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Abstract 

 Incorporating ambiguity into decision-making analysis creates a more refined 

and more realistic picture of actual human behavior. In this paper ambiguity is 

incorporated in to strategic interactions, namely two games from Goeree and Holt 

(2001). Unfortunately, these games are somewhat abstract and that is why in this 

paper the futures market is also studied game theoretically with ambiguity. The 

analysis will make use of the notion of capacities and the Choquet integral. One thing 

that becomes very clear from the analysis is the fact that ambiguity definitely 

influences and shapes the behavior of decision makers in strategic interactions. It is 

also shown that with incorporating ambiguity, observed deviations from Nash 

equilibria predictions can be explained and new equilibria can be found. As an extra 

the effect of risk attitudes on ambiguity attitudes is examined as well. 
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1 Introduction 

An essential part of economic decision-making is making decisions under risk. This 

means that individuals make decisions in which different scenarios can occur with 

certain objective probabilities. Within the paradigm of decision-making under risk it 

is assumed that decision makers know these objective probabilities. The normative 

model of decision-making that goes along with this view is Expected Utility Theory. 

However, Expected Utility Theory received a lot of criticism for not being realistic. It 

is more a model that shows how people should behave when rational, but it does a 

poor job at predicting how individuals actually behave. 

 The notion of objective probabilities is of importance here. These probabilities 

cannot be different for different decision makers. An example of objective 

probabilities is the probability of getting heads when flipping a fair coin. Many 

economic situations, in reality, do not have objective probabilities, even if we like 

them to have. Another form of probabilities is subjective probabilities. Subjective 

probabilities, as the word subjective says, can vary across different decision makers. 

Here, a decision maker behaves as if her subjective assessment of different events can 

be described by a unique probability distribution. An example of a subjective 

probability assessment is an investor’s belief about whether the stock market is going 

up or down, in the coming week. 

 Next to objective and subjective probabilities, there is also uncertainty, or 

alternatively ambiguity, this is when probabilities are not known or agents do no not 

have full confidence in probabilities. What does ambiguity mean when a decision 

maker is faced with it? Suppose a decision maker’s subjective knowledge about the 

likelihoods of probable events can be represented by more than one probability 

distribution (which represents the decision maker’s belief), and further, that the 

decision maker’s knowledge does not provide him a precise second-order probability 

distribution over the set of possible probabilities, then the decision maker’s belief 

about probable events is characterized by ambiguity. In fact for many economic or 

political situations, it is not obvious why decision makers should know probabilities 

(Eichberger, Kelsey, & Schipper, 2009). So it may be beneficial and definitely more 

realistic to try and model individuals’ behavior with ambiguity. 
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 Savage’s theory of Subjective Expected Utility maximization is one of the 

most well received paradigms for modeling decision-making under subjective 

uncertainty in economics (Mukerji, 2000). Savage’s theory of subjective expected 

utility transforms a situation under ambiguity/uncertainty into a situation under risk. 

Unfortunately, Savage’s theory received criticism as well. Most notable of the critics 

is Ellsberg (1961) with his famous Ellsberg paradox. In Savage’s theory a decision 

maker is ambiguity-neutral, but as the Ellsberg paradox shows individuals in reality 

are certainly not ambiguity-neutral. 

 In the famous Ellsberg experiment subjects were presented two urns both 

containing 100 balls. The balls can either be black or red. In urn I, the composition of 

the balls is known, 50 black and 50 red balls. The subject has no information about 

the composition in urn II. So the composition in urn II is ambiguous. Placed in a 

choice situation, it is plausible that a subject strictly prefers receiving a prize upon 

drawing a red ball from urn I than receiving the same prize upon drawing a red ball 

from urn II, the same if red is changed with black. This behavior seems highly 

reasonable, but unfortunately it is not compatible with the idea that the subject has 

probabilistic beliefs on the composition of urn II, and this is not compatible with 

Savage’s theory. The choice pattern creates a difficulty to any decision criterion based 

on probability. Following probabilistic sophistication the subject should be indifferent 

between betting on urn I or urn II. Since the ball can only be either black or red, a ball 

has a 50% chance of being black and a 50% chance of being red. There are 100 balls 

in urn II, thus an individual should expect 0.50 ×  100 = 50 black balls and thus 50 

red balls. Exactly the same as in urn I. However, preferring to bet on urn I instead of 

urn II implies the following: the individual thinks that the probability of a ball being 

red drawn from urn II is smaller then 1
2
, however, then the subject should choose 

betting on urn II drawing black. So we have a contradiction. 

 The above observation shows that in order to model ambiguity, new methods 

are needed. The Ellsberg paradox shows that individuals are, most of the time, 

ambiguity averse. It has been claimed that, while most are indifferent with respect to 

the color they bet on, they are not indifferent with respect to the urn they choose 

(Gilboa, 1987). Thus ambiguity plays a significant role in reality, hence the 

importance of a model, which describes it correctly. Schmeidler (1989) provided an 

axiomatic approach to model ambiguity. He makes use of capacities, to represent an 
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individual’s belief instead of an additive probability distribution, and the Choquet 

integral.  

 In standard game theory when players face decisions under risk (probabilities 

are known), the model that is used in order to predict the behavior of the players is the 

expected utility model. Interest in expected utility theory was revised thanks to John 

von Neumann and Oskar Morgenstern (1947), as they used it in their theory of games 

and economic behavior. 

 However, as I already mentioned, expected utility theory is not very realistic. 

This prompted theorist to search for new models to use when individuals face risk. 

Several new models were created to better describe how individuals behave when 

faced with risk. Most of them incorporate decision weights instead of just 

probabilities. There is evidence for the view that individuals have subjective attitudes 

to probabilities, which are distinct from attitudes to consequences (Starmer, 2000), 

hence, the use of decision weights.  

 One well-known model that made use of decision weights is Rank-Dependent 

Expected Utility Theory by John Quiggin (1982). Another model is Prospect Theory 

by Daniel Kanheman and Amos Tversky (1979), which also makes use of decision 

weights, however another important feature of Prospect Theory is its reference point 

dependence. Gains and losses are weighted differently. Despite these new models the 

model, which is mainly used in game theoretical modeling is still Expected Utility 

Theory.  

 The objective of this paper is to analyze different game theoretical situations 

where ambiguity is incorporated, in order to describe behavior in these games better. 

Simultaneously, more realistic equilibria will be derived. First, I will investigate two 

games from the paper Ten little treasures of game theory and ten intuitive 

contradictions by Goeree and Holt (2001). These games are somewhat abstract, and 

thus no real life comparison can be made, easily. Therefore, I will also look at a real 

life situation, namely the futures market. When ambiguity is incorporated it is more 

easily explained why deviations from Nash equilibrium predictions occur in reality. 

This is where this paper contributes to existing literature. It incorporates ambiguity 

into the analysis. This may lead to the fact that Expected Utility Theory may still be 

usable, despite its criticism. The main question of concern in this paper is: can 
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incorporating ambiguity into the analysis explain deviations from Nash equilibrium 

predictions? 

 Another objective of this paper is to combine ambiguity attitudes with risk 

attitudes. In previous literature, the two have been studied separately, but not together 

as far as I know. I am interested how risk attitudes affect ambiguity attitudes. 

 The remainder of this paper goes as follows. In the next section I will describe 

capacities and the Choquet integral, in more detail. Section 3, contains an exploration 

of the type of capacity used in the analysis of this paper. Followed by a section 

devoted to the analysis of the experimental games. In section 5 ambiguity attitudes 

and risk attitudes are combined. Section 6, provides the analysis of the futures market 

game. Section 7 provides a discussion. Last the conclusion. In the main text only final 

values are given, for all derivations and intermediate algebraic steps I would like to 

point the reader to the appendix. 

2 Preliminaries 

In this section, I will define the ingredients needed in order to model situations under 

ambiguity, game theoretically. Let Ω denote the state space, and the elements of this 

set are called states of nature. Further there is an outcome space denoted by 𝑋𝑋. This 

outcome space has elements representing all the possible results of all the conceivable 

situations. Both Ω and 𝑋𝑋 can be finite or infinite. Here, I will assume that both are 

finite, so we have the following 

Ω = {𝜔𝜔1, … ,𝜔𝜔𝑛𝑛} 

𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} 

 An element 𝜔𝜔 ∈ Ω is called a state of nature. Sets of states of nature, 𝐸𝐸 ⊆ Ω 

are called events. Denote the set of events by ℰ. Further, players have preferences 

over acts, acts are mappings from Ω to 𝑋𝑋, 𝑓𝑓:Ω → 𝑋𝑋, and denote the set of acts by 𝐹𝐹. 

So players have a preference ordering ≽ over 𝐹𝐹. Last, players have a utility function 

𝑢𝑢:𝑋𝑋 → ℝ. 

 A game consists of 〈𝑆𝑆𝑖𝑖,𝑢𝑢𝑖𝑖〉𝑖𝑖=1,2, when there are two players. The utility 

function of player 𝑖𝑖 represents the payoff to player 𝑖𝑖 depending on his chosen strategy 

and the strategies chosen by 𝑖𝑖’s opponents, thus 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖). Here 𝑠𝑠𝑖𝑖 is a strategy of 

player 𝑖𝑖 and 𝑠𝑠−𝑖𝑖 denotes the strategy combination chosen by 𝑖𝑖’s opponents. The set of 

strategies, of player 𝑖𝑖 is 𝑆𝑆𝑖𝑖, where 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖, and the set of strategies of player 𝑖𝑖’s 
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opponents is 𝑆𝑆−𝑖𝑖, where 𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖. The total set of all strategies is denoted by 𝑆𝑆 and is 

defined as 𝑆𝑆 = 𝑆𝑆𝑖𝑖 × 𝑆𝑆−𝑖𝑖. 

 In standard game theory, the belief of a player 𝑖𝑖 is represented by an additive 

probability distribution over the pure strategies of 𝑖𝑖’s opponents. But in the 

introduction I already mentioned that in many economic situations an agent may not 

know probabilities and therefore does not have an additive probability distribution to 

represent his beliefs. In the literature it has been proposed to use capacities to 

represent a player’s belief when faced with ambiguity/uncertainty. A characteristic of 

capacities in modeling ambiguity is the fact that capacities are not necessarily 

additive. So a capacity is a non-additive measure of beliefs.  A not so formal 

definition of capacity is that it is a measure of the size of a set. Here is a more formal 

definition of a capacity. 

 

DEFINITION 2.1: A capacity is a function 𝑣𝑣:ℰ → ℝ which assigns real numbers to 

events, such that 

(i.) 𝐸𝐸,𝐹𝐹 ∈ ℰ,𝐸𝐸 ⊆ 𝐹𝐹 implies 𝑣𝑣(𝐸𝐸) ≤ 𝑣𝑣(𝐹𝐹), 

(ii.) 𝑣𝑣(∅) = 0 and 𝑣𝑣(Ω) = 1. 

 

 In order to model preferences under ambiguity, previous literature made use of 

the Choquet expected utility (CEU) model. In order to use the CEU model we first 

need to rank the outcomes from best to worst. Hence, for instance: 

𝑥𝑥1 > ⋯ > 𝑥𝑥𝑖𝑖 > ⋯ > 𝑥𝑥𝑛𝑛 

Then the Choquet expected value of an act becomes: 

∫ 𝑓𝑓𝑓𝑓𝑣𝑣 = � 𝑥𝑥 ∙ [𝑣𝑣({𝜔𝜔|𝑓𝑓(𝜔𝜔) ≥ 𝑥𝑥}) − 𝑣𝑣({𝜔𝜔|𝑓𝑓(𝜔𝜔) > 𝑥𝑥})]
𝑛𝑛

𝑥𝑥∈𝑓𝑓(𝜔𝜔)

 

Here, 𝑣𝑣({𝜔𝜔|𝑓𝑓(𝜔𝜔) ≥ 𝑥𝑥}) means the capacity/belief of the player of obtaining an 

outcome higher or equal than 𝑥𝑥 in state of nature 𝜔𝜔 and 𝑣𝑣({𝜔𝜔|𝑓𝑓(𝜔𝜔) > 𝑥𝑥}) means the 

capacity/belief of the player of obtaining an outcome higher than 𝑥𝑥 in state of nature 

𝜔𝜔. We get the Choquet expected value by multiplying the difference of the two 

capacities with the outcome 𝑥𝑥 and take the sum of this multiplication over all 𝑛𝑛 

possible outcomes. So the Choquet expected utility is similar to Rank-dependent 

utility, however, the Choquet expected utility is taken with respect to capacities and 

not a standard probability weighting function. 

 5 



  

3 Neo-additive capacities, Choquet expected utility and equilibrium 

In the previous section, I discussed general capacities. A special case of capacities is 

neo-additive capacities, which I will use in this paper. This is because with general 

capacities a too broad range of behavior can be explained, and thus no accurate 

predictions can be made. 

 Neo-additive capacities are additive on non-extreme outcomes, and non-

additive on extreme outcomes. Neo-additive capacities are a convex combination of 

an additive capacity and two capacities, (i.) one reflects full ambiguity, and (ii.) one 

that reflects full confidence (Chateauneuf, Eichberger & Grant, 2007). So neo-

additive capacities can be used to represent an individual whose beliefs are described 

by an additive probability distribution 𝜋𝜋, but the decision maker lacks confidence in 

this belief. I will use the definition of neo-additive capacities from the paper 

Ambiguity and social interaction by Eichberger, Kelsey and Schipper (2009). 

 

DEFINITION 3.1: Let 𝛼𝛼, 𝛿𝛿 be real numbers such that 0 ≤ 𝛼𝛼 ≤ 1, 0 ≤ 𝛿𝛿 ≤ 1, define a 

neo-additive capacity 𝑣𝑣 by 𝑣𝑣(∅) = 0, 𝑣𝑣(𝑆𝑆−𝑖𝑖) = 1, 𝑣𝑣(𝐴𝐴) = 𝛿𝛿𝛼𝛼 + (1 − 𝛿𝛿)𝜋𝜋(𝐴𝐴), ∅ ⊂

𝐴𝐴 ⊂ 𝑆𝑆−𝑖𝑖, where 𝜋𝜋 is an additive probability distribution on 𝑆𝑆−𝑖𝑖. 

 

 Neo-additive capacities can then be represented in the following manner: 

𝑣𝑣(𝐴𝐴|𝛼𝛼, 𝛿𝛿,𝜋𝜋) = �
1                                    𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 = 𝑆𝑆−𝑖𝑖

𝛿𝛿𝛼𝛼 + (1 − 𝛿𝛿)𝜋𝜋(𝐴𝐴)             𝑓𝑓𝑓𝑓𝑓𝑓 ∅ ⊂ 𝐴𝐴 ⊂ 𝑆𝑆−𝑖𝑖 
0                                𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴 = ∅

 

Here 𝛼𝛼, 𝛿𝛿 ∈ [0,1], 𝜋𝜋𝑖𝑖 is an additive probability distribution on 𝑆𝑆−𝑖𝑖 of player 𝑖𝑖 which 

represents the belief of player 𝑖𝑖 about his opponents’ strategies. 

 With neo-additive capacities the following pattern arises. The decision maker 

has a belief represented by 𝜋𝜋, but lacks confidence in this belief. Then the decision 

maker can react in an optimistic or a pessimistic way, when optimistic the decision 

maker partially overweighs the best outcome, 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖), and when 

pessimistic the decision maker partially overweighs the worst outcome, 

𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖). The overweighting of 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) and 

𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) are measured by 𝛿𝛿𝛼𝛼 and 𝛿𝛿(1 − 𝛼𝛼), respectively. 

 A convenient characteristic of the neo-additive capacity representation is that 

ambiguity and attitudes towards ambiguity are measured separately. Ambiguity is 
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measured by 𝛿𝛿 and, conversely, confidence is measured by (1 − 𝛿𝛿). As for attitudes, 

𝛼𝛼 captures optimism and (1 − 𝛼𝛼) captures pessimism.  

 Now that we have a clearer picture of what neo-additive capacities are we can 

continue and combine it with the Choquet integral to get the formula for the Choquet 

expected utility with neo-additive capacities. 

 

DEFINITION 3.2: The Choquet expected utility with respect to the neo-additive 

capacity 𝑣𝑣 = 𝛿𝛿𝛼𝛼 + (1 − 𝛿𝛿)𝜋𝜋 from playing 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖 is given by 

𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖|𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖,𝜋𝜋𝑖𝑖)

= 𝛿𝛿𝑖𝑖�𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿𝑖𝑖)∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝑠𝑠−𝑖𝑖) 

(see appendix point 2 for derivation). 

 

 We can see that the Choquet expected utility, with neo-additive capacities, is a 

weighted average of utilities from the maximum, minimum, and average payoff. 

However, the weights are not probabilities but decision weights. The maximum 

payoff, 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖), gets a weight 𝛿𝛿𝛼𝛼 + (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�, 

the minimum payoff, 𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖), gets a weight 𝛿𝛿(1 − 𝛼𝛼) + (1 −

𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� (see appendix point 1), this is only true for acts with two 

outcomes, and any other outcome 𝑥𝑥𝑖𝑖, gets a decision weight of (1 − 𝛿𝛿)𝜋𝜋(𝑥𝑥𝑖𝑖). 

 Last, we need to define the notion of the support of beliefs, before we can 

move on to the equilibrium. The support of beliefs is the set of strategies that are 

assigned a positive probability by the belief of a player. So strategies that receive a 

belief that assigns a probability of zero to that particular strategy are not included in 

the support. The notion of support is necessary to ensure that only best responses are 

considered and played, as is required by equilibrium. Here, I will use the same 

definition of a support of a capacity as Eichberger, Kelsey and Schipper (2009). 

 

DEFINITION 3.3: The support of the neo-additive capacity 𝑣𝑣(𝐴𝐴) = 𝛿𝛿𝛼𝛼 +

(1 − 𝛼𝛼)𝜋𝜋(𝐴𝐴), is defined by 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠(𝑣𝑣) = 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠(𝜋𝜋). 
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 Define the best-response function of player 𝑖𝑖 given his/her beliefs, that are 

represented by a neo-additive capacity 𝑣𝑣, by 𝑅𝑅𝑖𝑖(𝑣𝑣𝑖𝑖) = 𝑅𝑅𝑖𝑖(𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖 ,𝜋𝜋𝑖𝑖) ≔

arg max{𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑣𝑣𝑖𝑖)|𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖}. Now we can define a condition for equilibria where 

ambiguity plays a role. 

 

DEFINITION 3.4: A pair of neo-additive capacities (𝑣𝑣1∗, 𝑣𝑣2∗) is an Equilibrium Under 

Ambiguity (EUA) if for 𝑖𝑖 = 1,2, 𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠(𝑣𝑣𝑖𝑖∗) ⊆ 𝑅𝑅−𝑖𝑖(𝑣𝑣−𝑖𝑖∗ ). 

 

 Now, to summarize, what does actually occur in an Equilibrium under 

Ambiguity (EUA)? Each player assigns only positive likelihoods to his/her 

opponent’s best responses given the opponent’s beliefs. But, players lack confidence 

in their likelihood assessment, so they respond in an optimistic or pessimistic way by 

overweighting the best outcome, 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖), or overweighting the worst 

outcome, 𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖), respectively.  

 The Equilibrium under Ambiguity (EUA) concept is also related to the 

original Nash equilibrium. In fact if players exhibit/feel no ambiguity, so 𝛿𝛿𝑖𝑖 = 0, the 

first half of the Choquet expected value in the equation from definition 3.2 becomes 

zero, and we are left with the expected utility. According the equilibrium definition 

players maximize their expected utility by choosing a strategy given his beliefs about 

the strategies and beliefs of his opponent. This solution concept exactly coincides 

with the Nash equilibrium. Thus, without ambiguity the Choquet expected utility 

model gives the same prediction as the Nash equilibrium. 

4 Experimental games 

In this section I will study two games from the paper Ten little treasures of game 

theory and ten intuitive contradictions by Goeree and Holt (2001). I will apply the 

Choquet expected utility model with neo-additive capacities, from the previous 

section, in order to predict the players’ behavior. Both games are dynamic. Goeree 

and Holt (2001) show that behavior by their subjects moves away from the Nash 

equilibrium prediction when a seemingly irrelevant parameter is changed. The 

objective of this section is to clarify if models that incorporate ambiguity can explain 

this observed pattern. 
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4.1 Should you believe others to be rational?  

The first game I will study is a dynamic game and is concerned with the fact if a 

player should trust his opponent to be rational. Henceforth, this game will be called 

‘not rational game’. In this game there are two players, player 1 and player 2, player 1 

has the following strategy set 𝑆𝑆1 = {𝑆𝑆,𝑅𝑅} and player 2 has the strategy set 𝑆𝑆2 =

{𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃}. Here the strategy 𝑠𝑠2 = 𝑃𝑃𝑃𝑃 means that if player 1 plays 𝑠𝑠1 = 𝑆𝑆, 

player 2 will play 𝑃𝑃 and if player 1 plays 𝑠𝑠1 = 𝑅𝑅, player 2 will play 𝑃𝑃 as well. The 

game tree with payoffs is given in the figure below. The percentage between the 

parentheses refers to the actual percentage of subjects that ended up at that particular 

outcome.  

                                                                 1 

                                                             

                                                 𝑆𝑆                             𝑅𝑅 

 

                                                                                            2 

                                        80, 50 

                            (16%)                             P                  N 

 

 

                                                                            20, 10              90, 70 

                                                                                                     (84%) 
Figure 1. Version (a.) of ‘not rational game’ 

 
 Now, the analysis without ambiguity is pretty straightforward and it goes as 

follows. In order to determine the Nash equilibria it is convenient to represent the 

game in its normal form. 
Table 1: Normal form representation of version (a.) of ‘not rational game’ 

 2 

𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 

 

1 

𝑆𝑆 80, 50 80, 50 80, 50 80, 50 

𝑅𝑅 20, 10 90, 70 20, 10 90, 70 

To find the Nash equilibria we look at the best responses of both players given the 

strategy of his opponent. If player 1 plays 𝑠𝑠1 = 𝑆𝑆, player 2 will be indifferent between 

all four of his strategies. If player 2 plays 𝑠𝑠2 = 𝑃𝑃𝑃𝑃, player 1 will prefer 𝑠𝑠1 = 𝑆𝑆 over 
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𝑠𝑠1 = 𝑅𝑅, because 80 > 20. So when player 1 plays 𝑠𝑠1 = 𝑆𝑆 and player 2 plays 𝑠𝑠2 = 𝑃𝑃𝑃𝑃 

both players have no incentive to deviate, thus we have our first Nash equilibrium, 

namely (𝑆𝑆,𝑃𝑃𝑃𝑃). The same reasoning applies to the situation where player 1 plays 

𝑠𝑠1 = 𝑆𝑆 and player 2 plays 𝑠𝑠2 = 𝑃𝑃𝑃𝑃, thus our second Nash equilibria is (𝑆𝑆,𝑃𝑃𝑃𝑃). Now 

consider player 1 playing 𝑠𝑠1 = 𝑅𝑅, player 2 is indifferent between 𝑠𝑠2 = 𝑃𝑃𝑃𝑃 and 𝑠𝑠2 =

𝑃𝑃𝑃𝑃, but prefers them above 𝑠𝑠2 = 𝑃𝑃𝑃𝑃 and 𝑠𝑠2 = 𝑃𝑃𝑃𝑃, because 70 > 10. Then if player 

2 plays 𝑠𝑠2 = 𝑃𝑃𝑃𝑃 or 𝑠𝑠2 = 𝑃𝑃𝑃𝑃, in both instances, player 1 would prefer 𝑠𝑠1 = 𝑅𝑅 over 

𝑠𝑠1 = 𝑆𝑆, because 90 > 80. Again the two players have no incentive to deviate 

unilaterally, and thus we have our other two Nash equilibria, namely (𝑅𝑅,𝑃𝑃𝑃𝑃) and 

(𝑅𝑅,𝑃𝑃𝑃𝑃). This gives us four Nash equilibria in total: (𝑆𝑆,𝑃𝑃𝑃𝑃), (𝑆𝑆,𝑃𝑃𝑃𝑃), (𝑅𝑅,𝑃𝑃𝑃𝑃), and 

(𝑅𝑅,𝑃𝑃𝑃𝑃).  

 Which of these Nash equilibria are perfect Nash equilibria? In order to find the 

ones that are, it will be convenient to look at figure 1. For a perfect Nash equilibrium, 

the strategies chosen must be an optimal response in every subgame. I will use 

backward induction to check which of the four Nash equilibria are perfect Nash 

equilibria. In the subgame where 2 may choose an action, 𝑠𝑠2 = 𝑃𝑃 dominates 𝑠𝑠2 = 𝑃𝑃, 

because 70 > 10. Thus playing 𝑠𝑠2 = 𝑃𝑃 is never an optimal strategy for player 2. 

