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Abstract

Understanding the relation between idiosyncratic risk and returns has been a highly debated subject

among researchers in the past. Ang et al. (2006, 2009), among others, find evidence in support of the

Idiosyncratic Risk Puzzle which postulates that idiosyncratic risk is negatively correlated with equity

returns. This paper provides evidence supporting the negative relation between idiosyncratic risk

and returns found in Ang et al. (2009) using the CAPM and three factor Fama French model within a

similar Fama-MacBeth framework. However, when we sort the idiosyncratic risk values into

quantiles, we do not observe a monotonous relation over the spectrum of idiosyncratic risk values.

More specifically, we find a large spike in returns for the smallest 20% quantile in terms of size and

for the lowest 20% in terms of idiosyncratic risk values on both an equally-weighted and

value-weighted basis for the double-sort portfolio. And so, while we find evidence to support the

findings of Ang et al. (2009) that there is a negative relation between idiosyncratic risk and returns,

we believe that Fama-MacBeth regressions do not serve as a comprehensive analysis of the relation

between idiosyncratic risk and returns. Ultimately, we find evidence that the negative relation

identified by Ang et al. (2009) might simply be limited to a select few small-sized companies with

low idiosyncratic risk values and relatively high returns. In addition, we have shown that similar

conclusions are drawn when performing this exercise using a PCA approach, rarely applied to

idiosyncratic risk in previous literature.
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1 Introduction

The total risk of an asset is comprised of two parts: systematic risk and idiosyncratic risk. Idiosyncratic

risk is defined as the risk attributable to a specific asset, and so, is independent of systematic risk, the

uncertainty inherent to the market. Classical economic theory leads us to expect high systematic risks

to be coupled with high returns and low systematic risks to be coupled with low returns. However,

recent papers such as those of Ang et al. (2006) and Ang et al. (2009) encounter a negative relation

between idiosyncratic risk and stock returns where theory suggests that there should be no premium at

all. These unexpected findings has led to what is known in the literature as the idiosyncratic risk puzzle.

In theory, idiosyncratic risk can be substantially mitigated or eliminated from a portfolio through

hedging and adequate diversification as first shown by the works of Markowitz (1952) and Sharpe

(1963). Our initial expectation may well be that idiosyncratic risk should not be a great concern for

investors due to the fact that idiosyncratic risk is essentially diversifiable and, therefore, negligible.

However, in practice, this premise does not always hold, for several reasons. Firstly, investors might

not hold diversified portfolios due to, for example, stock liquidity constraints or even by choice.

Moreover, an investor with relatively limited means in terms of wealth might be concerned by an

increase in idiosyncratic risk as this will, in general, increase the number of securities an investor must

hold to achieve full diversification as well as increase transaction costs. Lastly, the total profits of

arbitrageurs and option traders are dependent on total risk, that is, systematic risk plus idiosyncratic

risk, meaning that these traders will be interested in the building blocks that drive these options’

values. Clearly, idiosyncratic risk is a factor which investors monitor - all the more reason that it is

defined and estimated correctly.

The bulk of papers within the literature utilise asset pricing models, such as the Fama-French three

factor model. These models have as an advantage that the results are more easily interpreted as its

constituents are clearly defined market factors. Few papers have approached the idiosyncratic risk

puzzle from a statistical angle where, although the results may be less precisely interpretable, this

offers a profound manner in which to debunk the common misconception that stocks wielding lower

idiosyncratic risk are expected to yield higher returns than stocks with higher idiosyncratic risk. The

idea behind this thesis is to use statistical models as well as the commonly used Fama-French models

in order to isolate idiosyncratic from systematic risk. Once we have isolated idiosyncratic risk, we

search for a relation between idiosyncratic risk and returns. Finally, we try to identify whether this

relation holds true over the entire sample of whether we attribute this to a select sub-sample.

In order to help us achieve our goal, we have identified four important steps. Firstly, we look to

replicate the results found by Ang et al. (2006) using U.S. daily and monthly data. This is done by first

calculating monthly idiosyncratic risk using daily data and the Fama-French three factor model. Next,

these monthly idiosyncratic risk values are regressed over the cross-section of stocks in attempt to

mimic the negative relation between idiosyncratic risk and returns found by Ang et al. (2006).
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Secondly, we test whether this relation is positive when adopting a statistical approach, such as is found

by Spiegel and Wang (2006) and Fu (2009) by applying PCA. The use of principal components allows

us to approach the theoretical definition of systematic risk and, in turn, idiosyncratic risk. The aim is to

demonstrate that the relation between idiosyncratic risk and returns is not always found to be negative,

thereby reducing the robustness of the results found by Ang et al. (2009).

Thirdly, we take differences between the Fama-French and PCA residual values, and find the

idiosyncratic risk using these differences. We have established that using PCA to find idiosyncratic

risk allows us to approach the theoretical definition of idiosyncratic risk. By subtracting the residuals

found using the Fama-French three factor model, we are left with the portion of which is considered

idiosyncratic through PCA analysis, but not through asset-pricing models such as that of Fama and

French.

Fourthly, we hope to gain further insights into these differences by using single- and double-sorted

portfolios. We first sort company returns according to the idiosyncratic values found using e.g. the

Fama-French three factor model. Relative to the Fama-MacBeth regression, this provides an alternative

insight as to the relation between idiosyncratic risk and returns. We can then go one step further and

perform a double sort by sorting on market capitalisation and idiosyncratic risk. This allows us to

analyse how returns vary for similar-sized firms with differing idiosyncratic risk values. The added

value of a double-sort is the ability to capture changes in the variation of idiosyncratic risk in the second

dimension for each quantile according to size in the first dimension. For both single and double sort

portfolios, we will perform an analysis on both an equally- and value-weighted basis in order to further

account for the fact that several small cap firms might produce extreme return values relatively speaking

as compared to larger firms. If this is indeed the case, we expect to see a noticeable discrepancy between

the two sets of results.

We find evidence to support the findings of Ang et al. (2009) and observe a similar negative relation

between idiosyncratic risk and returns using Fama-Macbeth regressions. The question this paper seeks

to answer is whether this negative relation is inherent for all company returns across the dataset, or

whether there is a smaller sub-set of firms that convey this negative relation. We believe to have found

evidence of the latter shown in several steps including single- and double sort portfolios based on

market capitalisation and idiosyncratic risk using an equally- and value-weighted approach for the

Fama-French three factor model and a PCA model.

2 Literature Review

Idiosyncratic risk is the standard deviation of the residual returns beyond what investors expected

given that period’s systematic return. While this may provide us with a clear definition of idiosyncratic

risk, the manner in which to distinguish systematic risk from idiosyncratic risk is not well defined in
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the literature. This entails that the definition of idiosyncratic risk is not tied down to one specific model,

but can subjectively be described by a variety of models.

Merton (1987) shows that in the presence of market frictions where investors have limited access to

information, investors in equity with high idiosyncratic risk expect to be compensated for holding

imperfectly diversified portfolios suggesting a positive relation between idiosyncratic risk and stock

returns. Jones and Rhodes-Kropf (2003) show that investors demand a premium for holding stocks

characterised by high, non-diversifiable, idiosyncratic risk. Behavioural studies such as that of

Barberis and Huang (2001) offer a different type of asset pricing model based on prospect theory,

where investors are loss averse over the fluctuations of individual stocks that they own. Similarly, they

find that stocks which have higher idiosyncratic risk should earn higher expected returns.

Lehmann (1990) studies the significance of residual risk using a statistical approach and finds a

statistically significant positive coefficient on idiosyncratic risk over his full sample using U.S. monthly

data. Lehmann (1990) postulates that the residuals from the single index market model contain factors

which are associated with non-zero risk premia and offers two plausible explanation for such: (i)

non-linearity of the residual risk effect and (ii) the inadequacy of the statistical procedures employed

to measure it. Malkiel and Xu (2002) employ the Capital Asset Pricing Model (CAPM) as a basic, first

model with which to estimate systematic risk and, in turn, idiosyncratic risk. They obtain estimates for

idiosyncratic risk based on monthly data and document a significant positive relation between

idiosyncratic risk and average returns. Lehmann (1990) and Malkiel and Xu (2002) both crucially

identify that the market model residual variances based should partially reflect exposure to any

omitted sources of systematic risk. While we will briefly investigate idiosyncratic risk values based on

the CAPM, this paper builds on the framework set out by Ang et al. (2009) which revolves around the

three factor Fama-French model. Crucially, it should be noted that Lehamann (1990) utilises monthly

data to produce idiosyncratic risk values where as we will use daily values within each month to

produce monthly idiosyncratic risk values.

Several papers which analyse the U.S. market such as that of and Wang (2006) control for the size and

value factors of Fama and French (1993) under the conjecture that market makers employ vehicles to

hedge these established risk factors by including them in their investment models. As this paper will

also focus on the U.S. market, we will adopt the approach as employed by, among others, Spiegel and

Wang (2006). We will use the standard CAPM as well as the Fama-French three factor model to represent

the returns of the market.

