processes for all firms at risk
at time τt and is therefore distributed as Exp(K ′tλt). Combining this with the fact that yj,t is in
expectation equal to the the probability of event j being the next event to occur summed over all
firms, which is just equal to pj,t, it follows that the score indeed has expectation zero. These iden-
tities related to the minimum of a set of interarrival times can be found in any standard textbook
covering point processes (see e.g. Ross (2014)).

Following Creal et al. (2011b, 2013), I group the Standard & Poor credit ratings into two broad
groups: investment grade (IG) for corporate bonds rated BBB- or higher and sub-investment grade
(SIG) for corporate bonds rated below BBB-. This reduces the number of credit rating transitions
to a manageable amount (k = 4), as the only possible credit ratings we have to consider are IG
→ SIG, IG → DEF, SIG → IG and SIG → DEF, where DEF refers to a firm defaulting. For the
comparison I study three different factor specifications with the following structures for the matrix
C 

C1,1

C2,1

C3,1

1

 ,

C1,1 0
C2,1 0

0 1
1 0

 ,


1 0 0
C2,1 0 C2,3

0 1 0
0 0 1

 .
The first corresponds to a model where all rating transitions are driven by one time-varying factor
(r = 1), the second specifies one factor for downgrades and one factor for upgrades9 (r = 2) and the
third specifies one factor for IG downgrades, one factor for upgrades and one factor for downgrades
to default (r = 3).

For the scaling matrix Creal et al. (2013) use the inverse square root of the Fisher information
matrix (a = 1/2 in (4)), but in an earlier version of their work (Creal et al., 2011b) they also

9The two factor specification is different from the one considered in Creal et al. (2013) where the elements C1,2

and C2,2 are also treated as parameters to be estimated, making for a total of four free parameters in C. This is
because the data I consider showed little support for time-variance in the intensity of the upgrade transition SIG
→ IG (see Table 9), causing the second factor to be close to zero throughout the sample period and leading to the
C1,2 and C2,2 parameters to be ill-identified. Hence I apply a more restrictive structure for C, whilst still allowing
upgrades and downgrades to follow different dynamics.
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considered the inverse Fisher information matrix (a = 1) as scaling matrix for an equivalent fac-
tor DPMP model. Besides testing which of the above factor specification is superior, I also test
whether there is a performance difference between the three scaling matrix specifications presented
in Section 2 (a = 0, 1/2, 1). Although, one would intuitively expect the second-order information to
be beneficial, since the different scaling matrices imply non-nested models no preceding work has
tested such a hypothesis.

4.2.2 Application to Credit Rating Data and Model Comparisons

The Compustat database of Standard & Poor credit ratings contains the ratings of 5969 companies
over the period of 1978-11-01 to 2017-02-01, however the first rating class transition (as defined
above) occurred on 1986-01-01. In total 884 transitions from IG → SIG, 11 transitions from IG →
DEF, 745 transitions from SIG → IG and 782 transitions from SIG → DEF are recorded in the
dataset. For the IG to DEF risk process the data is therefore relatively sparse. The rating changes
are recorded at the monthly level, but the assumption that the firm specific counting processes are
orderly is not violated.

I first discuss the results regarding posterior model probabilities and the conclusions for the
model comparisons. Parameter estimation results are part of the analysis in Section 4.2.3. I con-
sider a total of 12 model comparisons: for each of the three factor structures I compare the identity
scaling option with the inverse square root scaling and the square root scaling with the inverse
scaling, and for each of the scaling matrices I compare the one factor specification with the two
factor specification and the one factor specification with the three factor specification. This re-
quires posteriors draws of all nine possible models, which I will refer to using the following naming
convention DPMPf-S for f equal to 1, 2, 3 factors and scaling matrix S equal to I for the identity
matrix, H for the inverse square root of the Fisher information matrix and Inv for the inverse of
the Fisher information matrix. For all nine models 400, 000 posterior draws are obtained using a
random walk (RW) MH algorithm with a Student-t proposal density with one degree of freedom.
The scale matrix for the proposal density was initialized at the identity and reset several times
to the sample posterior covariance based on several warm up runs. The step size was adjusted to
achieve acceptance rates between 0.25 and 0.5. The RW-MH method is chosen because of its ease of
implementation and because the DPMP model posteriors proved not challenging to the degree that
more advanced samplers such as those used in Section 4.1 are necessary. Also the generally easy
to implement AdMit-MH method proved challenging to apply across all nine models because the
optimization routines did not always converge to the extent that invertible Hessians could be ob-
tained. The ESSs for the parameters ranged between 3,000 and 8,000 and for all models the samples
could be collected in under 5 minutes. The RW-MH algorithm is implemented in the C language.
Marginal likelihoods are computed using the bridge sampling method with warp 3 transformation as
described in Section 3.2 and as implemented in the R package “bridgesampling” (Gronau et al., 2017).

For all models I used a N (0.05, 1) prior for all diagonal elements of A, a truncated normal
N (0.95, 1)I[−1<b·<1] prior10 for all diagonal elements of B, a N (0.5, 52) prior for the free elements
in C, apart from for C3,1 - the element corresponding to upgrades in the one factor model - for

10To obtain a proper truncated prior density function as required for marginal likelihood calculation I use the

following expression for the truncated normal: p(b·|µ, σ, ub, lb) =
φ
(
b·−µ
σ

)
σ
(

Φ
(
ub−b·
σ

)
−Φ
(
lb−b·
σ

)) , where φ(·) and Φ(·) are used

here to denote the standard normal density function and CDF respectively and ub and lb are the upper and lower
truncation bounds.
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which a N (−0.5, 52) prior is used, a N (−5, 52) prior for the baseline intensities w1, w3 and w4, and
a N (−10, 52) for the baseline intensity of the IG → DEF risk process w2. The prior means can be
considered as inspired by a combination of preceding work (e.g. Creal et al. (2011b, 2013)) and ML
estimates, whereas the prior variances are set such that the resulting priors are less informative than
the data. The approach is therefore somewhat similar to an empirical Bayes approach and follows
the general guidelines on the appropriate informativeness of priors for the purposes of objective
model comparison set forth in Kass & Raftery (1995).

Due to the significant influence priors can have on model comparison outcomes, I performed a
sensitivity analysis with varying degrees of diffuseness of the prior specifications. The results are
reported in Appendix B. The main conclusions are that the prior specifications considered did not
significantly affect the relative performance of the models. As expected, the more diffuse speci-
fications more strongly favored the models with fewer parameters but not to the degree that the
rankings of the models changed. Ultimately my choice for the priors as stated above is due to the
fact that the less diffuse priors considerably reduced the posterior uncertainty for several parame-
ters, hindering objective model comparison.

For all nine models the marginal log-likelihoods along with log-likelihoods and BICs based on
ML estimates of the parameters are reported in Table 3a. Double the log Bayes factors and ∆BIC
statistics for the hypotheses I test are displayed in Table 3b. Surprisingly - unlike in the study of
Creal et al. (2013) - the evidence does not favor the two factor models over the one factor models
since the Bayes factors with the one factor model as the null model versus the two factor model as
the alternative are negative for all three scaling matrix specifications. The evidence does however
strongly favor the three factor models over the one and two factor models. Also there is consistent
evidence that the the models with scaling matrices based on the Fisher information matrix out-
perform the identity scaling matrix models. Especially for the three factor model the data seems
to support the inclusion of second order information in the time-varying parameter update. The
evidence in favor of the models with inverse vs inverse square root scaling is less conclusive. The
Bayes factors comparing these models favor the inverse scaling for two out of three factor specifi-
cations, but the evidence is relatively weak (2log BF of 2 suggests little support in favor of the null
according to the commonly used guidelines proposed in Kass & Raftery (1995)).

The informal ML estimate based methods for non-nested model comparison seem to perform
quite well for these models. The relative rankings based on log-likelihood and BIC differ from those
based on marginal log-likelihood only in a few instances. Most notably the relative rank between
the inverse and inverse square root scaling matrix, for which the ML based methods prefer the
former over the later, contrasts with the Bayesian relative model probabilities. This is the only
hypothesis for which a different conclusion is reached based on Bayesian model comparison relative
to the informal ML estimation based methods. In general it does seem that the ML based methods
favor the alternative models (i.e higher factor models (with more parameters) and more second
order information in the scaling matrix) over the simpler null hypothesis models more strongly than
the Bayesian method of model comparison. This is evidenced by the ∆BIC statistics reported in
Table 3b which are higher than the corresponding 2log BFs for all but one model comparison. Since
the ∆BIC statistic serves as a rough approximation to double the log Bayes factor (Carlin & Louis,
2000) the two should be comparable. Especially higher factor models score better on the ∆BIC
statistic, suggesting that the penalty term for additional parameters does not fully compensate for
the added parameter uncertainty introduced by the higher factor models.
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Table 2: Likelihoods and model comparison results

(a) Marginal log-likelihoods, Log-likelihoods and Bayesian information criterion (BIC)
1 factor 2 factor 3 factor

Scaling Marginal
log-
likelihood

Log-
likelihood

BIC Marginal
log-
likelihood

Log-
likelihood

BIC Marginal
log-
likelihood

Log-
likelihood

BIC

Identity −15299.9 −15262.4 30544.6 −15304.6 −15265.5 30553.9 −15290.0 −15246.2 30522.3
Inverse sqrt −15295.5 −15258.1 30536.1 −15300.6 −15260.7 30544.4 −15285.2 −15240.5 30510.8
Inverse −15294.3 −15256.6 30533.0 −15299.5 −15258.4 30539.8 −15286.4 −15239.4 30508.5

(b) Bayes factors and ∆BIC statistics
1|0 2 logBF1|0 ∆BIC 1|0 2 logBF1|0 ∆BIC

1-H|1-I 8.6 8.5 2-I|1-I −9.5 −9.4
1-Inv|1-H 2.5 3.1 2-H|1-H −10.2 −8.3
2-H|2-I 8.0 9.6 2-Inv|1-Inv −10.5 −6.8
2-Inv|2-H 2.2 4.6 3-I|1-I 19.7 22.3
3-H|3-I 9.7 11.4 3-H|1-H 20.7 25.2
3-Inv|3-H −2.5 2.3 3-Inv|1-Inv 15.7 24.4

Notes: Estimates for the marginal log-likelihoods, regular log-likelihoods and Bayesian information criterion (BIC)
scores for all nine models based on a 400,000 draw sample from a random walk Metropolis-Hastings chain are
reported in (a). The implied Bayes factors and ∆BIC statistics for the 12 hypotheses under consideration are
reported in (b).

The plots of the posterior means of the log intensities - the predicted λij,t, which are the same
for all firms i due to the i.i.d. assumption for the intensities in the cross-section - displayed in
Figure 4 help shed light on the observed differences in model probabilities. The plots confirm the
finding reported in Koopman et al. (2008) and Creal et al. (2013) that the intensities of credit
rating upgrades seem to be driven by different dynamics as downgrades. This follows from the clear
differences between the predicted log intensities between the three factor and one factor models.
Similarly, the dynamics for default intensities seem to differ from the dynamics of the intensity for
regular downgrades from IG → SIG. The mean intensities for the two factor specification are not
reported for the sake of the clarity of the plots. As expected the predicted log intensities for the
two factor models follow a similar pattern as the three factor models for the upgrade risk process
and a similar pattern to the one factor models for the IG → SIG risk process.

The differences stemming from the different scaling matrices are less prominent, explaining why
the differences in marginal likelihoods for these models are smaller as well. Nevertheless, there
do seem to be some consistent differences that are particularly evident for the default risk process
intensities. The bottom plots in Figure 4 show that - when the intensities are relatively low -
the predicted log intensities of the model with inverse scaling appear clearly more responsive than
those predicted by the model with identity scaling. This effect of the inverse Fisher information
scaling matrix is as expected based on the discussion in Section 4.2.1. Since the model comparisons
prove the models with inverse scaling to be preferred over those with identity scaling, this greater
responsiveness is likely a reflection of the inverse scaling models enhanced capacity to capture the
time-variation in intensity. The log-intensities predicted by the models with inverse square root
scaling matrix also appear more responsive relative to the models with identity scaling but not to
the same degree as those with the inverse scaling.
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Figure 4: Plots of the mean log intensities for credit rating transitions as predicted by the one and three factor
dynamic pooled marked point process models both with identity and Fisher information scaling matrices for the
period 1986-01-01 until 2017-02-01. For all four models the means are based on 400,000 posterior draws produced
with the random walk Metropolis-Hastings algorithm.