Player 1 can deduce this. So if he expects player 2 to play 𝑠𝑠2 = 𝑃𝑃𝑃𝑃, player 1 will play 

𝑠𝑠1 = 𝑅𝑅. This is because if player 1 plays 𝑠𝑠1 = 𝑆𝑆 he receives a payoff of 80, and if 

player 1 plays 𝑠𝑠1 = 𝑅𝑅 when he believes player 2 will play 𝑠𝑠2 = 𝑃𝑃, he receives a 

payoff of 90. Since 90 > 80 player 1 will play 𝑠𝑠1 = 𝑅𝑅. So the only Nash equilibrium 

that survives backward induction is (𝑅𝑅,𝑃𝑃𝑃𝑃). This is also the outcome that most of the 

subjects, in the paper by Goeree and Holt (2001), arrive at (84%). 

 After this Goeree and Holt (2001) let their subjects play the game again but 

now one payoff to player 2 is changed, namely 𝑥𝑥2 = (𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2 = 𝑃𝑃) = 10 is 

increased to 𝑥𝑥2 = (𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2 = 𝑃𝑃) = 68. So now it may be more likely that player 2 

plays 𝑠𝑠2 = 𝑃𝑃 after player 1 played 𝑠𝑠1 = 𝑅𝑅. I will call this game with the increased 

outcome version (b.). The previous game will be called version (a.). For version (b.), 

the analysis without ambiguity is exactly the same as the analysis of version (a.). 

However, in version (b.) a significant proportion of the subjects in the player 1 role, 

play 𝑠𝑠1 = 𝑆𝑆, namely 52%, and thus behavior moves away from the Nash equilibrium 

solution. Now I will examine if this observed behavior could be explained by 

ambiguity. First the game tree of version (b.) of this game is given. 
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                                                                 1 

                                                        S               R 

        

                                                             

                                           80, 50 

                              (52%)                      P                  N 

                                                                                        

                                                                      20, 68              90, 70 

                                                                      (12%)               (36%) 
Figure 2. Version (b.) of ‘not rational game’ 

 
 In order for subjects, in the role of player 1, to play 𝑠𝑠1 = 𝑆𝑆 instead of 𝑠𝑠1 = 𝑅𝑅 

the Choquet expected utility for player 1 from 𝑠𝑠1 = 𝑆𝑆 must be larger than the Choquet 

expected utility for player 1 from 𝑠𝑠1 = 𝑅𝑅. Thus: 

CONDITION 4.1: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

To calculate 𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) and 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) I use 

the formula of the Choquet expected utility with neo-additive capacities. For 𝑉𝑉1(𝑠𝑠1 =

𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) I get the following expression: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = 80 

(See appendix point 3 for derivation).  

And for 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1): 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = 90 − 𝛿𝛿1(1 − 𝛼𝛼1)70 

(See appendix point 3 for derivation).  

If we then plug in the values into condition 4.1, I get the following: 

80 > 90 − 𝛿𝛿1(1 − 𝛼𝛼1)70 

Which in turn leads to 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.143 

(See appendix point 4 for derivation). 

 What exactly does this finding entail? If we look at the term 𝛿𝛿1(1 − 𝛼𝛼1) it is 

𝛿𝛿1 (ambiguity perceived by player 1) times (1 − 𝛼𝛼1), which is the term for a 

pessimistic view on ambiguity, so the two combine represent ambiguity aversion. So 

if the ambiguity aversion of player 1 is larger than 0.143, he/she prefers playing 𝑠𝑠1 =
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𝑆𝑆 over 𝑠𝑠1 = 𝑅𝑅. Which would lead to a deviation from the Nash equilibrium 

prediction. 

4.2 Should you believe a threat that is not credible? 

The first game considered is somewhat unusual, in the sense that, a punishment by 

player 2 cannot be justified, because there is an absence of a relative payoff effect. To 

understand what I mean, look again at the game trees of the first game (both from 

version (a.) and (b.)). Player 1 can play 𝑠𝑠1 = 𝑆𝑆 and secure a payoff of 𝑥𝑥1(𝑠𝑠1 = 𝑆𝑆) =

80 to himself and 𝑥𝑥2(𝑠𝑠1 = 𝑆𝑆) = 50 to player 2. However, if player 1 plays 𝑠𝑠1 = 𝑅𝑅 in 

expectation that player 2 is rational and chooses to play 𝑠𝑠2 = 𝑃𝑃, both players receive 

a higher payoff, 𝑥𝑥1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2 = 𝑃𝑃) = 90 > 𝑥𝑥1(𝑠𝑠1 = 𝑆𝑆) = 80 and 𝑥𝑥2(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2 =

𝑃𝑃) = 70 > 𝑥𝑥2(𝑠𝑠1 = 𝑆𝑆) = 50 > 𝑥𝑥2(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2 = 𝑃𝑃) = 10 and in version (b.) 

𝑥𝑥2(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2 = 𝑃𝑃) = 70 > 𝑥𝑥2(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2 = 𝑃𝑃) = 68 > 𝑥𝑥2(𝑠𝑠1 = 𝑆𝑆) = 50, so player 

2 is also better off when playing 𝑃𝑃. Thus no justifiable reason for player 2 to punish 

player 1, after playing 𝑠𝑠1 = 𝑅𝑅, by playing 𝑠𝑠2 = 𝑃𝑃. 

 In the second game (game trees are given below) there is a relative payoff 

effect. Now if player 1 plays 𝑠𝑠1 = 𝑅𝑅 player 2’s payoff is decreased for sure (the 

relative payoff effect). Thus fear of punishment might play a role in this game. The 

strategy set for player 1 and player 2 are, again, 𝑆𝑆1 = {𝑆𝑆,𝑅𝑅} and 𝑆𝑆2 =

{𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃}, respectively. Again the observed percentage of subjects, that 

Goeree and Holt (2001) find displaying certain behavior is given in parentheses. 

                                                                   1              

                                                     𝑆𝑆                        𝑅𝑅 

                                                                                    2 

                                              70, 60                                          

                                               (12%)                   P              N              

                                                                                       

 

                                                                      60, 10              90, 50 

                                                                                              (88%) 
Figure 3. Version (a.) of ‘non-credible threat game’ 
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 In version (a.) of this game, however, punishment by player 2 is rather costly 

for player 2. So it highly unlikely that player 2 will punish here. For the normal 

analysis of this game (without ambiguity), we use the normal form representation 

again. 
Table 2: Normal form representation of Version (a.) of ‘non-credible threat game’ 

 2 

𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 

 

1 

𝑆𝑆 70, 60 70, 60 70, 60 70, 60 

𝑅𝑅 60, 10 90, 50 60, 10 90, 50 

 The way of reasoning to find the Nash equilibria and perfect Nash equilibrium 

in version (a.) of the game in section 4.1 applies here as well. Again we get the 

following four Nash equilibria: (𝑆𝑆,𝑃𝑃𝑃𝑃), (𝑆𝑆,𝑃𝑃𝑃𝑃), (𝑅𝑅,𝑃𝑃𝑃𝑃), and (𝑅𝑅,𝑃𝑃𝑃𝑃). And again 

we get the same perfect Nash equilibrium, namely (𝑅𝑅,𝑃𝑃𝑃𝑃). We see that in version 

(a.) of this game the outcome predicted by the perfect Nash equilibrium is played 

most of the time by the subjects in Goeree and Holt (2001), namely 88%. 

 Again, the payoff to player 2 is changed in version (b.) of this game in the 

same manner as in version (b.) of the game in the previous section only the value is 

different.  In this game 𝑥𝑥2 = (𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2 = 𝑃𝑃) = 10 is increased to 𝑥𝑥2 =

(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2 = 𝑃𝑃) = 48. The game tree is given below. 

                                                                  1 

                                                             

                                                 𝑆𝑆                             𝑅𝑅 

 

                                                                                            2 

                                        70, 60 

                           (32%)                               P                  N 

 

 

                                                                            60, 48              90, 50 

                                                                            (32%)              (36%) 
Figure 4. Version (b.) of ‘non-credible threat game’ 

 
 Here, again, player 1 is the decision maker who faces ambiguity. Goeree and 

Holt (2001) find that more of their subjects, in the player 1 role, play 𝑠𝑠1 = 𝑆𝑆. This 
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might be explainable with ambiguity. So, again I use the Choquet expected utility 

model with neo-additive capacities to check if this behavior by player 1 can be 

justified.  

 If player 1 plays 𝑠𝑠1 = 𝑆𝑆 instead of 𝑠𝑠1 = 𝑅𝑅 the following condition must hold: 

CONDITION 4.2: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

For 𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) I get the following expression: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = 70 

(See appendix point 5 for derivation).  

And for 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) I get the expression: 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = 90 − 𝛿𝛿1(1 − 𝛼𝛼1)30 

(See appendix 5 for derivation).  

Plugging in these values into condition 4.2, I get the following condition: 

70 > 90 − 𝛿𝛿1(1 − 𝛼𝛼1)30 

This in turn, after some algebraic steps, leads to: 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.667 

(See appendix point 6 for derivation). 

 So in order for player 1 to deviate from the Nash prediction 𝑠𝑠1 = 𝑅𝑅, his 

ambiguity aversion must be larger than 0.667. This is a pretty high level and that is 

because in this game if player 2 decides to punish player 1 by playing 𝑠𝑠2 = 𝑃𝑃 player 1 

still receives a payoff of 60. If this value and therefore the difference between 

𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅; 𝑠𝑠2) and 𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅; 𝑠𝑠2) had been lower and larger, 

respectively, then 𝛿𝛿1(1 − 𝛼𝛼1) would have been lower as well. 

4.3 Varying the additive probability distribution 

 The analysis of the two games with ambiguity is similar to the analysis in 

Eichberger and Kelsey (2008). However, in their analysis they assume that 

∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝑠𝑠−𝑖𝑖) is equal to 𝑚𝑚𝑚𝑚𝑥𝑥{𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖 = 1, 𝑠𝑠−𝑖𝑖),𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖 = 2, 𝑠𝑠−𝑖𝑖)}, where 𝑠𝑠𝑖𝑖 = 1 

stands for the first strategy of the strategy set of player 𝑖𝑖 and 𝑠𝑠𝑖𝑖 = 2 stands for the 

second strategy of the strategy set of player 𝑖𝑖. This implies 𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) =

0;𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1} as long as 𝑢𝑢2(𝑠𝑠1 = 𝑅𝑅; 𝑠𝑠2 = 𝑃𝑃) < 𝑢𝑢2(𝑠𝑠1 = 𝑅𝑅; 𝑠𝑠2 = 𝑃𝑃), since with 

the additive probability distribution full rationality is assumed. Then player 2 will 

never play 𝑠𝑠2 = 𝑃𝑃 as long as 𝑠𝑠2 = 𝑃𝑃 grants player 2 a higher payoff. So if full 
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rationality is assumed, player 1 will deduce this and therefore believe that player 2 

will not play 𝑠𝑠2 = 𝑃𝑃 as long as playing 𝑠𝑠2 = 𝑃𝑃 after 𝑠𝑠1 = 𝑅𝑅 gives a higher payoff to 

player 2.  This logic predicts the same ambiguity aversion cut-off value in version (a.) 

and (b.) of both games. In version (b.) of both games punishment is relatively cheap 

to player 2. Therefore, if player 1 faces ambiguity over the strategies of player 2, 

rationality may not be likely thanks to the ambiguity. Thus in version (b.) player 1 

must deem it more likely that player 2 may play the punishment strategy, and this 

should be reflected in the additive probability distribution, 𝜋𝜋1(𝑠𝑠2), of player 1.  

 In the ‘non-credible threat game’ there is a relative payoff effect for player 2 

when player 1 plays 𝑠𝑠1 = 𝑅𝑅. By playing 𝑠𝑠1 = 𝑅𝑅 the payoff to player 2 is decreased 

from 60 to 50 with certainty. Player 2 may deem this as unfair and will therefore 

punish player 1, since the payoff difference for player 2 by playing 𝑠𝑠2 = 𝑃𝑃 or 𝑠𝑠2 = 𝑃𝑃 

is very small, in version (b.), player 1 should deem it even more likely that player 2 

will deviate from the standard Nash equilibrium prediction (𝑠𝑠2 = 𝑃𝑃), in the ‘non-

credible threat game’. 

 As a result ∫ 𝑢𝑢1(𝑠𝑠1, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) should be lower in version (b.) than in version 

(a.), because now more weight should be put on the lower payoff outcome, and thus 

player 1’s choice will not only depend on his ambiguity attitudes with his belief set at 

𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 0;𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1}, now his belief has more impact, since 

𝜋𝜋1(𝑠𝑠2) is allowed to vary.  

 In this section I will investigate what happens with the ambiguity parameters 

when the additive probability distribution can take different values and not just 𝜋𝜋1 =

{𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 0; 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1} as before. So we treat 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) and 𝑠𝑠1(𝑠𝑠2 =

𝑃𝑃) as variables. Here 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) and 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) stand for the belief player 1 has 

about player 2 playing his strategy 𝑠𝑠2 = 𝑃𝑃 and 𝑠𝑠2 = 𝑃𝑃, respectively. I will use an 

additive probability distribution of the following form: 

𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 𝑠𝑠;  𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1 − 𝑠𝑠} 

with 0 ≤ 𝑠𝑠 ≤ 1 and 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) + 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1. 

 The equation from definition 3.2 can be rewritten as: 
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EQUATION 1: 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2)�

+ (1 − 𝛿𝛿1)[𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)

+ 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)] 

(See appendix point 7 for derivation).  

4.3.1 Should you trust others to be rational? 

Here I will use equation 1 and the additive probability distribution 𝜋𝜋1(𝑠𝑠2) =

{𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 𝑠𝑠;  𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1 − 𝑠𝑠}, which represents the belief of player 1 about 

𝑆𝑆2 that lacks full confidence. Then if player 1 plays 𝑠𝑠1 = 𝑆𝑆 instead of 𝑠𝑠1 = 𝑅𝑅 the 

following condition must hold: 

CONDITION 4.3.1: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) becomes: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = 80 

(See appendix point 8 for derivation).  

And 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) I get the following equation: 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1[70𝛼𝛼1 + 20 − 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)20 − 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)90]

+ [𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)20 + 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)90] 

Since 𝜋𝜋1(𝑠𝑠2), is {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 𝑠𝑠;  𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1 − 𝑠𝑠} instead of {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) =

0; 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1}, so 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) in its final form can be written 

as: 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = (90 − 70𝑠𝑠) − 𝛿𝛿1(1 − 𝛼𝛼1 − 𝑠𝑠)70 

(See appendix point 8 for derivation).  

Now we can return to the condition that must be satisfied in order for player 1 to play 

𝑠𝑠1 = 𝑆𝑆 instead of 𝑠𝑠1 = 𝑅𝑅. I get: 

80 > (90 − 70𝑠𝑠) − 𝛿𝛿1(1 − 𝛼𝛼1 − 𝑠𝑠)70 

This results in the following expression: 

𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) >
80 − (90 − 70𝑠𝑠)

−70
 

(See appendix point 9 for derivation). 
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 If we fill in 𝑠𝑠 = 0, then we get the same outcome as in section 4.1, namely 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.143. At the other end, we can fill in 𝑠𝑠 = 1, then we get the 

following: 𝛿𝛿1𝛼𝛼1 < 6
7
. 

 If 𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) > 80−(90−70𝑝𝑝)
−70

 holds then player 1 plays 𝑠𝑠1 = 𝑆𝑆 instead of 

𝑠𝑠1 = 𝑅𝑅. To interpret this finding, I will try to define a relationship between 𝛿𝛿1 and 𝑠𝑠, 

and between 𝛼𝛼1 and 𝑠𝑠.The relation between 1 − 𝛼𝛼1 and 𝑠𝑠 directly follows from the 

relation between 𝛼𝛼1 and 𝑠𝑠. For the relationship between 𝛼𝛼1 and 𝑠𝑠 and between 1 − 𝛼𝛼1 

and 𝑠𝑠, I will fix 𝛿𝛿1 at a reasonable level found in previous literature. As for the 

relationship between 𝛿𝛿1 and 𝑠𝑠, I will fix 𝛼𝛼1 at a reasonable level found in previous 

literature. In Eichberger & Kelsey (2011), they state that Kilka & Weber (2001) found 

reasonable levels of optimism and ambiguity, experimentally. These values will be 

used here to fix 𝛿𝛿1 and 𝛼𝛼1 at reasonable levels. Below a table of their findings is 

given. 
Table 3: Optimism and ambiguity values from Kilka & Weber (2001) 

 𝛼𝛼 𝛿𝛿 𝛼𝛼𝛿𝛿 

Average 0.5 0.52 0.26 

Max. 0.62 0.61 0.34 

Min. 0.4 0.41 0.18 

  In order to find a relationship between 𝛿𝛿1 and 𝑠𝑠 and between 𝛼𝛼1 and 𝑠𝑠, first I 

fix 𝛿𝛿1 at a value from the KW-range (Table 3) and then show how 𝛼𝛼1 depends on 𝑠𝑠 

and second I fix 𝛼𝛼1 at a value from the KW-range (Table 3) and then show how 𝛿𝛿1 

depends on 𝑠𝑠. 

 First, the relationship between 𝛼𝛼1 and 𝑠𝑠 when the value for 𝛿𝛿1 is fixed at the 

average from the KW-range, thus 𝛿𝛿1 = 0.52, is examined. We can rewrite 𝛿𝛿1(1 −

𝛼𝛼1 − 𝑠𝑠) > 80−(90−70𝑝𝑝)
−70

 to find an equation for 𝛼𝛼1 which depends on 𝛿𝛿1 and 𝑠𝑠. This 

gives: 

𝛼𝛼1 < 1 −
80 − (90 − 70𝑠𝑠)

−36.4
− 𝑠𝑠 

(See appendix point 10 for derivation). 

Where 0 ≤ 𝑠𝑠 ≤ 1, so let’s take steps of 0.10 for 𝑠𝑠 and look what happens to 𝛼𝛼1, 

where 𝛼𝛼1 ∈ [0,1]. So we get a relationship between 𝛼𝛼1 and 𝑠𝑠 when 𝛿𝛿1 is fixed. 
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 What can we learn, from table A.11 in the appendix, about the relationship 

between 𝛼𝛼1 and 𝑠𝑠 when 𝛿𝛿1 is fixed at 0.52? If 𝑠𝑠 increases (the belief of player 1 about 

player 2 playing 𝑠𝑠2 = 𝑃𝑃), the upper bound of 𝛼𝛼1 for player 1 to prefer 𝑠𝑠1 = 𝑆𝑆 to 𝑠𝑠1 =

𝑅𝑅 increases as well. This means that the more likely player 1 beliefs player 2 will 

punish (play 𝑠𝑠2 = 𝑃𝑃), more values of optimism allow player 1 to play 𝑠𝑠1 = 𝑆𝑆 for his 

given fixed ambiguity value. Figure 5 presents the relationship between 𝑠𝑠 (x-axis) and 

the upper bound of 𝛼𝛼1 (y-axis). 

 
Figure 5. Relationship between 𝑠𝑠 and upper bound of 𝛼𝛼1 

 The relationship between 1 − 𝛼𝛼1 and 𝑠𝑠 is opposite to the relationship between 

𝛼𝛼1 and 𝑠𝑠, because optimism and pessimism are each other’s opposites (see appendix). 

From table A.13 in the appendix we see that if 𝑠𝑠 (the belief of player 1 about player 2 

playing 𝑠𝑠2 = 𝑃𝑃) increases, the pessimism (1 − 𝛼𝛼1) needed to induce 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 

decreases. The lower bound of (1 − 𝛼𝛼1) decreases. So a less pessimistic attitude 

towards ambiguity is needed for player 1 to play his safer strategy when 𝑠𝑠 increases. 

Figure 6 presents the relationship between 𝑠𝑠 (x-axis) and the lower bound of 1 − 𝛼𝛼1 

(y-axis). 
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Figure 6. Relationship between 𝑠𝑠 and lower bound of 1 − 𝛼𝛼1 

 Now that the relationship between the belief of player 1 about player 2 playing 

𝑠𝑠2 = 𝑃𝑃 and optimism (𝛼𝛼1) and pessimism (1 − 𝛼𝛼1) is clear, I will move on to the 

relation between 𝑠𝑠 (the belief of player 1 about player 2 playing 𝑠𝑠2 = 𝑃𝑃) and 

ambiguity (𝛿𝛿1), where 𝛿𝛿1 ∈ [0,1], when 𝛼𝛼1 is fixed at a value from the KW-range 

(Table 3). The condition 𝛿𝛿1(1 − 𝛼𝛼1 − 𝑠𝑠) > 80−(90−70𝑝𝑝)
−70

 needs to be rewritten into a 

condition where 𝛿𝛿1 depends on 𝛼𝛼1 and 𝑠𝑠. I arrive at the expression when 0 ≤ 𝑠𝑠 <

0.5: 

𝛿𝛿1 >
80 − (90 − 70𝑠𝑠)
−70(0.5 − 𝑠𝑠)  

And the expression becomes the following when 0.5 < 𝑠𝑠 ≤ 1: 

𝛿𝛿1 <
80 − (90 − 70𝑠𝑠)
−70(0.5 − 𝑠𝑠)  

(See appendix point 14 for derivation). 

Where, yet again, 0 ≤ 𝑠𝑠 ≤ 1, so again let’s take steps of 0.10 for 𝑠𝑠 and look what 

happens to 𝛿𝛿1, where 𝛿𝛿1 ∈ [0,1]. So we get a relationship between 𝛿𝛿1 and 𝑠𝑠 when 𝛼𝛼1 

is fixed. 

 A few remarkable things happen in the relationship between 𝛿𝛿1 and 𝑠𝑠, which 

become clear in table A.15 in the appendix. First, in the range 𝑠𝑠 ∈ [0,0.1], the lower 

bound of 𝛿𝛿1 decreases, from 0.286 to 0.107, if 𝑠𝑠 increases from 0 to 0.1, this means 
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that less ambiguity is needed to induce 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅, meaning player 1 must be 

more confident in his belief 𝑠𝑠. 

 Second, in the range 𝑠𝑠 ∈ [0.2,0.4] it can be seen that the ambiguity needed to 

make sure that 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 must be larger than a negative number. Since 𝛿𝛿1 ∈

[0,1], it is always satisfied, because 𝛿𝛿1 is always larger than zero. So if we take 𝛿𝛿1 =

0 as the cut off point, then 𝛿𝛿1 > 0 means all values of ambiguity induce 𝑠𝑠1 = 𝑆𝑆 ≻

𝑠𝑠1 = 𝑅𝑅. It can also mean that even more confidence (than in the first range) is needed 

when 0.107 > 𝛿𝛿1 > 0. 

 Third, for 𝑠𝑠 = 0.5 we cannot compute an ambiguity cut off value, since we 

divide by 0 which is mathematically not possible. So at 𝑠𝑠 = 0.5, 𝛿𝛿1 is not well 

defined. 

 Last, in the range 𝑠𝑠 ∈ [0.6,1.0], as 𝑠𝑠 increases further we have that 𝛿𝛿1 must be 

smaller than a number greater than 1, since 𝛿𝛿1 ∈ [0,1] this is always satisfied. 

Because if we have 𝛿𝛿1 < 4.571 for instance then it must also be the case that 𝛿𝛿1 < 1, 

so for 𝑠𝑠 ∈ [0.6,1.0] we have 𝛿𝛿1 < 1 this means that all levels of ambiguity will 

induce 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅, but now it is the other way around, when compared to 𝑠𝑠 ∈

[0.2,0.4]. Now less confidence will also suffice. So if 𝑠𝑠 increases and it is above 𝑠𝑠 =

0.5 confidence in 𝑠𝑠 is not necessarily needed in order for player 1 to have the 

preference ordering 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅.  

 Figure 7 shows the relationship between the lower bound of 𝛿𝛿1 and 𝑠𝑠, with 

ambiguity (𝛿𝛿1) on the y-axis and 𝑠𝑠 on the x-axis. And figure 8 shows the relationship 

between the upper bound of 𝛿𝛿1 and 𝑠𝑠, with ambiguity (𝛿𝛿1) on the y-axis and 𝑠𝑠 on the 

x-axis. 
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Figure 7. Relationship between the lower bound of 𝛿𝛿1 and 𝑠𝑠 

 
Figure 8. Relationship between the upper bound of 𝛿𝛿1 and 𝑠𝑠 

4.3.2 Should you believe a threat that is not credible? 

In this part of section 4, I will apply the same analysis of section 4.3.1 on the ‘Should 

you believe a threat that is not credible?’ game, henceforth “non-credible threat 
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when 𝛼𝛼1 is fixed, between 𝛼𝛼1 and 𝑠𝑠, and between 1 − 𝛼𝛼1 and 𝑠𝑠 when 𝛿𝛿1 is fixed are 

the same as in section 4.3.1. Since the ‘non-credible threat game’ has different 

payoffs than the ‘not rational game’ it will give different values for 𝛿𝛿1, 𝛼𝛼1 and 1 − 𝛼𝛼1. 

