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Abstract

The implied volatility surface (IVS) explains the dynamics between different option contracts by repre-

senting the total set of implied volatilities across moneyness and maturity dimensions. In this thesis, we

implement dynamic factor models to study the dynamics of the IVS. In particular, we examine whether

we can improve the fit of the IVS estimated by dynamic factor models by integrating additional volatil-

ity disturbances onto their residuals. In general, we provide four key findings. First, including GARCH

disturbances appears to at least mitigate the problem of poorly fitting corner IVS groups by correcting

for heteroskedasticity and autocorrelation in the error terms. Second, although our extended setups have

a better in-sample fit, they are outperformed by the general dynamic factor model in terms of statis-

tical and economical forecasting performances. Third, all our dynamic factor models for the IVS only

have economic value when excluding transaction costs. Fourth, we hardly report significant differences

between our dynamic factor models including GARCH disturbances.

Keywords: Implied volatility surface, Dynamic factor model, State space model, Kalman filtering,

Maximum likelihood estimation
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1 Introduction

Option prices on financial markets contain implicit information on the volatility of the underlying ex-

pected by traders and investors. Using option pricing models like Black and Scholes (1973) for European

and a binomial tree model introduced by Cox et al. (1979) for American options, expected volatilities

can be derived from those option prices. Hence, these implied volatilities can be obtained by matching

observed market prices with theoretical option prices and subsequently extracting associated volatilities.

Due to strongly varying option prices caused by differences in strike price and time-to-maturity, it is dif-

ficult to compare and interpret option contracts based on their prices. Therefore, corresponding implied

volatilities are rather used to compare and interpret these contracts more easily. If the widely used Black

and Scholes (1973) option pricing model is correctly specified, the implied volatility would be the same for

all available option contracts for a particular underlying. However, in practice we continuously observe

varying implied volatilities depending on both maturity and moneyness levels. The implied volatility

surface (IVS) is the three-dimensional collection of volatilities that are indirectly determined by a range

of option contracts with different strike prices and time-to-maturities. Within this empirically non-flat

surface, Rubinstein (1994) states that the volatility smile can be seen as the common pattern for a given

time-to-maturity over different strike prices. Likewise, the pattern for given moneyness over different

time-to-maturities is referred to as the volatility term structure. Moreover, Heston and Nandi (2000)

show that due to varying market beliefs, the IVS appears to dynamically fluctuate over time. Among

others, Poterba and Summers (1984) and Fleming (1998) consider the understanding of these dynamics

to be highly relevant, while in many situations implied volatilities are used to gain information on ex-

pected market volatility. In option pricing applications for example, they characterize the future beliefs

of market participants, whereas risk managers analyze implied volatilities in order to regulate their risk

exposure. Hence, accurately forecasting the IVS could lead to better performances on the portfolios of

risk and investment managers.

In case of option contracts with the same underlying, the payoffs of these contracts all depend on

the performances of that specific underlying. Hence, different option contracts that share a common un-

derlying are expected to have interrelated movements in their prices. Knowing that implied volatilities

are being derived by corresponding option prices, these co-movements are also expected to be present in

corresponding implied volatilities. In order to capture these co-movements, one could argue to absorb

them into a model with common factors. Existing literature already introduces several different types of

factor models to capture the dynamics of the IVS. For example, Dumas et al. (1998) and Goncalves and

Guidolin (2006) link implied volatility to moneyness and maturity by fitting linear parametric specifica-

tions. Heston and Nandi (2000) aim to exploit predictability in the IVS using their GARCH(1,1) option

pricing model. More recently, Van der Wel et al. (2016) apply maximum likelihood estimation including

a collapsed filtering approach in an attempt to examine the in-sample performances of three different

dynamic factor models (DFM) on S&P 500 index options. In particular, they show that in-sample plain

dynamic factor models fit the IVS fairly well in the center of the surface.

However, Van der Wel et al. (2016) also report that fitting the corners of the IVS with dynamic

factor models turns out to be problematic, as the residuals do not seem to behave like white noise pro-

cesses. These findings might indicate misspecification of the estimated dynamic factor model, resulting

in heteroskedasticity and autocorrelation in the error terms. In case of heteroskedasticity, the standard

errors of a dynamic factor model are expected to be biased and differ systematically between economical

stable and uncertain times. Due to this varying variability across all observations, considering a general

dynamic factor model evidently results in inefficient estimates of the IVS. Hence, although the overall fit

of the IVS seems to be promising, inconsistent estimates in particular IVS groups could have negative
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impact on the forecasting performances of dynamic factor models. Therefore, in an attempt to force the

residuals in all IVS groups to be white noise processes, one could argue to model the residuals sepa-

rately using additional volatility disturbances. For example, Harvey et al. (1992) suggest to incorporate

GARCH disturbances in unobserved component time series models like dynamic factor models. Due

to its ability to correct for heteroskedasticity in the error terms, this additional GARCH model on the

residuals might be a valuable extension to dynamic factor models for the IVS.