For the upgrade transition the plot of the log intensities predicted by the three factor models
suggest that there is actually very little time-variation in intensity for this rating transition. Next,
I consider the question of time-variation of the intensities in more detail as it helps understand
why the evidence did not support the two factor models over the one factor models. Using the
Bayesian approach to hypothesis testing I show that there is indeed little evidence to support that
the upgrade intensity is time-varying. In addition I show how the Bayesian framework enables an
assessment of the evidence for time-variance of the intensity of the IG → DEF process in the three
factor models. This hypothesis involves the joint posterior for C2,1 and C2,3 and hence knows no
straightforward alternative in an ML setting.

4.2.3 Time-Variance of the Intensities of Rating Transitions

Evidently the DPMP models inherently assume that the intensities of rating transitions are time-
varying. The data might however not necessarily support such time-variance. The suspicion incited
by the plot in Figure 4 regarding the lack of time-variance in the log intensity of the upgrade tran-
sition, is further raised by the HPD plots in Figure 5a. The 99% HPD bounds for the intensity of
the upgrade intensity are wide relative to the IG → SIG and SIG → DEF intensities and the mode
seems relatively constant. The time-variance for the IG → DEF intensity also seems questionable
mainly due to the large uncertainty proportionate to its level. But for the IG→ DEF intensity this
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is hard to judge from the HPD plots due to its generally very low level.

Traditionally such hypotheses of no time-variation in parameters can be investigated more for-
mally in time-varying parameter models by testing whether some of the autoregressive coefficients
(typically the diagonal elements for a diagonal A in the GAS update (2)) are significantly different
from zero at some significance level α. This is equivalent to testing whether zero is inside some
1 − α confidence interval for the autoregressive coefficient of interest. Similarly, using a Bayesian
approach we could consider the strength of evidence for time-variance in the log intensity of the SIG
→ IG transition process by considering whether the (1− α)100% HPD region of the a2 parameters
in the three and two factor models contain zero11. We can similarly test for time-variance of the log
intensities of the other risk processes for which a row in C contains a one. In certain other instances
we must consider the estimated parameters in C to assess time-variation. For example for the log
intensity of the SIG → IG transition in the one factor model, no time-variation is implied if C3,1 is
zero. This covers all cases with the exception of the IG→ DEF transition in the three factor model
for which both C2,1 and C2,3 contribute to the time-variance of the process. I consider this special
case separately.

Table 9 contains the estimation results for the parameters of the three models with the inverse
Fisher information as scaling matrix. Due to space considerations the estimation results for the
other six models are deferred to Appendix C. For the A parameters and for the C parameters of
the one and two factor models, asterisks * and ** are used to indicate whether either the 95% or 99%
HPD regions of the parameters include zero. This provides an indication of the strength of evidence
for the time-variance of the log intensities. The results suggest that as we expected the evidence
in support for time-variance is weak for the log intensity of the SIG → IG transition. In the three
factor model the 95% HPD region of a2 includes zero and for the two factor model the 99% HPD
region includes zero. Oddly, in the one factor model there does seem to be support for time-variance
of the the log intensity of the SIG→ IG transition. The upgrade process does depend negatively on
the time-varying factor in the one factor model (C1,3 < 0). This is consistent with the findings in
Creal et al. (2013) and - since the time-varying factor is identified by a downgrade process - suggests
that upgrade intensities follow a process that moves oppositely to the downgrade intensities. For
the factor models with identity and inverse square root scaling matrices the parameter estimation
results tell a similar story. For the two factor model with identity scaling matrix we however find
that the 99% HPD region for the C2,1 also includes zero, confirming that time-variance for the log
intensity of the IG → DEF transition is also not supported as strongly by the evidence as are the
log intensities of the IG → SIG and the SIG → DEF transitions.

To assess time-variance for the log intensity of the IG→ D transition in the three factor models
we need to consider the probability that both C2,1 and C2,3 are zero at the same time. This is
not as straightforward as simply evaluating the HPD regions of each of the parameters separately
and interpreting the fact that both include zero as limited evidence for time-variance. The bottom
plot in Figure 5b shows how such an approach ignores the correlation between the parameters. A
more valid approach would be to consider the amount of draws for which both C2,1 and C2,3 are
less than zero. For the inverse scaling model this is only the case for 167 out of 400,000 draws and
for the identity and inverse square root scaling models this occurs for only 114 and 60 draws. The
respective posterior probabilities for these events are therefore 4.2×10−4, 2.9×10−4 and 1.5×10−4

11Alternatively, we could formally consider the hypothesis of time-variance in the Bayesian model comparison
framework (i.e. estimating a model with a2 and b2 restricted to zero and comparing it with an unrestricted model).
The HPD interval approach is however significantly less involved as it does not require estimation of a new model.
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Table 4: Parameter estimates for the dynamic marked point process one, two and three factor models with
inverse information matrix scaling (DPMP1-Inv, DPMP2-Inv and DPMP3-Inv respectively)

DPMP1-Inv DPMP2-Inv DPMP3-Inv

θ[1] E(·|YT ) SE NSE θ[2] E(·|YT ) SE NSE θ[1] E(·|YT ) SE NSE
(×10−2) (×10−2) (×10−2)

a1 0.047 0.005 0.006 a1 0.046 0.005 0.007 a1 0.019 0.003 0.005
a2 0.008** 0.004 0.007 a2 0.007* 0.005 0.008

a3 0.038 0.003 0.005

b1 0.961 0.016 0.020 b1 0.961 0.016 0.023 b1 0.964 0.017 0.027
b2 0.716 0.313 0.686 b2 0.571 0.383 0.802

b3 0.963 0.016 0.029

C1,1 0.387 0.042 0.052 C1,1 0.393 0.041 0.064 C2,1 0.199 0.980 1.588
C2,1 0.890 0.329 0.416 C2,1 0.888 0.327 0.510 C2,3 0.779 0.471 0.814
C3,1 −0.137 0.041 0.049

d1 −5.402 0.121 0.163 d1 −5.418 0.123 0.210 d1 −5.477 0.160 0.262
d2 −10.054 0.455 0.576 d2 −10.073 0.457 0.764 d2 −10.125 0.472 0.740
d3 −5.504 0.058 0.076 d3 −5.447 0.061 0.115 d3 −5.463 0.047 0.088
d4 −5.673 0.303 0.403 d4 −5.706 0.305 0.538 d4 −5.755 0.299 0.487

Accept 0.34 0.30 0.21

Notes: Estimation results for the parameters of the DPMP1-Inv, DPMP2-Inv and DPMP3-Inv models based on a
400, 000 draw long Markov chain produced using the random walk Metropolis-Hastings algorithm. Reported for all
three models and for all parameters are posterior mean (E(·|YT )), standard deviation (SE =

√
var(·|YT )) and

numerical standard error (NSE). For the a· parameters and the C·,·parameters of the one and two factor models, one
star (*) is used to denote that the 95% highest posterior density region (HPD) includes zero and two stars (**) are
used to denote that the 99% HPD includes zero. Also reported for all three Markov chains are the acceptance rates.

suggesting that the evidence against time-variance for the log intensity of the IG → D transition is
quite weak in these models. In contrast, a naive assessment of the individual p-values of the C2,1

and C2,3 parameters in an ML setting would have led convincingly to the conclusion that there is no
time-variance in the log intensity of the IG→ D process (i.e. the null hypothesis of no time-variance
cannot be rejected).

The top plot in Figure 5b illustrates how low values for a2 cause considerable uncertainty in the
corresponding b2 parameter. This makes sense because since ω2 = 0 , if a2 then also equals zero the
b2 parameter is unidentified given that f1 = 0. Since a2 is close to zero for all models, the resulting
uncertainty in b2 explains why the evidence supports the one factor models over the two factor
models. The separate factor for the upgrade process introduces a lot of additional uncertainty in
the model without much gain in ability to fit the data since no time-variance for the upgrade factor
can also be captured by the one factor model. Consequently the marginal likelihood deteriorates in
moving from the one to the two factor model.

The analysis presented here arrives at slightly different conclusions regarding the dynamics of
the intensities of credit rating transition as the preceding work of Creal et al. (2013). Although,
time-variance for the second factor seems doubtful considering their reported parameter estimates
as well, they do find considerable improvement in BIC and likelihood by using the two factor instead
of the one factor specification. These differences are most likely due to the different datasets being
considered, as they had access to a larger dataset of Moody rating events for all US corporates. As
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(a) DPMP3-Inv - HPD of predicted intensities (b) Bivariate posteriors

Figure 5: The 99% highest posterior density (HPD) regions of the intensities of credit rating transitions for the
period 1986-01-01 to 2017-02-01 as predicted by the dynamic pooled marked point process model with three time-
varying factors and inverse information matrix as scaling matrix (DPMP3-Inv) are plotted on the left. Posterior
draws of the parameters a2 and b2 are plotted in the top right and the posterior draws of the parameters C2,1 and
C2,3 are plotted in the bottom right for the DPMP3-Inv model. In the bottom right plot, draws for which both C2,1

and C2,3 are less than zero are plotted as red dots. The HPD regions and joint distribution plots are based on a
400, 000 draw sample from a random walk Metropolis-Hastings Markov chain.

a consequence of this richer dataset there is probably more support for time-variance in the upgrade
rating transitions and, by extension, better relative performance for the two factor specification.

4.3 Multivariate Student-t Random Coefficients Covariance Model

The multivariate counterparts to univariate volatility models come in the form of time-varying co-
variance and correlation models. Since time-variance in the dependencies between financial asset
returns is now commonly accepted (See e.g. Longin & Solnik (1995)), the ability to model the
temporal developments of these dependencies is paramount to advancing understanding of financial
market dynamics. In addition, covariances and correlations are crucial inputs to many practical
applications such as portfolio selection, hedging, option pricing and VaR estimation.

Central to the modeling of time-varying covariance matrices is the trade-off between flexibility
in the specification of the dynamics and parsimonious parameterization (Bauwens et al., 2006). For
the more flexible models, such as the VEC and BEKK12 models (Bollerslev et al., 1988, Engle &
Kroner, 1995), the dimension of the parameter space quickly turns unmanageable as the number of
assets to be modeled increases. Even in the case of a mere three assets the number of parameters
for the unrestricted versions of the VEC and BEKK are 78 and 24 respectively. Consequently, most
applications of these models in the literature have been to either very small sets of assets - typically

12VEC is simply short for vectorized as the model specifies dynamics directly for the vectorized covariance matrix,
whereas BEKK is an acronym that stems from synthesized work of Baba, Engle, Kraft and Kroner.
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only 2 to 3 - or through imposing restrictions on the parameters. The popular Dynamic Conditional
Correlation (DCC) model proposed by Engle & Kroner (1995) is in most applications also estimated
with a parametrization that restricts all correlations to follow similar dynamics (scalar DCC, see
Caporin & McAleer (2012)). Nevertheless, unrestricted versions do seem to outperform restricted
versions as shown in Burda & Maheu (2013) and Hafner & Franses (2009), suggesting that when
the data permits the extra flexibility should be utilized.

Burda & Maheu (2013) illustrate that the difficulty in estimating fully parameterized covariance
models for even a moderate number of assets stems from the data containing little information
for particular parameters, causing the likelihood to be extremely flat in certain dimensions. This
greatly challenges the ability of optimization routines to converge, limiting applications of the ML
method for fully parameterized covariance models. Several solutions have been proposed, mostly
for DCC type models, that address the optimization problem directly. Engle (2007) and Engle
et al. (2008) for instance propose to split up the optimization of the likelihood into many smaller
optimizations that fit time-varying correlation coefficients for either two assets or small subsets of
assets at a time. Using these methods it is however not clear how to ensure positive definiteness of
the resulting covariance matrices. Another recent approach that does allow positive definiteness to
be enforced, introduced by Bauwens et al. (2016), relies on a highly robust optimization technique
based on a quasi-likelihood, which allowed them to fit unrestricted Hadamard DCC models for up to
30 assets. The Bayesian approach is also proving more robust for covariance models than straight-
forward likelihood optimization approaches, as shown by Burda & Maheu (2013) and Burda (2015)
for unrestricted BEKK models for up to 5 assets. For the unrestricted 5 asset model analyzed here
I also find the Bayesian approach to prove more robust, since simple optimization routines did not
converge. However, beyond this number of assets, even the Bayesian approach breaks down because
of excessive numerical instabilities. More importantly, both the Bayesian approach and the robust
optimization technique presented by Bauwens et al. (2016), do not directly address the underlying
issue identified by Burda & Maheu (2013), regarding the data being highly uninformative for certain
parameters in fully parameterized models.