This is the only difference between section 4.3.1 and 4.3.2.  

5 Ambiguity and Risk attitudes 

In all the literature that I have read on the analysis of ambiguity in games, the authors 

assume a linear utility function of the form: 𝑢𝑢𝑖𝑖(𝑥𝑥) = 𝑥𝑥, however with such a utility 

function a decision maker is risk-neutral. This may not be so realistic. Therefore, in 

this section, I will analyze the two games from section 4 again but now with different 

utility functions, one that resembles risk-aversion and one risk-loving. The utility 

functions for a risk-averse and risk-loving decision maker, that I will use, are 𝑢𝑢𝑖𝑖 = √𝑥𝑥 

and 𝑢𝑢𝑖𝑖 = 𝑥𝑥2, respectively.  

5.1 Should you believe others to be rational? 

5.1.1 Should you believe others to be rational? with a risk-averse decision maker 

Here, I will look at the first game of section 4 again, but now the players have a utility 

function of the following form 𝑢𝑢𝑖𝑖 = √𝑥𝑥, where 𝑖𝑖 = 1,2, in order to incorporate risk-

aversion. I expect that the critical ambiguity aversion value for player 1 will now be 

lower, as player 1 is now also risk-averse less ambiguity aversion is needed for him to 

play his safer option 𝑠𝑠1 = 𝑆𝑆. At least this is what I expect. 

 For player 1 to prefer playing 𝑠𝑠1 = 𝑆𝑆 over 𝑠𝑠1 = 𝑅𝑅, his Choquet expected 

utility from playing 𝑠𝑠1 = 𝑆𝑆 must be larger than the Choquet expected utility from 

playing 𝑠𝑠1 = 𝑅𝑅. Here I will use the Choquet expected utility with neo-additive 

capacities formula as derived in section 3. So if 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 must be true for 

player 1, the following condition must hold: 

CONDITION 5.1.1: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

For 𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) I, now, get the following expression: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = √80 = 8.94 

(See appendix point 24 for derivation).  
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As for 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) I get: 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = 9.487 − 𝛿𝛿1(1 − 𝛼𝛼1)5.015 

(See appendix point 24 for derivation).  

Putting these Choquet expected values into condition 5.1.1, I get the following: 

8.94 > 9.487 − 𝛿𝛿1(1 − 𝛼𝛼1)5.015 

This leads to the critical ambiguity aversion value of: 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.109 

(See appendix point 25 for derivation). 

 So if we look at the two critical values from this game, where we assume risk-

neutrality and where we assume risk-aversion, we have 𝛿𝛿1(1 − 𝛼𝛼1) > 0.143 and 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.109, respectively. It is easy to see that 0.143 > 0.109. So my 

intuition seemed to be right, as a decision maker is risk-averse his ambiguity aversion 

critical value is somewhat lower compared to a risk-neutral decision maker. This 

means that if a decision maker is risk-averse, a lower level of ambiguity aversion that 

he/she perceives is needed in order for him/her to deviate from the Nash equilibrium 

strategy, when compared to a risk-neutral decision maker. 

5.1.2 Should you believe others to be rational? with a risk-loving decision maker 

Now, I will look at the first game of section 4 again, but with a player that is risk-

loving. Therefore I will use the utility function 𝑢𝑢𝑖𝑖 = 𝑥𝑥2, where 𝑖𝑖 = 1,2, to represent 

risk-loving behavior. Here, I expect to observe the opposite of what was concluded in 

section 5.1.1. This means that a decision maker that is risk-loving needs to perceive a 

higher level of ambiguity aversion in order to deviate from the Nash equilibrium 

strategy and move to the Equilibrium under Ambiguity, in comparison to a risk-

neutral decision maker. 

 In the equilibrium under ambiguity it is more likely that player 1 plays 𝑠𝑠1 = 𝑆𝑆 

instead of 𝑠𝑠1 = 𝑅𝑅. This implies the following preference ordering for player 1 𝑠𝑠1 =

𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅. For this preference ordering to hold, the following condition must hold, 

again: 

CONDITION 5.1.2: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

The equation for 𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1), becomes: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = 802 = 6,400 
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(See appendix point 26 for derivation).  

As for 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1), I get the following equation: 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) = 8,100 + 𝛿𝛿1(1 − 𝛼𝛼1)7,700 

(See appendix point 26 for derivation).  

So the above inequality becomes: 

6,400 > 8,100 + 𝛿𝛿1(1 − 𝛼𝛼1)7,700 

Then thanks to some algebraic steps, I get a critical ambiguity aversion value of 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.221 

(See appendix point 27 for derivation). 

 If we compare the critical ambiguity aversion values from this game with a 

player that is risk-loving and risk-neutral, 𝛿𝛿1(1 − 𝛼𝛼1) > 0.221 and 𝛿𝛿1(1− 𝛼𝛼1) >

0.143, respectively, we see that 0.221 > 0.143. This means that a decision maker 

who is risk-loving needs to perceive more ambiguity aversion in order for him to 

deviate from the standard Nash equilibrium solution, when compared to a risk-neutral 

decision maker. The finding coincides with my intuitive thought from the beginning 

of this section. 

5.2 Should you believe a threat that is not credible?  

5.2.1 Should you believe a threat that is not credible? with a risk-averse decision 

maker 

In this section, I will study the game from section 4.2 again, but now the players have 

different attitudes towards risk, instead of risk-neutrality. I will first look at risk-

aversion, and I incorporate this by using a different utility function, namely 𝑢𝑢𝑖𝑖 = √𝑥𝑥. 

Intuitively, I argue that a risk-averse player needs to perceive less ambiguity aversion 

in order for him to play his somewhat safer option (it has a certain outcome) and 

move away from the Nash equilibrium prediction. All the mathematical derivations, 

relevant for this section, can be found in the appendix point 28 and 29. 

 Again, if we look at the two critical ambiguity aversion values, the one from 

section 4.2 and the one derived in this section, we have 𝛿𝛿1(1 − 𝛼𝛼1) > 0.667 and 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.643. Again, we observe a lower ambiguity aversion level for a risk-

averse player than for a risk-neutral player. Thus again a risk-averse player needs to 
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perceive a lower level of ambiguity aversion in order to deviate from the Nash 

equilibrium prediction. 

5.2.2 Should you believe a threat that is not credible? with a risk-loving decision 

maker 

Last, I will look at how a risk-loving attitude interacts with ambiguity in the game 

from section 4.2. What I suspect is that the risk-loving player needs to perceive a 

higher level of ambiguity aversion in order to deviate from the Nash equilibrium 

solution, compared to a risk-neutral player. That is 𝛿𝛿1(1 − 𝛼𝛼1) will be higher for a 

risk-loving person than for a risk-neutral person. All the mathematical derivations, 

relevant for this section, can be found in the appendix point 30 and 31. 

 Let’s compare the critical ambiguity aversion values one last time. The critical 

value for a risk-neutral player comes from section 4.2 and is 𝛿𝛿1(1− 𝛼𝛼1) > 0.667 and 

the critical value for a risk-loving player is 𝛿𝛿1(1 − 𝛼𝛼1) > 0.711. So again we see that 

0.711 > 0.667, the critical value for a risk-loving player is higher than the critical 

value for a risk-neutral player. Thus, a risk-loving player needs to have a higher 

aversion to ambiguity in order to deviate from the Nash equilibrium solution in 

comparison to a risk-neutral player. 

6 Futures Market 

Since the games in the previous sections are somewhat abstract, I will analyze a real 

life situation in this section. This is to make it more practical. In this section, the 

futures market will be analyzed, game theoretically. 

 A futures contract is an agreement between two investors, where both now 

agree to buy or sell, a certain commodity/asset in the future at a price determined 

now. The agreed upon price is called the strike price and denoted by 𝐹𝐹0. When an 

investor buys or sells, we say the investor goes long or short, respectively. Last, the 

actual price of the commodity, 𝑃𝑃𝑡𝑡, called the spot price, need not be equal to 𝐹𝐹0. 

 For every investor who takes a long position in a futures contract there must 

be another investor willing to take the opposite position, in this case a short position. 

Otherwise an agreement won’t be reached. In order to take a long position the 

investor’s beliefs must justify it, this is also true for the investor taking the short 
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position. As the positions of the two investors in the agreement are opposite, the 

beliefs of the investors must be opposite as well. 

 Profits to a short position are as follows: 

𝐹𝐹0 − 𝑃𝑃𝑡𝑡 

With a short position you get the strike price, because this is the agreed upon price for 

which you would be willing to sell and you must deduct the value of the commodity 

at maturity. If 𝐹𝐹0 > 𝑃𝑃𝑡𝑡 we get 𝐹𝐹0 − 𝑃𝑃𝑡𝑡 > 0 and then the short position earns a positive 

profit. Profits to a long position are opposite compared to a short position, namely 

𝑃𝑃𝑡𝑡 − 𝐹𝐹0 

You pay the agreed upon strike price, 𝐹𝐹0, while the underlying commodity, that you 

then own, is worth 𝑃𝑃𝑡𝑡. So when 𝑃𝑃𝑡𝑡 > 𝐹𝐹0 we have 𝑃𝑃𝑡𝑡 − 𝐹𝐹0 > 0, then a long position 

earns a positive profit. You can see that for a long position to be profitable we need 

𝑃𝑃𝑡𝑡 > 𝐹𝐹0 and for a short position 𝐹𝐹0 > 𝑃𝑃𝑡𝑡. As the spot price can only be higher or 

lower than the strike price at maturity, it can’t be both, one position will be profitable 

and the other will not. From the profit formulas of the two positions it can be seen that 

the profits of one position are equal to the loss of the other position. Thus, a futures 

contract can be seen as a zero-sum game. 

 In reality, the range in which the price of the underlying commodity of the 

futures contract can fluctuate is [0,∞+). This range, I will call the state space, is 

denoted by Ω. In this game there is no uncertainty about the player’s opponents’ 

strategies, but there is uncertainty over the state space. Players don’t know for sure 

which state of nature will materialize. We have Ω = {0, … ,𝐹𝐹0, … ,∞+}, here the 

numbers stand for the spot price, of the underlying commodity, at maturity of the 

futures contract. In the range [0,𝐹𝐹0) a short position makes a positive profit and a 

long position makes a loss, because in this range 𝐹𝐹0 > 𝑃𝑃𝑡𝑡 holds. In the range (𝐹𝐹0,∞+) 

a long position makes a positive profit and a short position makes a loss, since 𝑃𝑃𝑡𝑡 >

𝐹𝐹0 holds for that range. 

 To make it somewhat more visible I will assume that 𝑃𝑃𝑡𝑡 can take on only two 

values, 𝐻𝐻 and 𝐿𝐿, where 𝐻𝐻 stands for a high value and 𝐿𝐿 for a low value. For 𝐹𝐹0, 𝐻𝐻 and 

𝐿𝐿 the following is true 𝐻𝐻 > 𝐹𝐹0 > 𝐿𝐿. 

 So if 𝐻𝐻 materializes, the state of nature that arises will be denoted by 𝜔𝜔𝐻𝐻, and 

if 𝐿𝐿 materializes, the state of nature that arises will be denoted by 𝜔𝜔𝐿𝐿. The state space 

here can be seen as Ω = {𝜔𝜔𝐿𝐿 ,𝜔𝜔𝐻𝐻}, investors have beliefs over Ω which can be 
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represented by an additive probability distribution over Ω = {𝜔𝜔𝐿𝐿 ,𝜔𝜔𝐻𝐻}. This will have 

the following representation: 

𝜋𝜋𝑖𝑖(𝜔𝜔) = {𝑠𝑠𝑖𝑖(𝜔𝜔𝐿𝐿); 𝑠𝑠𝑖𝑖(𝜔𝜔𝐻𝐻)} 

Here 𝑠𝑠𝑖𝑖(𝜔𝜔𝐿𝐿) and 𝑠𝑠𝑖𝑖(𝜔𝜔𝐻𝐻) are the probabilities that the belief of investor 𝑖𝑖 assign to the 

states of nature, 𝜔𝜔𝐿𝐿 and 𝜔𝜔𝐻𝐻, respectively. For both investors it must be the case that 

∑ 𝜋𝜋𝑖𝑖(𝜔𝜔)𝜔𝜔∈Ω = 1. 

 Lastly, I assume that for every investor who takes one position there is a 

investor out there who is willing to take the opposite position. Then there will be no 

ambiguity over the strategy chosen by one’s opponent, but only over the state space 

Ω = {𝜔𝜔𝐿𝐿 ,𝜔𝜔𝐻𝐻}. So investors lack full confidence in their belief about the state of 

nature, 𝜋𝜋𝑖𝑖(𝜔𝜔) = {𝑠𝑠𝑖𝑖(𝜔𝜔𝐿𝐿); 𝑠𝑠𝑖𝑖(𝜔𝜔𝐻𝐻)}. Only two investors can enter in an agreement a 

third party cannot join one of the two earlier investors in their futures contract. 

Choices will be made simultaneously; therefore the analysis will be static and not 

dynamic. 

  Now that the game is sufficiently explained, for the remainder of this section I 

will analyze the game without ambiguity and with ambiguity, to see if any differences 

in behavior can be found.                             

6.1 Without ambiguity 

First, I will look at this situation without ambiguity. This means that the investors 

have a belief about the likelihoods of the states of nature in which they have full 

confidence. However, only one of the two investors is right eventually in the 

agreement. This does not matter, because given the beliefs of both investors, both 

believe that their position is the right one and therefore both believe they play an 

optimal strategy given the opponent’s strategy and their belief. 

 Both investors can either take a short position or a long position, in the 

agreement, so 𝑆𝑆𝑖𝑖 = {𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙} where 𝑖𝑖 = 1, 2. For instance if investor 1 plays 

𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 and investor 2 plays 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, what kind of beliefs would induce this 

behavior? First, if both expected payoffs to investor 1 are the same, investor 1 will be 

indifferent between his two strategies. So in order to find the cut off point in investor 

1’s beliefs, the following condition must hold: 

CONDITION 6.1.1: 

𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] = 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] 
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This equation solved leads to the following belief of investor 1, 𝜋𝜋1(𝜔𝜔): 

𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) =
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

;𝑠𝑠1(𝜔𝜔𝐻𝐻) =
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

� 

(See appendix point 32 for derivation).  

The same question can be asked for investor 2. For what 𝜋𝜋2(𝜔𝜔) will investor 2 be 

indifferent between 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 and 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜? Then 

CONDITION 6.1.2: 

𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] = 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] 

Again, this leads to the following belief, 𝜋𝜋2(𝜔𝜔): 

𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) =
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

;𝑠𝑠2(𝜔𝜔𝐻𝐻) =
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

� 

(See appendix point 33 for derivation). 

 Like I mentioned before, for both investors to take a different position their 

beliefs need to be opposite in order to justify it. If I take the same example where 

investor 1 plays 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 and investor 2 plays 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, intuitively investor 1 

must belief that the probability of 𝜔𝜔𝐿𝐿 is higher than the cut off point of 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 and that 

the probability of 𝜔𝜔𝐻𝐻 is lower than the cut off point of 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

. For investor 2, then it 

must be the other way around. Let’s find out if this is the case, formally. In order for 

investor 1 to prefer playing 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 over 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 the following condition must 

hold: 

CONDITION 6.1.3: 

𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] > 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] 

This leads to the belief of investor 1 which can be represented as 

𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) >
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

;𝑠𝑠1(𝜔𝜔𝐻𝐻) <
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

� 

(See appendix point 34 for derivation). 

The same question can be asked for investor 2. What condition needs to hold in order 

for investor 2 to prefer playing 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 over 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜? 

CONDITION 6.1.4: 

𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] > 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] 

This leads to the following belief for investor 2 that induces 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 =

𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜: 

𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) <
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

;𝑠𝑠2(𝜔𝜔𝐻𝐻) >
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

� 
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(See appendix point 35 for derivation). 

 So if the beliefs of investor 1 and 2 satisfy 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) >

𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠1(𝜔𝜔𝐻𝐻) < 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

� and 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) < 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠2(𝜔𝜔𝐻𝐻) > 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

�, respectively, 

then investor 1 believes playing 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 is best and investor 2 believes playing 

𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 is optimal. Therefore, an agreement can be reached between the two 

players and both believe they are playing an optimal strategy, which will give them a 

positive payoff in their eyes. However, in reality, only one of the two will be right and 

thus will earn a positive payoff, while the other will earn a negative payoff. This 

depends on the real state of nature that materializes, 𝜔𝜔𝐿𝐿 or 𝜔𝜔𝐻𝐻. 

 Let’s assume 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

− 𝑚𝑚� then 

investor 1 plays 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, and if 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

+

𝑚𝑚� then investor 2 plays 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, where 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 for investor 1 and 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 for 

investor 2 (see appendix point 38). Then an agreement is reached, but what payoff do 

the investors expect to get? 

𝐸𝐸�𝑢𝑢1�𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝜋𝜋1(𝜔𝜔)��

𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) =
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) =
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚�
� = 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

(See appendix point 36 for derivation). 

The same can be done for investor 2: 

𝐸𝐸�𝑢𝑢2�𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝜋𝜋2(𝜔𝜔)��

𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) =
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) =
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚�
� = 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

(See appendix point 37 for derivation). 

 Thus, both investors believe they get a positive payoff of 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) and 

therefore they believe to play an optimal strategy given his opponent’s strategy and 

their beliefs. Thus an futures contract where investor 1 takes a short position and 

investor 2 takes a long position, with 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) > 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠1(𝜔𝜔𝐻𝐻) < 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

� and 

𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) < 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠2(𝜔𝜔𝐻𝐻) > 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

�, as the belief of investor 1 and investor 2, 

respectively, neither of the two investors have an incentive to unilaterally deviate. So 

we have an equilibrium. 
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6.2 With ambiguity 

Now, I will perform the same analysis as in section 6.1 only the crucial difference is 

that ambiguity/uncertainty about the state space Ω = {𝜔𝜔𝐿𝐿 ,𝜔𝜔𝐻𝐻} plays a role. I will 

examine how this ambiguity plays a role in the behavior of the two investor, who 

want to enter into a futures contract. 

 In the previous section, both investors had a certain belief about Ω = {𝜔𝜔𝐿𝐿 ,𝜔𝜔𝐻𝐻} 

in which they had 100% confidence, that this belief does not correspond with the true 

probability distribution over Ω = {𝜔𝜔𝐿𝐿 ,𝜔𝜔𝐻𝐻}, does not matter. The equilibrium in the 

previous section relies on the concept of rationalizability, which is less stringent than 

the Nash equilibrium. 

 Here, beliefs will be represented by neo-additive capacities as discussed in 

section 3. 𝑣𝑣1 = 𝛿𝛿1𝛼𝛼1 + (1 − 𝛿𝛿1)𝜋𝜋1(𝜔𝜔) and 𝑣𝑣2 = 𝛿𝛿2𝛼𝛼2 + (1 − 𝛿𝛿2)𝜋𝜋2(𝜔𝜔) will be the 

capacity for investor 1 and 2, respectively, which represents their beliefs. The formula 

for the Choquet expected utility can now be used, like the one in section 3, but with a 

small adjustment. Here the ambiguity is not about a investor’s opponent’s strategy, 

but over the real state of nature that will materialize. So, the Choquet expected utility 

could be represented in the following way: 

EQUATION 6.2.1: 

𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖|𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖,𝜋𝜋𝑖𝑖)

= 𝛿𝛿𝑖𝑖[𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥𝜔𝜔∈Ω𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛𝜔𝜔∈Ω𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)]

+ (1 − 𝛿𝛿𝑖𝑖)∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝜔𝜔) 

where 𝑖𝑖 = 1,2. 

 First, I start with the behavior of investor 1 when faced with ambiguity over 

the state space Ω.  In order for investor 1 to still prefer playing 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 over 

playing 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, the Choquet expected utility from 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 must be larger than 

the Choquet expected utility from 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙. Thus 

CONDITION 6.2.1: 

𝑉𝑉1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

With 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

− 𝑚𝑚� and for 𝑚𝑚, 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 (see 

appendix point 38) must hold. First of all we need to define the term 𝑉𝑉1(𝑠𝑠1 =

𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1), 𝑉𝑉1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) can be 

represented in the following way: 
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𝑉𝑉1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1[𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝜔𝜔∈Ω𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)

+ (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝜔𝜔∈Ω𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)]

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)𝑓𝑓𝜋𝜋1(𝜔𝜔) 

Which can be written as: 

𝑉𝑉1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛿𝛿1[(𝑚𝑚 − 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0)] 

(See appendix point 39 for derivation). 

Further we need to define 𝑉𝑉1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1), which can be written 

as:  

𝑉𝑉1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1[𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝜔𝜔∈Ω𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)

+ (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝜔𝜔∈Ω𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)]

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)𝑓𝑓𝜋𝜋1(𝜔𝜔) 

This can be shortened to: 

𝑉𝑉1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1[(𝑚𝑚 + 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

(See appendix point 40 for derivation). 

Now, condition 6.2.1 can be represented as follows: 

𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛿𝛿1[(𝑚𝑚 − 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0)]

> 𝛿𝛿1[(𝑚𝑚 + 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

After some algebraic derivation, I get to the following condition which must be 

satisfied in order for investor 1 to prefer playing 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 over playing 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙. 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

This is only true if (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 > 0, when (2𝑚𝑚 + 1)𝐻𝐻 −

(2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 < 0 the following condition is true: 

𝛿𝛿1 >
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

(See appendix point 41 for derivation). 

To summarize, investor 1 will prefer playing 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 over playing 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 if 

the perceived ambiguity satisfies 𝛿𝛿1 < 2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎+1)𝐻𝐻−(2𝑎𝑎−1)𝐿𝐿−2𝐹𝐹0

 if (2𝑚𝑚 + 1)𝐻𝐻 −
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(2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 > 0 and 𝛿𝛿1 > 2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎+1)𝐻𝐻−(2𝑎𝑎−1)𝐿𝐿−2𝐹𝐹0

 if (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 −

2𝐹𝐹0 < 0 with 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

− 𝑚𝑚� and for 𝑚𝑚, 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 

must hold. 

 To continue with the behavior of investor 2, he will prefer 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 over 

𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 as long as the Choquet expected utility from playing 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 exceeds 

the Choquet expected utility from playing 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜. This can formally represented 

by the condition: 

CONDITION 6.2.2: 

𝑉𝑉2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2) > 𝑉𝑉2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2) 

With 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚� and for 𝑚𝑚, 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 (see 

appendix point 38) must hold. So we need to define the Choquet expected utility from 

playing 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 to investor 2 and the Choquet expected utility from playing 𝑠𝑠2 =

𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 to investor 2. First, the Choquet expected utility from playing 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 to 

investor 2 can be written as: 

𝑉𝑉2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2)

= 𝛿𝛿2[𝛼𝛼2𝑚𝑚𝑚𝑚𝑥𝑥𝜔𝜔∈Ω𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)

+ (1 − 𝛼𝛼2)𝑚𝑚𝑖𝑖𝑛𝑛ω∈Ω𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)]

+ (1 − 𝛿𝛿2)∫ 𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)𝑓𝑓𝜋𝜋2(𝜔𝜔) 

By filling in all the right values, I arrived at 

𝑉𝑉2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2)

= 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛿𝛿2[(𝑚𝑚 − 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) + (𝐹𝐹0 − 𝐿𝐿)] 

(See appendix point 42 for derivation). 

Second, for the Choquet expected utility from playing 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 I get the following 

formula: 

𝑉𝑉2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2)

= 𝛿𝛿2[𝛼𝛼2𝑚𝑚𝑚𝑚𝑥𝑥𝜔𝜔∈Ω𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)

+ (1 − 𝛼𝛼2)𝑚𝑚𝑖𝑖𝑛𝑛ω∈Ω𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)]

+ (1 − 𝛿𝛿2)∫ 𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)𝑓𝑓𝜋𝜋2(𝜔𝜔) 

This can be rewritten as: 

𝑉𝑉2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2)

= 𝛿𝛿2[(𝑚𝑚 + 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

(See appendix point 43 for derivation). 
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Filling in the values for the Choquet expected utility when investor 2 plays 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 

and when investor 2 plays 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 into condition 6.2.2 leads to the following 

condition for the perceived ambiguity, in order for investor 2 to prefer 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 over 

𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜: 

𝛿𝛿2 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

This is only true if (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 > 0 is satisfied if not and we have 

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 < 0 then the following condition is true: 

𝛿𝛿2 >
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

(See appendix point 44 for derivation). 

Again to summarize, investor 2 prefers 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 over 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 when the 

perceived ambiguity satisfies 𝛿𝛿2 < 2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎−1)𝐻𝐻−(2𝑎𝑎+1)𝐿𝐿+2𝐹𝐹0

 if (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 +

2𝐹𝐹0 > 0 and 𝛿𝛿2 > 2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎−1)𝐻𝐻−(2𝑎𝑎+1)𝐿𝐿+2𝐹𝐹0

 if (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 < 0 with 

𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚� and for 𝑚𝑚, 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 must hold. 