Ang et al. (2006) separate systematic risk from idiosyncratic risk using the Fama-French three factor

model based on U.S. daily data, and their paper serves as one of the cornerstones that our research

will build on. The authors are some of the first to scrutinise idiosyncratic risk over the cross section of

stock returns as opposed to the aggregate time series. Using the cross section of stock returns allows

the authors to control for an array of cross sectional effects. They measure a negative relation between

idiosyncratic risk and stock returns over the cross-section. They find that this phenomenon cannot be
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explained by the size and value factors of Fama and French (1993), the momentum effect of Jegadeesh

and Titman (1993), or the effect of liquidity risk as defined by Pástor and Stambaugh (2003).

This finding could, of course, simply be a classic case of data snooping, as described by Lo and

MacKinlay (1990), however, the results found by Ang et al. (2006) have been independently confirmed

by Brown and Ferreira (2003), Jiang, Xu, and Yao (2005), Huang et al. (2006), Zhang (2006), and Bali

and Cakici (2008) for the U.S. market.

The research done on the U.S. market by Ang et al. (2006) is extended to a broad sample of international

markets by the same authors in Ang et al. (2009) in order to verify the same pattern observed in the

U.S. cross section. They find that the negative relation between idiosyncratic risk and average returns

is statistically significant for each of the largest (G7) equity markets (Canada, France, Germany, Italy,

Japan, the United States, and the United Kingdom). Having shown the negative relation to be a global

phenomenon, it is hard to justify the findings of Ang et al. (2006) as a small-sample problem.

Other, more recent, papers such as that of Spiegel and Wang (2006) employ an exponential GARCH

model, a dynamic model which captures the time variation of stock variance. Using U.S. monthly data,

they obtain a positive relation between idiosyncratic risk and returns but concede that their paper leaves

open the question as to why Ang et al. (2005) contrasting results in that idiosyncratic risk is negatively

correlated with returns in the daily data. This paper also does not investigate why the results of daily

versus monthly datasets differ, but instead adopts papers written by Ang et al. (2006, 2009) as its

theoretical and methodological framework by using daily data.

Malagon et al. (2013) adopt a different approach when analysing the idiosyncratic risk puzzle. The

authors investigate whether investor-specific characteristics such as investment horizon offers

differing conclusions as to the relation between idiosyncratic risk and returns. They employ Wavelet

Multiresolution Analysis (WMRA) which allows for the decomposition of a time series into different

time horizons, called time scales, each of which correspond to a particular frequency. In terms of the

relation between idiosyncratic risk and returns, Malagon et al. (2013) find a positive one for long-run

investors and a negative one for short-run investors, indicating that the puzzle disappears as the

wavelet scale increases (long-term horizons). While interesting, this paper will not analyse different

time horizons, but aims to retain Ang et al. (2006, 2009) as the foundation of its framework. More

specifically, we calculate our idiosyncratic risk values on a monthly basis and, accordingly, sort our

portfolios on a monthly basis only.

Chen and Petkova (2012) look to build on the conclusion made by Ang et al. (2009) that a missing

risk factor is the most likely explanation for the Idiosyncratic Risk Puzzle. They postulate that when

the two components of market variance, one related to stock variances and the other related to stock

correlations, are disentangled, evidence shows that the correlation component of total market variance

not priced in the cross section of returns, while the variance component is priced. This paper does

not seek to find a missing risk factor, but does hope to provide further insight as to which levels of
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idiosyncratic risk demonstrate the Idiosyncratic Risk Puzzle, if not all by analysing different portfolios

containing increasing levels of idiosyncratic risk.

In the literature up until now, research which has focused on U.S. data suggests that the correlation

between idiosyncratic risk and stocks is ambiguous: the correlation is found to range between positive

and negative for different data sets scrutinised under varying asset pricing and statistical models. Most

researchers use monthly data and utilise either the classic CAPM or Fama-French three factor model.

Ang et al. (2006) and Ang et al. (2009) are some of the first set of researchers to use U.S. daily data, for

which they observe a negative relation. The reason past papers often choose to employ asset pricing

models such as the CAPM and the three factor model is because these are far easier to interpret in

economical terms as compared to a more statistical approach, such as Principal Component Analysis

(PCA).

3 Data

The data set used in this paper mimics that of Ang et al. (2006) and Ang et al. (2009) for the U.S.

market. The sample ranges from July 1st, 1963 to December 31st, 2015 and includes the NASDAQ,

NYSE MKT (previously: AMEX) and NYSE indices. Stocks from the NASDAQ exchange are available

from December 14th, 1972 while the data collected from the NYSE and NYSE MKT indices is available

over the full range of the sample: July 1st, 1963 until December 31st, 2015.

The returns of each stock are collected using the CRSP/WRDS database on a daily basis. Specifically,

returns of shares with share codes 10 and 11 are downloaded representing Ordinary Common Shares

which have not and/or need not be further identified. These share codes are in accordance with data

used by Fama and French (1993) as presented on their website. In addition, all prices under $1 and

above $1000 are discarded from the data collection process. The returns are adjusted for split events

which include stock splits, stock dividends, and other distributions with price factors such as spin-offs,

stock distributions, and rights. The raw data is organised and structured using the statistical software

package, Matlab, into a usable data set for our analysis. The structuring process renders 19,103 unique

companies over the full time period, many of which, no longer exist at the present day. The number

of stocks is depicted by Figure 1 and shows a gradual increase in the number of stocks across the three

indices until its peak on October 28th, 1997: a lagged response corresponding to a more than 7% drop in

the Dow Jones on October 27th, 1997. We observe several sharp troughs, noticeably between 1987 and

2000. These are predominately due to U.S. holidays such as Thanksgiving in November and Christmas

in December. Exceptions are, for example, the blizzard of 1996 which swept over the east coast and

temporarily closed stock exchanges.

The extracted returns of a single stock over time is defined as the percentage change in price from one

day or month to the next. Excess Returns (R) are defined as those returns above the risk-free rate at a
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Figure 1: Number of Stocks over Time

Shows the development of the number of stocks across the NASDAQ, NYSE MKT, and NYSE indices over the

period July 1st, 1963 until December 31st, 2015.

certain point in time. The 1-month Treasury bill rate from Ibbotson Associates is used as a proxy for

the risk-free rate, as proposed by Fama and French (1993). For the rest of this paper when we mention

returns of any sort, we are referring to excess returns, be it excess stock returns or excess return on the

market, unless explicitly specified. This is in accordance with Ang et al. (2006) and Ang et al. (2009).

The first three Fama-French factors Excess Market Return (EMR), Small Minus Big (SMB), and High

Minus Low (HML) can be found on the Dartmouth University website and were obtained on a daily

as well as on a monthly basis over the sample period July 1st, 1963 until December 31st, 2015. EMR is

computed by subtracting the risk-free rate from the market return. SMB, or the size factor, is computed

by subtracting the excess return of large companies, sorted by market capitalisation, from the excess

returns of small companies. HML, or the value factor, is computed by subtracting the excess returns of

companies with a high book-to-market ratio from the excess returns of companies with a low book-to-

market ratio.

4 Methodology

The methodology set out in this paper is comprised of two main parts: The first part elaborates on the

models used, both asset pricing as well as statistical models, and culminates with the calculation of

idiosyncratic risk which uses the results of the aforementioned models to do so. Once idiosyncratic risk

has been calculated, the second part of the methodology concerns itself with regressing idiosyncratic

6



risk, testing the resulting coefficients, and employing single- and double sorts in order to further analyse

the relation between market characteristics and idiosyncratic risk.

An important note regarding these two parts pertains to the use of notation for time. The first part

uses daily observations, within each month, to calculate monthly idiosyncratic risk values. The second

part regresses monthly returns on monthly explanatory values, including the monthly idiosyncratic

risk values found in part one. In order to avoid any confusion caused by the notation of time, we use τ

to denote daily observations, used throughout the entire methodology section, and t to denote monthly

observations, predominately used in the second part of this section.

4.1 Part One: Calculating Idiosyncratic Risk

4.1.1 Asset Pricing Models

The papers written by Ang et al. (2006) and Ang et al. (2009) form the foundation of the methodological

framework. These papers compute the idiosyncratic risk relative to the Fama-French three factor model

which includes size and book-to-market risk. We define the basis of our asset pricing model as follows:

ri,τ = αi + β′i fτ + εi,τ , (1)

where ri,τ denotes the return of stock i at time τ, and fτ represents the vector of k factors. In the case of

the Capital Asset Pricing Model (CAPM), k is equal to one and EMRτ , the excess return on the market,

is the only model factor. The Fama-French three factor model extends the CAPM by including a size

and a value factor, SMBτ and HMLτ , respectively. Equation (1) provides us with the resulting residual

matrix εi,τ , which is used to calculate idiosyncratic risk.