For the unrelated but widely used class of generalized linear models there exists a rich tradi-
tion of coping with the data being highly uninformative for certain parameters through employing
Bayesian hierarchical modeling techniques (e.g. random effects or mixed effects models and Spike-
and-Slab regressions, see Browne & Draper (2006) for a comparison of Bayesian and ML techniques
for such models). These techniques allow prior knowledge regarding similarities and relations be-
tween certain sets of parameters to be expressed and exploited to enable inference for models of far
greater complexity - with the number of parameters frequently exceeding the number of observa-
tions - than what would be possible without the hierarchical structure. In this section I consider the
approach of imposing hierarchical normal priors on a subset of the autoregressive parameters A and
B in the GAS update equation, for the multivariate Student-t GAS model proposed by Creal et al.
(2011a), parametrized such that it allows independent dynamics for all elements of the correlation
matrix. The hierarchical priors express the belief that the subsets of the parameters for which
they are specified, are highly similar and the information in the data regarding these parameters
can therefore be shared among the parameters in these subsets. The use of hierarchical modeling
techniques in the context of volatility models has been explored previously by Brownlees (2015) to
improve estimation in a large panel of GARCH models, but have yet to be applied in a Bayesian
framework to time-varying covariance or correlation models.

In this Section I present results for the hierarchical multivariate GAS-t model estimated on
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datasets of 5 but also 10 portfolios. The 5 asset case allows for comparison with an equivalently un-
restricted GAS-t model without hierarchical priors, whereas the 10 portfolio case serves to illustrate
that the hierarchical modeling approach generalizes well to far higher dimensional covariance models
than would be possible without the hierarchical priors. For both the 5 and 10 asset applications
I also estimate a more restricted covariance model for which the dynamics of all correlations are
governed by the same autoregressive coefficients, to show that the hierarchical models additional
flexibility does result in observable differences in predicted correlations. In fact, based on the re-
sults of the 5 asset case, it appears that the hierarchical covariance model sacrifices very little if any
flexibility in its modeling of the dynamics of the correlations relative to the unrestricted model. In
terms of model probabilities the evidence favors the hierarchical model over the restricted model for
both datasets but is significantly stronger for the 10 asset model. The unrestricted model clearly
performed worst in terms of posterior model probabilities, as a result of severe parameter uncertainty.

To place these models in the context of the larger literature on time-varying covariance models,
the multivariate Student-t GAS model may be considered as similar in its specification to the DCC
model (Creal et al., 2011a). The version of the GAS-t that I refer to as being unrestricted is similar
in terms of flexibility of the correlation dynamics as the Hadamard DCC and the restricted version
is similar to the scalar DCC. Bar the models estimated using the specialized optimization proce-
dures mentioned above, the 10 asset hierarchical model represents one of the largest time-varying
covariance models that allows for separate dynamics for each correlation pairs, considered in the
literature thus far. In theory the hierarchical technique should easily extend to covariance models
of even far greater number of assets and should arguably only become more powerful as more com-
plex relationships among the assets can start being incorporated into the hierarchical prior structure.

For the GAS-t model however, the constraints for estimating larger models are also computa-
tional in nature. Its GAS update specification causes computational costs to increase quadratically
with the number of assets, making it ill-suited to extend beyond 10 assets. The hierarchical and
computational techniques presented here however easily transfer to simpler DCC models for which
the cost scale only linearly in the number of assets meaning even larger sets of assets could be
modeled with similar flexibility. I proceed by first introducing the model, the hierarchical prior
setup and addressing the computational hurdles that need to be overcome to estimate the models
within a reasonable time frame. In Section 4.3.5 and 4.3.6 the empirical applications are discussed.

4.3.1 The Multivariate GAS-t Model

Creal et al. (2011a) specify a multivariate Student-t distribution for a k × 1 vector of asset returns
yt, which takes the form13

p(yt|Σt, ν̄) =
Γ
(

1+kν̄
2ν̄

)
Γ
(

1
2ν̄

)( (1−2ν̄)π
ν̄

)k/2
|Σt|1/2

(
1 + ν̄

y′tΣ
−1
t yt

1− 2ν̄

)− 1+kν̄
2ν̄

.

The scale matrix is defined as a function of a set of time-varying parameters Σt = Σt(ft), and the
GAS update equation (2) is defined with the scaling matrix (4) set equal to the inverse of the Fisher
information matrix. Creal et al. (2011a) derive the following generic score and information matrix

13Just as for the Beta-Gen-t-EGARCH, I reparameterize the distribution as originally formulated by (Creal et al.,
2011a) with the inverse degrees of freedom parameter so as to enable uninformative prior specification.
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with respect to ft

∇t =
1

2
Ψ′tΣ

−1
t⊗
(
wtyt⊗ − vec(Σt)

)
,

It =
1

4
Ψ′tJ

′
t⊗
(
gG− vec(Ik) vec(Ik)

′)Jt⊗Ψt,

where Ψt = ∂vec(Σt)/∂f
′
t . The notation vec(·) is used to denote the operator that stacks the

columns of the matrix to which it is applied on top of each other into one column vector and
the application of the subscript ⊗ to a matrix is used to denote the Kronecker product of the
matrix with itself. Also, the matrix Jt is defined as Σ−1

t = JtJ
′
t, the matrix G = E((zkz

′
k)⊗),

where zk is a k-dimensional vector of N (0, 1) distributed random variables, the scalar wt =
(1 + kν̄)/(1 − 2ν̄ + ν̄y′tΣ

−1
t yt) and the scalar g = (1 + kν̄)/(1 + 2ν̄ + kν̄). Note that since we

known the first through to fourth moments of zk, the matrix G is known beforehand and consists
of 0’s, 1’s and 3’s.

Creal et al. (2011b) provide several options for the link function that maps ft to Σt. The scale
matrix is first decomposed as

Σt = DtRtDt,

whereDt is a diagonal matrix with the time-varying standard deviations on its diagonal and Rt the
time-varying correlation matrix. I choose to use the specification with the log link function for the
variances and the hyperspherical coordinates transformation for the correlation matrix, such that

Rt = X ′tXt,

Where Xt is an upper triangular matrix with its elements defined as

xij,t =


1 if i = j = 1,

cos(φij,t)Π
i−1
l=1 sin(φlj,t) if i < j,

Πi−1
l=1 sin(φlj,t) if i = j,

0 otherwise,

(22)

for i, j = 1, ..., k. The vector of time-varying parameters is then defined as follows

ft =

[
log(diag(D2

t ))
φt

]
,

where φt is the vector containing the k(k − 1)/2 angles φij,t for j = 1, ..., k − 1 and i < j. This
specification has several appealing properties. The log link function guarantees that the variances
remain positive without requiring further restrictions on the parameters in the GAS update equa-
tion (2). The hyperspherical coordinate transformation described in (22) ensure that the generally
challenging condition of positive definiteness of the correlation matrix Rt is met and simultaneously
restrains the diagonal elements of Rt to one and the off-diagonal elements to be less than one in
absolute value (Jaeckel & Rebonato, 1999). Moreover, Pourahmadi & Wang (2015) show that Xt

is uniquely identified if the angles are restricted to the range (0, π). As mentioned by Creal et al.
(2011a), the range restrictions on the angles required for identification do not need to be enforced
as it is found in practice that possible minor violations typically do not cause numerical issues.
Since, the number of angles is the same as the number of free elements in the correlation matrix,
the model has similar flexibility in describing the dynamics of covariances as unrestricted BEKK or
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DCC models.

The time-varying factor specification in (23) implies the Jacobian matrix of the function mapping
ft to Σt takes the following form

Ψt =
1

2

(
Ik ⊕Σt

)
SD +Dt⊗

(
Ik2 + Ck

)(
Ik ⊗X ′t

)
ZtSφ, (23)

where the operator ⊕ denotes the Kronecker sum, the matrix Ck is known as the commutation ma-
trix and is defined by the relation Ck vec(P ) = vec(P ′) for some arbitrary matrix P , the matrices
SD and Sφ are defined respectively such that vec(Dt) = SDft and φt = Sφft and the matrix Zt
represents the matrix of derivatives ∂ vec(Xt)/∂φ

′
t, which are defined in Creal et al. (2011a).

Following Creal et al. (2011a) I consider a slightly modified and restricted versions of the time-
varying parameter GAS update equation (2). First, the coefficient matricesA andB are constrained
to be diagonal. Interaction effects between the time-varying factors are still partly incorporated
through the scaling matrix. Second, the reparameterization in (3) is used and the ω̃ vector is fixed
at the outset such that Σt(ω̃) equals the sample covariance. This approach of fixing the long-run
mean of the covariance to an unbiased estimate is commonly used when estimating time-varying
covariance models and is known as targeting (Caporin & McAleer, 2012). The usefulness of targeting
stems from the fact that sensible parameter restrictions can generally not be applied to the intercept
of the time-varying process and therefore the dimension of the parameter space would still be of
order O(k2). Similarly, hierarchical grouping such as introduced in the next subsection does not
make sense for the ω̃ parameter. The long-run mean of the angles can be obtained by inverting the
one-to-one mapping from Xt to Rt and plugging in the sample estimate of the correlation matrix.
The exact expressions for the angles given an estimate of the correlation matrix can be found in
Pourahmadi & Wang (2015).

4.3.2 Hierarchical Prior Specification

Section 3.3 introduced the notion of a hierarchical prior as the specification of an additional layer
of prior distributions for the parameters of the prior on θ. Applications of such hierarchical priors
commonly serve the purpose of grouping sets of parameters that we a priori know to have common
features. This is mostly useful given a scenario where the data is little informative with respect to
certain groups of parameters. In such cases it is likely beneficial to pool the information regarding
the parameters of the same group to better inform their joint posterior. Considering the discussion
a the start of this Section (4.3), regarding the large parameter uncertainty typical in time-varying
parameter models, a hierarchical prior seems appropriate.

In this section I introduce a hierarchical prior setup for the autoregressive parameters in the
diagonal A and B matrices that correspond to the time-varying angles φt in the multivariate GAS-t
model. In part due to the complex relation that maps the angles to the observable correlation, we
can generally consider ourselves ignorant regarding differences in the autoregressive processes of the
angles. This contrasts with for instance the autoregressive parameters of the variances or the inverse
degrees of freedom parameter, which we assume to be different in nature from the autoregressive
angle parameters. This ignorance regarding within group differences implies a priori exchangeability
(Gelman et al., 2014, Ch. 5), implying that we may assume a priori that the elements from these
two sets of autoregressive parameters are generated by the same prior distributions. Let these sets
of parameters be denoted by aφ and bφ respectively, and let the priors for their elements be defined
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as

p(ai,φ) = N (µa,φ, σ
2
a,φ), (24)

p(bi,φ) = N (µb,φ, σ
2
b,φ),

for i = 1, ..., k(k − 1)/2. The data is often inadequate to properly identify all autoregressive pa-
rameters for the hyperspherical angles. Even in the moderate dimensional applications presented
in Section 4.3.5 (k = 5 and k = 10), the difficulty in estimation is evidenced by the notably high
posterior variance of several of the bφ parameters (see Table 10).

Generally, the time-varying processes that govern the dynamics of the variances are compara-
tively well identified and doing inference on the autoregressive parameters of these processes proved
nonchallenging. In such cases where the data is highly informative, there is little benefit to impos-
ing hierarchical priors. Therefore, the choice is made to apply the hierarchical priors only to the
autoregressive angle parameters. When much larger panels of assets are being modeled however,
it is likely that inference for the autoregressive variance parameters would also benefit from the
information pooling generated by hierarchical modeling. This effect is demonstrated by Brownlees
(2015).

In their empirical application Creal et al. (2011a) take the approach of further restricting the
autoregressive parameters for the time-varying angles to single scalars, setting ai,φ = a1,φ and
bi,φ = b1,φ for all i. I consider models both with and without these restrictions and compare them
with the model that imposes the hierarchical normal priors (24) on the autoregressive parameters
aφ and bφ. In terms of flexibility and parsimony, the hierarchical model occupies the middle ground
between the fully parameterized and restricted versions. The advantage of the Bayesian hierarchical
approach is that the data determines the extent to which the model is either flexible, when the data
is highly informative regarding the autoregressive angle parameters, or parsimonious, when the data
is little informative and the parameters are pulled to a common mean.