 To summarize, the beliefs of investor 𝑖𝑖 can be represented in the following 

manner: 

𝜋𝜋𝑖𝑖(𝜔𝜔) = �
𝑠𝑠𝑖𝑖(𝜔𝜔𝐿𝐿) >

𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

;  𝑠𝑠𝑖𝑖(𝜔𝜔𝐻𝐻) <
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 𝑜𝑜ℎ𝑒𝑒𝑛𝑛 𝑠𝑠𝑖𝑖 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠𝑖𝑖 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙

𝑠𝑠𝑖𝑖(𝜔𝜔𝐿𝐿) <
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

;  𝑠𝑠𝑖𝑖(𝜔𝜔𝐻𝐻) >
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 𝑜𝑜ℎ𝑒𝑒𝑛𝑛 𝑠𝑠𝑖𝑖 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠𝑖𝑖 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜
 

For the ambiguity value to induce 𝑠𝑠𝑖𝑖 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠𝑖𝑖 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 the following condition 

must hold: 

𝛿𝛿𝑖𝑖 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

if (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 > 0 and if (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 < 0 the 

following condition for the ambiguity must hold: 

𝛿𝛿𝑖𝑖 >
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

with 

𝜋𝜋𝑖𝑖(𝜔𝜔) = �𝑠𝑠𝑖𝑖(𝜔𝜔𝐿𝐿) =
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚;  𝑠𝑠𝑖𝑖(𝜔𝜔𝐻𝐻) =
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚� 
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 To induce 𝑠𝑠𝑖𝑖 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠𝑖𝑖 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 we have that the belief of player 𝑖𝑖 must be 

𝜋𝜋𝑖𝑖(𝜔𝜔) = �𝑠𝑠𝑖𝑖(𝜔𝜔𝐿𝐿) < 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;  𝑠𝑠𝑖𝑖(𝜔𝜔𝐻𝐻) > 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

�. The ambiguity value must then satisfy 

the following condition: 

𝛿𝛿𝑖𝑖 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

if (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 > 0 and if (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 < 0 the 

following condition for the ambiguity must hold: 

𝛿𝛿𝑖𝑖 >
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

with 

𝜋𝜋𝑖𝑖(𝜔𝜔) = �𝑠𝑠𝑖𝑖(𝜔𝜔𝐿𝐿) =
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚;  𝑠𝑠𝑖𝑖(𝜔𝜔𝐻𝐻) =
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚� 

 So investor 1 only has the preference ordering 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 if the 

following conditions hold: 

1. 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

− 𝑚𝑚� 

2. 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 

3. 𝛿𝛿1 < 2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎+1)𝐻𝐻−(2𝑎𝑎−1)𝐿𝐿−2𝐹𝐹0

 if (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 > 0 and 𝛿𝛿1 >

2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎+1)𝐻𝐻−(2𝑎𝑎−1)𝐿𝐿−2𝐹𝐹0

 if (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 < 0. 

The same can be done for investor 2, for investor 2 to have the preference ordering 

𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 the following three conditions must hold: 

4. 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚� 

5. 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 

6. 𝛿𝛿2 < 2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎−1)𝐻𝐻−(2𝑎𝑎+1)𝐿𝐿+2𝐹𝐹0

 if (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 > 0 and 𝛿𝛿2 >

2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎−1)𝐻𝐻−(2𝑎𝑎+1)𝐿𝐿+2𝐹𝐹0

 if (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 < 0. 

Then if conditions 1 through 6 are satisfied then we get an equilibrium under 

ambiguity where investor 1 plays 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, in other words takes a short position, 

and where investor 2 plays 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, in other words takes a long position. Then the 

two players can agree upon the same futures contract. 

 To check how these conditions interact, I will use some numerical examples. 

These numerical examples will also make it less abstract. First, I will look at the 
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conditions for investor 1. Let’s take the following values, 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10. 

We know that 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 must be satisfied as well. Filling in the values into 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 

gives 𝑚𝑚 ≤ 1
2
 (see appendix point 45), so if we would take 𝑚𝑚 = 0.2 it satisfies 𝑚𝑚 ≤ 1

2
. 

Now what value must the ambiguity level be in order for investor 1 to play 𝑠𝑠1 =

𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜? 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

becomes, 

𝛿𝛿1 < 1 

(See appendix point 46 for derivation). 

So for all values of ambiguity will investor 1 play 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 when 𝐻𝐻 = 15, 𝐿𝐿 =

5,𝐹𝐹0 = 10. 

 Now let’s take a look at what happens if I take a different value for 𝑚𝑚. So we 

had 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 ≤ 1
2
. Let’s take 𝑚𝑚 = 0.1. 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

becomes, 

𝛿𝛿1 < 1 

(See appendix point 47 for derivation). 

So still 𝛿𝛿1 < 1. What if we take 𝑚𝑚 = 0.5? 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

becomes, 

𝛿𝛿1 < 1 

(See appendix point 48 for derivation). 

The pattern that becomes clear is that taking different degrees for 𝑚𝑚 does not matter, 

when 𝐻𝐻, 𝐹𝐹0, and 𝐿𝐿 remain unchanged. 

  We can also change the payoff, we can change the downside payoff, 𝐻𝐻, or the 

upside payoff, 𝐿𝐿. Increasing the downside for investor 1 would mean increasing 𝐻𝐻, 

because then he loses more if he is wrong or increasing 𝐿𝐿, because then he wins less if 

he is right. So let’s increase 𝐻𝐻 only, 𝐻𝐻 = 20, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

. Now the 
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condition for 𝑚𝑚 changes, namely 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 now becomes 𝑚𝑚 ≤ 1
3
 (see appendix point 

49). So 𝑚𝑚 = 0.2 will do. We have 𝐻𝐻 = 20, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

becomes, 

𝛿𝛿1 <
6

11
 

(See appendix point 50 for derivation). 

We see that if the downside increases, ambiguity needs to be smaller and thus more 

confidence is needed in the belief of investor 1 by investor 1 in order to take his 

position. I will look at what happens to 𝛿𝛿1 one more time, but now by increasing 𝐿𝐿 

(also increasing downside for investor 1 if he takes a short position). We have 𝐻𝐻 =

15, 𝐿𝐿 = 7,𝐹𝐹0 = 10 and 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

. The new condition for 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 will be 𝑚𝑚 ≤ 0.375 

(see appendix point 51), 𝑚𝑚 = 0.2 will do. We have 𝐻𝐻 = 15, 𝐿𝐿 = 7,𝐹𝐹0 = 10 and 𝑚𝑚 =

0.2: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

becomes, 

𝛿𝛿1 < 0.615 

(See appendix point 52 for derivation). 

Again, we see that if the downside increases, making the short position less profitable, 

ambiguity needs to be smaller and thus more confidence is needed in the belief of 

investor 1 by investor 1 in order to take his position. Therefore I conclude that the 

downside risk of the position matters for the ambiguity when taking a position. 

 The last thing we can do, in order to check if the downside here really only 

matters, is to increase the upside and see what happens to the ambiguity value, 𝛿𝛿1. 

This can be done in two ways: decreasing 𝐻𝐻 or decreasing 𝐿𝐿. First, let’s decrease 𝐿𝐿. 

The new values that I take are 𝐻𝐻 = 15, 𝐿𝐿 = 3,𝐹𝐹0 = 10 and 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

. Thus we get 

𝑚𝑚 ≤ 0.583 (see appendix point 53). So again 𝑚𝑚 = 0.2 will do, thus we have 𝐻𝐻 =

15, 𝐿𝐿 = 3,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

becomes, 
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𝛿𝛿1 < 1.714 

(See appendix point 54 for derivation). 

This is the same as 𝛿𝛿1 < 1, since we have 𝛿𝛿1 ∈ [0,1]. 

 Second, let’s decrease 𝐻𝐻, the new values that I take are 𝐻𝐻 = 13, 𝐿𝐿 = 5,𝐹𝐹0 =

10 and 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

. Thus 𝑚𝑚 must satisfy 𝑚𝑚 ≤ 0.625 (see appendix point 55). So again 

𝑚𝑚 = 0.2 will do, thus we have 𝐻𝐻 = 13, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

becomes,  

𝛿𝛿1 < 2.667 

(See appendix point 56 for derivation). 

This is the same as 𝛿𝛿1 < 1, since we have 𝛿𝛿1 ∈ [0,1]. 

 So the pattern that arises is clear. If the downside is increased (increasing 𝐻𝐻 or 

increasing 𝐿𝐿) the ambiguity that justifies the position must decrease, meaning that 

investor 1 must be more confident in his belief, 𝜋𝜋1(𝜔𝜔) (the additive probability 

distribution). If the upside is increased (decreasing 𝐻𝐻 or decreasing 𝐿𝐿) this results in 

the fact that the ambiguity can be higher and thus less confidence in his belief, 𝜋𝜋1(𝜔𝜔) 

(the additive probability distribution) is needed. 

 For player 2 the same pattern arises. The analysis can be found in the appendix 

point 57 until 68. If the downside is increased (decreasing 𝐻𝐻 or decreasing 𝐿𝐿) the 

ambiguity that justifies the position must decrease, meaning that investor 2 must be 

more confident in his belief, 𝜋𝜋2(𝜔𝜔) (the additive probability distribution). If the 

upside is increased (increasing 𝐻𝐻 or increasing 𝐿𝐿) this results in the fact that the 

ambiguity can be higher and thus less confidence in his belief, 𝜋𝜋2(𝜔𝜔) (the additive 

probability distribution) is needed. 

 The last aspect of the ambiguity conditions that we can check is when and 

why the inequality sign flips from the upper bound to the lower bound. For 𝛿𝛿1 <
2𝑎𝑎(𝐻𝐻−𝐿𝐿)

(2𝑎𝑎+1)𝐻𝐻−(2𝑎𝑎−1)𝐿𝐿−2𝐹𝐹0
 to be true we need (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 > 0, this in 

turn leads to the following condition for 𝑚𝑚: 

𝑚𝑚 >
2𝐹𝐹0 − 𝐻𝐻 − 𝐿𝐿

2(𝐻𝐻 − 𝐿𝐿)  

(See appendix point 69 for derivation). 
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 For player 1 we also have another condition for 𝑚𝑚, namely 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

. 

Combining the two conditions for 𝑚𝑚, we get the following, 𝛿𝛿1 < 2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎+1)𝐻𝐻−(2𝑎𝑎−1)𝐿𝐿−2𝐹𝐹0

 

is true if: 
2𝐹𝐹0 − 𝐻𝐻 − 𝐿𝐿

2(𝐻𝐻 − 𝐿𝐿) < 𝑚𝑚 ≤
𝐹𝐹𝑜𝑜 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

If this is not fulfilled then the inequality sign flips from upper bound to lower bound. 

The condition for the lower bound is always satisfied, because then (2𝑚𝑚 + 1)𝐻𝐻 −

(2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 < 0 and 2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) > 0 is always true, combining the two leads to 
2𝑎𝑎(𝐻𝐻−𝐿𝐿)

(2𝑎𝑎+1)𝐻𝐻−(2𝑎𝑎−1)𝐿𝐿−2𝐹𝐹0
< 0. The condition now states that ambiguity must be larger than 

a negative number, since I have stated that 𝛿𝛿1 ∈ [0,1] the inequality is always 

satisfied.  

 In order to make it less abstract, in point 70 in the appendix, I examined some 

numerical examples for 𝑚𝑚 > 2𝐹𝐹0−𝐻𝐻−𝐿𝐿
2(𝐻𝐻−𝐿𝐿) . What becomes clear is only when 𝐻𝐻 and 𝐹𝐹0 are 

high and close to each other and 𝐿𝐿 is low and far away from 𝐻𝐻 and 𝐹𝐹0, 

simultaneously, then it can be possible that the inequality sign, from 𝛿𝛿1 <
2𝑎𝑎(𝐻𝐻−𝐿𝐿)

(2𝑎𝑎+1)𝐻𝐻−(2𝑎𝑎−1)𝐿𝐿−2𝐹𝐹0
, flips from upper bound to lower bound. This only happens when 

the increment in investor 1’s belief in 𝜔𝜔𝐿𝐿 is smaller than 2𝐹𝐹0−𝐻𝐻−𝐿𝐿
2(𝐻𝐻−𝐿𝐿)  thus needing 

ambiguity. However, if 𝐻𝐻 and 𝐹𝐹0 are high and close to each other and 𝐿𝐿 is low and far 

away from 𝐻𝐻 and 𝐹𝐹0 then the upside is high and downside is low, simultaneously. 

Which may cause that every value of ambiguity suffices. 

 The way of analysis and pattern that is found will be the same for investor 2. 

So when the upside is high and the downside is small, then the inequality sign may 

flip in 𝛿𝛿2 < 2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎−1)𝐻𝐻−(2𝑎𝑎+1)𝐿𝐿+2𝐹𝐹0

. Since investor 2 takes the opposite position of 

investor 1 the upside and downside for investor 2 are opposite to the upside a 

downside for investor 1. That’s the difference, however the result of the pattern will 

be the same. 

7 Discussion 

First of all the analysis in section 4 has shown that ambiguity definitely influences 

agent’s behavior in strategic interaction. For the ‘not rational game’ a very low level 
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of ambiguity aversion already can lead to deviations from the Nash equilibrium 

prediction. As for the ‘non-credible threat game the ambiguity aversion value is 

higher although still very possible that people may exhibit such a value in reality. The 

difference in the ambiguity aversion levels is the result of the payoff difference in the 

two games. Something that becomes clear if the two games are compared is that the 

larger the difference between the payoffs for player 1, when player 2 does not play the 

punishment strategy and when player 2 does play the punishment strategy, the lower 

the ambiguity aversion value needs to be for player 1 to deviate from the Nash 

equilibrium prediction. 

 In the first part of the analysis, I assumed that the belief of player 1 in player 2 

playing 𝑠𝑠2 = 𝑃𝑃 is zero. Thus the additive probability distribution of player 1, 

representing his beliefs about player 2, has the form: 𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) =

0, 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1}. This is thanks to the rationality assumption, but as player 1 faces 

ambiguity the rationality assumption may not hold and thus the belief 𝜋𝜋1(𝑠𝑠2) =

{𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 0, 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1} may not be optimal/realistic for player 1. This is 

why I also looked at what happened if we allowed the belief of player 1 to vary. 

Meaning, the additive probability distribution of player 1, representing his beliefs, 

now has the form: 𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 𝑠𝑠,𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1 − 𝑠𝑠} where 0 ≤ 𝑠𝑠 ≤

1.  

 With 𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 𝑠𝑠,𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1 − 𝑠𝑠}, I looked at the 

interactions between 𝑠𝑠, 𝛿𝛿1 and 𝛼𝛼1 and a clear pattern came to the surface. If 𝑠𝑠 

increases then 𝛼𝛼1, the optimism that allows 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅, increases as well. As 

for 1 − 𝛼𝛼1, if 𝑠𝑠 increases then 1 − 𝛼𝛼1, the pessimism needed to induce 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 =

𝑅𝑅, decreases. This is true for both games. A little explanation to make it clearer may 

be beneficial here. In both games optimism by player 1 means that player 1 assumes 

that player 2 is rational and pessimism by player 1 means that player 1 assumes player 

2 is not rational. So if 𝑠𝑠, the belief of player 1 in player 2 playing 𝑠𝑠2 = 𝑃𝑃 (the 

punishment strategy, which is not rational), increases, meaning player 1 deems it 

more likely that player 2 will play this strategy, then a more optimistic player 1, so a 

player 1 who initially more strongly assumes that player 2 is rational, will prefer 

playing 𝑠𝑠1 = 𝑆𝑆 (his safe option) instead of playing 𝑠𝑠1 = 𝑅𝑅. Conversely if 𝑠𝑠, the belief 

of player 1 in player 2 playing 𝑠𝑠2 = 𝑃𝑃 (the punishment strategy, which is not 

rational), increases, meaning player 1 deems it more likely that player 2 will play this 
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strategy, then a pessimistic player 1, so a player 1 who initially more strongly 

assumes that player 2 is not rational, now needs lower levels of pessimism to prefer 

playing 𝑠𝑠1 = 𝑆𝑆 (his safe option) instead of playing 𝑠𝑠1 = 𝑅𝑅. 

 Last, I investigated the relation between ambiguity, 𝛿𝛿1, and the belief of player 

1 in player 2 playing 𝑠𝑠2 = 𝑃𝑃, 𝑠𝑠, when 𝛼𝛼1 is fixed. This relation is not as clear cut as 

the ones between optimism and the belief of player 1 in player 2 playing 𝑠𝑠2 = 𝑃𝑃 and 

between pessimism and the belief of player 1 in player 2 playing 𝑠𝑠2 = 𝑃𝑃. For the ‘not 

rational game’ I found the following. For smaller values of 𝑠𝑠, 𝛿𝛿1 needs to be lower, 

meaning if the belief of player 1 in player 2 playing 𝑠𝑠2 = 𝑃𝑃 is low then the ambiguity 

in this belief must be low as well to induce 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅. Thus for low levels of 𝑠𝑠 

player 1 must be confident in his belief. As 𝑠𝑠 increases and becomes larger then 0.5 

and keeps increasing then more ambiguity is allowed to induce 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅. 

Thus for high levels of 𝑠𝑠 player 1 can be less confident in this belief in order to prefer 

playing 𝑠𝑠1 = 𝑆𝑆 over playing 𝑠𝑠1 = 𝑅𝑅. For the ‘non-credible threat game’ the results are 

somewhat the same, but not entirely. For lower levels of 𝑠𝑠 I get 𝛿𝛿1 > 1 which is not 

possible. Therefore, here for low levels of 𝑠𝑠 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 cannot be induced. 

Then as 𝑠𝑠 increases, 𝛿𝛿1 increases as well, so again if 𝑠𝑠 increases less confidence in 

this belief is needed for player 1 to have the preference ordering 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅. 

Overall, for low levels of 𝑠𝑠 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 cannot happen or player 1 must be very 

confident in this belief (1 − 𝛿𝛿1 must be high), then as 𝑠𝑠 increases to higher levels 

more ambiguity is allowed and thus less confidence is needed. 

 When the ‘not rational game’ and ‘non-credible threat game’ are compared 

another interesting finding comes up. Ambiguity values must be lower and thus 

players must be more confident in their beliefs, when the downside is higher. This can 

be seen from the ‘not rational game’, where the payoff difference for player 1 when 

player 2 does not play his punishment strategy and when he does is larger than in the 

‘non-credible threat game’. In the ‘non-credible threat game’ this difference is not so 

large and the analysis shows that the ambiguity aversion level must be higher. If we 

would fix (1 − 𝛼𝛼1) it would lead to a higher ambiguity value, 𝛿𝛿1 that is allowed, in 

the ’non-credible threat game’ than in the ‘not rational game’. All this, thanks to a 

larger downside in the ‘not rational game’. 

 Further, I investigated the relationship between ambiguity aversion and risk 

attitudes. For the two games in section 4 in the original analysis the player’s attitude 
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towards risk was neutral. A clear pattern arises when risk aversion and risk loving is 

incorporated. When the player is risk averse his ambiguity aversion level needed to 

deviate from the Nash equilibrium prediction is lowered. Thus a risk-averse player 

would deviate sooner than a risk-neutral player. As for risk loving and ambiguity 

aversion the opposite effect takes form. When a player is risk loving his ambiguity 

aversion level needed to deviate from the Nash equilibrium prediction is higher. 

Meaning that a risk-loving player would deviate later than a risk neutral player.   

 As for the futures market, the analysis without ambiguity shows what 

conditions the beliefs of the investors must satisfy to come to an agreement. But when 

ambiguity over the state space is incorporated other conditions are added that also 

must be satisfied. The conditions from section 6.1 only are not enough anymore. If 

𝜋𝜋𝑖𝑖(𝜔𝜔) and 𝜋𝜋−𝑖𝑖(𝜔𝜔) satisfy the necessary conditions, then for ambiguity the following 

pattern arises. When the downside to a position increases, ambiguity in the belief of 

an investor must decrease, in other words with the risk of a higher loss the investor 

must be more confident. As for an increase in the upside it is the other way around. 

When the upside is increased, so the potential gains are increased, then ambiguity can 

increase as well. In other words when the potential gains of a position are increased 

less confidence in an investor’s belief is needed in order to justify that position. 

 Overall, an important feature that is found thanks to this analysis is the fact 

that when downsides of a position or a strategy are increased the ambiguity in an 

individual’s belief must be lower otherwise the individual will not take that position 

or strategy. 

8 Conclusion 

In this thesis decision making under uncertainty is examined in order to investigate 

why deviations from Nash equilibrium predictions occur in reality. Since Expected 

Utility Theory and Subjective Expected Utility Theory do a poor job at predicting 

actual behavior, combined with the fact that in many economic situations it is not 

clear why agents should know probabilities, the need for new models is high. 

 In previous literature, it has been suggested to use capacities instead of an 

additive probability distribution to represent beliefs. This is because capacities are not 

necessarily additive, which reflects the uncertainty/ambiguity. In order to compute the 

expected value with capacities, the Choquet integral should be applied. Using 
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capacities is not enough, since with capacities a too broad range of behavior can be 

explained/justified. Therefore a special type of capacities was used in this paper, 

namely neo-additive capacities. 

 The analysis of the games in this paper shows that attitudes towards ambiguity 

and ambiguity itself indeed influence behavior and can explain deviations from Nash 

equilibrium. I investigated the relationship between the belief of a player, ambiguity 

and its attitude towards ambiguity. The pattern that becomes clear between ambiguity 

and the belief of a player is when the belief of a player in something decreases, 

ambiguity in this belief needs to decrease as well, in other words he needs to be more 

confident, in order to justify the corresponding action. 

 For the games in section 4, the following is the result from the analysis: when 

the belief of player 1 in player 2 playing 𝑠𝑠2 = 𝑃𝑃 increases, optimism of player 1 that 

allows 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 increases as well and conversely pessimism of player 1 that 

is needed to induce 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 decreases. This is when the ambiguity is fixed at 

a certain level. If 𝛼𝛼 is fixed the relationship between 𝑠𝑠 and 𝛿𝛿 becomes clear. If 𝑠𝑠 (the 

belief of player 1 in player 2 playing 𝑠𝑠2 = 𝑃𝑃) is low, ambiguity in this belief (𝛿𝛿) must 

be low as well, meaning more confidence is required, and if 𝑠𝑠 is high, ambiguity can 

be higher as well. 

 As for the relationship between ambiguity and risk attitudes it becomes visible 

that when a player is risk averse the ambiguity aversion level needed to deviate from 

the Nash equilibrium prediction is lowered. When a player is risk-loving the 

ambiguity aversion level needed to deviate from the Nash equilibrium prediction is 

increased. 

 In the futures market game, the pattern is the same as the pattern from the ‘not 

rational game’ and ‘non-credible threat game’. When the downside is increased, the 

confidence in his belief must increase and thus ambiguity must decrease. In the games 

of section 4 the downside is the payoff (to player 1) difference when player 2 does not 

play the punishment strategy and when player 2 does play his punishment strategy. 