For this paper, we follow the example set by Ang et al. (2006) and Ang et al. (2009) and adopt the

Fama-French three factor model as our main asset pricing model. In addition, we conduct the same

preliminary calculations using the CAPM. This allows us to compare our results with those of past

papers which also use the CAPM as well as to compare our results with the three factor model.

4.1.2 Statistical Models

Our statistical model uses Principal Component Analysis to describe a pre-defined proportion of the

total variability in the data using K linear combinations of the original variables. More specifically, we

analyse the daily idiosyncratic risk over the period of one month over the cross section of companies.

For each month, we form an Nt x Nt correlation matrix. Nt new factors are then constructed from

which Kt factors are selected such that the pre-defined threshold is attained and the resulting Kt factors

explain 98% of the total variation in the data. Note here that we zoom-in on one particular month, and

we regress over the days τ in that month and over the cross-section of active stocks Nt during a specific
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month t.

The factors are constructed in such that they are a linear combination of the original Nt variables and

orthogonal to one another while simultaneously explaining the maximum amount of variance across

the data set. These factors are independent of one another by design and each explains a certain

unique proportion of the variation in the data. The factors are then used to make an Nt by Nt matrix of

factor loadings where each column represents a factor and each row one of the original variables. The

intersection of each row (asset) and column (factor) represents the loading, or sensitivity, of that asset

on a particular factor.

The eigenvalue for a given factor measures the variance in all the variables which are accounted for

by that factor and is computed as the sum of its squared factor loadings for all the variables in that

column. The collection of eigenvalue forms the the 1 x Nt vector of eigenvalues, and the proportion

of variance explained by a single factor is computed as the ratio of its eigenvalue to the sum of all

eigenvalues. These proportions are ordered from largest to smallest and selected, one-by-one, until Kt

principal components explain at least 98% of the variation in the data for a particular month t. For each

month t, we regress the stock returns ri,τ on the Kt monthly principal components FK,τ where K denotes

the Kth component.

ri,τ = αi + βK FK,τ + εi,τ (2)

In this manner, Equation (2) allows us to regress each time-series of daily stock returns on the selected K

monthly principal components which again leaves us with the residual matrix εi,τ . Note that Equation

(2) is regressed separately for each month, t.

4.2 Calculating Idiosyncratic Risk

In order to calculate idiosyncratic risk, the resulting residual matrix εi,τ is transformed in accordance

with Ang et al. (2009). That is, the idiosyncratic risk is found by taking the standard deviation of the

residuals, for each stock, over the past month.

σi,t =
√

Var(εi,t,τ) (3)

The values σi,t are placed into a matrix comprised of N vectors of monthly idiosyncratic risk values for

each stock i. To be clear, Equation (3) is regressed separately for each month, t, over all trading days τ

and each stock i during that month.
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4.3 Part Two: Regressing Idiosyncratic Risk

4.4 Fama-MacBeth

The relation between the idiosyncratic risk values and monthly stock returns are examined using a

two-stage Fama-MacBeth regression. In the first stage, for each month, the cross-sectional firm returns

are regressed onto idiosyncratic risk, factor loadings, and other control variables. An advantage of

this method is that the cross-sectional regressions allow for controls of multiple factor loadings and

other characteristics in a setting that retains power and has reduced noise as compared to single- and

doubled-sorted portfolios.

ri,t = αt + γσi,t−1 + λ′ββi,t + λ′zzi,t + εi,t , (4)

where t represents the current month and t− 1 represents the previous month. The coefficients αt, γ, β,

and λ′z are found using Ordinary Least Squares. σi,t−1 denotes the one month lag value of idiosyncratic

risk, known at the beginning of the current month, as used in Ang et al. (2009).

We also follow the example set by Ang et al. (2009) in that we use contemporaneous factor loadings

estimated over the current month, t. This is because a factor model explains high average returns over a

time period with contemporaneous high covariation in factor exposure over the same time period if the

factor commands a positive risk premium. Although Ang et al. (2009) obtain almost identical results

when using past factor loadings βi,t−1, they choose to mimic the regressions run by Black et al. (1972),

Fama and French (1992), and Jagannathan and Wang (1996), and so, choose to use contemporaneous

factor loadings, βi,t. Equation (4) is performed for each month t in our dataset which renders us vector

of monthly γ coefficients.

In the second stage, we test the extracted vector of monthly γ coefficients. Specifically, we examine the

sign and significance of the average value γ̄, and we apply the Student’s t-test to the vector of monthly

γ coefficients.

tscore =
γ̄√

V̂ar(γ̄)
(5)

Equation (5) gives us a Student’s t-test for the average value of gamma, γ̄. The result of this t-test

renders a positive, negative, or insignificant relation between stock returns and idiosyncratic risk.

4.5 Differences between Idiosyncratic Risk

Ang et al. (2006) find that the idiosyncratic errors of a misspecified factor model could contain influence

of missing factors. In this paper we reason that Principal Component Analysis approaches the correctly

specified model while lending itself less to economical interpretation as compared to an Asset Pricing

model such as the CAPM or the three factor Fama-French model. Next, we adopt the reasoning offered
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by Ang et al. (2006) that the negative relation between idiosyncratic risk and returns found in the

literature may be due to the misspecification of the factor models used, and in particular, due to omitted

variable bias.

In an attempt to assign a controlled and interpretable variable to this apparent misspecification of the

usual asset pricing models, we take the difference between the Fama-French residuals, found by

Equation (1), and the PCA residuals, found by Equation (2), at each point in time, τ.

δi,τ = ε3FF
i,τ − εPCA

i,τ , (6)

where the differences between each pair of daily residuals is denoted as δi,τ . We then use Equation (3)

to calculate monthly idiosyncratic risk values for these differences in residual values, denoted σδ
i,t.

Once the idiosyncratic values of these differences have been found, we employ Equation (4) and include

a combination of market factors such as the three original Fama-French factors. In a similar fashion as

before, we then implement the second stage of the Fama-MacBeth regression, namely, to test for a

significant relation between the idiosyncratic errors and the monthly stock returns through a Student’s

t test shown by Equation (5).

4.6 Portfolio Sorts

The aim of portfolio sorting in this paper is to provide an alternative to the Fama-MacBeth in testing the

relation between returns and idiosyncratic risk. Crucially, portfolio sorting allows us to sort the cross-

section of monthly stock returns into buckets using a stock-specific characteristic such as idiosyncratic

risk. The exercise of sorting these stocks into different buckets allows us to analyse the relation between

returns and idiosyncratic risk for different levels of idiosyncratic risk as opposed to a Fama-MacBeth

regression which provides us with a coefficient describing the cross-section as a whole. Furthermore,

the exercise of double sorting allows us to first sort the cross-section of returns using one stock-specific

characteristic such as market capitalisation and second by another characteristic, such as idiosyncratic

risk. To this end, we are interested in, for example, the stability or fluctuations of portfolio returns

and alpha values across the buckets of varying idiosyncratic risk size for a particular size of market

capitalisation.

4.6.1 Single Sort

Regardless of the model used, we obtain idiosyncratic risk values using Equation (3) and create a

matrix σi,t, the idiosyncratic risk of asset i at time t. For each month t, we then sort the number of

stocks Nt into 5 quantiles based on their idiosyncratic risk values, from largest to smallest. Doing this

for each month allows us to create 5 quantiles, each representing a portfolio characterised by

idiosyncratic risk, over time. We can then average the returns of each quantile per month and regress

10



these values using, for instance, the three Fama-French model given by Equation (1). To be completely

clear, within each quantile, each month contains a set of companies with similar idiosyncratic risk

values and corresponding returns. A regression over these companies results in average returns per

month per quantile. These average returns can be regressed over time such that the resulting alpha

measures the profitability of each quantile.

4.6.2 Double Sort

The double sort extends the single sort by sub-dividing each quantile into 5 sub-groups. Here, we first

sort our portfolio of firms per month according to market capitalisation. In a similar manner, we now

sort each of the 5 existing quantiles, on a monthly basis, according to the idiosyncratic risk values, found

using a particular model e.g. 3FF or PCA, within each of the first five quantiles. As an example, for each

month we divide all stocks Nt into 5 equally-sized quantiles according to their market capitalisation .

Next, for the same month t, each quantile is sub-divided into 5 equally-sized portfolios according to the

idiosyncratic risk values found using the 3FF model. This is then done for all months t of the sample,

creating 5 x 5 portfolios over time. The average of each is then taken over the months to obtain 25

average monthly returns.

Similarly to the single-sorted portfolios, we are now interested in the average returns of these

portfolios. If the results across the second sort portfolios are relatively ’stable’ or unchanging for a

particular quantile of market capitalisation where this was not the case for the full range of market

capitalisation, we can infer the effect of idiosyncratic risk on returns to be tied to size, to a certain

extent.