Due to the similarity in structure of the prior specification in (24) with the priors on the regression
coefficients in random effects models, I refer to the hierarchical covariance model as the multivariate
random coefficient GAS-t model.

4.3.3 Efficient Gradient Computation

Doing Bayesian inference for both the hierarchical and nonhierarchical multivariate GAS-t model
is challenging for many reasons. Since the dimensionality of the parameter space increases rapidly
with k - for k = 5 the multivariate GAS-t model without the further restrictions on the diagonal
elements of A and B contains 35 parameters and 115 when k = 10 - HMC is likely the most viable
MCMC method.

The computational costs for applying HMC to the multivariate GAS-t model are however con-
siderable. Likelihoods of time-varying covariance and correlation models are already notoriously
expensive to evaluate for even moderate k due to the matrix operations needed at each time se-
ries observation t to update the time-varying parameters. Unlike competing multivariate GARCH
models that require matrix operations on matrices that are at most of dimension k× k inside their
recursive filters, the GAS-t model requires matrix operations on k2 × k2 matrices. Gradient evalu-
ations are unavoidably even more expensive. Particularly, standard symbolic derivatives of matrix
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operations can quickly blow up in dimension. For the multivariate GAS-t model, for which the sym-
bolic derivatives are included in Appendix A for reference, the gradient evaluations require matrix
multiplications on k4 × k4 matrices. Consequently, even for models of a moderate number of assets
the computational cost of symbolic derivatives are generally prohibitive for the multivariate GAS-t.

I therefore resort to using techniques from Automatic Differentiation (AD). AD comprises a
set of techniques that allow for analytical evaluations of the derivative of a function specified in
the form of a computer program. Moreover, the derivative is evaluated at machine accuracy and
should in theory require only a small constant multiple of the computational cost of the original
computer program (Hascoet & Pascual, 2013). For a general reference on automatic differentiation
see Griewank & Walther (2008). In Appendix D I also provide a brief introduction to the two
main approaches to AD, forward mode and reverse mode differentiation, and show how the tech-
niques can be adopted to compute the gradient of the multivariate GAS-t log-likelihood far more
efficiently compared to evaluating the likelihood using the symbolic expressions in Appendix A.2.
In our case we are interested in the gradient of a function with scalar output, making reverse mode
differentiation the preferred choice due to what is known as the “cheap gradient principle” Griewank
& Walther (2008). For the C language, a free software tool that performs reverse mode automatic
differentiation through source code transformation14 is the Tapenade Automatic Differentiation tool
(Hascoet & Pascual, 2013).

However, programs that evaluate the likelihood of GAS models typically contain a long for loop
of T − 1 iterations. This loop can generally not be eliminated due to the recursive definition of
the time-varying parameters and challenges the automatic tools in their ability to produce efficient
reverse mode derivatives. Reverse mode differentiation namely works by backwards application
of the chain rule - computing the derivatives of the inputs with respect to the outputs of all the
elementary operation that constitute the complete function. Reverse mode differentiation hence
requires most of the intermediate results used in a function evaluation to be stored (see Appendix D
for more details). The large for loop needed to evaluate GAS-likelihoods introduces a tremendous
number of intermediate products that grows with T , making the default “store-all” approach used
by the Tapenade software very memory intensive. This applies especially for the multivariate GAS-
t model which requires storage of many intermediate matrix products of k2 × k2 dimension (see
Appendix A). Knowledge of this special structure can however be exploited through adjustments to
the transformed code produced by Tapenade so as to greatly enhance the efficiency of the gradient
computation.

The solution I employ is a checkpointing strategy; meaning snapshots of the currents state of a
program are stored at certain points in the gradient program. In the backward sweep to compute
the gradient, parts of the program are then recomputed starting from these strategically placed
checkpoints (see e.g. Griewank (1992)). Checkpointing revolves around the balancing of memory
requirements with the additional costs of recomputing parts of the program. For computer pro-
grams of GAS model likelihoods a natural strategy would be to place checkpoints at the end of
every iteration in the for loop, since a complete snapshot of the current state of the program can
be stored in the vector of time-varying parameters ft. The resulting gradient code requires only
the storage of a T × n matrix to store ft for t = 1, 2, ..., T and the additional derivative arrays
to store the intermediate matrix derivative results of one iteration. These derivative arrays are of

14This refers to the technique that is used by Tapenade to construct the gradient code, which is more challenging
but results in more efficient code as the more common alternative technique of operator overloading (Hascoet &
Pascual, 2013).
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equal dimension as the original arrays for the intermediate results. Total storage requirements thus
equal twice that of the original code plus an amount that diminishes in significance as k increases.
Computational cost are fixed at roughly a three times multiple of the original likelihood as a result
of one forward pass to compute all ft and one backward pass that requires a re-computation of
intermediate results and a derivative computation at each time t.

In the applications I consider, the additional storage requirements had minimal impact on per-
formance and the tripling of computational time relative to a single likelihood evaluation proved
quite close. Computational time for the gradient program tuned out to be roughly a four times
multiple of the original program. If however, the model is applied to longer time series, for instance
daily data for a 20 year period with moderate k = 5, the additional storage of all ft might have
considerable adverse impact on performance. In such instances alternative storage schemes where
ft is stored only at larger intervals or a more advanced binomial checkpointing strategy (see e.g.
Griewank (1992)) might be more efficient.

Besides adjusting the code for the gradient produced by Tapenade with the above described
checkpointing strategy, I also hand-coded several of the matrix derivatives using the adjoint matrix
derivative rules presented in Giles (2008). For certain matrix operations such as matrix inversions
the source code transformations are considerably less efficient than analytical matrix expression.

4.3.4 Coping with Large Variation in Posterior Curvature

A further complication to applying HMC to the multivariate GAS-t model comes from the difficulty
in estimating the posterior variance needed to set the mass matrix. As mentioned in Section 3.1.3,
when the curvature of the posterior varies strongly with position using HMC with the inverse mass
matrix set to the posterior covariance tends to result in poor performance. The reason being that
the mass matrix attempts to globally decorrelate the parameters. This works well for elliptically
shaped Gaussian distributions, but the further removed from Gaussian the posterior is, the less
effective a fixed mass matrix.

For the multivariate GAS-t models I encounter two sources of significant variation in curvature.
The first is specific to the unrestricted nonhierarchical model where the stationarity constraints on
B are highly restrictive for certain angles, causing harsh cut-offs in the posterior range. The second
is a well known pathology associated with hierarchical variance parameters, that the specification
as in (24) induces strong prior correlations for the parameters aφ and bφ with σa,φ and σb,φ re-
spectively. This correlation is highly local since for small values of hyper variance parameters the
conditional prior variance of the autoregressive parameters is very small and vice versa for large
values of the variance parameters, resulting in a funnel shaped prior distribution (see Betancourt
& Girolami (2015)). If the data contains little information regarding the autoregressive parameters
much of this local variation in prior correlation persists in the posterior.

The first source is hard to address and is simply a consequence of the model not being well
identified. Introducing stronger prior information is the logical Bayesian solution. Also due to
the fact that the parameters in θ are relatively independent in the multivariate GAS-t model, the
strategy of restricting the mass matrix to be diagonal proves reasonably effective in the application
presented below.

Since the second source of nonglobal curvature is common for many hierarchical models there is
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actually a body of literature that considers potential solutions. The common solution, discussed in
Papaspiliopoulos et al. (2007), involves a different parameterization of the prior setup in (24) known
as the noncentered parameterization. In this case the resulting parameterization for the elements
in aφ will for example be of the form

ai,φ = µa,φ + σa,φξa,i (25)
ξa,i ∼ N (0, 1).

Under this setup we no longer sample aφ directly. The gain that we achieve under (25) is that
σa,φ and ξa,i are a priori independent. Thus in cases of uninformative data regarding aφ, there will
be no challenging prior dependencies that shape the posterior. The difficulty with applying this
setup in the multivariate random coefficient GAS-t model is that if the data actually is informative
regarding the autoregressive parameters the noncentered parameterization has the opposite effect
and induces strong posterior correlation between σa,φ and ξa,i and the centered parameterization
(24) should be the preferred choice. In practice it shows that the degree to which the data is infor-
mative regarding the autoregressive angle parameters varies greatly among the angles and needs to
be deduced by trial and error. In the moderate dimensional k = 5 application presented in the next
section, the centered parameterization sufficed. For the larger k = 10 application, the noncentered
parameterization proved to allow for more efficient sampling.

An alternative solution that can be explored in future research is to consider more advanced
extension of HMC that can cope with local variation in curvature such as Riemannian HMC (RHMC)
(Girolami et al., 2009), which was shown highly effective in hierarchical models by Betancourt &
Girolami (2015). RHMC might however by too computationally demanding for high-dimensional
GAS models and approximating versions such as proposed by Burda & Maheu (2013) or Zhang &
Sutton (2011) might be more appropriate.

4.3.5 Application to 5 Industry Portfolios

I estimate the multivariate random coefficient GAS-t (RC-GAS-t) model, the restricted multi-
variate GAS-t (s-GAS-t) model, which has all angle factors driven by the same scalars, and the
fully parameterized multivariate GAS-t model on the set of 5 industry stock portfolio daily re-
turn series for the period 2007-02-27 until 2010-03-02 obtained from the Kenneth French website
(source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, see
Figure 6).

To facilitate model comparison I specify weakly informative priors on all autoregressive param-
eters and the hyperparameters in (24). This implies a N (0.05, 0.52) prior for the nonhierarchical
nonzero elements of A for all three models and for the µa,φ hyperparameter, and a truncated
N (0.95, 0.52)I[−1<b·<1] prior for the nonhierarchical nonzero elements of B for all three models and
for the µb,φ hyperparameter. Following Gelman (2006) and Polson & Scott (2012), I use a weakly
informative half-Cauchy prior with the scale parameter set to 0.25 for the hyper variance parameters
σa,φ and σb,φ. Since the inverse degrees of freedom parameter is shared among all three models
a diffuse prior on the interval (0, 1/2) is admissible. The constraints for stationarity and finite
variance of the yt are enforced using the approach by Neal (2011) described in Section 3.1.3. For
all three models a 1000 iteration warm up run is used to estimate a diagonal mass matrix and tune
the step size and the number of Leapfrog steps, after which 40,000 draws were produced. The run
time was approximately 8 hours for the unrestricted GAS-t and RC-GAS-t models and 2 hours for
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(a) Consumer Durables, NonDurables,
Wholesale, Retail, and Some Services

(b) Manufacturing, Energy, and Utilities

(c) Business Equipment, Telephone and
Television Transmission

(d) Healthcare, Medical Equipment, and
Drugs

(e) Other

Figure 6: Daily returns on 5 Industry Portfolios for the period 2007-02-28 to 2010-03-02.

the s-GAS-t model. Resulting estimates of posterior means and variances are reported in Table 10.

The standard error (SE) estimates reveal that particularly for several of the bφ parameters
in the unrestricted model there is considerable parameter uncertainty. Similar as for the DPMP
models the large uncertainty in b parameters can be traced back to limited evidence in support
for time-variance of several of the angle parameters causing identification issues for the b parame-
ters. The SEs are generally the largest for the bφ parameters for which the 95% HPD regions of
the corresponding aφ parameters contain zero. This carries over in odd estimates for the means,
such as 0.484 for b5,φ, which are far removed from the average estimates for bφ produced by the
other two models. In the RC-GAS-t model, the bφ parameters clearly benefit from information
pooling as the estimates are all close to the hyper mean parameter µb,φ, leading to substantial re-
duction in parameter uncertainty relative to the unrestricted model. For the aφ parameters in the
unrestricted model the SEs are smaller. As expected this is also reflected in more variation in the
estimates of aφ in the RC-GAS-t model, as the data is more informative regarding these parameters.

The parameters in the restricted s-GAS-t model are the most precise in terms of both posterior
standard deviation and in accuracy of the parameter estimates as reflected in the lower NSEs. The
lower NSEs are in part also due to greater efficiency of the HMC algorithm for the s-GAS-t model.
Because of the challenging variations in curvature for the posteriors of the unrestricted GAS-t and
the RC-GAS-t models HMC is challenging to tune correctly and the resulting Markov chains for
these two models still have non-negligible autocorrelation. The variation in curvature poses an
additional challenge for HMC because of the fixed step size. The step size might need to be sig-
nificantly lower in order to allow the algorithm to adequately explore locations of high posterior
curvature, relative to the step size required to obtain a targeted acceptance rate between 0.6 and
0.8 (Betancourt & Girolami, 2015). To account for possible regions of high posterior curvature, I set
the step size conservatively in the unrestricted GAS-t and RC-GAS-t model. The result is notably
high acceptance rates for these chains of around 0.9.