For the futures market game the downside is decreasing the payoff if one is right and 

increasing the loss when one is wrong. The bottom line here is if the downside is 

increased, ambiguity needs to be lower. 
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 So from this paper it becomes clear that ambiguity is indeed important in 

decision-making and can rationally lead to different equilibria. Also the relationship 

between its different components has been made clear. 
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Appendix 

1. Derivation of decision weight for the minimal outcome: 

 The decision weight for the maximal outcome, 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖), is given 

by 𝑣𝑣 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� = 𝛿𝛿𝛼𝛼 + (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�. Then the 

decision weight for the minimal outcome, 𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖), is given by 

𝑣𝑣 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� 

= 1 − 𝑣𝑣 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� 

= 1 − �𝛿𝛿𝛼𝛼 + (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�� 

= 1 −  𝛿𝛿𝛼𝛼 − (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� 

We know that 𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� + 𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� = 1, thus 

𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� = 1 − 𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�. We can fill this in, in the 

above equation. Then we get 

= 1 −  𝛿𝛿𝛼𝛼 − (1 − 𝛿𝛿) �1 − 𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�� 

= 1 − 𝛿𝛿𝛼𝛼 − 1 +  𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�+ 𝛿𝛿 − 𝛿𝛿 𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� 

= 𝛿𝛿 − 𝛿𝛿𝛼𝛼 +  𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� − 𝛿𝛿 𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� 

= 𝛿𝛿(1 − 𝛼𝛼) + (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� 

 

2. Derivation of Choquet expected utility with neo-additive capacity 𝑣𝑣 = 𝛿𝛿𝛼𝛼 +

(1 − 𝛼𝛼)𝜋𝜋: 

𝐶𝐶𝐸𝐸𝐶𝐶 = 𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖|𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖,𝛼𝛼𝑖𝑖 , 𝛿𝛿𝑖𝑖,𝜋𝜋𝑖𝑖) =  ∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝑣𝑣 

= 𝑣𝑣 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� ∙ 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ ∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖|𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥)𝑓𝑓𝑣𝑣 + 𝑣𝑣 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

∙ 𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) 

= �𝛿𝛿𝛼𝛼 + (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�� ∙ 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ �𝛿𝛿(1 − 𝛼𝛼) + (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)��

∙ 𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + �𝑣𝑣(𝑥𝑥) ∙ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖|𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥) 
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= �𝛿𝛿𝛼𝛼 + (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�� ∙ 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ �𝛿𝛿(1 − 𝛼𝛼) + (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)��

∙ 𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ �(1 − 𝛿𝛿)𝜋𝜋(𝑥𝑥) ∙ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖|𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥) 

= 𝛿𝛿𝛼𝛼 ∙ 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ 𝛿𝛿(1 − 𝛼𝛼)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ (1 − 𝛿𝛿)�𝜋𝜋(𝑥𝑥) ∙ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖|𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥) 

= 𝛿𝛿𝛼𝛼 ∙ 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + 𝛿𝛿(1 − 𝛼𝛼)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ (1 − 𝛿𝛿)�𝜋𝜋(𝑥𝑥) ∙ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖|𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥)

+ (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ (1 − 𝛿𝛿)𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) 

= 𝛿𝛿�𝛼𝛼 ∙ 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿)��𝜋𝜋(𝑥𝑥) ∙ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖|𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 < 𝑥𝑥 < 𝑥𝑥𝑚𝑚𝑎𝑎𝑥𝑥)

+ 𝜋𝜋 �𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)

+ 𝜋𝜋 �𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)� 

= 𝛿𝛿�𝛼𝛼 ∙ 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿)�𝜋𝜋(𝑥𝑥) ∙ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) 

= 𝛿𝛿�𝛼𝛼 ∙ 𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿)∫ 𝑢𝑢(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋(𝑠𝑠−𝑖𝑖) 

Which is equal to 

𝛿𝛿𝑖𝑖�𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿𝑖𝑖)∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝑠𝑠−𝑖𝑖) 

And this is equal to the equation from definition 3.2 in the main text. 
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3. Derivation of Choquet expected utilities for player 1 in the game of section 4.1. I 

make use of the following function: 

𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖|𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖,𝜋𝜋𝑖𝑖)

= 𝛿𝛿𝑖𝑖�𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿𝑖𝑖)∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝑠𝑠−𝑖𝑖) 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1[𝛼𝛼1 ∙ 80 + (1 − 𝛼𝛼1) ∙ 80] + (1 − 𝛿𝛿1) ∙ 80 

= 𝛿𝛿1[80𝛼𝛼1 − 80𝛼𝛼1 + 80] + 80 − 80𝛿𝛿1 

= 80𝛿𝛿1 − 80𝛿𝛿1 + 80 

= 80 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1[𝛼𝛼1 ∙ 90 + (1 − 𝛼𝛼1) ∙ 20] + (1 − 𝛿𝛿1) ∙ 90 

= 𝛿𝛿1[90𝛼𝛼1 − 20𝛼𝛼1 + 20] + 90 − 90𝛿𝛿1 

= 𝛿𝛿1[70𝛼𝛼1 + 20] + 90 − 90𝛼𝛼1 

= 90 + 20𝛿𝛿1 − 90𝛿𝛿1 + 70𝛿𝛿1𝛼𝛼1 

= 90 − 70𝛿𝛿1 + 70𝛿𝛿1𝛼𝛼1 

= 90 − 𝛿𝛿1(1 − 𝛼𝛼1)70 

 In order to get the term (1 − 𝛿𝛿1) ∙ 90 full rationality is assumed. To see how 

this works look at the game in section 4.1 again. If it’s player 2’s turn, he can choose 

between 𝑠𝑠2 = 𝑃𝑃 and 𝑠𝑠2 = 𝑃𝑃. 𝑠𝑠2 = 𝑃𝑃 yields player 2 a payoff of 68 and 𝑠𝑠2 = 𝑃𝑃 a 

payoff of 70. Since 68 < 70, if rational, player 2 plays 𝑠𝑠2 = 𝑃𝑃. Player 1 can deduce 

this. He has a choice between 𝑠𝑠1 = 𝑆𝑆 and 𝑠𝑠1 = 𝑅𝑅. 𝑠𝑠1 = 𝑆𝑆 yields a payoff of 80, 

whereas 𝑠𝑠1 = 𝑅𝑅 can lead to a payoff of 20 or 90. But, since full rationality is assumed 

player 1 expects player 2 to play 𝑠𝑠2 = 𝑃𝑃 (because 𝑠𝑠2 = 𝑃𝑃 leads to a higher payoff for 

player 2). This yields a payoff of 90 for player 1 if he plays 𝑠𝑠1 = 𝑅𝑅. So if player 1 

plays 𝑠𝑠1 = 𝑅𝑅, he expects a payoff of 90, but he does not have full confidence in this 

belief, hence (1 − 𝛿𝛿1) ∙ 90. This logic is also true for points 5, 24, 26, 28, 30 in this 

appendix. 
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4. Derivation of ambiguity aversion critical value for player 1 in the game of section 

4.1: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

80 > 90 − 𝛿𝛿1(1 − 𝛼𝛼1)70 

−10 > −𝛿𝛿1(1 − 𝛼𝛼1)70 
−10

−70� < 𝛿𝛿1(1 − 𝛼𝛼1) 

𝛿𝛿1(1 − 𝛼𝛼1) >
1
7

 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.143 

 

5. Derivation of Choquet expected utilities for player 1 in the game of section 4.2. I 

make use of the following function: 

𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖|𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖,𝜋𝜋𝑖𝑖)

= 𝛿𝛿𝑖𝑖�𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿𝑖𝑖)∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝑠𝑠−𝑖𝑖) 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1[𝛼𝛼1 ∙ 70 + (1 − 𝛼𝛼1) ∙ 70] + (1 − 𝛿𝛿1) ∙ 70 

= 𝛿𝛿1[70𝛼𝛼1 − 70𝛼𝛼1 + 70] + 70 − 70𝛿𝛿1 

= 70𝛿𝛿1 − 70𝛿𝛿1 + 70 

= 70 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1[𝛼𝛼1 ∙ 90 + (1 − 𝛼𝛼1) ∙ 60] + (1 − 𝛿𝛿1) ∙ 90 

= 𝛿𝛿1[90𝛼𝛼1 − 60𝛼𝛼1 + 60] + 90 − 90𝛿𝛿1 

= 𝛿𝛿1[30𝛼𝛼1 + 60] + 90 − 90𝛿𝛿1 

= 90 + 60𝛿𝛿1 − 90𝛿𝛿1 + 30𝛿𝛿1𝛼𝛼1 

= 90 − 30𝛿𝛿1 + 30𝛿𝛿1𝛼𝛼1 

= 90 − 𝛿𝛿1(1 − 𝛼𝛼1)30 
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6. Derivation of ambiguity aversion critical value for player 1 in the game of section 

4.2: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

70 > 90 − 𝛿𝛿1(1 − 𝛼𝛼1)30 

−20 > −𝛿𝛿1(1 − 𝛼𝛼1)30 
−20
−30

< 𝛿𝛿1(1 − 𝛼𝛼1) 

𝛿𝛿1(1 − 𝛼𝛼1) >
2
3

 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.667 

 

7. Derivation of 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) with 𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) =

𝑠𝑠;  𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1 − 𝑠𝑠} for section 4.3 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝛼𝛼1,𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

We know that ∫ 𝑢𝑢1(𝑠𝑠1, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) with 𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃);  𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)} is: 

𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃) + 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃) 

So, for 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) we get: 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2)�

+ (1 − 𝛿𝛿1)[𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)

+ 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)] 

 

8. Derivation of Choquet expected utilities for player 1 in the game of section 4.3.1. I 

make use of the following formula: 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2)�

+ (1 − 𝛿𝛿1)[𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)

+ 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)] 

and 𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 𝑠𝑠;  𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1 − 𝑠𝑠}. 
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𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2)�

+ (1 − 𝛿𝛿1)[𝑠𝑠 ∙ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃) + (1 − 𝑠𝑠) ∙ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)] 

= 𝛿𝛿1[𝛼𝛼1 ∙ 90 + (1 − 𝛼𝛼1) ∙ 20] + (1 − 𝛿𝛿1)[𝑠𝑠 ∙ 20 + (1 − 𝑠𝑠) ∙ 90] 

= 𝛿𝛿1(90𝛼𝛼1 − 20𝛼𝛼1 + 20) + (1 − 𝛿𝛿1)(20𝑠𝑠 − 90𝑠𝑠 + 90) 

= 𝛿𝛿1(70𝛼𝛼1 + 20) + (1 − 𝛿𝛿1)(−70𝑠𝑠 + 90) 

= 𝛿𝛿1(70𝛼𝛼1 + 20) + (1 − 𝛿𝛿1)(90 − 70𝑠𝑠) 

= 𝛿𝛿1(70𝛼𝛼1 + 20) + (90 − 70𝑠𝑠) − 𝛿𝛿1(90 − 70𝑠𝑠) 

= 𝛿𝛿1(70𝛼𝛼1 + 20 − 90 + 70𝑠𝑠) + (90 − 70𝑠𝑠) 

= (90 − 70𝑠𝑠) + 𝛿𝛿1(−70 + 70𝛼𝛼1 + 70𝑠𝑠) 

= (90 − 70𝑠𝑠) + 𝛿𝛿1(−1 + 𝛼𝛼1 + 𝑠𝑠)70 

= (90 − 70𝑠𝑠) − 𝛿𝛿1(1 − 𝛼𝛼1 − 𝑠𝑠)70 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆;  𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆;  𝑠𝑠2)�

+ (1 − 𝛿𝛿1)[𝑠𝑠 ∙ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆;  𝑠𝑠2 = 𝑃𝑃) + (1 − 𝑠𝑠) ∙ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆;  𝑠𝑠2 = 𝑃𝑃)] 

= 𝛿𝛿1[𝛼𝛼1 ∙ 80 + (1 − 𝛼𝛼1) ∙ 80] + (1 − 𝛿𝛿1)(𝑠𝑠 ∙ 80 + (1 − 𝑠𝑠) ∙ 80) 

= 𝛿𝛿1[𝛼𝛼1 ∙ 80 − 𝛼𝛼1 ∙ 80 + 80] + (1 − 𝛿𝛿1)(𝑠𝑠 ∙ 80 − 𝑠𝑠 ∙ 80 + 80) 

= 𝛿𝛿1 ∙ 80 − 𝛿𝛿1 ∙ 80 + 80 

= 80 

 

9. Derivation of ambiguity aversion critical value for player 1 in the game of section 

4.3.1: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

80 > (90 − 70𝑠𝑠) − 𝛿𝛿1(1 − 𝛼𝛼1 − 𝑠𝑠)70 

80 − (90 − 70𝑠𝑠) > −𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠)70 

80 − (90 − 70𝑠𝑠)
−70

< 𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) 

𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) >
80 − (90 − 70𝑠𝑠)

−70
 

Now, let’s fill in 𝑠𝑠 = 0: 

𝛿𝛿1(1− 𝛼𝛼1 − 0) >
80 − (90 − 70 ∙ 0)

−70
 

𝛿𝛿1(1 − 𝛼𝛼1 − 0) >
80 − 90
−70
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𝛿𝛿1(1 − 𝛼𝛼1 − 0) >
−10
−70

 

𝛿𝛿1(1− 𝛼𝛼1 − 0) > 0.143 

Now, let’s fill in 𝑠𝑠 = 1: 

𝛿𝛿1(1− 𝛼𝛼1 − 1) >
80 − (90 − 70 ∙ 1)

−70
 

𝛿𝛿1(−𝛼𝛼1) >
80 − 20
−70

 

−𝛿𝛿1𝛼𝛼1 > −
60
70

 

𝛿𝛿1𝛼𝛼1 <
6
7

 

 

10. Derivation of the condition for 𝛼𝛼1 for which 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 applies with 𝑠𝑠 as a 

variable and 𝛿𝛿1 is fixed at 0.52, for the game in section 4.3.1: 

𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) >
80 − (90 − 70𝑠𝑠)

−70
 

1 − 𝛼𝛼1 − 𝑠𝑠 >
80 − (90 − 70𝑠𝑠)

−70𝛿𝛿1
 

−𝛼𝛼1 > −1 +
80 − (90 − 70𝑠𝑠)

−70𝛿𝛿1
+ 𝑠𝑠 

𝛼𝛼1 < 1 −
80 − (90 − 70𝑠𝑠)

−70𝛿𝛿1
− 𝑠𝑠 

So for 𝛿𝛿1 I take the average, which is 0.52, filling this in leads to: 

𝛼𝛼1 < 1 −
80 − (90 − 70𝑠𝑠)

−70 ∙ 0.52
− 𝑠𝑠 

𝛼𝛼1 < 1 −
80 − (90 − 70𝑠𝑠)

−36.4
− 𝑠𝑠 

 

11. Table A.11: Relationship between 𝛼𝛼1 and 𝑠𝑠, when 𝛿𝛿1 = 0.52, for the game in 

section 4.3.1: 

𝑠𝑠 = 0 𝑠𝑠 = 0.1 𝑠𝑠 = 0.2 

𝛼𝛼1 < 1 −
80 − (90 − 70 ∙ 0)

−36.4 + 0 

𝛼𝛼1 < 0.726 

 

𝛼𝛼1 < 1 −
80− (90 − 70 ∙ 0.1)

−36.4 + 0.1 

𝛼𝛼1 < 0.818 

𝛼𝛼1 < 1 −
80 − (90 − 70 ∙ 0.2)

−36.4 + 0.1 

𝛼𝛼1 < 0.910 

𝑠𝑠 = 0.3 𝑠𝑠 = 0.4 𝑠𝑠 = 0.5 
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𝛼𝛼1 < 1 −
80 − (90 − 70 ∙ 0.3)

−36.4 + 0.3 

𝛼𝛼1 < 1.002 

𝛼𝛼1 < 1.000 

𝛼𝛼1 < 1 −
80− (90 − 70 ∙ 0.4)

−36.4 + 0.4 

𝛼𝛼1 < 1.095 

𝛼𝛼1 < 1.000 

𝛼𝛼1 < 1 −
80 − (90 − 70 ∙ 0.5)

−36.4 + 0.5 

𝛼𝛼1 < 1.185 

𝛼𝛼1 < 1.000 

𝑠𝑠 = 0.6 𝑠𝑠 = 0.7 𝑠𝑠 = 0.8 

𝛼𝛼1 < 1 −
80 − (90 − 70 ∙ 0.6)

−36.4 + 0.6 

𝛼𝛼1 < 1.279 

𝛼𝛼1 < 1.000 

𝛼𝛼1 < 1 −
80− (90 − 70 ∙ 0.7)

−36.4 + 0.7 

𝛼𝛼1 < 1.371 

𝛼𝛼1 < 1.000 

𝛼𝛼1 < 1 −
80 − (90 − 70 ∙ 0.8)

−36.4 + 0.8 

𝛼𝛼1 < 1.464 

𝛼𝛼1 < 1.000 

𝑠𝑠 = 0.9 𝑠𝑠 = 1.0  

𝛼𝛼1 < 1 −
80 − (90 − 70 ∙ 0.9)

−36.4 + 0.9 

𝛼𝛼1 < 1.556 

𝛼𝛼1 < 1.000 

𝛼𝛼1 < 1 −
80− (90 − 70 ∙ 1.0)

−36.4 + 1.0 

𝛼𝛼1 < 1.648 

𝛼𝛼1 < 1.000 

 

12. Derivation of the condition for 1 − 𝛼𝛼1 for which 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 applies with 𝑠𝑠 

as a variable and 𝛿𝛿1 is fixed at 0.52, for the game in section 4.3.1: 

𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) >
80 − (90 − 70𝑠𝑠)

−70
 

1 − 𝛼𝛼1 − 𝑠𝑠 >
80 − (90 − 70𝑠𝑠)

−70𝛿𝛿1
 

1 − 𝛼𝛼1 >
80 − (90 − 70𝑠𝑠)

−70𝛿𝛿1
+ 𝑠𝑠 

So for 𝛿𝛿1 I take the average, which is 0.52, filling this in leads to: 

1 − 𝛼𝛼1 >
80 − (90 − 70𝑠𝑠)

−70 ∙ 0.52
+ 𝑠𝑠 

1 − 𝛼𝛼1 >
80 − (90 − 70𝑠𝑠)

−36.4
+ 𝑠𝑠 

 

13. Table A.13: Relationship between 1 − 𝛼𝛼1 and 𝑠𝑠, when 𝛿𝛿1 = 0.52, for the game in 

section 4.3.1: 

𝑠𝑠 = 0 𝑠𝑠 = 0.1 𝑠𝑠 = 0.2 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0)

−36.4 + 0 

1 − 𝛼𝛼1 > 0.275 

 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0.1)

−36.4 + 0.1 

1 − 𝛼𝛼1 > 0.182 

 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0.2)

−36.4 + 0.2 

1 − 𝛼𝛼1 > 0.090 

 

𝑠𝑠 = 0.3 𝑠𝑠 = 0.4 𝑠𝑠 = 0.5 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0.3)

−36.4 + 0.3 

1 − 𝛼𝛼1 > −0.002 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0.4)

−36.4 + 0.4 

1 − 𝛼𝛼1 > −0.095 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0.5)

−36.4 + 0.5 

1 − 𝛼𝛼1 > −0.187 
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1 − 𝛼𝛼1 > 0 1 − 𝛼𝛼1 > 0 1 − 𝛼𝛼1 > 0 
𝑠𝑠 = 0.6 𝑠𝑠 = 0.7 𝑠𝑠 = 0.8 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0.6)

−36.4 + 0.6 

1 − 𝛼𝛼1 > −0.279 

1 − 𝛼𝛼1 > 0 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0.7)

−36.4 + 0.7 

1 − 𝛼𝛼1 > −0.371 

1 − 𝛼𝛼1 > 0 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0.8)

−36.4 + 0.8 

1 − 𝛼𝛼1 > −0.464 

1 − 𝛼𝛼1 > 0 
𝑠𝑠 = 0.9 𝑠𝑠 = 1.0  

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 0.9)

−36.4 + 0.9 

1 − 𝛼𝛼1 > −0.556 

1 − 𝛼𝛼1 > 0 

1 − 𝛼𝛼1 >
80 − (90 − 70 ∙ 1.0)

−36.4 + 1.0 

1 − 𝛼𝛼1 > −0.648 

1 − 𝛼𝛼1 > 0 
 

14. Derivation of the condition for 𝛿𝛿1 for which 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 applies with 𝑠𝑠 as a 

variable and 𝛼𝛼1 is fixed at 0.5, for the game in section 4.3.1:  

𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) >
80 − (90 − 70𝑠𝑠)

−70
 

𝛿𝛿1 >
80 − (90 − 70𝑠𝑠)
−70(1 − 𝛼𝛼1 − 𝑠𝑠) 

The value for 𝛼𝛼1 that I will use will be the average from the KW-range so, 𝛼𝛼1 = 0.5. 

𝛿𝛿1 >
80 − (90 − 70𝑠𝑠)
−70(1 − 0.5 − 𝑠𝑠) 

𝛿𝛿1 >
80 − (90 − 70𝑠𝑠)
−70(0.5 − 𝑠𝑠)  

This formula only holds if 0 ≤ 𝑠𝑠 < 0.5 because then −70(0.5 − 𝑠𝑠) < 0 and the sign 

does not flip. But when 0.5 < 𝑠𝑠 ≤ 1 then −70(0.5 − 𝑠𝑠) > 0 and the sign flips from 

> to <. Thus when 0 ≤ 𝑠𝑠 < 0.5 the following condition is correct: 

𝛿𝛿1 >
80 − (90 − 70𝑠𝑠)
−70(0.5 − 𝑠𝑠)  

And when 0.5 < 𝑠𝑠 ≤ 1 the following condition is correct: 

𝛿𝛿1 <
80 − (90 − 70𝑠𝑠)
−70(0.5 − 𝑠𝑠)  

 

15. Table A.15: Relationship between 𝛿𝛿1 and 𝑠𝑠, when 𝛼𝛼1 = 0.5, for the game in 

section 4.3.1: 

𝑠𝑠 = 0 𝑠𝑠 = 0.1 𝑠𝑠 = 0.2 

𝛿𝛿1 >
80 − (90 − 70 ∙ 0)
−70(0.5− 0)  

𝛿𝛿1 > 0.286 

𝛿𝛿1 >
80 − (90 − 70 ∙ 0.1)
−70(0.5− 0.1)  

𝛿𝛿1 > 0.107 

𝛿𝛿1 >
80 − (90 − 70 ∙ 0.2)
−70(0.5− 0.2)  

𝛿𝛿1 > −0.190 
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 𝛿𝛿1 > 0 

𝑠𝑠 = 0.3 𝑠𝑠 = 0.4 𝑠𝑠 = 0.5 

𝛿𝛿1 >
80 − (90 − 70 ∙ 0.3)
−70(0.5 − 0.3)  

𝛿𝛿1 > −0.786 

𝛿𝛿1 > 0 

𝛿𝛿1 >
80 − (90 − 70 ∙ 0.4)
−70(0.5− 0.4)  

𝛿𝛿1 > −2.571 

𝛿𝛿1 > 0 

𝛿𝛿1 >
80 − (90 − 70 ∙ 0.5)
−70(0.5− 0.5)  

𝛿𝛿1 >
25
0  

Not possible 

𝑠𝑠 = 0.6 𝑠𝑠 = 0.7 𝑠𝑠 = 0.8 

𝛿𝛿1 >
80 − (90 − 70 ∙ 0.6)
−70(0.5 − 0.6)  

𝛿𝛿1 < 4.571 

𝛿𝛿1 < 1 

𝛿𝛿1 >
80 − (90 − 70 ∙ 0.7)
−70(0.5− 0.7)  

𝛿𝛿1 < 2.786 

𝛿𝛿1 < 1 

𝛿𝛿1 >
80 − (90 − 70 ∙ 0.8)
−70(0.5− 0.8)  

𝛿𝛿1 < 2.190 

𝛿𝛿1 < 1 

𝑠𝑠 = 0.9 𝑠𝑠 = 1.0  

𝛿𝛿1 >
80 − (90 − 70 ∙ 0.9)
−70(0.5 − 0.9)  

𝛿𝛿1 < 1,893 

𝛿𝛿1 < 1 

𝛿𝛿1 >
80 − (90 − 70 ∙ 1.0)
−70(0.5− 1.0)  

𝛿𝛿1 < 1.714 

𝛿𝛿1 < 1 

 

16. Derivation of Choquet expected utilities for player 1 in the game of section 4.3.2. 

I make use of the following formula: 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2)�

+ (1 − 𝛿𝛿1)[𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)

+ 𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃)𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)] 

and 𝜋𝜋1(𝑠𝑠2) = {𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 𝑠𝑠;  𝑠𝑠1(𝑠𝑠2 = 𝑃𝑃) = 1 − 𝑠𝑠}. 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2)�

+ (1 − 𝛿𝛿1)[𝑠𝑠 ∙ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃) + (1 − 𝑠𝑠) ∙ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅;  𝑠𝑠2 = 𝑃𝑃)] 

= 𝛿𝛿1[𝛼𝛼1 ∙ 90 + (1 − 𝛼𝛼1) ∙ 60] + (1 − 𝛿𝛿1)[𝑠𝑠 ∙ 60 + (1 − 𝑠𝑠) ∙ 90] 

= 𝛿𝛿1(90𝛼𝛼1 − 60𝛼𝛼1 + 60) + (1 − 𝛿𝛿1)(60𝑠𝑠 − 90𝑠𝑠 + 90) 

= 𝛿𝛿1(30𝛼𝛼1 + 60) + (1 − 𝛿𝛿1)(−30𝑠𝑠 + 90) 

= 𝛿𝛿1(30𝛼𝛼1 + 60) + (1 − 𝛿𝛿1)(90 − 30𝑠𝑠) 

= 𝛿𝛿1(30𝛼𝛼1 + 60) + (90 − 30𝑠𝑠) − 𝛿𝛿1(90 − 30𝑠𝑠) 

= 𝛿𝛿1(30𝛼𝛼1 + 60 − 90 + 30𝑠𝑠) + (90 − 30𝑠𝑠) 

= (90 − 30𝑠𝑠) + 𝛿𝛿1(−30 + 30𝛼𝛼1 + 30𝑠𝑠) 

= (90 − 30𝑠𝑠) + 𝛿𝛿1(−1 + 𝛼𝛼1 + 𝑠𝑠)30 

= (90 − 30𝑠𝑠) − 𝛿𝛿1(1 − 𝛼𝛼1 − 𝑠𝑠)30 
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𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆;  𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆;  𝑠𝑠2)�

+ (1 − 𝛿𝛿1)[𝑠𝑠 ∙ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆;  𝑠𝑠2 = 𝑃𝑃) + (1 − 𝑠𝑠) ∙ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆;  𝑠𝑠2 = 𝑃𝑃)] 