4.6.3 Value-weighted Sort

A value-weighted portfolio sort allows us to gauge the variability of IR values in each quantile for each

month. The steps to obtain value-weighted portfolios are identical to those of the single- and double

equally-weighted portfolio with the exception that we calculate a weighted average for each quantile,

based on market capitalisation, instead of the arithmetic mean. In other words, take for example a

single sort value-weighted portfolio: for each month we rank all idiosyncratic risk values from largest

to smallest and divide these into, for example, 5 quantiles just as before. The difference is now that,

within each quantile, we weight the firm returns using the market capitalisation of the corresponding

firm at the beginning of the month, and we calculate the value-weighted average return of each quantile

for that month. Average returns over time and alpha values for each quantile, be it for single- or double

sorted portfolios, can then be calculated in the same manner as for equally-weighted portfolios. Here,

we expect to see discrepancies between equally- and value-weighted results when the weights (i.e.

market capitalisations) within a quantile are substantially different from those of the arithmetic mean,

1/N, N being the number of stocks in each quantile.
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5 Results

5.1 Calculating Idiosyncratic Risk

We have established that idiosyncratic risk (IR) values depend on the models used to isolate these

values. In order to provide a better understanding of how these values differ for the models we have

used in this paper, we refer to Table 1 which provides an overview of summary statistics for each set of

(IR) values corresponding to the different models used.

Table 1: Idiosyncratic Risk Summary Statistics

Mean Median Max Min Std. Dev Dispersion Skewness Kurtosis

CAPM 3.628 3.276 21.791 0.090 1.819 1.696 1.463 7.490

3FF 3.592 3.239 21.731 0.148 1.809 1.686 1.454 7.347

PCA98 0.040 0.022 5.692 0.000 0.095 0.035 27.395 1347.996

3FF - PCA98 3.588 3.237 21.731 0.148 1.808 1.685 1.451 7.315

Shows the summary statistics for the distribution of IR values for each model shown on the left.

Looking at the first two models, the CAPM and three Fama-French (3FF) model, of Table 1, we see that

adding the factors High Minus Low (HML) and Small Minus Big (SMB) offers small improvements in

terms of almost all metrics with the exception of the minimum value, which shifts slightly to the right

and away from zero. However, these differences are minor at best, and it is safe to say that, based on

Table 1, these models produce similar IR values. Their distributions are represented by the histogram

for the 3FF model shown in Panel A of Figure 2, as the distributions are, visually, identical.

If we then take the preceding two models and compare these to the PCA98 model where PCA98

represents principal component analysis using a 98% variation threshold, we see substantial

improvements in moving from a factor model to a statistical model. Our reasoning for choosing 98% is

two-fold. Firstly, while Fama-French models only use a handful of defined factors, a model based on

PCA of e.g. 4 or 5 factors would not be able to explain a high percentage of the variability in the data.

On the other hand, while increasing the number of included principal components in a regression

helps us to explain a higher percentage of the variability, we still require a small amount of defined

idiosyncratic risk in order to properly perform our analysis. We expand on this reasoning in the

following section. On average over time, the PCA98 model selects 20 principal components in order to

explain at least 98% of the variability in the cross-section of companies each month. Besides the mean

and minimum shifting dramatically towards zero, Panel B of Figure 2 shows that the skewness of the

distribution increases substantially which is also reflected by the relation of the median to the mean as

compared to the original factor models shown in Table 1. In observing the skewness we note that the
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maximum of the distribution has not reduced to the same extent as the other values of the distribution,

also portrayed by Panel B of Figure 2, caused by several large outliers. Despite several extreme values,

the kurtosis value of the distribution is high meaning many observations lie around the mean and

farther out in the tails. Based on these metrics, we conclude that PCA is successfully able to identify a

selection of common factors which substantially reduces the IR values in general and shifts these

towards zero. This leads us to suspect that when subjecting these IR values to the Fama-MacBeth

regression, that we are more likely to see a neutral (or insignificant) relation between PCA IR values

and returns than factor model IR values and returns.

The differences between 3FF and PCA residuals does not produce very different results from their

CAPM or three Fama-French factor counterparts. We attribute this to the observation that the stand-

alone IR values of the 3FF model are substantially larger than those using PCA. Subtracting the latter

from the former, in this case, does not result in drastically different IR values. For this reason, Panel A

of Figure 2 serves as a visual representation of the IR 3FF - PCA model, as the values are quite similar

to those of the IR 3FF model.

Based on preliminary analysis of the idiosyncratic risk values, we do not see significant differences

between the factor models: CAPM, 3FF and 3FF - PCA. In addition, we note that utilising the PCA

method to obtain IR values produces less extreme IR values than using factor models such as the CAPM

or three factor model, which tells us that the PCA98 model produces lower risk values in general.

Figure 2: Distributions of Idiosyncratic Risk

Panel A: IR 3FF Panel B: IR PCA (98%)

The panels above depict the distributions of idiosyncratic risk values for the (A) 3FF and (B) PCA 98% models.

5.2 Factor Analysis

In order to obtain a better understanding of the models used to calculate idiosyncratic risk, we must

scrutinise the factors that make up our two main models: the three factor Fama-French model and
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our model based on principal component analysis. Table 2 shows the correlation coefficients found

for the first ten principal components using PCA compared against well-known economic factors as

defined by Fama-French including: Excess Return on the Market (EMR), Size (SMB), Value (HML),

Robust Minus Weak (RMW), Conservative Minus Aggressive (CMA), Short-term Reversal (STR) and

Momentum (MOM). The coefficients tell us that the first principal component is adequate proxy for

the market factor, EMR, at 60%. While the coefficients describing all other relations between principal

components and market factors fluctuate slightly, they are all deemed to be quite weak at less than 31%

in terms of the absolute value for the first principal component and near-zero for all other principal

components. Table 2 tells us that we see some correlation between the market factor and first principal

component, but that the other individual principal components are not proxies for any of the other

market components shown in the table.

Table 2: Factor Correlations

Market Size Value RMW CMA STR MOM

PC 1 0.5977 0.1301 -0.2077 -0.2599 -0.2931 0.3087 -0.1183

PC 2 -0.0071 0.0266 -0.0101 -0.0175 -0.0141 -0.0026 -0.0365

PC 3 -0.0068 0.0050 0.0103 0.0096 0.0159 -0.0101 -0.0020

PC 4 -0.0079 0.0018 0.0269 -0.0068 0.0109 -0.0034 -0.0244

PC 5 -0.0165 0.0366 0.0058 -0.0236 0.0087 0.0076 -0.0066

PC 6 -0.0061 0.0064 0.0062 -0.0224 0.0035 -0.0181 -0.0176

PC 7 0.0031 0.0070 -0.0014 -0.0036 -0.0008 -0.0142 0.0034

PC 8 -0.0015 -0.0024 0.0018 -0.0051 -0.0018 0.0036 0.0003

PC 9 0.0029 -0.0009 0.0032 -0.0033 -0.0122 -0.0099 -0.0010

PC 10 -0.0026 0.0111 0.0061 -0.0072 0.0098 0.0045 -0.0085

The table above shows correlations between the time series of monthly values for principal components in the

rows and market factors as columns. The market factors from left to right are Market, Size, Value, Robust Minus

Weak (RMW), Conservative Minus Aggressive (CMA), Short-term Reversal (STR) and Momentum (MOM).

Table 3 demonstrates the average variation in the data explained by each principal component. As

expected every next principal component explains a smaller amount of variation in the data compared

to the preceding component. There are two main observations to be noted here. Firstly, the first

principal component, which we saw to be somewhat correlated to the EMR market factor, does not

explain more than 16% of the variation in the data, on average. Secondly, the first three principal

components do not explain more than 30% of the data, on average, and the first ten don’t account for

more than 65% of the variation in the data, on average. In order for a statistical model using PCA to

account for at least 98% of the data, we need to incorporate the first twenty principal components, on

average, due to the low percentage of variation explained by each principal component in this
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exercise. While the 98% threshold chosen is somewhat arbitrary, the reason it is chosen is two-fold.

Firstly, each principal component has low added value in terms variation explained so we must

incoporate several more factors as compared to the three factor Fama-French model in order to

approach a small idiosyncratic value representing the theoretical definition of idiosyncratic risk.

Secondly, a statistical model which would incorporate all principal components would essentially

ignore idiosyncratic risk and render the approach useless.

Table 3: PCA: Average Variation Explained

Variation Explained Variation Explained

PC 1 15.5% PC 12 4.1%

PC 2 7.5% PC 13 3.9%

PC 3 6.4% PC 14 3.8%

PC 4 5.9% PC 15 3.6%

PC 5 5.5% PC 16 3.5%

PC 6 5.3% PC 17 3.3%

PC 7 5.0% PC 18 3.1%

PC 8 4.8% PC 19 2.6%

PC 9 4.6% PC 20 1.8%

PC 10 4.4% PC 21 0.9%

PC 11 4.3% PC 22 0.2%

Principal Component Analysis is performed on a monthly basis to obtain a set of principal components each

month. The table above shows the average variance explained in the data for each of the first 22 principal

components over time.