The differences in parameter uncertainty and flexibility in location between the three models
are further illustrated in Figure 7a. The RC-GAS-t posterior marginal probability mass is consid-
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Table 5: Parameter estimates for the restricted multivariate scalar GAS-t model (s-GAS-t), the fully
parameterized multivariate GAS-t model (GAS-t) and the multivariate random coefficient GAS-t model
(RC-GAS-t)

s-GAS-t GAS-t RC-GAS-t

θ E(·|YT )
√

var(·|YT ) NSE
(×10−2)

E(·|YT )
√

var(·|YT ) NSE
(×10−2)

E(·|YT )
√

var(·|YT ) NSE
(×10−2)

a1 0.073 0.009 0.015 0.077 0.009 0.015 0.074 0.009 0.018
a2 0.072 0.011 0.009 0.079 0.011 0.017 0.075 0.011 0.021
a3 0.072 0.010 0.010 0.078 0.010 0.016 0.074 0.010 0.018
a4 0.067 0.010 0.009 0.069 0.010 0.014 0.067 0.010 0.015
a5 0.089 0.010 0.008 0.095 0.011 0.015 0.092 0.011 0.018

a1,φ 0.030 0.004 0.009 0.049 0.009 0.013 0.041 0.007 0.012
a2,φ 0.050 0.010 0.012 0.037 0.008 0.014
a3,φ 0.028 0.013 0.017 0.028 0.008 0.015
a4,φ 0.065 0.017 0.022 0.034 0.009 0.017
a5,φ 0.039* 0.025 0.037 0.023** 0.009 0.013
a6,φ 0.048 0.022 0.029 0.026 0.008 0.013
a7,φ 0.040 0.016 0.033 0.030 0.007 0.011
a8,φ 0.021 0.011 0.019 0.025 0.008 0.012
a9,φ 0.031* 0.025 0.036 0.027 0.009 0.012
a10,φ -0.006* 0.027 0.038 0.020** 0.009 0.015

b1 0.981 0.005 0.006 0.978 0.006 0.010 0.980 0.006 0.011
b2 0.977 0.006 0.007 0.976 0.006 0.010 0.977 0.006 0.013
b3 0.981 0.005 0.006 0.980 0.006 0.009 0.981 0.005 0.010
b4 0.979 0.007 0.006 0.977 0.007 0.011 0.978 0.007 0.012
b5 0.985 0.004 0.004 0.984 0.005 0.007 0.985 0.005 0.009

b1,φ 0.984 0.004 0.003 0.989 0.008 0.012 0.989 0.006 0.009
b2,φ 0.956 0.019 0.026 0.975 0.010 0.024
b3,φ 0.986 0.012 0.020 0.984 0.008 0.015
b4,φ 0.906 0.050 0.084 0.971 0.013 0.035
b5,φ 0.484 0.274 0.806 0.971 0.015 0.040
b6,φ 0.767 0.186 0.357 0.975 0.014 0.039
b7,φ 0.946 0.080 0.397 0.980 0.010 0.018
b8,φ 0.989 0.016 0.042 0.986 0.009 0.017
b9,φ 0.708 0.290 1.616 0.975 0.014 0.031
b10,φ 0.515 0.315 0.758 0.976 0.014 0.029

ν̄ 0.109 0.013 0.010 0.102 0.013 0.013 0.105 0.013 0.015

µa,φ 0.029 0.005 0.010
µb,φ 0.978 0.008 0.021
σa,φ 0.011 0.006 0.011
σb,φ 0.012 0.008 0.024

Leapfrog steps 4 20 20
Step size 0.4 0.05 0.05

Accept rate 0.88 0.92 0.90

Notes: Estimation results for the parameters of the multivariate s-GAS-t, GAS-t and RC-GAS-t models based on a
40, 000 draw long Markov chain produced using Hamiltonian Monte Carlo. Reported for all three models and for all
parameters are posterior mean (E(·|YT )), standard deviation (

√
var(·|YT )) and numerical standard error (NSE).

For the s-GAS-t model only the first autoregressive angle parameters are reported, since all others are restricted to
be of the the same value as the first in their set. For the a· parameters one star (*) is used to denote that the 95%
highest posterior density region (HPD) includes zero and two stars (**) are used to denote that the 99% HPD
includes zero. Also reported for all three Markov chains are the number of Leapfrog integrator steps, the integrator
step size and the acceptance rates.
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(a) Histograms of Marginal Posteriors (b) Bivariate posteriors

Figure 7: Histograms of the marginal posteriors of a selection of autoregressive angle parameters for all three
models - the unrestricted (GAS-t), the scalar (s-GAS-t) and the random coefficient (RC-GAS-t) multivariate GAS-t
models - are shown on the left. The joint distributions of the hyper variance parameter and one of their corresponding
autoregressive angle parameters from the RC-GAS-t model are displayed on the right. Both plots are based on 40, 000
draw samples generated using Hamiltonian Monte Carlo.

erably more concentrated than the unrestricted GAS-t model while still allowing the distribution
of the autoregressive angle parameters to vary in location and dispersion. Particularly if the data
is informative, such as seen in the top left histogram where the unrestricted model reveals that
there is weak information in the data that the mode of bφ,4 is below the average of the bφ, which
is then reflected in the posterior of bφ,4 for the RC-GAS-t model by the probability mass being
shifted to values slightly below the average. It is worth mentioning that the histograms in Fig-
ure 7a are actually cut off to aid comparison, but are therefore not fully reflective of how heavy
tailed some of the marginals for the autoregressive angle parameters in the the unrestricted model
are. For bφ,7 for instance the sampled range is actually from 0.14 to 1 and its sample kurtosis is 26.5.

Figure 7 presents the joint distributions of the hyper variance parameters and the autoregres-
sive angle parameters bφ,4 and aφ,6. The plots show that the distributions narrow for low values
of the variance parameter and widen significantly for higher values of the variance, which is the
known “funnel” characteristic of hyper variance parameters (Betancourt & Girolami, 2015), which
is indicative of large variations in posterior curvature. This effect is most prominent for the bφ,5,
bφ,6, bφ,9 and bφ,10 parameters, suggesting that the sampling efficiency for these parameters might
improve under the noncentered parameterization (25). Moreover, Figure 7b highlights that there
there is considerable posterior mass close to zero for the variance parameter. This is to be expected
if the data is not very informative for certain parameters in the group and it justifies the choice for
a half-Cauchy prior, in favor of the popular inverse-Gamma prior, because of its favorable behavior
for values of the variance parameter close to zero Gelman (2006).

The log BFs comparing the three models are reported in Table 6. The bridge sampling method
with the warp 3 transformation to account for skewness is again used to compute the marginal
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Table 6: The log Bayes Factors (BF·|·) comparing the multivariate random coefficient GAS-t model (model
1), the restricted multivariate scalar GAS-t model (model 2) and the fully parameterized multivariate GAS-t
model (model 3)

2 logBF2|3 2 logBF1|3 2 logBF1|2

71.2 74.8 3.6

likelihoods. The log BFs suggest the evidence favors the hierarchical RC-GAS-t model over the
other two. The large parameter uncertainty present in the unrestricted model is detrimental to its
performance in this comparison as it is clearly dominated by the other two models. The evidence
in favor of the RC-GAS-t over the restricted s-GAS-t model is less compelling. The gain from the
smaller parameter uncertainty in the s-GAS-t model is thus only barely outweighed by the increased
flexibility of the RC-GAS-t. To get a sense of the accuracy of the marginal likelihood estimates, the
warped bridge sampling procedure was run another 5 times, but the results were consistent up to
one decimal place.

Figure 8: Plots of the mean conditional correlations for a set of 5 industry portfolios for the period 2007-02-27 until
2010-03-02, as predicted by the unrestricted (GAS-t), the scalar (s-GAS-t) and the random coefficient (RC-GAS-t)
multivariate GAS-t models. The mean estimates are based on a 40, 000 draw sample from a Hamiltonian Monte
Carlo Markov chain.

Another indication of how well the models fit the data is to consider the conditional correla-

49



(a) Manuf & Other portfolios (b) Hlth & Other portfolios

Figure 9: The 99% HPD regions of the conditional correlations between the Manufacturing and Other industry
portfolio returns (left) and Health and Other industry portfolio returns as predicted by the unrestricted (GAS-t), the
scalar (s-GAS-t) and the random coefficient (RC-GAS-t) multivariate GAS-t models, for the period 2007-02-27 until
2010-03-02. The HPD regions are based on a 40, 000 draw sample from a Hamiltonian Monte Carlo Markov chain.

tions that the three models predict. Figure 8 displays the mean predicted correlations of for all
three models and Figure 9 shows the 99% HPD regions for the conditional covariances between the
Manufacturing and Other industry portfolio returns and between the Health and Other portfolio
returns. Figure 8 highlights that the parameter restrictions for the s-GAS-t model results do appear
to restrict the models ability to capture the time-variation in the correlations, which is particularly
evident from the predicted volatilities for the Consumer industry portfolios. The mean predicted
correlations for the RC-GAS-t and unrestricted GAS-t are very similar and hard to distinguish from
one another apart from the fact that the correlation estimates for the latter appear slightly more
noisy for the latter.

The mean estimates however hide the differences in uncertainty associated with the predicted
correlations. The HPD regions confirm expectations that the predicted correlations are the most
uncertain for the unrestricted model and that there is the least uncertainty for the restricted GAS-t.
The RC-GAS-t falls in between. The very large parameter uncertainty for the unrestricted GAS-t
does however not seem to carry over fully into uncertainty for the conditional correlations. Most
plausibly this due to the the majority of the extreme parameter uncertainty in the unrestricted
GAS-t model being related to the identification issue for several of the bφ parameters resulting
from the corresponding aφ parameters having considerable posterior mass near 0. This type of
uncertainty in the autoregressive angle parameters has little implications for the uncertainty in
the angles however, similarly as for the application in Section 4.2 the large uncertainty for the b
parameter corresponding to the upgrade factor did not translate into uncertainty for the intensity
of the upgrade process.

4.3.6 Application to 10 Industry Portfolios

The 5 asset case is useful in that it allows all three models to be compared while still being large
enough to illustrate the shortcomings of both the unrestricted and the restricted GAS-t covariance
models. In this case, model probabilities already support the notion that the hierarchical model
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strikes a favorable balance between these two models. However the true value of hierarchical mod-
eling increases with the complexity of the models and to illustrate this I consider the 10 asset case.
A set of 10 industry portfolios is again obtained from Kenneth French’s website and the models are
estimated on daily returns covering the same period as for the 5 industry portfolios.

The unrestricted model turns unmanageable for this number of assets, so I focus on the s-GAS-t
and the RC-GAS-t models. Prior specifications are the same as in the 5 asset case apart from the
hierarchical prior setup which is non-centered, as in (25). HMC is used to obtain 20, 000 draws
from the posterior, requiring roughly 15 and 30 hours of computational time for the s-GAS-t and
RC-GAS-t respectively. Although the MCMC sample size might be smaller, the per draw efficiency
of HMC is much improved relative to the 5 asset case by the fact that it was possible to use dense
mass matrices for these 10 asset models. The resulting ESSs all exceed 6000.

Rather than present parameter estimation results, which becomes cumbersome for models with
this many parameters (a summary of parameter estimation results is included in Appendix E), I
focus on model comparison and the estimates of conditional correlations. Double the log Bayes
factor of 13.6 suggests that the strength of evidence in favor of the hierarchical model increased
considerably with the number of assets. Intuitively this also makes sense, since as the number of
assets increases it is more likely that there are more combinations of assets for which the correlations
follow different dynamics. Upon close inspection this can also be deduced from the mean correlation
plots for the 10 assets in Figure 10. Significant differences in predicted correlations between the
models are noticeably more numerous compared to those for the 5 assets in Figure 8.