The contribution of this thesis to literature is twofold. On the one hand, we extend the work of

Van der Wel et al. (2016) by examining out-of-sample performances of their likelihood-based dynamic

factor models for the IVS. On the other hand, we attempt to further develop forecasting abilities of these

likelihood-based dynamic factor models for the IVS by including additional GARCH disturbances. By

implementing GARCH models on the residuals in several ways, we are the first to explore whether these

extensions can have a positive impact on predicting the dynamics of the IVS. In particular, we examine

whether including simple GARCH(1,1) models on the residuals of both observation and state equation

could correct for autocorrelation and particularly heteroskedasticity. In case of model improvements,

we might find a way to increase the percentage of correctly predicted implied volatilities, which can

potentially lead to profitable strategies for traders and investors. Hence, the research question is:

Could we integrate additional volatility models onto the residuals of a dynamic factor model in order

to improve its in-sample fit and out-of-sample forecasting performances of the implied volatility surface?

In this paper we use a daily data set consisting of implied volatilities on European S&P 500 in-

dex options traded on the U.S. markets over the period January 2002 until August 2015. In line with

Van der Wel et al. (2016), we construct the IVS by splitting the data into 24 different moneyness-maturity

groups. Moneyness is divided into six groups based on ∆ values1, whereas a division of time-to-maturity

splits maturity into four groups. On each day, we select option contracts closest to the midpoint of each

of the 24 IVS groups. The daily balanced panel of these selected contracts is considered in an attempt

to capture the dynamics of the IVS.

In order to find the best performing predictor of the IVS, we consider three different DFM-GARCH

setups along the lines of Harvey et al. (1992). First, we extend the general dynamic factor model of

Van der Wel et al. (2016) by incorporating GARCH disturbances in the observation equation to correct

for heteroskedasticity in its residuals. However, these phenomena in the residuals of the observation

equation might be better absorbed indirectly through the residuals in the state equation. Therefore, our

second DFM-GARCH setup consists of a general dynamic factor model with GARCH disturbances incor-

porated in the state equation. Likewise, a combination of GARCH disturbances in both the observation

and state equations is considered as our third DFM-GARCH setup. For comparison purposes, we also

consider two basic dynamic factor model setups. First, we use the general DFM of Van der Wel et al.

(2016) for which only identification restrictions are applied. Second, we adopt their restricted economic

dynamic factor model (RFM), designed to capture the key features of the surface along the moneyness

and maturity dimensions. All five dynamic factor models can be presented in formulation of a basic

state space model. In order to estimate these models, we adopt the work of Jungbacker and Koopman

(2014) by using maximum likelihood estimation with a recursive collapsed Kalman filtering procedure.

Besides, we use two benchmark models for forecasting the movements of the IVS. First, we use the

1The ∆ value measures the rate of change of the theoretical option value with respect to changes in the price of th
underlying. Because the ∆ is an approximation of the probability that an option ends in-the-money, this Greek can be
seen as a measure for moneyness. We use this measure for moneyness while Van der Wel et al. (2016) show significantly
improved results when replacing the strike price relative to the spot price measure with this ∆.
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two-step vector-autoregression model from Goncalves and Guidolin (2006). As a second benchmark we

use a simple random walk model for the implied volatility, in line with among others Chalamandaris

and Tsekrekos (2010). Comparing the three DFM-GARCH setups with our benchmark models provides

us valuable information on their forecasting performances of the IVS. All mentioned models will be ex-

amined using statistical and economical evaluation methods. At statistical level we evaluate both the

in-sample fit and out-of-sample forecasting performances using root mean squared error (RMSE) and

mean correct prediction of direction of change (MCP) measures. This latter measure is also of great

importance in the economic evaluation, where we follow Bernales and Guidolin (2014) in using virtual

trading strategies to empirically examine profitability of the models.

We report the following main conclusion. In general, we find strong indications of improved estimates

of the IVS after including GARCH disturbances into a general dynamic factor model in any way. This

conclusion is based on four main findings. First, we still find significant heteroskedasticity and autocor-

relation in the error terms of extended dynamic factor models including GARCH disturbances. However,

the results of these extended setups do show weaker significances than in our general DFM setup. Hence,

although a GARCH model is originally designed to capture heteroskedasticity, we conclude that includ-

ing GARCH disturbances into a dynamic factor model can mitigate its problem of heteroskedasticity and

even autocorrelation in the error terms. Second, we document a better in-sample fit for our extended

DFM-GARCH setups compared to the general DFM model. In particular, our DFM-GARCH setups

show time series of residuals that look a bit more on white noise processes, especially for corner groups of

the IVS. On the contrary, the general setup outperforms the models including GARCH disturbances sig-

nificantly in an out-of-sample setting. Due to the inclusion of additional GARCH parameters, forecasts

based on our DFM-GARCH setups are possibly affected by overfitting issues. Hence, although we not

succeed in finding improvements in out-of-sample forecasts of the IVS, our improved in-sample estima-

tion of the IVS indicates potential value of including GARCH disturbances into a general dynamic factor

model. Third, without taking transaction costs into account in our economic simulation, all considered

dynamic factor models prove to have value in their predictability of the IVS. However, after a realistic

implementation of transaction costs, these potential profits disappear and are converted into great losses.