In order to compare the ability of the principal components to capture the behaviour of the company

data to that of the Fama-French models, we show the average R2 and the standard deviation for both

the CAPM as well as the three factor Fama-French factor in Table 4. The 3FF model explains slightly

more variance in the data compared to the CAPM. The fact that the average R2 value of both models

are quite low does not surprise us, considering the fact that the first pincipal component, shown in

Table 3, explains less than 15% of the variance in the data, on average. Principal components are

statistically configured using company returns. It is, therefore, not surprising either that the first

principal components do a better job at explaining variance in the data than Fama-French factors.
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Table 4: Fama-French: Average R2

R2

Average Standard Deviation

CAPM 0.0654 0.0833

3FF 0.0877 0.0988

The table above shows the average R2, or variance explained, by the CAPM and three factor Fama-French model

as well as the respective standard deviations.

5.3 Fama-MacBeth Regressions

The Fama-MacBeth regressions allow us to scrutinise the relation between idiosyncratic risk and returns

given a certain Fama-French or PCA factor model. Looking at Table 5, we see that the CAPM and three

factor models seem to produce a significant negative relation given the t-scores -4.3 and -6.7 for the

CAPM and 3FF respectively, lending support to Ang et al. (2009) findings. However, using a PCA

approach, the t-score drops below the 95% threshold of 2, implying an insignificant relation between

returns and idiosyncratic risk using a statistical approach. The 3FF - PCA98 differences approach yet

again renders similar results to the CAPM and 3FF models. Table 5 shows Standard Errors and t-scores

using both the standard OLS approach as well as using Newey-West corrections. The fact that the

standard errors and t-scores only differ slightly tells us that the any intertemporal effect is minimal.

While the significance level reduces slightly for each model, our conclusions remain the same.

Table 5: Idiosyncratic Risk Coefficients

Standard OLS Newey-West Correction

γ̄ Standard Error t-score Standard Error t-score

CAPM -0.1577 0.0366 -4.3044 0.0468 -3.3726

3FF -0.3366 0.0504 -6.6832 0.0611 -5.5100

PCA98 -0.0375 0.0765 -0.4906 0.0873 -0.4301

3FF - PCA98 -0.1975 0.0503 -6.6891 0.0610 -5.5178

Shows the Fama-MacBeth coefficient describing the relation between idiosyncratic risk and returns, denoted by γ̄.

Then, for each model on the left, the standard error and t-score using standard Ordinary Least Squares

assumptions as well as when using a Newey-West estimator to correct for any possible dependency over time.

Following the observation made from Tables 1 and 5 regarding the CAPM and 3FF - PCA98 IR values,

we conclude that both models do not provide material insights beyond what the 3FF model can offer

us. From here on out, we will withhold our analysis surrounding the CAPM and 3FF - PCA98 model.
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Results are available upon request.

The conclusions drawn on our observations so far surrounding the 3FF and PCA98 models differ from

one another: The 3FF model supports a negative relation between returns and idiosyncratic risk while

the PCA98 model does not imply a meaningful relation between the two. The latter finding is based on

the t-score of the PCA 98% model in Table 5 and is visually supported by Panel B of Figure 2, which

shows a large number of observations close to zero.

If the negative relation found using the 3FF model is due to, for instance, market tensions or the

inability to diversify portfolios, then we would expect a monotone relation between idiosyncratic risk

and returns for varying degrees of idiosyncratic risk. In other words, what this means is that we

should expect to see the same change in returns in terms of direction as we move from one quintile of

idiosyncratic risk value to the next throughout the entire distribution.

5.4 Single Sort Portfolios

5.4.1 Equally-weighted Portfolios

Single sort portfolios allow us to further scrutinise the relation between idiosyncratic risk and returns by

dividing the idiosyncratic risk values into quintiles and then observing their average returns as well as

their alpha values when regressed against three Fama-French factors. We administer this analysis using

the three factor Fama-French model and the 98% PCA factor model. We exclude the CAPM model (and

all other Fama-French models for that matter) from our results because this renders the same results as

those of the three factor Fama-French model.

Table 6 shows the equally-weighted average returns and alpha values for the three factor Fama-French

(3FF) and the PCA factor model (98%). Note that the the first quintile (Q1) contains the portfolio with

the largest idiosyncratic risk values and the 5th (Q5) with the smallest values. Furthermore, the last

column in Table 6 displays the results for the full portfolio, i.e. where one bucket is used instead of five

which displays the behaviour of the equally-weighted portfolio in general.

Using an equally-weighted 3FF (EW 3FF) model and looking at columns Q1 through Q5, the results

show a negative relation between idiosyncratic risk and average excess returns as the average increases

when idiosyncratic risk decreases from Q1 to Q5. The increase in average return and alpha values

seems to be somewhat constant from Q1 to Q4, however, we see a large spike in moving into Q5.

This tells us that, on average and according to the EW 3FF model, the lowest values of idiosyncratic

risk are tied to firms with the highest average excess returns. Specifically, the Q1 and Q5 portfolio

consisting of the highest and lowest idiosyncratic risk values produce annualised average excess returns

of 3.4% and 41.9% respectively and alpha values of -2.8% and 28.5% respectively. We also notice that

the negative signs tied to the alpha values of the first four quintiles signify that, on average, portfolios
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Q1 to Q4 underperform for the 3FF model while Q5, consisting of firms with the lowest IR values, tends

to outperform the market, on average, by 28.5%. The standard deviation of the average return increases

from Q1 into Q5, showing that the variation in average return values in each portfolio widens as the

idiosyncratic risk values decrease into Q5. The standard errors of the alphas on the other hand remain

relatively constant between Q1 and Q4 but still show a substantial spike from 0.07 in Q4 to 0.18 in Q5

showing a large variation in values in the 5th quintile.

Observing these values for the equally-weighted PCA98 (EW PCA98) model and comparing these to

the 3FF model, we notice no major changes in the standard deviations or standard errors of the average

returns or alpha values between the two models in general. We note that the EW PCA98 model produces

slightly larger increases in value from Q1 into Q4 as the relation in Q1 is characterised by a lower

value and increases slightly more as compared to the 3FF model, however the differences between

these models is small when using portfolios. Most importantly, the large spike in the 5th quintile still

remains, signifying, on average, a large spike in average returns for firms with low idiosyncratic values.

On average, the coefficient of the market factor, EMR, is close to one, which we would expect as our

portfolio reflects all U.S. indices since 1963 and that the coefficients should reflect the market portfolio.

We notice, however, that the sensitivity of the EMR coefficient increases into the 5th quintile implying

that companies with lower idiosyncratic risk values are more sensitive to changes in the market as a

whole. For both the EW 3FF and the EW PCA98 models we also see large spike in the SMB (Small Minus

Big) coefficient. What is apparent is that in the 5th quintile, containing the 20% lowest idiosyncratic

risk values, returns are more sensitive to the SMB factor than in other quintiles. The factor HML,

representing the spread between value and growth stocks is small, in general, but slightly positive

in general telling us that the stocks show some exposure to this factor. For the full portfolio we note

that on an equally-weighted basis, the average (excess) return is given to be 1.06% on a monthly basis

or 12.78% on a yearly basis.
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Table 6: Equally-weighted Single Sorts (20% quintiles)

Q1 Q2 Q3 Q4 Q5 Q5 - Q1 Full
EW

3F
F

Avg Return 0.2802 0.4147 0.4753 0.7340 3.4905 3.2302 1.0646

S.D. AR 3.5445 4.7291 5.9141 7.3711 10.9105 9.1133 6.0160

Alphas -0.2369 -0.2715 -0.2931 -0.1536 2.3766 2.6157 0.2736

S.E. Alpha (0.0477) (0.0482) (0.0466) (0.0675) (0.1840) (0.2158) (0.0539)

EMR 0.7623 0.9721 1.1042 1.2303 1.4078 0.6448 1.0376

S.E. EMR (0.0114) (0.0115) (0.0111) (0.0161) (0.0440) (0.0515) (0.0129)

SMB 0.1135 0.3648 0.7001 1.0664 1.9272 1.8123 0.8821

S.E. SMB (0.0159) (0.0160) (0.0155) (0.0224) (0.0611) (0.0717) (0.0179)

HML 0.3055 0.2420 0.1062 -0.1041 -0.2565 -0.5607 0.1270

S.E. HML (0.0172) (0.0173) (0.0167) (0.0242) (0.0660) (0.0774) (0.0194)

S.D. Resid 1.1683 1.1776 1.1405 1.6470 4.4908 5.2646 1.3196

EW
PC

A
98

Avg Return 0.0656 0.3021 0.4657 0.8546 3.6922 3.6954 1.0646

S.D. AR 3.7621 4.7792 5.8373 7.2234 10.9031 8.9882 6.0160

Alphas -0.4912 -0.3916 -0.2966 -0.0212 2.6237 3.1166 0.2736

S.E. Alpha (0.0603) (0.0497) (0.0476) (0.0665) (0.1788) (0.2188) (0.0539)

EMR 0.7694 0.9800 1.1060 1.2166 1.4047 0.6347 1.0376

S.E. EMR (0.0144) (0.0119) (0.0114) (0.0159) (0.0427) (0.0523) (0.0129)

SMB 0.1958 0.3764 0.6556 1.0292 1.9206 1.7245 0.8821

S.E. SMB (0.0201) (0.0165) (0.0158) (0.0221) (0.0595) (0.0728) (0.0179)

HML 0.3094 0.2567 0.1143 -0.0640 -0.3188 -0.6266 0.1270

S.E. HML (0.0216) (0.0178) (0.0171) (0.0239) (0.0642) (0.0785) (0.0194)

S.D. Resid 1.4738 1.2160 1.1654 1.6238 4.3728 5.3395 1.3196

For each model on the left, the monthly average return and alpha values for each quintile are shown. The

standard deviation and standard error are shown for each under each number, respectively. In this table, higher

quintiles represent lower idiosyncratic risk values. To the right of the five quintiles, the results are shown for the

Q5 - Q1 trading strategy and the full portfolio.