Both in the 5 and 10 asset applications the hierarchical model proves superior. However, con-
sidering the notably greater ease in estimating the s-GAS-t, the restricted model continues to be a
valid option when the number of assets is not too large, but its performance deteriorates relative to
the hierarchical model as larger number of assets are considered. Since the advantages of the hier-
archical specification prove to increase with dimension, it would be interesting for future research
to consider simpler multivariate covariance models, such as the Hadamard DCC, with hierarchical
prior specifications since the computational costs will not be as extreme as for the GAS-t model.
The reverse mode gradient computation approach presented in Section 4.3.3 transfers straightfor-
wardly to multivariate GARCH models and should allow for similar computational speed ups. Given
that the matrix operations in these models are with matrices of at most dimension k × k, suggests
that much larger models of potentially up to 50 assets can be estimated in a similar time frame
as the 10 asset GAS-t models. For datasets of such size, additional levels in the hierarchical setup
might also be worth exploring. Grouping autoregressive parameters for correlations based on firm
characteristics of the asset pairs such as size, value and industry would be obvious extensions if the
model is applied to individual stocks.

Apart from the differences in predictions by the different models, it is also interesting to observe
the distinct dip in the mean predicted correlations for the Energy industry portfolio, which is per-
haps the most visually obvious pattern in Figure 10. In the 5 portfolio case we see a similar pattern
for the Manufacturing industry portfolio which subsumes the Energy portfolio under this broader
industry specification. The dip in the correlation initializes just prior to the 2008 financial crisis
impacting the stock markets and is due to a strong rise in oil prices during late 2007 and the first
half of 2008 (Hamilton, 2009). Oil industry related stocks are naturally strongly linked to oil prices.
Energy industry stocks hence saw strong growth during this period, whereas stocks in the other
industries were not similarly affected. Once the financial crisis hit stocks across all industries around
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Figure 10: Plots of the mean conditional correlations for a set of 10 industry portfolios for the period 2007-02-27
until 2010-03-02, as predicted by the scalar (s-GAS-t) and the random coefficient (RC-GAS-t) multivariate GAS-t
models. The mean estimates are based on a 20, 000 draw sample from a Hamiltonian Monte Carlo Markov chain.

July of 2008, correlations between the Energy portfolio and other portfolios rapidly increased. In-
creased correlations between markets during economic downturns is a common empirical finding
and that such was in particular true for the oil sector during the 2008 financial crisis is for instance
also found by Filis et al. (2011).

5 Discussion

In the introduction I made the case for Bayesian inference for GAS models on the grounds of four
arguments. First, the high degree of nonlinearity in how the parameters enter the likelihood might
cause larger samples sizes than typically expected to be required to achieve satisfactory convergence
to the normal distribution for the parameters. This is perhaps best illustrated in the Bayesian anal-
ysis of the Beta-Gen-t-EGARCH model of Harvey & Lange (2017), where the flexibility afforded by
an additional shape parameter is shown to cause considerable uncertainty in the form of skewness
and kurtosis for volatility predictions following large absolute returns in spite of a relatively large
sample size of 5 years of daily data.

Second, in a Bayesian framework it is much easier to make probabilistic statements regarding
quantities of interest that are complex functions of the estimated parameters. Throughout all three
empirical applications, that benefit is thoroughly utilized and displayed through the HPD region
plots of the time-varying quantities of interest, namely the predicted volatilities, intensities and
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correlations. Since the primary quantities of interest in GAS models in nearly all cases involve func-
tions of the time-varying parameters, the HPD plots are useful tools for visualizing the uncertainty
associated with these quantities. They also greatly aid in comparing the uncertainty in the predic-
tions made by different GAS model specifications, such as illustrated for the Beta-Gen-t-EGARCH
relative to the Beta-t-EGARCH and for the different parameterization of the multivariate GAS-t
model. Similar confidence bounds on the predictions would not only be considerably more challeng-
ing to obtain in a frequentist setting, they would also completely ignore any residual non-normality.
The notion of inferences on non-linear functions of the parameters is further proved useful in Section
4.1.2 for the purpose of testing for time-variance in instances where time-variance is governed by
more than one factor.

Third, Bayesian model comparison allows for comparison of non-nested models. In section 2
it is emphasized why this is particularly useful in the case of GAS models as non-nested models
that researcher are likely to want to compare, arise naturally as a result of the options for differ-
ent scaling matrices, link functions and factorizations. In Section 4.2 this technique is extensively
applied to test hypothesis that have not been previously considered in the literature regarding the
favorability of several scaling matrices and factorization in the existing class of dynamic pooled
marked point process factor models of Creal et al. (2013). In line with expectations, the evidence
favored scaling matrices that incorporated second order information and a three factor model over
one and two factor models for the modeling of intensities in credit rating transitions. In Section
4.3 the technique also proved useful in finding evidence in favor of the hierarchical covariance model.

Fourth, I argued that hierarchical prior specifications can serve to restrain parameter uncertainty
as larger GAS models with greater number of time-varying parameters start being explored. Hier-
archical priors will generally provide a more elegant and flexible approach to coping with parameter
uncertainty in large GAS models relative to the common approach of imposing restriction on the
parameters. In Section 4.3 I applied a hierarchical prior setup to a subset of the autoregressive
parameters in the multivariate GAS-t model of Creal et al. (2011b). I showed how the technique
enabled inference for a multivariate GAS-t model for a set of 10 industry portfolios, which is con-
siderably more as most preceding published work has considered for covariance models of similar
flexibility. Bayes factors also provided evidence of superior performance of the hierarchical model
relative to restricted and unrestricted versions of the multivariate GAS-t model.

The third and fourth argument warrant some further discussion as they make for potentially
exciting areas (particularly hierarchical GAS models) for future work. Section 4.2 showed that for
relatively simple GAS models even one of the simplest MCMC methods (RW-MH sampler) was able
to produce a sufficiently large sample from the posterior within minutes. Although this is obviously
far form as fast as ML, which delivers results in under a second in most cases, the time frame is
nevertheless very reasonable. Since, the Bayesian approach has the obvious advantage of enabling
the making of very common decisions in the GAS framework, such as which link function or scaling
matrix to use - which can not be formally considered when using ML estimation - the extra compu-
tational cost seem like a small price to pay. Even for practitioners the need for inferences in much
under a minute seems uncommon and the Bayesian approach can thus also be of benefit for this
group of GAS model users in improving modeling choices.

Further research might however be needed to establish what are suitable priors for the autore-
gressive parameters in GAS models to facilitate objective model comparison. Although, a sensitivity
analysis is used to asses the impact of the prior variance, the number of prior specification options
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extends far beyond the degree of diffuseness. I have for instance taken the approach of using normal
or truncated normal priors, but log-normal and uniform priors have alternatively been applied for
the autoregressive parameters in GARCH models (see e.g. Miazhynskaia & Dorffner (2006) and
Asai (2006)).

Another avenue for further exploration would be to use Bayesian posterior model probabilities to
provide a natural way to cope with model uncertainty in the GAS framework. In this thesis I have
focused on the impact of parameter uncertainty in comparing two models, but the Bayesian model
comparison approach is easily extended to apply to multiple models simultaneously. The resulting
Bayes factors are straightforwardly transformed to posterior model probabilities and can be applied
for instance in Bayesian model averaging to combine models to produce a single forecast. This
might be a more natural way of dealing with the model uncertainty induced by the many different
specification options in the GAS framework than simply choosing one model as the preferred choice.

When it comes to hierarchical priors, there are a great many different ways in which they can
be applied to start enabling inference in more complex GAS models as previously accessible. One
example would be to alleviate the i.i.d assumption across the rating transition risk processes of firms
in the DPMP models. This assumption is in place because there are far too little rating transition
events per company to model separate dynamics for each company. Using similar hierarchical nor-
mal priors on the autoregressive parameter as in the covariance GAS-t model and possibly grouping
firms based on firm characteristics it should be possible to start separating the dynamics per firm
to a certain degree. Furthermore, different types of hierarchical priors could be considered such as
a spike-and-slab prior. Typical extension of the time-varying parameter process as presented in this
thesis include adding exogenous variables that enter the update equation (2) with regression coeffi-
cients, or allowing for additional lags of either st and ft. In both of these cases the coefficients of
these additional variables could be specified with a spike-and-slab prior. This has similarly been ex-
plored in state space (latent factor) models where a set of exogenous variables enters a time-varying
parameter equation by means of a spike-and-slab regression (Scott & Varian, 2014). This would be
an interesting extension of the DPMP models as well, since large sets of macroeconomic variables
have already proved valuable predictors of the intensities of credit risk processes (Duffie et al., 2009).

What will be more challenging than coming up with interesting new applications for hierarchical
priors in GAS models, will be to figure out efficient ways of implementing them. As seen in the
multivariate GAS-t applications, the larger size of the models that become accessible through using
Bayesian hierarchical modeling, causes us to run into the limits of currently available computational
resources. The model presented in Section 4.3 already required innovation in the way that gradi-
ents for GAS models are computed, but computation time is still substantial. For other hierarchical
models similar efficient approaches are likely needed since, in order to exploit the full potential of hi-
erarchical models, a certain degree of model complexity is simply necessary. To facilitate inference in
such models it might also be worthwhile to explore more advanced or specialized MCMC algorithms.
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Appendices

A Derivatives
As a starting point for the derivatives of all log-likelihoods of GAS models we can use the derivatives presented
in Creal et al. (2013). Let pt = p(yt|Yt−1,Ft,θ) for fixed Ft (i.e. not varying w.r.t. to θ). The gradient of
`t w.r.t. θ is then

∂`t
∂θ′

=
∂ log pt
∂θ′

+ ∇t
∂ft
∂θ′

,

∂ft
∂θ′

=
∂ω

∂θ′
+A

∂st−1

∂θ′
+ (s′t−1 ⊗ In)

∂ vec(A)

∂θ′
+B

∂ft−1

∂θ′
+ (f ′t−1 ⊗ In)

∂ vec(B)

∂θ′
.

∂st−1

∂θ′
= St−1

∂∇t−1

∂θ′
+ (∇′t−1 ⊗ In)

∂ vec(St−1)

∂θ′
,

where I follow the notational convention used in Magnus & Neudecker (2007) to represent derivatives of ma-
trix functions and/or w.r.t. matrices by vectorizing their differentials. The elements in the above derivatives
that need to be derived individually for each GAS model specification are ∂ log pt/∂θ

′ for the distribution
specific parameters in θ, ∂∇t−1/∂θ

′ and ∂ vec(St−1)/∂θ′. The last two are partitioned further as

∂∇t−1

∂θ′
=
∂∇∗t−1

∂θ′
+
∂∇t−1

∂f ′t−1

∂ft−1
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.
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∂ vec(S∗t−1)

∂θ′
+
∂ vec(St−1)

∂f ′t−1

∂ft−1

∂θ′
,

where the ·∗ is used to indicate that ft−1 is considered fixed.

A.1 Beta-Gen-t-EGARCH
From Harvey & Lange (2017) we find

∂ log pt
∂µ

=
η̄ + 1

η̄

bt
yt − µ

∂ log pt
∂η̄

=
ψ
(

1
η̄υ
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− ψ
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η̄υ + 1

υ

)
+ η̄ − log(1− bt)− (η̄ + 1)bt

υη̄2
,

∂ log pt
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η̄υ + 1

υ

)
η̄υ2

,

where ψ(·) is the digamma function. Since St−1 = 1 in the Beta-Gen-t-EGARCH its derivatives w.r.t. to θ
are zero. The derivative of ∇∗t−1 w.r.t. to θ is decomposed as

∂∇∗t−1

∂θ′
=
∂∇∗∗t−1

∂θ′
+
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∂θ
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where ·∗∗ is used to denote that bt−1 is considered fixed. The derivative of ∇∗∗t−1 w.r.t. to η̄ are

∂∇∗∗t−1

∂η̄
= − 1

η̄2
bt−1.
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and zero for the other parameters. The derivative

∂∇∗t−1

∂bt−1
=
η̄ + 1

η̄
.

The derivative of bt−1 w.r.t. ft−1 is

∂bt−1

∂ft−1
= −υ bt−1(1− bt−1).

Lastly, the derivatives of b∗t−1 are
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= −υ bt−1(1− bt−1)

yt − µ
,

∂b∗t−1

∂η̄
=

1

η̄
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∂b∗t−1

∂υ
= bt−1(1− bt−1) log(yt − µ).

A.2 Multivariate GAS-t
In the multivariate GAS-t model the only distribution specific parameter in θ is the inverse degrees of
freedom parameter ν̄. The score for ν̄ is

∂ log pt
∂ν

=
1

2ν̄2

(
ψ
( 1
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Further we find for the derivative of ∇∗t−1 w.r.t. ν̄

∂∇∗t−1
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1

2
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.