= 𝛿𝛿1[𝛼𝛼1 ∙ 70 + (1 − 𝛼𝛼1) ∙ 70] + (1 − 𝛿𝛿1)(𝑠𝑠 ∙ 70 + (1 − 𝑠𝑠) ∙ 70) 

= 𝛿𝛿1[𝛼𝛼1 ∙ 70 − 𝛼𝛼1 ∙ 70 + 70] + (1 − 𝛿𝛿1)(𝑠𝑠 ∙ 70 − 𝑠𝑠 ∙ 70 + 70) 

= 𝛿𝛿1 ∙ 70 − 𝛿𝛿1 ∙ 70 + 70 

= 70 

 

17. Derivation of ambiguity aversion critical value for player 1 in the game of section 

4.3.2: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

70 > (90 − 30𝑠𝑠) − 𝛿𝛿1(1 − 𝛼𝛼1 − 𝑠𝑠)30 

70 − (90 − 30𝑠𝑠) > −𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠)30 

70 − (90 − 30𝑠𝑠)
−30

< 𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) 

𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) >
70 − (90 − 30𝑠𝑠)

−30
 

Now, let’s fill in 𝑠𝑠 = 0: 

𝛿𝛿1(1− 𝛼𝛼1 − 0) >
70 − (90 − 30 ∙ 0)

−30
 

𝛿𝛿1(1− 𝛼𝛼1) >
70 − 90
−30

 

𝛿𝛿1(1 − 𝛼𝛼1) >
−20
−30

 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.667 

Now, let’s fill in 𝑠𝑠 = 1: 

𝛿𝛿1(1− 𝛼𝛼1 − 1) >
70 − (90 − 30 ∙ 1)

−30
 

𝛿𝛿1(−𝛼𝛼1) >
70 − 60
−30

 

−𝛿𝛿1𝛼𝛼1 >
10
−30

 

𝛿𝛿1𝛼𝛼1 <
1
3
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18. Derivation of the condition for 𝛼𝛼1 for which 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 applies with 𝑠𝑠 as a 

variable and 𝛿𝛿1 is fixed at 0.52, for the game in section 4.3.2: 

𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) >
70 − (90 − 30𝑠𝑠)

−30
 

1 − 𝛼𝛼1 − 𝑠𝑠 >
70 − (90 − 30𝑠𝑠)

−30𝛿𝛿1
 

−𝛼𝛼1 > −1 +
70 − (90 − 30𝑠𝑠)

−30𝛿𝛿1
+ 𝑠𝑠 

𝛼𝛼1 < 1 −
70 − (90 − 30𝑠𝑠)

−30𝛿𝛿1
− 𝑠𝑠 

I said before, 𝛿𝛿1 will be fixed at 0.52, filling 0.52 in leads to: 

𝛼𝛼1 < 1 −
70 − (90 − 30𝑠𝑠)

−30 ∙ 0.52
− 𝑠𝑠 

𝛼𝛼1 < 1 −
70 − (90 − 30𝑠𝑠)

−15.6
− 𝑠𝑠 

 

19. Table B.19: Relationship between 𝛼𝛼1 and 𝑠𝑠, when 𝛿𝛿1 = 0.52, for the game in 

section 4.3.2: 

𝑠𝑠 = 0 𝑠𝑠 = 0.1 𝑠𝑠 = 0.2 

𝛼𝛼1 < 1 −
70− (90 − 30 ∙ 0)

−15.6 − 0 

𝛼𝛼1 < −0.282 

𝛼𝛼1 < 0 

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 0.1)

−15.6 − 0.1 

𝛼𝛼1 < −0.190 

𝛼𝛼1 < 0 

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 0.2)

−15.6 − 0.2 

𝛼𝛼1 < −0.097 

𝛼𝛼1 < 0 

𝑠𝑠 = 0.3 𝑠𝑠 = 0.4 𝑠𝑠 = 0.5 

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 0.3)

−15.6 − 0.3 

𝛼𝛼1 < −0.005 

𝛼𝛼1 < 0 

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 0.4)

−15.6 − 0.4 

𝛼𝛼1 < 0.087 

 

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 0.5)

−15.6 − 0.5 

𝛼𝛼1 < 0.179 

 

𝑠𝑠 = 0.6 𝑠𝑠 = 0.7 𝑠𝑠 = 0.8 

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 0.6)

−15.6 − 0.6 

𝛼𝛼1 < 0.272 

 

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 0.7)

−15.6 − 0.7 

𝛼𝛼1 < 0.364 

 

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 0.8)

−15.6 − 0.8 

𝛼𝛼1 < 0.456 

 

𝑠𝑠 = 0.9 𝑠𝑠 = 1.0  

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 0.9)

−15.6 − 0.9 

𝛼𝛼1 < 0.549 

 

𝛼𝛼1 < 1 −
70 − (90 − 30 ∙ 1.0)

−15.6 − 1.0 

𝛼𝛼1 < 0.641 

 

 58 



  

 The pattern that arises is the same as the pattern for the game from section 

4.3.1. The only difference is that the value for which the optimism, 𝛼𝛼1, needs to be 

lower, to induce 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅, is lower in the ‘non-credible threat game’ 

compared to the ‘not rational game’. This is because of the payoff difference between 

the two games. However, the same pattern arises. 

 So if 𝑠𝑠 increases, the upper bound of the optimism values that will result in 

𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 increases as well. So if the belief of player 1 about player 2 playing 

𝑠𝑠2 = 𝑃𝑃 increases, more values of optimism will lead to player 1 preferring 𝑠𝑠1 = 𝑆𝑆 

over 𝑠𝑠1 = 𝑅𝑅. One important thing must be mentioned here, for 𝑠𝑠 ∈ [0,0.3] we have 

𝛼𝛼1 < 0 which is not possible, since 𝛼𝛼1 ∈ [0,1]. So unfortunately for 𝑠𝑠 ∈ [0,0.3] no 

values of optimism can induce the preference ordering 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅. 

 To make it clearer a graph can be made, where the dependent variable is 

optimism and the independent variable the belief of player 1 about player 2 playing 

his punishment strategy, this is done in figure 9. 

 
Figure 9. Relationship between 𝑠𝑠 and the upper bound of 𝛼𝛼1  

20. Derivation of the condition for 1 − 𝛼𝛼1 for which 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 applies with 𝑠𝑠 

as a variable and 𝛿𝛿1 is fixed at 0.52, for the game in section 4.3.2: 

𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) >
70 − (90 − 30𝑠𝑠)

−30
 

1 − 𝛼𝛼1 − 𝑠𝑠 >
70 − (90 − 30𝑠𝑠)

−30𝛿𝛿1
 

1 − 𝛼𝛼1 >
70 − (90 − 30𝑠𝑠)

−30𝛿𝛿1
+ 𝑠𝑠 
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Again, 𝛿𝛿1 will be fixed at 0.52. 

1 − 𝛼𝛼1 >
70 − (90 − 30𝑠𝑠)

−30 ∙ 0.52
+ 𝑠𝑠 

1 − 𝛼𝛼1 >
70 − (90 − 30𝑠𝑠)

−15.6
+ 𝑠𝑠 

 

21. Table B.21: Relationship between 1 − 𝛼𝛼1 and 𝑠𝑠, when 𝛿𝛿1 = 0.52, for the game in 

section 4.3.2: 

𝑠𝑠 = 0 𝑠𝑠 = 0.1 𝑠𝑠 = 0.2 

1 − 𝛼𝛼1 >
70− (90 − 30 ∙ 0)

−15.6 + 0 

1 − 𝛼𝛼1 > 1.282 

1 − 𝛼𝛼1 > 1 

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 0.1)

−15.6 + 0.1 

1 − 𝛼𝛼1 > 1.190 

1 − 𝛼𝛼1 > 1 

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 0.2)

−15.6 + 0.2 

1 − 𝛼𝛼1 > 1.097 

1 − 𝛼𝛼1 > 1 

𝑠𝑠 = 0.3 𝑠𝑠 = 0.4 𝑠𝑠 = 0.5 

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 0.3)

−15.6 + 0.3 

1 − 𝛼𝛼1 > 1.005 

1 − 𝛼𝛼1 > 1 

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 0.4)

−15.6 + 0.4 

1 − 𝛼𝛼1 > 0.913 

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 0.5)

−15.6 + 0.5 

1 − 𝛼𝛼1 > 0.821 

𝑠𝑠 = 0.6 𝑠𝑠 = 0.7 𝑠𝑠 = 0.8 

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 0.6)

−15.6 + 0.6 

1 − 𝛼𝛼1 > 0.728 

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 0.7)

−15.6 + 0.7 

1 − 𝛼𝛼1 > 0.636 

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 0.8)

−15.6 + 0.8 

1 − 𝛼𝛼1 > 0.544 

𝑠𝑠 = 0.9 𝑠𝑠 = 1.0  

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 0.9)

−15.6 + 0.9 

1 − 𝛼𝛼1 > 0.451 

1 − 𝛼𝛼1 >
70 − (90 − 30 ∙ 1.0)

−15.6 + 1.0 

1 − 𝛼𝛼1 > 0.359 

 If 𝑠𝑠 increases the optimism value that leads to 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 increases as 

well. Again, we see that if 𝑠𝑠 increases the lower bound of the pessimism value that 

leads to 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 decreases. So if the belief of player 1 about payer 2 playing 

𝑠𝑠2 = 𝑃𝑃 increases, less pessimism is needed for player 1 to prefer playing 𝑠𝑠1 = 𝑆𝑆 

instead of playing 𝑠𝑠1 = 𝑅𝑅. Which is opposite to the relationship between 𝛼𝛼1 and 𝑠𝑠. 

Figure 10, shows the relationship between 𝑠𝑠 (x-axis) and the lower bound of 1 − 𝛼𝛼1 

(y-axis). 
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Figure 10. Relationship between 𝑠𝑠 and the lower bound of 1 − 𝛼𝛼1 

22. Derivation of the condition for 𝛿𝛿1 for which 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 applies with 𝑠𝑠 as a 

variable and 𝛼𝛼1 is fixed at 0.5, for the game in section 4.3.2: 

𝛿𝛿1(1− 𝛼𝛼1 − 𝑠𝑠) >
70 − (90 − 30𝑠𝑠)

−30
 

𝛿𝛿1 >
70 − (90 − 30𝑠𝑠)
−30(1 − 𝛼𝛼1 − 𝑠𝑠) 

As stated above, the value for 𝛼𝛼1 will be fixed at the KW-range average, so 0.5. 

𝛿𝛿1 >
70 − (90 − 30𝑠𝑠)
−30(1 − 0.5 − 𝑠𝑠) 

𝛿𝛿1 >
70 − (90 − 30𝑠𝑠)
−30(0.5 − 𝑠𝑠)  

This formula only holds if 0 ≤ 𝑠𝑠 < 0.5 because then −30(0.5 − 𝑠𝑠) < 0 and the sign 

does not flip. But when 0.5 < 𝑠𝑠 ≤ 1 then −30(0.5 − 𝑠𝑠) > 0 and the sign flips from 

> to <. Thus when 0 ≤ 𝑠𝑠 < 0.5 the following condition is correct: 

𝛿𝛿1 >
70 − (90 − 30𝑠𝑠)
−30(0.5 − 𝑠𝑠)  

And when 0.5 < 𝑠𝑠 ≤ 1 the following condition is correct: 

𝛿𝛿1 <
70 − (90 − 30𝑠𝑠)
−30(0.5 − 𝑠𝑠)  

 

23. Table B.23: Relationship between 𝛿𝛿1 and 𝑠𝑠, when 𝛼𝛼1 = 0.5, for the game in 

section 4.3.2: 

𝑠𝑠 = 0 𝑠𝑠 = 0.1 𝑠𝑠 = 0.2 
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𝛿𝛿1 >
70 − (90 − 30 ∙ 0)
−30(0.5− 0)  

𝛿𝛿1 > 1.333 

𝛿𝛿1 > 1 

𝛿𝛿1 >
70 − (90 − 30 ∙ 0.1)
−30(0.5− 0.1)  

𝛿𝛿1 > 1.417 

𝛿𝛿1 > 1 

𝛿𝛿1 >
70 − (90 − 30 ∙ 0.2)
−30(0.5− 0.2)  

𝛿𝛿1 > 1.556 

𝛿𝛿1 > 1 

𝑠𝑠 = 0.3 𝑠𝑠 = 0.4 𝑠𝑠 = 0.5 

𝛿𝛿1 >
70 − (90 − 30 ∙ 0.3)
−30(0.5 − 0.3)  

𝛿𝛿1 > 1.833 

𝛿𝛿1 > 1 

𝛿𝛿1 >
70 − (90 − 30 ∙ 0.4)
−30(0.5− 0.4)  

𝛿𝛿1 > 2.667 

𝛿𝛿1 > 1 

𝛿𝛿1 >
70 − (90 − 30 ∙ 0.5)
−30(0.5− 0.5)  

𝛿𝛿1 >
−5
0  

Not possible 

 

𝑠𝑠 = 0.6 𝑠𝑠 = 0.7 𝑠𝑠 = 0.8 

𝛿𝛿1 >
70 − (90 − 30 ∙ 0.6)
−30(0.5 − 0.6)  

𝛿𝛿1 < −0.667 

𝛿𝛿1 < 0 

𝛿𝛿1 >
70 − (90 − 30 ∙ 0.7)
−30(0.5− 0.7)  

𝛿𝛿1 < 0.167 

𝛿𝛿1 >
70 − (90 − 30 ∙ 0.8)
−30(0.5− 0.8)  

𝛿𝛿1 < 0.444 

𝑠𝑠 = 0.9 𝑠𝑠 = 1.0  

𝛿𝛿1 >
70 − (90 − 30 ∙ 0.9)
−30(0.5 − 0.9)  

𝛿𝛿1 < 0.583 

𝛿𝛿1 >
70 − (90 − 30 ∙ 1.0)
−30(0.5− 1.0)  

𝛿𝛿1 < 0.667 

 Looking at the above table, a few interesting things come up in the relation 

between ambiguity (𝛿𝛿1) and the belief of player 1 about player 2 playing 𝑠𝑠2 = 𝑃𝑃 (𝑠𝑠) 

when optimism (𝛼𝛼1) is fixed in the ‘non-credible threat game’. First, if we have 𝑠𝑠 ∈

[0,0.4] I find that 𝛿𝛿1 > 1 which is not possible since 𝛿𝛿1 ∈ [0,1]. The fact that 

ambiguity must be larger than 1 for 𝑠𝑠 ∈ [0,0.4] to induce 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 implies 

that the confidence of player 1 must be negative (1 − 𝛿𝛿1 < 0) which is also not 

possible. So for 𝑠𝑠 ∈ [0,0.4] no value for ambiguity can result in player 1 preferring 

𝑠𝑠1 = 𝑆𝑆 over 𝑠𝑠1 = 𝑅𝑅. 

 Second, for 𝑠𝑠 = 0.5 we cannot compute an ambiguity cut off value, since we 

divide by 0 which is mathematically not possible. So at 𝑠𝑠 = 0.5, 𝛿𝛿1 is not well 

defined. 

 Third, for 𝑠𝑠 = 0.6, I found that the ambiguity value must be smaller than 0, 

𝛿𝛿1 < 0, which is also not possible thanks to the fact 𝛿𝛿1 ∈ [0,1]. Thus, again, no value 

for ambiguity results in the preference ordering 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 for player 1, when 

𝑠𝑠 = 0.6. Just like 𝑠𝑠 ∈ [0,0.4]. 

 Last, for 𝑠𝑠 ∈ [0.7,1.0], the following pattern arises: if 𝑠𝑠 increases, the upper 

bound of 𝛿𝛿1 increases as well. Meaning if the belief of player 1 about player 2 playing 

𝑠𝑠2 = 𝑃𝑃 increases, the ambiguity level that allows 𝑠𝑠1 = 𝑆𝑆 ≻ 𝑠𝑠1 = 𝑅𝑅 increases as well, 
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when 𝑠𝑠 ∈ [0.7,1.0]. The logic behind this is as follows as player 1 deems it more 

likely that player 2 will play 𝑠𝑠2 = 𝑃𝑃 (his punishment strategy), the increased fear of 

being punished, leads to the fact that player 1 will need to have less confidence in this 

belief. Figure 11 shows the relationship between the lower bound of 𝛿𝛿1 and 𝑠𝑠, with 𝛿𝛿1 

on the y-axis and 𝑠𝑠 on the x-axis. While figure 12 shows the relationship between the 

upper bound of 𝛿𝛿1 and 𝑠𝑠, with 𝛿𝛿1 on the y-axis and 𝑠𝑠 on the x-axis. 

 
Figure 11. Relationship between the lower bound of 𝛿𝛿1 and 𝑠𝑠 

 
Figure 12. Relationship between the upper bound of 𝛿𝛿1 and 𝑠𝑠 

24. Derivation of Choquet expected utilities for player 1 in the game of section 5.1.1. 

I make use of the following function: 

𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖|𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖,𝜋𝜋𝑖𝑖)

= 𝛿𝛿𝑖𝑖�𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿𝑖𝑖)∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝑠𝑠−𝑖𝑖) 
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Now, we have 𝑢𝑢𝑖𝑖(𝑥𝑥) = √𝑥𝑥 instead of 𝑢𝑢𝑖𝑖(𝑥𝑥) = 𝑥𝑥. 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1�𝛼𝛼1 ∙ √80 + (1 − 𝛼𝛼1) ∙ √80� + (1 − 𝛿𝛿1) ∙ √80 

= 𝛿𝛿1�𝛼𝛼1 ∙ √80 − 𝛼𝛼1 ∙ √80 + √80� + √80 − 𝛿𝛿1 ∙ √80 

= 𝛿𝛿1 ∙ √80 − 𝛿𝛿1 ∙ √80 + √80 

= √80 

= 8.94 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1�𝛼𝛼1√90 + (1 − 𝛼𝛼1)√20� + (1 − 𝛿𝛿1)√90 

= 𝛿𝛿1�𝛼𝛼1√90 − 𝛼𝛼1√20 + √20� + √90 − 𝛿𝛿1√90 

= 𝛿𝛿1[𝛼𝛼1 ∙ 9.487 − 𝛼𝛼1 ∙ 4.472 + 4.472] + 9.487 − 𝛿𝛿1 ∙ 9.487 

= 𝛿𝛿1[𝛼𝛼1 ∙ 5.015 + 4.472] + 9.487 − 𝛿𝛿1 ∙ 9.487 

= 9.487 + 𝛿𝛿1 ∙ 4.472 − 𝛿𝛿1 ∙ 9.487 + 𝛿𝛿1𝛼𝛼1 ∙ 5.015 

= 9.487 − 𝛿𝛿1 ∙ 5.015 + 𝛿𝛿1𝛼𝛼1 ∙ 5.015 

= 9.487 − 𝛿𝛿1(1 − 𝛼𝛼1)5.015 

 

25. Derivation of ambiguity aversion critical value for player 1 in the game of section 

5.1.1: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

8.94 > 9.487 − 𝛿𝛿1(1 − 𝛼𝛼1)5.015 

−0.547 > −𝛿𝛿1(1 − 𝛼𝛼1)5.015 

−0.547
−5.015

< 𝛿𝛿1(1 − 𝛼𝛼1) 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.109 

 

26. Derivation of Choquet expected utilities for player 1 in the game of section 5.1.2. 

I make use of the following function: 
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𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖|𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖,𝜋𝜋𝑖𝑖)

= 𝛿𝛿𝑖𝑖�𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿𝑖𝑖)∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝑠𝑠−𝑖𝑖) 

Now, we have 𝑢𝑢𝑖𝑖(𝑥𝑥) = 𝑥𝑥2 instead of 𝑢𝑢𝑖𝑖(𝑥𝑥) = 𝑥𝑥. 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1[𝛼𝛼1802 + (1 − 𝛼𝛼1)802] + (1 − 𝛿𝛿1)802 

= 𝛿𝛿1[𝛼𝛼1802 − 𝛼𝛼1802 + 802] + 802 − 𝛿𝛿1802 

= 𝛿𝛿1802 − 𝛿𝛿1802 + 802 

= 802 = 6,400 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1[𝛼𝛼1 ∙ 902 + (1 − 𝛼𝛼1) ∙ 202] + (1 − 𝛿𝛿1) ∙ 902 

= 𝛿𝛿1[𝛼𝛼1 ∙ 8,100 + (1 − 𝛼𝛼1) ∙ 400] + (1 − 𝛿𝛿1) ∙ 8,100 

= 𝛿𝛿1[𝛼𝛼18,100 − 𝛼𝛼1400 + 400] + 8,100 − 𝛿𝛿18,100 

= 8,100 + 𝛿𝛿1400 − 𝛿𝛿18,100 + 𝛿𝛿1𝛼𝛼17,700 

= 8,100 − 𝛿𝛿17,700 + 𝛿𝛿1𝛼𝛼17,700 

= 8,100 − 𝛿𝛿1(1 − 𝛼𝛼1)7,700 

 

27. Derivation of ambiguity aversion critical value for player 1 in the game of section 

5.1.2: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

6,400 > 8,100 − 𝛿𝛿1(1 − 𝛼𝛼1)7,700 

−1,700 > −𝛿𝛿1(1 − 𝛼𝛼1)7,700 
−1,700
−7,700

< 𝛿𝛿1(1 − 𝛼𝛼1) 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.221 

 

28. Derivation of Choquet expected utilities for player 1 in the game of section 5.2.1. 

I make use of the following function: 
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𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖|𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖,𝜋𝜋𝑖𝑖)

= 𝛿𝛿𝑖𝑖�𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿𝑖𝑖)∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝑠𝑠−𝑖𝑖) 

Now, we have 𝑢𝑢𝑖𝑖(𝑥𝑥) = √𝑥𝑥 instead of 𝑢𝑢𝑖𝑖(𝑥𝑥) = 𝑥𝑥. 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1�𝛼𝛼1 ∙ √70 + (1 − 𝛼𝛼1) ∙ √70� + (1 − 𝛿𝛿1) ∙ √70 

= 𝛿𝛿1�𝛼𝛼1 ∙ √70 − 𝛼𝛼1 ∙ √70 + √70� + √70 − 𝛿𝛿1 ∙ √70 

= 𝛿𝛿1 ∙ √70 − 𝛿𝛿1 ∙ √70 + √70 

= √70 

= 8.367 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1�𝛼𝛼1√90 + (1 − 𝛼𝛼1)√60� + (1 − 𝛿𝛿1)√90 

= 𝛿𝛿1�𝛼𝛼1√90 − 𝛼𝛼1√60 + √60� + √90 − 𝛿𝛿1√90 

= 𝛿𝛿1[𝛼𝛼19.487 − 𝛼𝛼17.746 + 7.746] + 9.487 − 𝛿𝛿19.487 

= 𝛿𝛿1[𝛼𝛼11.741 + 7.746] + 9.487 − 𝛿𝛿19.487 

= 9.487 + 𝛿𝛿17.746 − 𝛿𝛿19.487 + 𝛿𝛿1𝛼𝛼11.741 

= 9.487 − 𝛿𝛿11.741 + 𝛿𝛿1𝛼𝛼11.741 

= 9.487 − 𝛿𝛿1(1 − 𝛼𝛼1)1.741 

 

29. Derivation of ambiguity aversion critical value for player 1 in the game of section 

5.2.1: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

8.367 > 9.487 − 𝛿𝛿1(1 − 𝛼𝛼1)1.741 

−1.12 > −𝛿𝛿1(1− 𝛼𝛼1)1.741 
−1.12
−1.741

< 𝛿𝛿1(1 − 𝛼𝛼1) 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.643 
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30. Derivation of Choquet expected utilities for player 1 in the game of section 5.2.2. 