Note that for the trading strategy Q5 - Q1 the coefficients are equal to the difference between the

coefficients of Q5 and Q1 separately. Because the Q5 - Q1 trading portfolio mimics a portfolio long in

low idiosyncratic risk and short in high idiosyncratic, this is to be expected. For all regression

coefficients, the standard error has increased slightly reflecting the increased uncertainty in the

coefficients obtained.

We also see that, for the full portfolio, the SMB coefficient is still substantially higher than zero and quite

influential at 0.88. This sensitivity could be due to small cap firms with relatively high stock return
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values in the 5th quintile. As the results in Table 6 are based on equally-weighted (EW) portfolios,

it could be the case that there are several smaller firms which produce relatively high return values,

reflected by the positive size betas shown in Table 6. For this reason, we are interested in value-weighted

(VW) portfolios and how these results then differ compared to the results of their equally-weighted

counterparts. As we value-weight each bucket on a monthly basis, very different results signifies greater

variation in size within each bucket.

5.4.2 Value-weighted Portfolios

Because we know the value-weighted portfolios are less influenced by small-cap firms, we can induce

that there are several small-cap firms with high returns which skew the perceived relation between

idiosyncratic risk and returns for the equally-weighted portfolio. We show the results for the

value-weighted 3FF (VW 3FF) and PCA98 (VW PCA98) models in Table 7. Buckets Q4 ad Q5 contain

the highest 40% of the idiosyncratic risk values and produce lower average returns for the VW

portfolio compared to that of the EW portfolio. Where we see a substantial spike in average returns as

well as alpha values for Q5 of the EW portfolio, average returns and alpha values of the VW portfolio

in fact decrease slightly. The VW portfolios produce slightly higher average returns in the first three

buckets containing the highest 60% of idiosyncratic risk values compared to the EW portfolio. These

differences however are not substantial and are largely negligible. Because VW portfolios lend more

weight to larger stocks within each bucket, it does not appear that small cap firms with high returns

greatly influence our equally-weighted results for these first three buckets. Looking across the five

quintiles of the VW portfolio we see that, in general, average returns decrease as idiosyncratic risk

decreases, reflecting a slightly positive relation between the two. Furthermore, we also see that the

SMB coefficient is slightly negative in Q1, increases over the quintiles and is slightly positive in Q5

telling us that average returns are less sensitive to the SMB coefficient for value-weighted portfolios.

When comparing average returns and alpha values for the full portfolio, i.e. when we do not sort the

idiosyncratic risk values into separate buckets, we notice that the average returns and alpha values of

the VW portfolios are lower than that of the EW portfolios in Table 6. The EW 3FF portfolio, for instance,

produces an average return of 1.06% on a monthly basis or 12.78% annually while the VW 3FF portfolio

shows a monthly average return of 0.51%, or 6.08% annually. Remembering that all returns shown in

this report denote excess returns, the value-weighted average return is much more in line with what we

might expect of the historical performance of U.S. indices in the last several decades. The VW alpha

values have reduced substantially compared with the EW values, showing a near-zero alpha value of

0.01% for the VW portfolio compared to 0.27% of the EW portfolio.

In contrast to the equally-weighted portfolios, the trading strategy Q5 - Q1 of the value-weighted

portfolio does not improve portfolio performance in terms of average returns or alpha. This is to be

expected, as the spike observed in the 5th quintile of the equally-weighted portfolio is not featured for
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value-weighted results. Interestingly, the standard errors of the regression coefficients are only slightly

different to that of the 5th quintile.

Lastly, we take a look at the full portfolio where the SMB coefficient is near-zero. This is to be expected

for a value-weighted portfolio. Our results differ substantially based on the weight that is placed on

each stock. Clearly, the relation between idiosyncratic risk and returns depends on the size of the

companies in the portfolio and the method that is used to calculate average returns.

Table 7: Value-weighted Single Sorts (20% quintiles)

Q1 Q2 Q3 Q4 Q5 Q5 - Q1 Full

V
W

3F
F

Avg Return 0.6375 0.5321 0.5425 0.3714 0.2809 -0.3566 0.5064

S.D. AR 4.3506 4.2781 5.4445 5.4686 5.8745 3.9179 4.4173

Alphas 0.2255 0.0551 0.0491 -0.1234 -0.3749 -0.6004 0.0129

S.E. Alpha (0.0511) (0.0524) (0.0831) (0.1056) (0.1285) (0.1488) (0.0045)

EMR 0.9586 0.9474 1.0683 1.0390 1.1105 0.1519 0.9953

S.E. EMR (0.0122) (0.0125) (0.0199) (0.0252) (0.0307) (0.0356) (0.0011)

SMB -0.2050 -0.0909 0.1048 0.0784 0.1544 0.3594 -0.0126

S.E. SMB (0.0170) (0.0174) (0.0277) (0.0351) (0.0428) (0.0495) (0.0015)

HML -0.0435 0.0777 -0.2019 -0.1345 0.1767 0.2201 -0.0042

S.E. HML (0.0184) (0.0188) (0.0299) (0.0379) (0.0462) (0.0535) (0.0016)

S.D. Resid 1.2515 1.2831 2.0358 2.5853 3.1482 3.6442 0.1111

V
W

PC
A

98

Avg Return 0.6131 0.5947 0.5293 0.5788 0.3827 -0.2304 0.5064

S.D. AR 4.5367 4.2368 4.4730 4.9593 5.8752 2.9004 4.4173

Alphas 0.1440 0.1758 0.1285 0.0394 -0.2265 -0.3705 0.0129

S.E. Alpha (0.0416) (0.0443) (0.0753) (0.0673) (0.1061) (0.1081) (0.0045)

EMR 1.0003 0.9531 0.9228 1.0800 1.1279 0.1276 0.9953

S.E. EMR (0.0099) (0.0106) (0.0180) (0.0161) (0.0254) (0.0258) (0.0011)

SMB -0.0728 -0.2261 -0.1354 -0.0904 0.2184 0.2913 -0.0126

S.E. SMB (0.0138) (0.0147) (0.0251) (0.0224) (0.0353) (0.0360) (0.0015)

HML -0.0374 0.0011 -0.0769 0.0658 -0.0353 0.0020 -0.0042

S.E. HML (0.0149) (0.0159) (0.0271) (0.0242) (0.0381) (0.0389) (0.0016)

S.D. Resid 1.0187 1.0854 1.8449 1.6491 2.5976 2.6482 0.1111

For each model on the left, the monthly average return and alpha values for each quintile are shown. The

standard deviation and standard error are shown for each under each number, respectively. In this table, higher

quintiles represent lower idiosyncratic risk values. To the right of the five quintiles, the results are shown for the

Q5 - Q1 trading strategy and the full portfolio.
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5.4.3 Disecting Average Returns

Figure 3: 5th Quintile over Time

Panel A: EW PCA (98%)

Panel B: VW PCA (98%)

Shows the average annualised returns of the 5th quintile over time for both the EW PCA98 and VW PCA98 model

in Panel A and B, respectively.

Figure 3 shows the average returns of the 5th quintile over time: Panel A shows the average monthly

returns for the EW portfolio and Panel B shows the average monthly returns for the VW portfolio. The
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average returns per month for the EW PCA 98% portfolio in Panel A are far less stable than those of the

VW PCA 98% portfolio shown in Panel B. Take for example the month of February 2000 which falls just

before the so-called dot-com bubble of 2000 and 2002 and shows an average monthly return of 61%, or

734% annualised, over the cross section of low idiosyncratic stocks for the EW portfolio. Although still

higher than the average month, in general, the VW portfolio produces an average monthly return of

just under 12%, or 141% annualised.