Since the scaling matrix for the multivariate GAS-t model is the inverse Fisher Information matrix, it is
useful to define the derivative

∂ vec(St−1)

∂ vec(It−1)′
= −I−1

t−1⊗. (26)

These and other matrix differentiation rules are obtained from Magnus & Neudecker (2007). Using the chain
rule the derivatives of vec(St−1) w.r.t. θ reduce to the derivatives of vec(It−1) w.r.t. θ pre-multiplied by
(26). For ν̄ we therefore have
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The derrivatives of ∇t−1 and vec(St−1) w.r.t. ft−1 are split as follows
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The derivatives on the right-hand side of the equations above are
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Where WDt−1
is the k2 × k2 diagonal matrix with 0.5 vec(Dt−1) on its diagonal. The derivative of Jt−1⊗

requires a rule for the derivative of the Cholesky factor of a matrix, in this case Σ−1
t−1⊗, since Σ−1

t−1⊗ =
Jt−1⊗J

′
t−1⊗ by the mixed product-property of the Kronecker product (see e.g. Magnus & Neudecker (2007)).

Such a rule for the derivative of the Cholesky factor is given by Murray (2016) and looks as follows

∂ vec(Jt−1⊗)

∂ vec(Σ−1
t−1⊗)′

=
(
Ik2 ⊗ Jt−1⊗

)
SL
(
J−1
t−1⊗ ⊗ J

−1
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)
,

where SL is defined such that for an arbitrary matrix A, SL vec(A) = vec(Φ(A)) with Φ(·) the transfor-
mation that selects the lower-triangular part of a matrix and halves its diagonal elements. Lastly, we need
the derivative of vec(Zt−1) w.r.t. φt−1. Since this is simply the second derivative of vec(Xt−1) w.r.t. φt−1.
I define this second derivative as

∂2xijt
∂φrst∂φmnt

=



0, if i > j, r ≥ s, m ≥ n, r > i, r = i = j, m > i,

m = i = j, j 6= n, or j 6= s,

−xijt tan(φijt)
tan(φmjt)

, if r = i, i > m and i 6= j,

xijt
1

tan(φrjt) tan(φmjt)
, if i > r, and i > m,

−xijt tan(φijt)
tan(φrjt)

, if m = i, i > r and i 6= j,

−xijt, otherwise,

(27)

for i, j, r, s,m, n = 1, ..., k. These derivatives together constitute the elements of the k3(k−1)/2×k(k−1)/2
matrix ∂ vec(Zt−1)/∂φ′t−1.
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B Prior Sensitivity Analysis DPMP Model Comparisons
For the sensitivity analysis I consider four different normal prior setups that differ only in their variance
parameters. The prior setups are specified as follows

Prior 1 Prior 2 Prior 3 Prior 4

a ∼ N (0.05, 22) a ∼ N (0.05, 1) a ∼ N (0.05, 0.52) a ∼ N (0.05, 0.252)

b ∼ N (0.95, 22)I[−1<b·<1] b ∼ N (0.95, 1)I[−1<b·<1] b ∼ N (0.95, 0.52)I[−1<b·<1] b ∼ N (0.95, 0.252)I[−1<b·<1]

C ∼ N (0.5, 102) C ∼ N (0.5, 52) C ∼ N (0.5, 2.52) C ∼ N (0.5, 1)

C1,3 ∼ N (−0.5, 102) C1,3 ∼ N (−0.5, 52) C1,3 ∼ N (−0.5, 2.52) C1,3 ∼ N (−0.5, 1)

w ∼ N (−5, 102) w ∼ N (−5, 52) w ∼ N (−5, 2.52) w ∼ N (−5, 1)

w2 ∼ N (−10, 102) w2 ∼ N (−10, 52) w2 ∼ N (−10, 2.52) w2 ∼ N (−10, 1),

where a and b are used to refer to the diagonal elements of A and B respectively, C is used to refer to all free
elements in C apart from the C1,3 parameter in the one factor model for which a different prior is used and
w is used to refer to all elements in w apart from the w2 parameter for which a different prior is specified.
Prior setup 2 is the prior used in the analysis reported in Section 4.2. The double the log Bayes factors for
all twelve different hypotheses and all four different prior setups are reported in Table 7.

Table 7: Bayes factors for the 12 hypotheses related to the DPMP factor models for the four prior specifi-
cations with varying diffuseness

2 logBF1|0
1|0 Prior 1 Prior 2 Prior 3 Prior 4

1-H|1-I 8.6 8.6 8.6 8.6
1-Inv|1-H 2.5 2.5 2.5 2.4
2-H|2-I 7.8 8.0 8.1 8.4
2-Inv|2-H 2.1 2.2 2.2 2.3
3-H|3-I 9.6 9.7 9.8 9.7
3-Inv|3-H −2.5 −2.5 −2.6 −2.8

2-I|1-I −11.8 −9.5 −7.8 −7.0
2-H|1-H −12.6 −10.2 −8.3 −7.2
2-Inv|1-Inv −13.0 −10.5 −13.4 −7.3
3-I|1-I 13.3 19.7 24.8 28.4
3-H|1-H 14.3 20.7 26.0 29.6
3-Inv|1-Inv 9.3 15.7 21.0 24.3

Notes: Bayes factors for the 12 hypotheses under consideration and for all four different prior specifications based
on a 400,000 draw sample from a random walk Metropolis-Hastings chain.
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C Estimation Results DPMP-I and DPMP-H

Table 8: Parameter estimates for the dynamic marked point process one, two and three factor models with
identity information matrix scaling (DPMP1-I, DPMP2-I and DPMP3-I respectively)

DPMP1-I DPMP2-I DPMP3-I

θ[1] E(·|YT ) SE NSE θ[2] E(·|YT ) SE NSE θ[1] E(·|YT ) SE NSE
(×10−2) (×10−2) (×10−2)

a1 0.105 0.008 0.010 a1 0.105 0.008 0.012 a1 0.054 0.009 0.016
a2 0.016* 0.018 0.028 a2 0.015* 0.018 0.035

a3 0.124 0.008 0.013

b1 0.968 0.013 0.017 b1 0.970 0.013 0.020 b1 0.972 0.017 0.031
b2 0.511 0.435 0.737 b2 0.511 0.442 0.883

b3 0.967 0.014 0.026

C1,1 0.408 0.041 0.050 C1,1 0.411 0.042 0.059 C2,1 0.494 0.811 1.344
C2,1 0.854 0.317 0.382 C2,1 0.830** 0.321 0.481 C2,3 0.721 0.367 0.603
C3,1 −0.147 0.047 0.061

d1 −5.368 0.126 0.167 d1 −5.364 0.130 0.207 d1 −5.373 0.200 0.357
d2 −9.944 0.432 0.536 d2 −9.914 0.423 0.679 d2 −9.960 0.461 0.836
d3 −5.515 0.060 0.077 d3 −5.481 0.048 0.079 d3 −5.479 0.046 0.077
d4 −5.565 0.299 0.399 d4 −5.552 0.308 0.514 d4 −5.549 0.326 0.593

Accept 0.31 0.27 0.20

Notes: Estimation results for the parameters of the DPMP1-I, DPMP2-I and DPMP3-I models based on a 400, 000
draw long Markov chain produced using the random walk Metropolis-Hastings algorithm. Reported for all three
models and for all parameters are posterior mean (E(·|YT )), standard deviation (SE =

√
var(·|YT )) and numerical

standard error (NSE). For the a· parameters and the C·,·parameters of the one and two factor models, one star (*)
is used to denote that the 95% highest posterior density region (HPD) includes zero and two stars (**) are used to
denote that the 99% HPD includes zero. Also reported for all three Markov chains are the acceptance rates.
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Table 9: Parameter estimates for the dynamic marked point process one, two and three factor models with
inverse square root information matrix scaling (DPMP1-H, DPMP2-H and DPMP3-H respectively)

DPMP1-H DPMP2-H DPMP3-H

θ[1] E(·|YT ) SE NSE θ[2] E(·|YT ) SE NSE θ[1] E(·|YT ) SE NSE
(×10−2) (×10−2) (×10−2)

a1 0.074 0.007 0.008 a1 0.073 0.007 0.010 a1 0.034 0.005 0.009
a2 0.013* 0.009 0.015 a2 0.012* 0.009 0.015

a3 0.082 0.008 0.013

b1 0.964 0.015 0.019 b1 0.966 0.015 0.023 b1 0.965 0.018 0.034
b2 0.642 0.375 0.682 b2 0.618 0.384 0.682

b3 0.964 0.017 0.028

C1,1 0.387 0.043 0.052 C1,1 0.392 0.042 0.065 C2,1 0.115 0.942 1.735
C2,1 0.889 0.323 0.398 C2,1 0.860 0.326 0.493 C2,3 0.883 0.444 0.795
C3,1 −0.141 0.043 0.054

d1 −5.378 0.122 0.160 d1 −5.387 0.124 0.200 d1 −5.439 0.175 0.331
d2 −9.997 0.453 0.552 d2 −10.006 0.448 0.719 d2 −10.065 0.522 1.000
d3 −5.512 0.060 0.077 d3 −5.467 0.053 0.101 d3 −5.469 0.050 0.093
d4 −5.605 0.306 0.409 d4 −5.626 0.309 0.493 d4 −5.637 0.344 0.685

Accept 0.34 0.31 0.21

Notes: Estimation results for the parameters of the DPMP1-H, DPMP2-H and DPMP3-H models based on a
400, 000 draw long Markov chain produced using the random walk Metropolis-Hastings algorithm. Reported for all
three models and for all parameters are posterior mean (E(·|YT )), standard deviation (SE =

√
var(·|YT )) and

numerical standard error (NSE). For the a· parameters and the C·,·parameters of the one and two factor models, one
star (*) is used to denote that the 95% highest posterior density region (HPD) includes zero and two stars (**) are
used to denote that the 99% HPD includes zero. Also reported for all three Markov chains are the acceptance rates.
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D Automatic Differentiation: A Brief Introduction
To illustrate the principles of automatic differentiation (AD) and its benefits over symbolic expressions, I
consider an example of a function that takes a d × 1 vector x as input and has scalar output y. Lets also
assume that the function is a composition of four functions that are allowed to have multivariate inputs and
outputs such that the composition looks as follows

y = f4(f3(f2(f1(x)))). (28)

Through repeated application of the chain rule we obtain its derivative

∂y

∂x
=
∂f4
∂f3

∂f3
∂f2

∂f2
∂f1

∂f1
∂x

. (29)

In essence AD works by distilling any function down to such a composition of elementary functions and
systematically applying the chain rule. A conceptual difference with how the chain rule is used in symbolic
differentiation however, is that AD applies the chain rule to numerical values.

D.1 Forward Mode AD
AD can be performed in two distinct modes known as forward and reverse mode differentiation. The names
refer to the order in which the product in (29) is calculated. In forward mode the expression is evaluated in
the order in which the functions fi, for i = 1, 2, 3, 4, are evaluated

∂y

∂x
=

(
∂f4
∂f3

(
∂f3
∂f2

(
∂f2
∂f1

(
∂f1
∂x

))))
.

This approach is the most intuitive and usually most closely resembles the way we would program the
symbolic derivatives of the log-likelihoods of GAS functions. Note however, that even forward mode gradient
evaluation is different from the usual way gradients are evaluated using symbolic differentiation. In forward
mode we only evaluate and store (as numerical values) terms of the form ẋi = ∂fi/∂x, which can be
recursively computed as

ẋi =
∂fi
∂fi−1

ẋi−1, (30)

for i = 1, 2, 3, 4 and ẋ0 initialized at Id.15 At the end of the recursion we find the quantity that we desired
since ẋ4 = ∂f4/∂x = ∂y/∂x. The difference relative to symbolic expressions in the case that fi are functions
with matrix outputs - as are highly common in the log-likelihood of the multivariate GAS-t model - is that
we can often avoid instantiating the large symbolic expressions for ∂fi/∂fi−1 and that we will usually be
able to evaluate the expression (30) at the same order of complexity as d times the original function fi. For
matrix operations this can be achieved for instance by using the approach to deriving forward and reverse
mode update rules for matrix operations as outlined in Giles (2008).