I make use of the following function: 

𝑉𝑉𝑖𝑖(𝑠𝑠𝑖𝑖|𝑠𝑠−𝑖𝑖 ∈ 𝑆𝑆−𝑖𝑖,𝛼𝛼𝑖𝑖, 𝛿𝛿𝑖𝑖,𝜋𝜋𝑖𝑖)

= 𝛿𝛿𝑖𝑖�𝛼𝛼𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖) + (1 − 𝛼𝛼𝑖𝑖)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠−𝑖𝑖∈𝑆𝑆−𝑖𝑖𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)�

+ (1 − 𝛿𝛿𝑖𝑖)∫ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖, 𝑠𝑠−𝑖𝑖)𝑓𝑓𝜋𝜋𝑖𝑖(𝑠𝑠−𝑖𝑖) 

Now, we have 𝑢𝑢𝑖𝑖(𝑥𝑥) = 𝑥𝑥2 instead of 𝑢𝑢𝑖𝑖(𝑥𝑥) = 𝑥𝑥. 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑆𝑆, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1[𝛼𝛼1702 + (1 − 𝛼𝛼1)702] + (1 − 𝛿𝛿1)702 

= 𝛿𝛿1[𝛼𝛼1702 − 𝛼𝛼1702 + 702] + 702 − 𝛿𝛿1702 

= 𝛿𝛿1702 − 𝛿𝛿1702 + 702 

= 702 = 4,900 

𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1�𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2) + (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝑠𝑠2∈𝑆𝑆2𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)�

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑅𝑅, 𝑠𝑠2)𝑓𝑓𝜋𝜋1(𝑠𝑠2) 

= 𝛿𝛿1[𝛼𝛼1 ∙ 902 + (1 − 𝛼𝛼1) ∙ 602] + (1 − 𝛿𝛿1) ∙ 902 

= 𝛿𝛿1[𝛼𝛼1 ∙ 8,100 + (1 − 𝛼𝛼1) ∙ 3,600] + (1 − 𝛿𝛿1) ∙ 8,100 

= 𝛿𝛿1[𝛼𝛼18,100 − 𝛼𝛼13,600 + 3,600] + 8,100 − 𝛿𝛿18,100 

= 8,100 + 𝛿𝛿13,600 − 𝛿𝛿18,100 + 𝛿𝛿1𝛼𝛼14,500 

= 8,100 − 𝛿𝛿14,500 + 𝛿𝛿1𝛼𝛼14,500 

= 8,100 − 𝛿𝛿1(1 − 𝛼𝛼1)4,500 

 

31. Derivation of ambiguity aversion critical value for player 1 in the game of section 

5.2.2: 

𝑉𝑉1(𝑠𝑠1 = 𝑆𝑆|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑅𝑅|𝑠𝑠2 ∈ 𝑆𝑆2,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

4,900 > 8,100 − 𝛿𝛿1(1 − 𝛼𝛼1)4,500 

−3,200 > −𝛿𝛿1(1 − 𝛼𝛼1)4,500 
−3,200
−4,500

< 𝛿𝛿1(1 − 𝛼𝛼1) 

𝛿𝛿1(1 − 𝛼𝛼1) > 0.711 
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32. Derivation of 𝜋𝜋1(𝜔𝜔) = {𝑠𝑠1(𝜔𝜔𝐿𝐿);𝑠𝑠1(𝜔𝜔𝐻𝐻)} for which 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 =

𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] = 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] holds: 

𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] = 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠1(𝜔𝜔𝐻𝐻) ∙ (𝐹𝐹0 − 𝐻𝐻) = 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐿𝐿 − 𝐹𝐹0) + 𝑠𝑠1(𝜔𝜔𝐻𝐻) ∙ (𝐻𝐻 − 𝐹𝐹0) 

We know that 𝑠𝑠1(𝜔𝜔𝐿𝐿) + 𝑠𝑠1(𝜔𝜔𝐻𝐻) = 1 so 𝑠𝑠1(𝜔𝜔𝐻𝐻) = 1 − 𝑠𝑠1(𝜔𝜔𝐿𝐿), filling this in I get: 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + �1 − 𝑠𝑠1(𝜔𝜔𝐿𝐿)� ∙ (𝐹𝐹0 − 𝐻𝐻)

= 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐿𝐿 − 𝐹𝐹0) + �1 − 𝑠𝑠1(𝜔𝜔𝐿𝐿)� ∙ (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + (𝐹𝐹0 − 𝐻𝐻) − 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐻𝐻)

= −𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) − 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) − (𝐻𝐻 − 𝐹𝐹0)

= −𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) − 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) + (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0) = −𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0) = −𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) 

2𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) = 2(𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) = (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) =
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑠𝑠1(𝜔𝜔𝐻𝐻) = 1 − 𝑠𝑠1(𝜔𝜔𝐿𝐿)

𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

�𝑠𝑠1(𝜔𝜔𝐻𝐻) = 1 −
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

=
𝐻𝐻 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

−
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

=
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

So for 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠1(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

� we have 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ∼ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 

because 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] = 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)]. 

 

33. Derivation of 𝜋𝜋2(𝜔𝜔) = {𝑠𝑠2(𝜔𝜔𝐿𝐿);𝑠𝑠2(𝜔𝜔𝐻𝐻)} for which 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 =

𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] = 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] holds: 

𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] = 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] 

𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐿𝐿 − 𝐹𝐹0) + 𝑠𝑠2(𝜔𝜔𝐻𝐻) ∙ (𝐻𝐻 − 𝐹𝐹0) = 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠2(𝜔𝜔𝐻𝐻) ∙ (𝐹𝐹0 − 𝐻𝐻) 

We know that 𝑠𝑠2(𝜔𝜔𝐿𝐿) + 𝑠𝑠2(𝜔𝜔𝐻𝐻) = 1 so 𝑠𝑠2(𝜔𝜔𝐻𝐻) = 1 − 𝑠𝑠2(𝜔𝜔𝐿𝐿) filling this in I get: 

−𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + �1 − 𝑠𝑠2(𝜔𝜔𝐿𝐿)� ∙ (𝐻𝐻 − 𝐹𝐹0)

= 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + �1 − 𝑠𝑠2(𝜔𝜔𝐿𝐿)� ∙ [−(𝐻𝐻 − 𝐹𝐹0)] 

−𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) − 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) + (𝐻𝐻 − 𝐹𝐹0)

= 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) − (𝐻𝐻 − 𝐹𝐹0) 

−𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) = 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0) 
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−𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) = 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0) 

−2𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) = −2(𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) = (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠2(𝜔𝜔𝐿𝐿) =
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑠𝑠2(𝜔𝜔𝐻𝐻) = 1 − 𝑠𝑠2(𝜔𝜔𝐿𝐿)

𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

�𝑠𝑠2(𝜔𝜔𝐻𝐻) = 1 −
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

=
𝐻𝐻 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

−
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

=
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

So for 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠2(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

� we have 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ∼ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 

because 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] = 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)]. 

 

34. Derivation of 𝜋𝜋1(𝜔𝜔) = {𝑠𝑠1(𝜔𝜔𝐿𝐿);𝑠𝑠1(𝜔𝜔𝐻𝐻)} for which 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 =

𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] > 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] holds: 

𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] > 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠1(𝜔𝜔𝐻𝐻) ∙ (𝐹𝐹0 − 𝐻𝐻) > 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐿𝐿 − 𝐹𝐹0) + 𝑠𝑠1(𝜔𝜔𝐻𝐻) ∙ (𝐻𝐻 − 𝐹𝐹0) 

We know that 𝑠𝑠1(𝜔𝜔𝐿𝐿) + 𝑠𝑠1(𝜔𝜔𝐻𝐻) = 1 so 𝑠𝑠1(𝜔𝜔𝐻𝐻) = 1 − 𝑠𝑠1(𝜔𝜔𝐿𝐿), filling this in I get: 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + �1 − 𝑠𝑠1(𝜔𝜔𝐿𝐿)� ∙ (𝐹𝐹0 − 𝐻𝐻)

> 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐿𝐿 − 𝐹𝐹0) + �1 − 𝑠𝑠1(𝜔𝜔𝐿𝐿)� ∙ (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + (𝐹𝐹0 − 𝐻𝐻) − 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐻𝐻)

> −𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) − 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) − (𝐻𝐻 − 𝐹𝐹0)

> −𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) − 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) + (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0) > −𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0) > −𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) 

2𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) > 2(𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) > (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠1(𝜔𝜔𝐿𝐿) >
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

We know 𝑠𝑠1(𝜔𝜔𝐿𝐿) = 1 − 𝑠𝑠1(𝜔𝜔𝐻𝐻) and 𝑠𝑠1(𝜔𝜔𝐿𝐿) > 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 combining the two gives: 

1 − 𝑠𝑠1(𝜔𝜔𝐻𝐻) >
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

−𝑠𝑠1(𝜔𝜔𝐻𝐻) > −1 +
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑠𝑠1(𝜔𝜔𝐻𝐻) < 1 −
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

 69 



  

𝑠𝑠1(𝜔𝜔𝐻𝐻) <
𝐻𝐻 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

−
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑠𝑠1(𝜔𝜔𝐻𝐻) <
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

So for 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) > 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠1(𝜔𝜔𝐻𝐻) < 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

� we have 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 

because 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] > 𝐸𝐸[𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)]. 

 

35. Derivation of 𝜋𝜋2(𝜔𝜔) = {𝑠𝑠2(𝜔𝜔𝐿𝐿);𝑠𝑠2(𝜔𝜔𝐻𝐻)} for which 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 =

𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] > 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] holds: 

𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] > 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)] 

𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐿𝐿 − 𝐹𝐹0) + 𝑠𝑠2(𝜔𝜔𝐻𝐻) ∙ (𝐻𝐻 − 𝐹𝐹0) > 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠2(𝜔𝜔𝐻𝐻) ∙ (𝐹𝐹0 − 𝐻𝐻) 

We know that 𝑠𝑠2(𝜔𝜔𝐿𝐿) + 𝑠𝑠2(𝜔𝜔𝐻𝐻) = 1 so 𝑠𝑠2(𝜔𝜔𝐻𝐻) = 1 − 𝑠𝑠2(𝜔𝜔𝐿𝐿) filling this in I get: 

−𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + �1 − 𝑠𝑠2(𝜔𝜔𝐿𝐿)� ∙ (𝐻𝐻 − 𝐹𝐹0)

> 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + �1 − 𝑠𝑠2(𝜔𝜔𝐿𝐿)� ∙ [−(𝐻𝐻 − 𝐹𝐹0)] 

−𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) − 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) + (𝐻𝐻 − 𝐹𝐹0)

> 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0) − (𝐻𝐻 − 𝐹𝐹0) 

−𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) > 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0) 

−𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) > 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0) 

−2𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) > −2(𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐻𝐻 − 𝐿𝐿) < (𝐻𝐻 − 𝐹𝐹0) 

𝑠𝑠2(𝜔𝜔𝐿𝐿) <
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

We know that 𝑠𝑠2(𝜔𝜔𝐿𝐿) = 1 − 𝑠𝑠2(𝜔𝜔𝐻𝐻) and 𝑠𝑠2(𝜔𝜔𝐿𝐿) < 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 combining the two gives 

1 − 𝑠𝑠2(𝜔𝜔𝐻𝐻) <
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

−𝑠𝑠2(𝜔𝜔𝐻𝐻) < −1 +
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑠𝑠2(𝜔𝜔𝐻𝐻) > 1 −
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑠𝑠2(𝜔𝜔𝐻𝐻) >
𝐻𝐻 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

−
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑠𝑠2(𝜔𝜔𝐻𝐻) >
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

So for 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) < 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠2(𝜔𝜔𝐻𝐻) > 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

� we have 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 

because 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)] > 𝐸𝐸[𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)]. 
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36. Derivation of expected payoff to player 1 from playing 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 with an 

additive probability distribution as belief of 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) =

𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

− 𝑚𝑚� which satisfies 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) > 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠1(𝜔𝜔𝐻𝐻) < 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

�. 

𝐸𝐸�𝑢𝑢1�𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝜋𝜋1(𝜔𝜔)�� = 𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠1(𝜔𝜔𝐻𝐻) ∙ (𝐹𝐹0 − 𝐻𝐻) 

= �
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚� ∙ (𝐹𝐹0 − 𝐿𝐿) + �
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚� ∙ (𝐹𝐹0 − 𝐻𝐻) 

=
(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)

𝐻𝐻 − 𝐿𝐿
+

(𝐹𝐹0 − 𝐿𝐿)(𝐹𝐹0 − 𝐻𝐻)
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) − 𝑚𝑚(𝐹𝐹0 − 𝐻𝐻) 

=
(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)

𝐻𝐻 − 𝐿𝐿
−

(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) + 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0) 

= 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) 

= 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

 

37. Derivation of expected payoff to player 2 from playing 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 with an 

additive probability distribution as belief of 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) =

𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚� which satisfies 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) < 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

;𝑠𝑠2(𝜔𝜔𝐻𝐻) > 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

�. 

𝐸𝐸�𝑢𝑢2�𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝜋𝜋2(𝜔𝜔)�� = 𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐿𝐿 − 𝐹𝐹0) + 𝑠𝑠2(𝜔𝜔𝐻𝐻) ∙ (𝐻𝐻 − 𝐹𝐹0) 

= �
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚� ∙ (𝐿𝐿 − 𝐹𝐹0) + �
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚� ∙ (𝐻𝐻 − 𝐹𝐹0) 

=
(𝐻𝐻 − 𝐹𝐹0)(𝐿𝐿 − 𝐹𝐹0)

𝐿𝐿 − 𝐹𝐹0
+

(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚(𝐿𝐿 − 𝐹𝐹0) + 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0) 

= −
(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)

𝐻𝐻 − 𝐿𝐿
+

(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) + 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0) 

= 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) 

= 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

 

38. Conditions which 𝑚𝑚 must satisfy: 

(1.) For 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

− 𝑚𝑚�: 

𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚 ≤ 1 

𝑚𝑚 ≤ 1 −
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
𝐻𝐻 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

−
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿
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𝑚𝑚 ≤
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

and  
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚 ≥ 0 

−𝑚𝑚 ≥ −
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

(2.) For 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚�: 

𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚 ≥ 0 

−𝑚𝑚 ≥ −
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

and  
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚 ≤ 1 

𝑚𝑚 ≤ 1 −
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
𝐻𝐻 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

−
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

 

39. Derivation of the Choquet expected utility for player 1 from playing 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 

where 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

− 𝑚𝑚� and for 𝑚𝑚, 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 must 

hold: 

 

𝑉𝑉1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1[𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝜔𝜔∈Ω𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)

+ (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝜔𝜔∈Ω𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)]

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)𝑓𝑓𝜋𝜋1(𝜔𝜔) 

= 𝛿𝛿1[𝛼𝛼1(𝐹𝐹0 − 𝐿𝐿) + (1 − 𝛼𝛼1)(𝐹𝐹0 − 𝐻𝐻)]

+ (1 − 𝛿𝛿1) ��
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚� ∙ (𝐹𝐹0 − 𝐿𝐿) + �
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚� ∙ (𝐹𝐹0 − 𝐻𝐻)� 
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= 𝛿𝛿1[𝛼𝛼1(𝐹𝐹0 − 𝐿𝐿) − 𝛼𝛼1(𝐹𝐹0 − 𝐻𝐻) + (𝐹𝐹0 − 𝐻𝐻)]

+ (1 − 𝛿𝛿1) �
(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)

𝐻𝐻 − 𝐿𝐿
+

(𝐹𝐹0 − 𝐿𝐿)(𝐹𝐹0 − 𝐻𝐻)
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚(𝐹𝐹0 − 𝐿𝐿)

− 𝑚𝑚(𝐹𝐹0 − 𝐻𝐻)� 

= 𝛿𝛿1[𝛼𝛼1(𝐹𝐹0 − 𝐿𝐿) + 𝛼𝛼1(𝐻𝐻 − 𝐹𝐹0) − (𝐻𝐻 − 𝐹𝐹0)]

+ (1 − 𝛿𝛿1) �
(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)

𝐻𝐻 − 𝐿𝐿
−

(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚(𝐹𝐹0 − 𝐿𝐿)

+ 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)� 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] + (1 − 𝛿𝛿1)[𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) + 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)] 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] + (1 − 𝛿𝛿1)[𝑚𝑚(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿)] 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] + (1 − 𝛿𝛿1)𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)]− 𝛿𝛿1𝑚𝑚(𝐻𝐻 − 𝐿𝐿) +  𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

=  𝑚𝑚(𝐻𝐻 − 𝐿𝐿) + 𝛿𝛿1[−𝑚𝑚(𝐻𝐻 − 𝐿𝐿)+𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] 

=  𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛿𝛿1[𝑚𝑚(𝐻𝐻 − 𝐿𝐿)−𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0)] 

=  𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛿𝛿1[(𝑚𝑚 − 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0)] 

 

40. Derivation of the Choquet expected utility for player 1 from playing 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 

where 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

− 𝑚𝑚� and for 𝑚𝑚, 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 must 

hold: 

𝑉𝑉1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1)

= 𝛿𝛿1[𝛼𝛼1𝑚𝑚𝑚𝑚𝑥𝑥𝜔𝜔∈Ω𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)

+ (1 − 𝛼𝛼1)𝑚𝑚𝑖𝑖𝑛𝑛𝜔𝜔∈Ω𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)]

+ (1 − 𝛿𝛿1)∫ 𝑢𝑢1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)𝑓𝑓𝜋𝜋1(𝜔𝜔) 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐹𝐹0) + (1 − 𝛼𝛼1)(𝐿𝐿 − 𝐹𝐹0)]

+ (1 − 𝛿𝛿1)�𝑠𝑠1(𝜔𝜔𝐿𝐿) ∙ (𝐿𝐿 − 𝐹𝐹0) + 𝑠𝑠1(𝜔𝜔𝐻𝐻) ∙ (𝐻𝐻 − 𝐹𝐹0)� 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐹𝐹0) − 𝛼𝛼1(𝐿𝐿 − 𝐹𝐹0) + (𝐿𝐿 − 𝐹𝐹0)]

+ (1 − 𝛿𝛿1) ��
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚� (𝐿𝐿 − 𝐹𝐹0) + �
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚� (𝐻𝐻 − 𝐹𝐹0)� 
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= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐹𝐹0) + 𝛼𝛼1(𝐹𝐹0 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)]

+ (1 − 𝛿𝛿1) �
(𝐻𝐻 − 𝐹𝐹0)(𝐿𝐿 − 𝐹𝐹0)

𝐻𝐻 − 𝐿𝐿
+ 𝑚𝑚(𝐿𝐿 − 𝐹𝐹0) +

(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)� 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)]

+ (1 − 𝛿𝛿1) �−
(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)

𝐻𝐻 − 𝐿𝐿
− 𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) +

(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)� 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] + (1 − 𝛿𝛿1)[−𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) − 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)] 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] + (1 − 𝛿𝛿1)[−𝑚𝑚(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿)] 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] + (1 − 𝛿𝛿1)[−𝑚𝑚(𝐻𝐻 − 𝐿𝐿)] 

= 𝛿𝛿1[𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] + 𝛿𝛿1𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

= 𝛿𝛿1[𝑚𝑚(𝐻𝐻 − 𝐿𝐿) + 𝛼𝛼1(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

= 𝛿𝛿1[(𝑚𝑚 + 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

 

41. Derivation of ambiguity value for which player 1 has the following preference 

order 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 with 𝜋𝜋1(𝜔𝜔) = �𝑠𝑠1(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚;𝑠𝑠1(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

−

𝑚𝑚� and 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

: 

𝑉𝑉1(𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) > 𝑉𝑉1(𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼1, 𝛿𝛿1,𝜋𝜋1) 

𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛿𝛿1[(𝑚𝑚 − 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0)]

> 𝛿𝛿1[(𝑚𝑚 + 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿1[(𝑚𝑚 − 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0)]− 𝛿𝛿1[(𝑚𝑚 + 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)]

> −𝑚𝑚(𝐻𝐻 − 𝐿𝐿) −  𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿1[(𝑚𝑚 − 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) + (𝑚𝑚 + 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿1[(𝑚𝑚 − 𝛼𝛼1 + 𝑚𝑚 + 𝛼𝛼1)(𝐻𝐻 − 𝐿𝐿) + (𝐻𝐻 − 𝐹𝐹0) − (𝐹𝐹0 − 𝐿𝐿)] > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿1[2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) + 𝐻𝐻 − 𝐹𝐹0 − 𝐹𝐹0 + 𝐿𝐿] > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿1[2𝑚𝑚𝐻𝐻 + 𝐻𝐻 − 2𝑚𝑚𝐿𝐿 + 𝐿𝐿 − 2𝐹𝐹0] > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿1[(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0] > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

𝛿𝛿1[(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0] < 2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
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This condition is true as long as (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 > 0, but when 

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 < 0 then 2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) will be divided by a negative 

number and thus the inequality sign flips from < to > and thus we get the following 

expression when (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 < 0: 

𝛿𝛿1 >
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

If (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 < 0 then the condition states that ambiguity must 

be larger than a negative number, since 2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) > 0 is always true. But we have 

𝛿𝛿1 ∈ [0,1], thus when the condition says that ambiguity must be larger than a negative 

number this is always satisfied. 

 

42. Derivation of the Choquet expected utility for player 2 from playing 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 

where 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚� and for 𝑚𝑚, 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 must 

hold: 

𝑉𝑉2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2)

= 𝛿𝛿2[𝛼𝛼2𝑚𝑚𝑚𝑚𝑥𝑥𝜔𝜔∈Ω𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)

+ (1 − 𝛼𝛼2)𝑚𝑚𝑖𝑖𝑛𝑛ω∈Ω𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)]

+ (1 − 𝛿𝛿2)∫ 𝑢𝑢2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙, 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜)𝑓𝑓𝜋𝜋2(𝜔𝜔) 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐹𝐹0) + (1 − 𝛼𝛼2)(𝐿𝐿 − 𝐹𝐹0)]

+ (1 − 𝛿𝛿2)[𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐿𝐿 − 𝐹𝐹0) + 𝑠𝑠2(𝜔𝜔𝐻𝐻) ∙ (𝐻𝐻 − 𝐹𝐹0)] 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐹𝐹0) − 𝛼𝛼2(𝐿𝐿 − 𝐹𝐹0) + (𝐿𝐿 − 𝐹𝐹0)]

+ (1 − 𝛿𝛿2) ��
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚� (𝐿𝐿 − 𝐹𝐹0) + �
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚� (𝐻𝐻 − 𝐹𝐹0)� 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐹𝐹0) + 𝛼𝛼2(𝐹𝐹0 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)]

+ (1 − 𝛿𝛿2) �
(𝐻𝐻 − 𝐹𝐹0)(𝐿𝐿 − 𝐹𝐹0)

𝐻𝐻 − 𝐿𝐿
− 𝑚𝑚(𝐿𝐿 − 𝐹𝐹0) +

(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)� 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)]

+ (1 − 𝛿𝛿2) �−
(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)

𝐻𝐻 − 𝐿𝐿
+ 𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) +

(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)� 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] + (1 − 𝛿𝛿2)[𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) + 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)] 
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= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] + (1 − 𝛿𝛿2)[𝑚𝑚(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿)] 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] + (1 − 𝛿𝛿2)𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] − 𝛿𝛿2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) + 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

= 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) + 𝛿𝛿2[−𝑚𝑚(𝐻𝐻 − 𝐿𝐿) + 𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐹𝐹0 − 𝐿𝐿)] 

= 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛿𝛿2[𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) + (𝐹𝐹0 − 𝐿𝐿)] 

= 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛿𝛿2[(𝑚𝑚 − 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) + (𝐹𝐹0 − 𝐿𝐿)] 

 

43. Derivation of the Choquet expected utility for player 2 from playing 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 

where 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

+ 𝑚𝑚� and for 𝑚𝑚, 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 must 

hold: 

𝑉𝑉2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠1 = 𝑙𝑙𝑓𝑓�𝑙𝑙,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2)

= 𝛿𝛿2[𝛼𝛼2𝑚𝑚𝑚𝑚𝑥𝑥𝜔𝜔∈Ω𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)

+ (1 − 𝛼𝛼2)𝑚𝑚𝑖𝑖𝑛𝑛ω∈Ω𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)]

+ (1 − 𝛿𝛿2)∫ 𝑢𝑢2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜, 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙)𝑓𝑓𝜋𝜋2(𝜔𝜔) 

= 𝛿𝛿2[𝛼𝛼2(𝐹𝐹0 − 𝐿𝐿) + (1 − 𝛼𝛼2)(𝐹𝐹0 − 𝐻𝐻)]

+ (1 − 𝛿𝛿2)[𝑠𝑠2(𝜔𝜔𝐿𝐿) ∙ (𝐹𝐹0 − 𝐿𝐿) + 𝑠𝑠2(𝜔𝜔𝐻𝐻) ∙ (𝐹𝐹0 − 𝐻𝐻)] 

= 𝛿𝛿2[𝛼𝛼2(𝐹𝐹0 − 𝐿𝐿) − 𝛼𝛼2(𝐹𝐹0 − 𝐻𝐻) + (𝐹𝐹0 − 𝐻𝐻)]

+ (1 − 𝛿𝛿2) ��
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚� (𝐹𝐹0 − 𝐿𝐿) + �
𝐹𝐹0 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚� (𝐹𝐹0 − 𝐻𝐻)� 

= 𝛿𝛿2[𝛼𝛼2(𝐹𝐹0 − 𝐿𝐿) + 𝛼𝛼2(𝐻𝐻 − 𝐹𝐹0) − (𝐻𝐻 − 𝐹𝐹0)]

+ (1 − 𝛿𝛿2) �
(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)

𝐻𝐻 − 𝐿𝐿
− 𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) +

(𝐹𝐹0 − 𝐻𝐻)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

+ 𝑚𝑚(𝐹𝐹0 − 𝐻𝐻)� 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)]

+ (1 − 𝛿𝛿2) �
(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)

𝐻𝐻 − 𝐿𝐿
− 𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) −

(𝐻𝐻 − 𝐹𝐹0)(𝐹𝐹0 − 𝐿𝐿)
𝐻𝐻 − 𝐿𝐿

− 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)� 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] + (1 − 𝛿𝛿2)[−𝑚𝑚(𝐹𝐹0 − 𝐿𝐿) − 𝑚𝑚(𝐻𝐻 − 𝐹𝐹0)] 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] + (1 − 𝛿𝛿2)[−𝑚𝑚(𝐻𝐻 − 𝐹𝐹0 + 𝐹𝐹0 − 𝐿𝐿)] 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] + (1 − 𝛿𝛿2)[−𝑚𝑚(𝐻𝐻 − 𝐿𝐿)] 

= 𝛿𝛿2[𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] + 𝛿𝛿2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 
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= 𝛿𝛿2[𝑚𝑚(𝐻𝐻 − 𝐿𝐿) + 𝛼𝛼2(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

= 𝛿𝛿2[(𝑚𝑚 + 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

 

44. Derivation of ambiguity value for which player 2 has the following preference 

order 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 with 𝜋𝜋2(𝜔𝜔) = �𝑠𝑠2(𝜔𝜔𝐿𝐿) = 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

− 𝑚𝑚;𝑠𝑠2(𝜔𝜔𝐻𝐻) = 𝐹𝐹0−𝐿𝐿
𝐻𝐻−𝐿𝐿

+

𝑚𝑚� and 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

: 

𝑉𝑉2(𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙|𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2) > 𝑉𝑉2(𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜|𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙,𝛼𝛼2, 𝛿𝛿2,𝜋𝜋2) 

𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝛿𝛿2[(𝑚𝑚 − 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) + (𝐹𝐹0 − 𝐿𝐿)]

> 𝛿𝛿2[(𝑚𝑚 + 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿2[(𝑚𝑚 − 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) + (𝐹𝐹0 − 𝐿𝐿)] − 𝛿𝛿2[(𝑚𝑚 + 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)]

> −𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿2[(𝑚𝑚 − 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) + (𝐹𝐹0 − 𝐿𝐿) + (𝑚𝑚 + 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿2[(𝑚𝑚 − 𝛼𝛼2 + 𝑚𝑚 + 𝛼𝛼2)(𝐻𝐻 − 𝐿𝐿) + (𝐹𝐹0 − 𝐿𝐿) − (𝐻𝐻 − 𝐹𝐹0)] > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿2[2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) − 𝐻𝐻 − 𝐿𝐿 + 𝐹𝐹0 + 𝐹𝐹0] > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿2(2𝑚𝑚𝐻𝐻 − 𝐻𝐻 − 2𝑚𝑚𝐿𝐿 − 𝐿𝐿 + 2𝐹𝐹0) > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

−𝛿𝛿2[(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0] > −2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

𝛿𝛿2[(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0] < 2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) 

𝛿𝛿2 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

This condition is true as long as (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 > 0, but when 

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 < 0 then 2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) will be divided by a negative 

number and thus the inequality sign flips from < to > and thus we get the following 

expression when (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 < 0: 

𝛿𝛿2 >
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

If (2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0 < 0 then the condition states that ambiguity must 

be larger than a negative number, since 2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) > 0 is always true. But we have 

𝛿𝛿1 ∈ [0,1], thus when the condition says that ambiguity must be larger than a negative 

number this is always satisfied. 