However, we do see several extreme troughs (negative spikes) in years such as 1987, 2000 and 2008 for

both portfolios. The effects of the October 1987 stock market crash, for instance, are clearly visible for

both portfolios: -33% for the EW portfolio and -31% for the VW portfolio. Still, the fact that the two

portfolios do not differ much during this month is not surprising as all firms, large and small, suffered

large losses during the month of October 1987, or ”Black Monday”.

For months such as February 2000, we are interested in whether the difference in average monthly

return between the EW and VW porfolios is due to one or a set of companies with explosive excess

return values, and if these companies have small or large market caps. Figure 4 shows the cross section

of monthly returns of companies in February 2000. Note that the x-axis is shown on a logarithmic scale.

What we can see from Figure 4 is that there are several very small firms showing quite extreme monthly

average returns, both positive and negative. The visual sample lends further evidence to the idea that

several small market cap firms, exhibiting extreme average return values, heavily influence our EW

portfolio results. In particular, Figure 4 allows us to induce that that the spike seen in Q5 of Table 6 for

the EW portfolio can be attributed to small firms, with low idiosyncratic risk values and relatively high

average monthly returns.

Figure 4: 5th Quintile - February 2000: PCA (98%)

Shows the annualised return values of the 20% lowest idiosyncratic risk values of firms for the month of February

2000. The Y-axis depicts average monthly returns as a percentage, and the X-axis displays market capitalisation in

thousands of US$, shown on a logarithmic scale.
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5.5 Double Sort Portfolios

The evidence so far using single sort portfolios suggests that small firms with low idiosyncratic risk

produce relatively high returns and alpha values. In order to better access the relation between size,

idiosyncratic risk, and the effect these have on returns we perform a double sort portfolio. In doing

so, we first sort the monthly stock returns of the 3FF model into five quintiles according to size and,

second, sort each of these portfolios into 5 sub-portfolios according to the IR values obtained using the

3FF model. We then repeat this exercise for the PCA98 model. The results for the EW and VW 3FF

double sort portfolio are shown in Table 8 and Table 9, and the results for the EW and VW PCA98

double sort portfolio are shown in Table 10 and Table 11.

In analysing double sort portfolios, when we look at one quintile of the first sort, market capitalisation,

and then look across the quintiles of the second sort, idiosyncratic risk, we look at whether the alpha

values shown are stable or whether they fluctuate. If they are, for instance, stable then market

capitalisation sufficiently captures the full effect on average returns and there is no longer enough

variation in the data to sort in terms of the second criteria, idiosyncratic risk. For both models and

both weighting methods, if we look at the 5th quintile of the first sort shown by the last two rows each

Table 8, we see that the alpha values across quintiles of idiosyncratic risk remain relatively stable.

What this tells us is that for large market capitalisation firms, average returns are not substantially

influenced by different levels of idiosyncratic risk.

However, as we gradually increase market capitalisation, for both models and methods of weighting,

we that the alpha values reflect a negative relation between average returns and idiosyncratic risk.

In the most extreme case, the lowest quintile of market capitalisation, we see the same large spike in

alpha values for the 5th quintile containing the lowest 20% of idiosyncratic risk values as we saw in the

equally weighted portfolios. Clearly, the negative relation identified in previous sections is attributable

to low market capitalisation firms where this effect gradually subsides for increasingly larger category

of market capitalisation firms.

Comparing the EW and VW weighting methods for each model, there are no major differences in

terms of alphas values and standard errors. This contrasts to the single sort portfolio in that the value

weighted portfolio did not exhibit the same spike in the 5th quintile that the single sort

equally-weighted portfolio did. This makes sense as, for the single sort value-weighted portfolio, less

weight is placed on small capitalisation firms with high average returns and alpha values. The double

sort exercise provides further evidence that there are several small capitalisation firms with low

idiosyncratic risk values which provides high average returns and alpha values.
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Table 8: Equally-weighted 3FF Double Sort: (i) Size and (ii) Idiosyncratic Risk

Idiosyncratic Risk

Q1 = High Q2 Q3 Q4 Q5 = Low Q5 - Q1

M
ar

ke
tC

ap
ta

lis
at

io
n

Q1 = Low
-1.1893 -0.9940 -0.2870 0.9247 7.5551 8.7444

(0.0929) (0.1147) (0.1398) (0.1769) (0.3541) (0.3542)

Q2
-0.8321 -0.7941 -0.5065 0.2527 2.2543 3.0864

(0.0649) (0.0795) (0.0851) (0.1051) (0.2071) (0.2379)

Q3
-0.4493 -0.3666 -0.0741 0.2492 0.9402 1.3895

(0.0613) (0.0669) (0.0695) (0.0714) (0.1663) (0.2031)

Q4
-0.2884 -0.1596 0.0110 0.2641 0.2794 0.5678

(0.0593) (0.0632) (0.0591) (0.0669) (0.1329) (0.1687)

Q5 = High
-0.1085 0.0029 0.0801 0.1359 -0.1059 0.0026

(0.0567) (0.0542) (0.0505) (0.0542) (0.1253) (0.1650)

Shows the EW 3FF model sorted for (i) size and (ii) idiosyncratic risk, split into 5x5 quintiles. For each quintile,

the top value denotes the alpha of the portfolio and the value below denotes the standard error of the same. The

last column on the right depicts the Q5 - Q1 trading strategy.

Table 9: Value-weighted 3FF Double Sort: (i) Size and (ii) Idiosyncratic Risk

Idiosyncratic Risk

Q1 = High Q2 Q3 Q4 Q5 = Low Q5 - Q1

M
ar

ke
tC

ap
ta

lis
at

io
n

Q1 = Low
-1.1729 -0.9333 -0.1927 0.9588 6.6093 7.7822

(0.0912) (0.1122) (0.1346) (0.1749) (0.3566) (0.3641)

Q2
-0.8172 -0.7435 -0.4367 0.2835 2.1566 2.9738

(0.0652) (0.0800) (0.0865) (0.1051) (0.2066) (0.2391)

Q3
-0.4292 -0.3165 -0.0404 0.2876 0.8861 1.3153

(0.0615) (0.0669) (0.0705) (0.0725) (0.1651) (0.2017)

Q4
-0.2780 -0.1315 0.0468 0.2875 0.2156 0.4936

(0.0594) (0.0640) (0.0605) (0.0681) (0.1358) (0.1705)

Q5 = High
0.0869 0.0656 0.1048 0.0851 -0.4247 -0.5116

(0.0505) (0.0534) (0.0487) (0.0642) (0.1437) (0.1789)

Shows the VW 3FF model sorted for (i) size and (ii) idiosyncratic risk, split into 5x5 quintiles. For each quintile,

the top value denotes the alpha of the portfolio and the value below denotes the standard error of the same. The

last column on the right depicts the Q5 - Q1 trading strategy.
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Table 10: Equally-weighted PCA (98%) Double Sort: (i) Size and (ii) Idiosyncratic Risk

Idiosyncratic Risk

Q1 = High Q2 Q3 Q4 Q5 = Low Q5 - Q1

M
ar

ke
tC

ap
ta

lis
at

io
n

Q1 = Low
-1.2311 -0.9922 -0.2781 1.0189 7.4903 8.7214

(0.0994) (0.1201) (0.1427) (0.1750) (0.3507) (0.3553)

Q2
-1.0015 -0.8384 -0.4974 0.2218 2.4854 3.4869

(0.0768) (0.0755) (0.0850) (0.1005) (0.2081) (0.2454)

Q3
-0.5983 -0.4073 -0.1889 0.1790 1.3159 1.9142

(0.0689) (0.0645) (0.0653) (0.0788) (0.1630) (0.2061)

Q4
-0.4092 -0.2554 -0.0246 0.2114 0.5857 0.9949

(0.0671) (0.0647) (0.0574) (0.0638) (0.1398) (0.1835)

Q5 = High
-0.2355 -0.1182 -0.0048 0.1345 0.2303 0.4658

(0.0617) (0.0562) (0.0495) (0.0532) (0.1280) (0.1716)

Shows the EW PCA98 model sorted for (i) size and (ii) idiosyncratic risk, split into 5x5 quintiles. For each

quintile, the top value denotes the alpha of the portfolio and the value below denotes the standard error of the

same. The last column on the right depicts the Q5 - Q1 trading strategy.