For example, let f3 denote matrix inversion, let the output of f2 be a square invertible matrix and
let us assume d = 1, since the forward mode update rules by Giles (2008) are defined for single input
variables. The results can be applied to multivariate inputs as well by simply applying the update rules d
times and arranging the required intermediate input and output sensitivities correctly. To emphasize that
we are dealing with matrices, let the input be denoted by A = f2(f1(x)) and let the output be denoted by

15Technically this approach of evaluating the derivative w.r.t. to all inputs at once using forward mode differenti-
ation, is known as multi-directional forward mode differentiation (Hascoet & Pascual, 2013). I omit the distinction
because we are purely interested in evaluating gradients of functions with multiple inputs and a single output.
Multi-directional forward mode is of the same order of computational complexity w.r.t to d as simply applying one-
directional forward mode d times, but multi-directional forward mode circumvents the need for intermediate products
of a function to also be recomputed d times as all derivatives are computed in one sweep. To see how the initialization
makes sense, consider the identity map Id: Rd → Rd such that Id(x) = x. Its derivative ∂Id(x)/∂x clearly equals Id.
So we can imagine an f0 = Id, from which ẋ0 = Id logically follows.
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C = A−1 = f3(f2(f1(x))), so that Ċ = ẋ3 and Ȧ = ẋ2. Using the terminology convention from Magnus &
Neudecker (2007) we find the following differential expression for matrix inversion

dC = −CdAC. (31)

The reason why symbolic expressions for the derivative of C w.r.t A blow up in dimension is because that
requires that we compute and store the sensitivity of each element in C for each element in A, which - if
we let the matrices be of dimension m ×m - amounts to a total of m4 sensitivities (i.e. the infinitesimal
perturbation of each Cq,r due to a perturbation in each As,t for q, r, s, t = 1, ...,m). Throughout this paper
I use the approach argued for by Magnus & Neudecker (2007) of expressing such derivatives by means of
vectorizing the differentials, which results in the following large symbolic expression for matrix inversion

∂ vec(C)

∂ vec(A)
= −C ′ ⊗C. (32)

Applying this expression in (29) implies that we would need to multiply this m2 ×m2 by either ∂f4/∂f3 or
∂f2/∂f1, which, for reasonable m, is an expensive operation either way. The forward mode update rules as
suggested by Giles (2008), exploit the fact that we are only interested in the sensitivity of C w.r.t. x, which
are only m2 sensitivities. From (31) it follows that we can obtain these sensitivities directly in terms of the
sensitivities w.r.t A as

Ċ = −CȦC. (33)

Considering matrix multiplication and inversion are on the same order of computational complexity, it fol-
lows that the update from ẋ2 to ẋ3 can be performed on the same order of computational complexity as the
original function f3. Obtaining sensitivities w.r.t d inputs is by extension of the same order of complexity as
d times the original function.

In theory these types of forward mode update rules that operate on d times the level of computational
complexity as the original function should exist for any function. To highlight the full implications of this
in terms of computational cost and storage requirements for the full example function introduced in the
beginning of this section, consider the case where fi :Rm×m → Rm×m for i = 2, 3, f1 :Rd → Rm×m and
f4 :Rm×m → R, such that the complete function is a mapping from Rd → R. Again adopting the matrix
differentiation conventions that matrix derivatives are denoted by vectorizing their differentials, we find that
straightforward evaluation of (29) - through computing the products of the terms on the right hand side -
will involve the construction of one 1×m2 row vector, two m2×m2 and one m2×d matrix, all of which will
be involved in matrix multiplications.16 Using forward mode differentiation we are thus typically able to get
away with storing only the m2 × d dimensional ẋis, which, if d < m2, should imply lower storage cost. But
more importantly, if we assume the functions fi to be elementary matrix operations of similar complexity
as matrix multiplications, the resulting gradient program will be of lower computational complexity. This
follows from the fact that the forward mode differentiation requires d application of forward mode updates
that involve matrix operations on at the most m × m matrices, which should be compared to the multi-
plication of the m2 ×m2 matrices resulting from straightforward computation of the symbolic expressions.
Considering most matrix operations - including the most commonly used in the multivariate GAS-t model
log-likelihood such as matrix multiplication, inversion and Cholesky decomposition - on m × m matrices
require roughly O(m3) elementary operations (i.e. additions and multiplications), forward mode differen-
tiation should in theory be of lower computational complexity as the symbolic expressions as long as d < m3.

If we draw parallels to the computation of the gradient of the GAS-t model log-likelihood, we note that
the log-likelihood is also a mapping from Rd → R, where d still denotes the dimension of θ. The highest

16It should be noted that symbolic expressions for matrix derivatives can sometimes be drastically simplified - by
for instance deriving ∂f3/∂f1 directly - potentially allowing significant reduction in the computational burden they
induce. This can however be very challenging and it might not be possible to express such derivatives using standard
matrix operations. For the symbolic derivatives presented in Appendix A.2 for the multivariate GAS-t log-likelihoods
I have made use mostly of the common identities for matrix derivatives expressed in Magnus & Neudecker (2007),
with the exception of the Cholesky factor derivative reported in Murray (2016). In this Appendix I operate on the
assumption that symbolic derivatives of matrix operations expressed by the functions fi can not be further simplified.
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dimensional intermediate matrix functions are multiplications with k2×k2 matrices (e.g. Σ−1
t−1⊗ and Jt−1⊗)

and the resulting symbolic gradient expressions involve multiplications with k4 × k4 matrices. In terms
of the indices of the above example we thus find that k2 can be interpreted as m and d = k(k + 1) + 5
in the hierarchical GAS-t model. Clearly there is indeed a gain from using forward mode differentiation,
since d is still significantly less as m3 = k6, however the computational complexity relative to the original
log-likelihood is still proportionate to d which is on the order of k2. In the 10 asset case the gradient of the
likelihood would thus still be at the least 115 times as computationally intensive as the log-likelihood.

D.2 Reverse Mode AD
Since our interest is with the gradient we should be better off using reverse-mode differentiation. The reason
for this is result often mentioned in the AD literature that, using reverse mode differentiation, it should be
possible in theory to evaluate the gradient of any function with a scalar output at only three to four times
the computational cost of the original function (Griewank & Walther, 2008). In practice it can turn out to
be more if the program is inefficiently implemented or the memory requirements are very large. The result
is known as the “cheap gradient principle” and is considered as one of the most valuable achievements of the
AD field (Gower & Gower, 2016).

To see how we can attain this level of performance that seems almost too good to be true considering
the discussion in the preceding subsection, lets consider again the example introduced at the beginning of
this section. In direct opposition to forward mode, reverse mode differentiation evaluates the expression (29)
in reverse order, starting from ∂f4/∂f3 and working its way down to ∂f1/∂x, as follows

∂y

∂x
=

((((
∂f4
∂f3

)
∂f3
∂f2

)
∂f2
∂f1

)
∂f1
∂x

)
.

The convenient notation typically used to denote these types of derivatives is ȳi = ∂y/∂fi and the desired
result can again be obtained using a recursion

ȳi−1 = ȳi
∂fi
∂fi−1

, (34)

for i = 4, 3, 2, 1, where we initialize with ȳ4 = 1 and specify f0 = x such that ȳ0 = ∂y/∂x.

The key difference here with forward mode is that the quantities that we evaluate and store in this
scenario, the ȳis, are significantly smaller. If we assume the same sorts of functions fi as in the preceding
subsection we see that the ȳi are never larger than 1 × m2 or 1 × d. Also, just as for the forward mode
expression (30), the evaluation of the recursive expressions in (34) can typically be performed without in-
stantiating the ∂fi/∂fi−1 terms, however in reverse mode the evaluation can be done at the same order of
computation complexity as the original function fi rather than d times the complexity.

For illustration let us again consider the example where f3 concerns matrix inversion. Giles (2008) shows
how similar updates as for forward mode differentiation can be obtained for reverse mode. It is however not
immediately clear from the differential expression in (31) how we can express ȳ2 = Ā directly in terms of
ȳ3 = C̄. Giles (2008) relies on trivial expressions related to the definition of C̄ and the trace (denoted with
tr(·)), which is the operator that takes the sum of the diagonal elements of a square matrix. By plugging
in the expression for dC (31) and using the fact that tr(PQ) = tr(QP ) and tr(P ) = tr(P ′), for arbitrary
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square matrices P and Q, we find

dy = Σm
q=1Σ

m
r=1

(
C̄
)
i,j

(
dC
)
i,j
,

= Tr(C̄ ′dC),

= Tr(−C̄ ′CdAC),

= Tr(−CC̄ ′CdA),

= Tr(−
(
dA
)′
C ′C̄C ′),

= Σm
q=1Σ

m
r=1

(
dA
)
i,j

(
C ′C̄C ′

)
i,j
,

where the second and and last equality follow trivially from the definition of the trace operator. The
subscripts refer to the elements of the matrices. From the final expression it follows that

Ā = C ′C̄C ′. (35)

This expression is again of the same order of computational complexity a the original function f3 and circum-
vents the large symbolic expression related to the derivative of the inverse. This update needs to preformed
only once since, unlike in the forward mode setting, we are interested in the sensitivities w.r.t. one quantity
- the scalar y - in contrast to the d entries in x. The techniques used above can be used to derive similar
reverse mode update expression for most other matrix operations.

As mentioned in the Section 4.3.3 of the main text, reverse mode has one main limitation that challenges
its implementation. The evaluation of the expressions in (34) will often require intermediate results; e.g. if
f3 is the matrix inversion function considered above, the evaluation of ȳ2 will then require C - the value
coming from f3. Although, in this toy example it might not seem like to much effort to store the result C in
memory, the task of storing such intermediate products is more daunting when we consider the log-likelihood
of the multivariate GAS-t model based on three years of daily data. My solution to this issue is covered in
detail the main text.

However effective the solution to the memory management problem, the resulting gradient program will
always need a forward pass to compute all intermediate products, followed by a backwards pass to compute
the ȳis. Although, this does imply that the resulting gradient program’s computational cost is always some
constant multiple of the original program’s computational cost, for high dimensional d the resulting gradient
program is far more efficient as what is possible using forward mode differentiation. A case in point being
the reverse mode gradient program for the multivariate GAS-t log-likelihood for which it turns out that
evaluation is possible near the theoretical upper bound of roughly three to four times the computational cost
of the original function as opposed to the approximate 115 times for the forward mode program.
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E Parameter Estimates Summary 10 Asset GAS-t Models

Table 10: Summary of parameter estimates for the restricted multivariate scalar GAS-t model (s-GAS-t)
and the multivariate random coefficient GAS-t model (RC-GAS-t) for the 10 portfolio dataset

s-GAS-t RC-GAS-t

1
10

Σ10
i=1 E(ai,D|YT ) 0.058 0.061

1
55

Σ55
i=1 E(ai,φ|YT ) 0.015 0.015

1
10

Σ10
i=1 E(bi,D|YT ) 0.982 0.981

1
55

Σ55
i=1 E(bi,φ|YT ) 0.994 0.989√

var(E(aD|YT )) 0.010 0.010√
var(E(aφ|YT )) - 0.003√
var(E(bD|YT )) 0.003 0.003√
var(E(bφ|YT )) - 0.002

1
10

Σ10
i=1

√
var(aD|YT ) 0.008 0.008

1
55

Σ55
i=1

√
var(aφ|YT ) 0.001 0.005

1
10

Σ10
i=1

√
var(bD|YT ) 0.005 0.005

1
55

Σ55
i=1

√
var(bφ|YT ) 0.001 0.005

µa,φ - 0.015 (0.002)
µb,φ - 0.989 (0.002)
σa,φ - 0.005 (0.002)
σb,φ - 0.005 (0.002)

ν̄ 0.084 (0.008) 0.080 (0.008)

Leapfrog steps 4 7
Step size 0.5 0.25
Accept rate 0.83 0.78

Notes: Summary of estimation results for the parameters of the multivariate s-GAS-t and RC-GAS-t models based
on a 20, 000 draw long Markov chain produced using Hamiltonian Monte Carlo. Reported for the autoregressive
coefficients of (i) the log variance time-varying parameters (denoted by ·D) and (ii) the hyperspherical angle
time-varying parameters (denoted by ·φ) are the average and standard deviation (

√
var(·)) of the posterior mean

(E(·|YT )) estimates, and the average of the posterior standard deviation (
√

var(·|YT )). For the hyper parameters
and inverse degrees of freedom parameters the posterior means are reported with the posterior standard deviations
in brackets. Also reported for all three Markov chains are the number of Leapfrog integrator steps, the integrator
step size and the acceptance rates.
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