 

45. Derivation, value for 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 when 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10: 

𝑚𝑚 ≤
𝐹𝐹𝑜𝑜 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿
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𝑚𝑚 ≤
10 − 5
15 − 5

 

𝑚𝑚 ≤
5

10
 

𝑚𝑚 ≤ 0.5 

 

46. Derivation ambiguity value for player 1 with 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

𝛿𝛿1 <
2 ∙ 0.2 ∙ (15 − 5)

(2 ∙ 0.2 + 1) ∙ 15 − (2 ∙ 0.2 − 1) ∙ 5 − 2 ∙ 10
 

𝛿𝛿1 <
0.4 ∙ 10

(0.4 + 1) ∙ 15 − (0.4 − 1) ∙ 5 − 20
 

𝛿𝛿1 <
4

1.4 ∙ 15 − (−0.6) ∙ 5 − 20
 

𝛿𝛿1 <
4

21 + 3 − 20
 

𝛿𝛿1 <
4

24 − 20
 

𝛿𝛿1 <
4
4

 

𝛿𝛿1 < 1 

 

47. Derivation ambiguity value for player 1 with 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.1 

to induce 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

𝛿𝛿1 <
2 ∙ 0.1 ∙ (15 − 5)

(2 ∙ 0.1 + 1) ∙ 15 − (2 ∙ 0.1 − 1) ∙ 5 − 2 ∙ 10
 

𝛿𝛿1 <
0.2 ∙ 10

(0.2 + 1) ∙ 15 − (0.2 − 1) ∙ 5 − 20
 

𝛿𝛿1 <
2

1.2 ∙ 15 − (−0.8) ∙ 5 − 20
 

𝛿𝛿1 <
2

18 + 4 − 20
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𝛿𝛿1 <
2

22 − 20
 

𝛿𝛿1 <
2
2

 

𝛿𝛿1 < 1 

 

48. Derivation ambiguity value for player 1 with 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.5 

to induce 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

𝛿𝛿1 <
2 ∙ 0.5 ∙ (15 − 5)

(2 ∙ 0.5 + 1) ∙ 15 − (2 ∙ 0.5 − 1) ∙ 5 − 2 ∙ 10
 

𝛿𝛿1 <
1 ∙ 10

(1 + 1) ∙ 15 − (1 − 1) ∙ 5 − 20
 

𝛿𝛿1 <
10

2 ∙ 15 − (0) ∙ 5 − 20
 

𝛿𝛿1 <
10

30 + 0 − 20
 

𝛿𝛿1 <
10

30 − 20
 

𝛿𝛿1 <
10
10

 

𝛿𝛿1 < 1 

 

49. Derivation, value for 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 when 𝐻𝐻 = 20, 𝐿𝐿 = 5,𝐹𝐹0 = 10: 

𝑚𝑚 ≤
𝐹𝐹𝑜𝑜 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
10 − 5
20 − 5

 

𝑚𝑚 ≤
5

15
  

𝑚𝑚 ≤
1
3

 

 

50. Derivation ambiguity value for player 1 with 𝐻𝐻 = 20, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙: 

 79 



  

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

𝛿𝛿1 <
2 ∙ 0.2 ∙ (20 − 5)

(2 ∙ 0.2 + 1) ∙ 20 − (2 ∙ 0.2 − 1) ∙ 5 − 2 ∙ 10
 

𝛿𝛿1 <
0.4 ∙ 15

(0.4 + 1) ∙ 20 − (0.4 − 1) ∙ 5 − 20
 

𝛿𝛿1 <
6

1.4 ∙ 20 − (−0.6) ∙ 5 − 20
 

𝛿𝛿1 <
6

28 + 3 − 20
 

𝛿𝛿1 <
6

31 − 20
 

𝛿𝛿1 <
6

11
 

 

51. Derivation, value for 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 when 𝐻𝐻 = 15, 𝐿𝐿 = 7,𝐹𝐹0 = 10: 

𝑚𝑚 ≤
𝐹𝐹𝑜𝑜 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
10 − 7
15 − 7

 

𝑚𝑚 ≤
3
8

 

𝑚𝑚 ≤ 0.375 

 

52. Derivation ambiguity value for player 1 with 𝐻𝐻 = 15, 𝐿𝐿 = 7,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

𝛿𝛿1 <
2 ∙ 0.2 ∙ (15 − 7)

(2 ∙ 0.2 + 1) ∙ 15 − (2 ∙ 0.2 − 1) ∙ 7 − 2 ∙ 10
 

𝛿𝛿1 <
0.4 ∙ 8

(0.4 + 1) ∙ 15 − (0.4 − 1) ∙ 7 − 20
 

𝛿𝛿1 <
3.2

(1.4) ∙ 15 − (−0.6) ∙ 7 − 20
 

𝛿𝛿1 <
3.2

(1.4) ∙ 15 − (−0.6) ∙ 7 − 20
 

𝛿𝛿1 <
3.2

21 + 4.2 − 20
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𝛿𝛿1 <
3.2

25.2 − 20
 

𝛿𝛿1 <
3.2
5.2

 

𝛿𝛿1 < 0.615 

 

53. Derivation, value for 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 when 𝐻𝐻 = 15, 𝐿𝐿 = 3,𝐹𝐹0 = 10: 

𝑚𝑚 ≤
𝐹𝐹𝑜𝑜 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
10 − 3
15 − 3

 

𝑚𝑚 ≤
7

12
 

𝑚𝑚 ≤ 0.583 

 

54. Derivation ambiguity value for player 1 with 𝐻𝐻 = 15, 𝐿𝐿 = 3,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

𝛿𝛿1 <
2 ∙ 0.2 ∙ (15 − 3)

(2 ∙ 0.2 + 1) ∙ 15 − (2 ∙ 0.2 − 1) ∙ 3 − 2 ∙ 10
 

𝛿𝛿1 <
0.4 ∙ 12

(0.4 + 1) ∙ 15 − (0.4 − 1) ∙ 3 − 20
 

𝛿𝛿1 <
4.8

1.4 ∙ 15 − (−0.6) ∙ 3 − 20
 

𝛿𝛿1 <
4.8

21 + 1.8 − 20
 

𝛿𝛿1 <
4.8

22.8 − 20
 

𝛿𝛿1 <
4.8
2.8

 

𝛿𝛿1 < 1.714 

 

55. Derivation, value for 𝑚𝑚 ≤ 𝐹𝐹𝑜𝑜−𝐿𝐿
𝐻𝐻−𝐿𝐿

 when 𝐻𝐻 = 13, 𝐿𝐿 = 5,𝐹𝐹0 = 10: 

𝑚𝑚 ≤
𝐹𝐹𝑜𝑜 − 𝐿𝐿
𝐻𝐻 − 𝐿𝐿
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𝑚𝑚 ≤
10 − 5
13 − 5

 

𝑚𝑚 ≤
5
8

 

𝑚𝑚 ≤ 0.625 

 

56. Derivation ambiguity value for player 1 with 𝐻𝐻 = 13, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠1 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜 ≻ 𝑠𝑠1 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙: 

𝛿𝛿1 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0
 

𝛿𝛿1 <
2 ∙ 0.2 ∙ (13 − 5)

(2 ∙ 0.2 + 1) ∙ 13 − (2 ∙ 0.2 − 1) ∙ 5 − 2 ∙ 10
 

𝛿𝛿1 <
0.4 ∙ 8

(0.4 + 1) ∙ 13 − (0.4 − 1) ∙ 5 − 20
 

𝛿𝛿1 <
0.4 ∙ 8

1.4 ∙ 13 − (−0.6) ∙ 5 − 20
 

𝛿𝛿1 <
3.2

18.2 + 3 − 20
 

𝛿𝛿1 <
3.2

21.2 − 20
 

𝛿𝛿1 <
3.2
1.2

 

𝛿𝛿1 < 2.667 

 

57. Derivation, value for 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 with 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10: 

𝑚𝑚 ≤
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
15 − 10
15 − 5

 

𝑚𝑚 ≤
5

10
 

𝑚𝑚 ≤ 0.50 

 

58. Derivation ambiguity value for player 2 with 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜: 

𝛿𝛿2 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
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𝛿𝛿2 <
2 ∙ 0.2 ∙ (15 − 5)

(2 ∙ 0.2 − 1) ∙ 15 − (2 ∙ 0.2 + 1) ∙ 5 + 2 ∙ 10
 

𝛿𝛿2 <
0.4 ∙ 10

(0.4 − 1) ∙ 15 − (0.4 + 1) ∙ 5 + 20
 

𝛿𝛿2 <
4

(−0.6) ∙ 15 − (1.4) ∙ 5 + 20
 

𝛿𝛿2 <
4

(−0.6) ∙ 15 − (1.4) ∙ 5 + 20
 

𝛿𝛿2 <
4

−9 − 7 + 20
 

𝛿𝛿2 <
4

−16 + 20
 

𝛿𝛿2 <
4
4

 

𝛿𝛿2 < 1 

 

59. Derivation ambiguity value for player 2 with 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.1 

to induce 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜: 

𝛿𝛿2 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

𝛿𝛿2 <
2 ∙ 0.1 ∙ (15 − 5)

(2 ∙ 0.1 − 1) ∙ 15 − (2 ∙ 0.1 + 1) ∙ 5 + 2 ∙ 10
 

𝛿𝛿2 <
0.2 ∙ 10

(0.2 − 1) ∙ 15 − (0.2 + 1) ∙ 5 + 20
 

𝛿𝛿2 <
2

(−0.8) ∙ 15 − (1.2) ∙ 5 + 20
 

𝛿𝛿2 <
2

−12 − 6 + 20
 

𝛿𝛿2 <
2

−18 + 20
 

𝛿𝛿2 <
2
2

 

𝛿𝛿2 < 1 

 

60. Derivation ambiguity value for player 2 with 𝐻𝐻 = 15, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.5 

to induce 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜: 
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𝛿𝛿2 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

𝛿𝛿2 <
2 ∙ 0.5 ∙ (15 − 5)

(2 ∙ 0.5 − 1) ∙ 15 − (2 ∙ 0.5 + 1) ∙ 5 + 2 ∙ 10
 

𝛿𝛿2 <
1 ∙ 10

(1 − 1) ∙ 15 − (1 + 1) ∙ 5 + 20
 

𝛿𝛿2 <
10

0 ∙ 15 − 2 ∙ 5 + 20
 

𝛿𝛿2 <
10

−10 + 20
 

𝛿𝛿2 <
10
10

 

𝛿𝛿2 < 1 

 

61. Derivation, value for 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 with 𝐻𝐻 = 12, 𝐿𝐿 = 5,𝐹𝐹0 = 10:  

𝑚𝑚 ≤
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
12 − 10
12 − 5

 

𝑚𝑚 ≤
2
7

 

𝑚𝑚 ≤ 0.286 

 

62. Derivation ambiguity value for player 2 with 𝐻𝐻 = 12, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜: 

 𝛿𝛿2 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

𝛿𝛿2 <
2 ∙ 0.2 ∙ (12 − 5)

(2 ∙ 0.2 − 1) ∙ 12 − (2 ∙ 0.2 + 1) ∙ 5 + 2 ∙ 10
 

𝛿𝛿2 <
0.4 ∙ 7

(0.4 − 1) ∙ 12 − (0.4 + 1) ∙ 5 + 20
 

𝛿𝛿2 <
2.8

(−0.6) ∙ 12 − (1.4) ∙ 5 + 20
 

𝛿𝛿2 <
2.8

−7.2 − 7 + 20
 

𝛿𝛿2 <
2.8

−14.2 + 20
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𝛿𝛿2 <
2.8
5.8

 

𝛿𝛿2 < 0.483 

 

63. Derivation, value for 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 with 𝐻𝐻 = 15, 𝐿𝐿 = 1,𝐹𝐹0 = 10: 

 𝑚𝑚 ≤
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
15 − 10
15 − 1

 

𝑚𝑚 ≤
5

14
 

𝑚𝑚 ≤ 0.357 

 

64. Derivation ambiguity value for player 2 with 𝐻𝐻 = 15, 𝐿𝐿 = 1,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜: 

𝛿𝛿2 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

𝛿𝛿2 <
2 ∙ 0.2 ∙ (15 − 1)

(2 ∙ 0.2 − 1) ∙ 15 − (2 ∙ 0.2 + 1) ∙ 1 + 2 ∙ 10
 

𝛿𝛿2 <
0.4 ∙ 14

(0.4 − 1) ∙ 15 − (0.4 + 1) ∙ 1 + 20
 

𝛿𝛿2 <
5.6

−0.6 ∙ 15 − 1.4 ∙ 1 + 20
 

𝛿𝛿2 <
5.6

−9 − 1.4 + 20
 

𝛿𝛿2 <
5.6

−10.4 + 20
 

𝛿𝛿2 <
5.6
9.6

 

𝛿𝛿2 < 0.583 

 

65. Derivation, value for 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 with 𝐻𝐻 = 20, 𝐿𝐿 = 5,𝐹𝐹0 = 10: 

𝑚𝑚 ≤
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
20 − 10
20 − 5
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𝑚𝑚 ≤
10
15

 

𝑚𝑚 ≤
2
3

 

𝑚𝑚 ≤ 0.667 

 

66. Derivation ambiguity value for player 2 with 𝐻𝐻 = 20, 𝐿𝐿 = 5,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜: 

𝛿𝛿2 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
 

𝛿𝛿2 <
2 ∙ 0.2 ∙ (20 − 5)

(2 ∙ 0.2 − 1) ∙ 20 − (2 ∙ 0.2 + 1) ∙ 5 + 2 ∙ 10
 

𝛿𝛿2 <
0.4 ∙ 15

(0.4 − 1) ∙ 20 − (0.4 + 1) ∙ 5 + 20
 

𝛿𝛿2 <
6

(−0.6) ∙ 20 − (1.4) ∙ 5 + 20
 

𝛿𝛿2 <
6

−12 − 7 + 20
 

𝛿𝛿2 <
6

−19 + 20
 

𝛿𝛿2 <
6
1

 

𝛿𝛿2 < 6 

 

67. Derivation, value for 𝑚𝑚 ≤ 𝐻𝐻−𝐹𝐹0
𝐻𝐻−𝐿𝐿

 with 𝐻𝐻 = 15, 𝐿𝐿 = 7,𝐹𝐹0 = 10: 

𝑚𝑚 ≤
𝐻𝐻 − 𝐹𝐹0
𝐻𝐻 − 𝐿𝐿

 

𝑚𝑚 ≤
15 − 10
15 − 7

 

𝑚𝑚 ≤
5
8

 

𝑚𝑚 ≤ 0.625 

 

68. Derivation ambiguity value for player 2 with 𝐻𝐻 = 15, 𝐿𝐿 = 7,𝐹𝐹0 = 10 and 𝑚𝑚 = 0.2 

to induce 𝑠𝑠2 = 𝑙𝑙𝑓𝑓𝑛𝑛𝑙𝑙 ≻ 𝑠𝑠2 = 𝑠𝑠ℎ𝑓𝑓𝑓𝑓𝑜𝑜: 

𝛿𝛿2 <
2𝑚𝑚(𝐻𝐻 − 𝐿𝐿)

(2𝑚𝑚 − 1)𝐻𝐻 − (2𝑚𝑚 + 1)𝐿𝐿 + 2𝐹𝐹0
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𝛿𝛿2 <
2 ∙ 0.2 ∙ (15 − 7)

(2 ∙ 0.2 − 1) ∙ 15 − (2 ∙ 0.2 + 1) ∙ 7 + 2 ∙ 10
 

𝛿𝛿2 <
0.4 ∙ 8

(0.4 − 1) ∙ 15 − (0.4 + 1) ∙ 7 + 20
 

𝛿𝛿2 <
3.2

−0.6 ∙ 15 − 1.4 ∙ 7 + 20
 

𝛿𝛿2 <
3.2

−9 − 9.8 + 20
 

𝛿𝛿2 <
3.2

−18.8 + 20
 

𝛿𝛿2 <
3.2
1.2

 

𝛿𝛿2 < 2.667 

 

69. Condition for 𝑚𝑚 to induce (2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 > 0: 

(2𝑚𝑚 + 1)𝐻𝐻 − (2𝑚𝑚 − 1)𝐿𝐿 − 2𝐹𝐹0 > 0 

2𝑚𝑚𝐻𝐻 + 𝐻𝐻 − 2𝑚𝑚𝐿𝐿 + 𝐿𝐿 > 2𝐹𝐹0 

2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) + 𝐻𝐻 + 𝐿𝐿 > 2𝐹𝐹0 

2𝑚𝑚(𝐻𝐻 − 𝐿𝐿) > 2𝐹𝐹0 − 𝐻𝐻 − 𝐿𝐿 

2𝑚𝑚 >
2𝐹𝐹0 − 𝐻𝐻 − 𝐿𝐿

(𝐻𝐻 − 𝐿𝐿)  

𝑚𝑚 >
2𝐹𝐹0 − 𝐻𝐻 − 𝐿𝐿

2(𝐻𝐻 − 𝐿𝐿)  

 

70. Numerical examples for 𝑚𝑚 > 2𝐹𝐹0−𝐻𝐻−𝐿𝐿
2(𝐻𝐻−𝐿𝐿)  in order to examine its properties: 

First of all we must have 𝐻𝐻 > 𝐹𝐹0 > 𝐿𝐿 > 0. 

(a.) 𝐻𝐻 = 15 > 𝐹𝐹0 = 10 > 𝐿𝐿 = 5 > 0 then 𝑚𝑚 > 2𝐹𝐹0−𝐻𝐻−𝐿𝐿
2(𝐻𝐻−𝐿𝐿)  becomes: 

𝑚𝑚 >
2 ∙ 10 − 15 − 5

2(15 − 5)  

𝑚𝑚 >
20 − 20

2 ∙ 10
 

𝑚𝑚 >
0

20
 

𝑚𝑚 > 0 

This is always satisfied. 
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(b.) 𝐻𝐻 = 3 > 𝐹𝐹0 = 2 > 𝐿𝐿 = 1 > 0 then 𝑚𝑚 > 2𝐹𝐹0−𝐻𝐻−𝐿𝐿
2(𝐻𝐻−𝐿𝐿)  becomes: 

𝑚𝑚 >
2 ∙ 2 − 3 − 1

2(3 − 1)  

𝑚𝑚 >
4 − 4
2 ∙ 2

 

𝑚𝑚 >
0
4

 

𝑚𝑚 > 0 

This is always satisfied. 

(c.) 𝐻𝐻 = 10 > 𝐹𝐹0 = 9 > 𝐿𝐿 = 8 > 0 then 𝑚𝑚 > 2𝐹𝐹0−𝐻𝐻−𝐿𝐿
2(𝐻𝐻−𝐿𝐿)  becomes: 

𝑚𝑚 >
2 ∙ 9 − 10 − 8

2(10 − 8)  

𝑚𝑚 >
18 − 18

2 ∙ 2
 

𝑚𝑚 >
0
4

 

𝑚𝑚 > 0 

This is always satisfied. 

(d.) 𝐻𝐻 = 10 > 𝐹𝐹0 = 2 > 𝐿𝐿 = 1 > 0 then 𝑚𝑚 > 2𝐹𝐹0−𝐻𝐻−𝐿𝐿
2(𝐻𝐻−𝐿𝐿)  becomes: 

𝑚𝑚 >
2 ∙ 2 − 10 − 1

2(10 − 1)  

𝑚𝑚 >
4 − 11

2 ∙ 9
 

𝑚𝑚 >
−7
18

 

𝑚𝑚 > −
7

18
 

Since 𝑚𝑚 ∈ [0,1], 𝑚𝑚 > − 7
18

 is always satisfied. 

(e.) 𝐻𝐻 = 15 > 𝐹𝐹0 = 14 > 𝐿𝐿 = 1 > 0 then 𝑚𝑚 > 2𝐹𝐹0−𝐻𝐻−𝐿𝐿
2(𝐻𝐻−𝐿𝐿)  becomes: 

𝑚𝑚 >
2 ∙ 14 − 15 − 1

2(15 − 1)  

𝑚𝑚 >
28 − 16

2 ∙ 14
 

𝑚𝑚 >
12
28

 

𝑚𝑚 > 0.43 
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So when 𝐻𝐻 and 𝐹𝐹0 are high and close to each other and 𝐿𝐿 is low and far away from 𝐻𝐻 

and 𝐹𝐹0, simultaneously, then the upside (payoff if investor 1 is right), 𝐹𝐹0 − 𝐿𝐿 = 14 −

1 = 13 is high and the downside (payoff if investor 1 is wrong), 𝐹𝐹0 − 𝐻𝐻 = 14 −

15 = −1 is negative but small. Thus the upside is high and downside is low 

simultaneously. This may lead to the flipping of the inequality sign in 𝛿𝛿1 <
2𝑎𝑎(𝐻𝐻−𝐿𝐿)

(2𝑎𝑎+1)𝐻𝐻−(2𝑎𝑎−1)𝐿𝐿−2𝐹𝐹0
 from the upper bound (<) to the lower bound (>) only when 𝑚𝑚 <

0.43. So if the increment in investor 1’s belief in 𝜔𝜔𝐿𝐿 materializing is smaller than 

0.43, the increment is too small and thus ambiguity is needed. However, since the 

upside is positive and high, and the downside is negative but low, simultaneously, 

every value of ambiguity suffices. 

 The way of analysis and pattern that is found will be the same for investor 2. 

So when the upside is high and the downside is small, simultaneously, then the 

inequality sign may flip in 𝛿𝛿2 < 2𝑎𝑎(𝐻𝐻−𝐿𝐿)
(2𝑎𝑎−1)𝐻𝐻−(2𝑎𝑎+1)𝐿𝐿+2𝐹𝐹0

. Since investor 2 takes the 

opposite position of investor 1, the upside and downside for investor 2 are opposite to 

the upside and downside for investor 1. That’s the difference, however the pattern that 

arises will be the same. 
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