Table 11: Value-weighted PCA (98%) Double Sort: (i) Size and (ii) Idiosyncratic Risk

Idiosyncratic Risk

Q1 = High Q2 Q3 Q4 Q5 = Low Q5 - Q1

M
ar

ke
tC

ap
ta

lis
at

io
n

Q1 = Low
-1.2160 -0.9469 -0.2505 1.0093 6.4800 7.6960

(0.0968) (0.1158) (0.1364) (0.1717) (0.3479) (0.3600)

Q2
-0.9689 -0.8190 -0.4348 0.2554 2.3979 3.3667

(0.0772) (0.0759) (0.0854) (0.1003) (0.2080) (0.2466)

Q3
-0.5763 -0.3468 -0.1574 0.2030 1.2800 1.8563

(0.0687) (0.0642) (0.0669) (0.0786) (0.1622) (0.2050)

Q4
-0.3910 -0.2380 0.0172 0.2219 0.5415 0.9326

(0.0661) (0.0649) (0.0588) (0.0653) (0.1421) (0.1837)

Q5 = High
-0.1369 0.0400 0.0392 0.1544 0.0364 0.1733

(0.0606) (0.0510) (0.0466) (0.0631) (0.1378) (0.1836)

Shows the VW PCA98 model sorted for (i) size and (ii) idiosyncratic risk, split into 5x5 quintiles. For each

quintile, the top value denotes the alpha of the portfolio and the value below denotes the standard error of the

same. The last column on the right depicts the Q5 - Q1 trading strategy.
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The double sort portfolios shown in Tables 8 through 11 serve as an extension to our analysis of single

sort portfolios in the previous section. The two main key findings are the following: (i) when first

sorting for size and second for idiosyncratic risk the difference between the EW and VW results subsides

as compared to the difference between EW and VW single sort results. What this tells us, is that because

we have first sorted for size, the variation within each of these quintiles is limited in terms of firm size.

Secondly, (ii) we have seen that for the EW and VW single sort portfolios, a spike exists when moving

from Q4 to Q5, the latter portfolio containing firms with the lowest 20% idiosyncratic risk values. We

have further established that, when first sorting for size and second for idiosyncratic risk using double

sort portfolios that the variation within each first sort is limited in terms of market size i.e. that the firm

sizes within each quintile are quite similar. We then saw that, for the 80% largest firms, this spike was

either subdued or non-existent. However, the quintile containing the smallest 20% firms in terms of size

showed a substantial spike when moving from the fourth to the 5th quintile of idiosyncratic risk values,

the latter containing firms with the lowest 20% in terms of idiosyncratic risk. What we can conclude

from this section is that firms size and idiosyncratic risk are related in that there are a handful of small

firms with high idiosyncratic risk values, however, this relation does not hold for the full data set where

we do not see a clear relation between firm size and idiosyncratic risk.

6 Conclusion

The aim of this paper is to replicate and further scrutinise the findings of papers such as Ang et al.

(2006) and (2009). Ang et al. (2009) find a significant negative relation between idiosyncratic risk and

return while theory tells us that idiosyncratic risk should be inherently unpredictable by nature. We

apply the CAPM and Fama-French three factor model as well as a PCA factor model to equally- and

value-weighted datasets. These models are used within a Fama-MacBeth regression and are compared

to one another. Next, we apply single and double sorted portfolios in terms of idiosyncratic risk in order

to build on our findings of the Fama-MacBeth regressions, to identify any fluctuations in the relation

between idiosyncratic risk and return, and to make observations on how size skews our perception of

this relation.

We find that the CAPM and the three factor Fama-French model are equivalent in terms of the insights

they provide when isolating idiosyncratic risk and describing its relation with returns. The PCA factor

models clearly result in much smaller residuals resulting in far smaller idiosyncratic risk values in

general, illustrated by the distributions in Figure 2. The models which use the differences in residuals

to find idiosyncratic risk are not very different from the standard three factor Fama-French model,

showing us that the idiosyncratic risk values of the PCA factor model are small and independent

relative to the Fama-French factor models.

We are able to replicate the results found by Ang et al. (2009) in that the Fama-MacBeth regressions

produce a significant negative relation between idiosyncratic risk and returns when using a three
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factor Fama-French model and an equally-weighted dataset. The PCA factor models produce an

insignificant relation between IR values and returns using a 98% threshold of explained variance. This

falls in line with our expectation that idiosyncratic risk values found using PCA analysis should

approach the theoretical values of idiosyncratic risk which, in turn, should inherently be unpredictable

by nature. While we observe a similar negative relation between idiosyncratic risk and returns, as

found by Ang et al. (2009), using a three factor Fama-French model within a Fama-MacBeth

framework, this tells us very little about the monotonicity of the relation. In order to do, we provide an

extensive analysis using single and double sort portfolios.

The implications of the results stemming from our sorted portfolios are intriguing: For both the equally-

weighted single sort portfolios, we see a relatively flat trend over the first four out of five quintiles of

idiosyncratic risk values with slight, but minor, fluctuations over the highest 80% of idiosyncratic risk

values. We do, however, see a large spike in the last quintile representing the lowest 20% of idiosyncratic

risk values. This finding holds for all models tested including the three factor Fama-French model

and the PCA factor model. When comparing these results to those of the value-weighted single sort

portfolio, we see that the spike witnessed in the 5th quintile of the equally-weighted single sort portfolio

disappears as the small capitalisation firms receive less weight using a value-weighted method. These

single-sort portfolios tell us that the negative relation observed between idiosyncratic risk and returns

using a Fama-MacBeth regression is heavily concentrated in the 5th quintile of these portfolio sorts. In

other words, 80% of the dataset fails to show a clear negative relation between idiosyncratic risk and

returns while the last 20% containing the lowest idiosyncratic risk values does. Then, when portfolio

returns are value-weighted as opposed to equally-weighted, the strong negative relation witnessed in

the 5th disappears suggesting the negative relation observed between idiosyncratic risk and returns

could be influenced by a number of small firms with low idiosyncratic risk values and relatively high

returns.

After zooming in on the 5th quintile of the PCA (98%) factor model over time, we see that the enormous

annualised returns observed for the equally-weighted models can be attributed to a higher variation in

the average level of portfolio returns as well as to large spikes at particular points in time such as the

one identified in February 2000 right before the dot com bubble. When scrutinising February 2000 and

looking at the returns of the firms with the lowest 20% idiosyncratic risk values, we again find that these

results are not due to the entire sample set of companies all exhibiting large returns over the month of

February 2000, but rather because there are several small-sized firms that skew this average due to their

excessively high return values.

Our double sort portfolios sort company returns first by market capitalisation and second by

idiosyncratic risk. The results of the equally-weighted and value-weighted double sort portfolios are

similar telling us that there is not much variation in terms of size within each quintile sorted by market

capitalisation. The 5th quintile spike seen for the single sort portfolios is only witnessed for the first

quintile containing the smallest 20% of firms in terms of size telling us that size and idiosyncratic risk
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do not depict a clear relation for the majority of the dataset, with the exception of the negative relation

reflected by the spike in the 5th quintile containing small-sized firms with low idiosyncratic risk

values.

Ang et al. (2009) find a negative relation between idiosyncratic risk and returns when controlling for

size in their Fama-Macbeth regressions. This relation, however, is over the full portfolio of stocks and

does not mean a size effect is no longer present. Through the use of double portfolio sorts, we find that

the effect of firm size is not the same across all small firms and that the negative effect witnessed by

Ang et al. (2009) can be largely attributed to very small firms with low idiosyncratic risk values which

produce relatively high average returns.

In conclusion, this paper contributes to the literature by providing substantial evidence that the negative

relation between idiosyncratic risk and returns found by recent papers including those of Ang et al.

(2006) and (2009) is due large in part by a small set of small-sized firms with low idiosyncratic risk

values and high average returns as opposed to an inherent negative relation supporting a case of an

Idiosyncratic Risk Puzzle. In other words, while Ang et al. (2009) may have found a negative relation

using Fama-MacBeth regressions, our portfolio sort exercise has uncovered a large spike in the lowest

quintile of idiosyncratic risk for small-sized firms and found very little evidence of a meaningful relation

in the remaining 80% of the dataset. This paper also demonstrates that the conclusions are similar when

using a PCA (98%) model to isolate idiosyncratic risk instead of a Fama-French factor model.

While these findings appear robust for both the three factor Fama-French model as well as when using

a PCA approach, it is important to acknowledge that the conclusions drawn in this paper have certain

limitations. This paper uses Ang et al. (2006, 2009) as a foundation for its methodological framework,

yet it restricts itself to the U.S. stock market. While Ang et al. (2009) conclude that the puzzle of low

returns to high idiosyncratic volatility stocks is a global phenomenon, Koch et al. (2009) finds that the

size effect is not pronounced in Germany, implying that double sorting would not lead to the same

conclusions in Germany as in this paper.

The hope is that this paper will help provide insight to future researchers on the subject of

idiosyncratic risk. More specifically, we hope to have given future researchers insight into the relation

between size and idiosyncratic risk and, in turn, their effect on returns. Our analysis of the 5th quintile

of idiosyncratic risk values could serve as a basis for further research which might seek to explain this

seemingly massive spike in average returns for low idiosyncratic risk value companies. Several papers

such as that written by Spiegel and Wang (2006) scrutinise the relation between liquidity, idiosyncratic

risk and returns. We believe a further analysis of the relation between liquidty, idiosyncratic risk and

returns within a double-sort framework would be an interesting avenue for further research.
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