In addition, we find confirming evidence that out-of-sample our DFM-GARCH setups are also outper-

formed by the general DFM model economically. In our economic evaluation section, we further report

strongly deviating performances when applying our trading strategies within individual IVS groups. In

particular, we document extremely high risks within corner groups of the IVS, explained by their poorer

fit and relatively less liquid option contracts with more erratic trading patterns compared to groups in

the center of the IVS. Hence, our economic evaluation results confirm that our extended DFM-GARCH

setups are less effective in economically exploiting their out-of-sample forecasts compared to the general

DFM model. Fourth, by comparing individual DFM-GARCH setups we hardly find any differences. In

most cases, including GARCH disturbances in only the observation equation shows slightly better re-

sults than the other two variants. Hence, although we generally report insignificant differences, including

GARCH disturbances in the observation equation of dynamic factor models turns out to be our preferred

way to neutralize heteroskedasticity in the error terms.

A few existing papers are closely related to this thesis. Bedendo and Hodges (2009) explore the IVS

dynamics with a Kalman filtering approach, but their IVS extension is only a limited analysis of different

smile levels instead of a dynamic analysis over the entire surface. Hence, Van der Wel et al. (2016) lay the

foundation of this thesis by offering a framework to estimate a subset of our models using a likelihood-

based dynamic factor approach. They examine the in-sample performances of three different models

on S&P 500 index options: a general DFM model, a restricted economic RFM model and a flexible
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spline-based DFM model. Yet, they do not investigate out-of-sample performances of these promising

models for the IVS. Several related papers also show other methods to examine the dynamics of the

IVS. For example, Skiadopoulos et al. (2000) and Cont et al. (2002) use principal component analysis

in order to explain the dynamics, whereas for similar purposes Fengler et al. (2007) and Christoffersen

et al. (2009) implement semi-parametric and stochastic volatility models respectively. The economic

restricted RFM model in this thesis can be traced back to the work Dumas et al. (1998), which has

been subsequently extended by Goncalves and Guidolin (2006). Furthermore, together with Bernales

and Guidolin (2014) and Chalamandaris and Tsekrekos (2010) this latter paper serves as an example

for our out-of-sample economic evaluation section. Using a two-step OLS approach, they economically

evaluate the forecasting performances of DFMs with virtual trading strategies on empirical data sets. In

this two-step approach the common factors are modeled using vector-autoregressions after they have first

been retrieved by OLS regression. Although their approach shows some similarities with the research of

Van der Wel et al. (2016), the one-step likelihood-based DFM approach we consider seems to be a more

efficient way to examine predictability in the dynamics of the IVS than their two-step OLS approach.

Finally, we adopt the ideas of Harvey et al. (1992) on how to include GARCH disturbances in a time

series model in order to correct for heteroskedasticity in the residuals. In their research, they show the

implications these GARCH disturbances have for Kalman filtering estimation and introduce improved

estimation procedures.

We contribute to literature in various ways. To begin with, and to the best of our knowledge, we

are the first to introduce GARCH disturbances on factor models that forecast the dynamics of the IVS.

In particular, we find a reliable way to correct for heteroskedasticity in the residuals of specifically the

corners of the IVS. Hence, we provide a powerful method to transform the residuals into white noise

processes, resulting in improved estimation and forecasting performances of the DFMs. Moreover, we

deliver extensive out-of-sample evaluations on the general and economic restricted DFMs for the IVS

recently introduced by Van der Wel et al. (2016). In contrast to common inefficient two-step approaches,

we use maximum likelihood estimation with a collapsed filtering approach introduced by Jungbacker and

Koopman (2014). We demonstrate our results using both statistical and economical measures, where we

report empirical evidence of the profitability of these promising models.

This thesis is organized as follows. In section 2, the data and corresponding construction of the

IVS are described and analyzed. Section 3 introduces the modeling setup and estimation procedures of

various dynamic factor models and additional benchmark models for the IVS. In particular, we discuss

a general dynamic factor model, extended dynamic factor models with GARCH disturbances and a re-

stricted economic dynamic factor model. Furthermore, we evaluate the significance of GARCH effects in

our dynamic factor models by testing the residuals on autocorrelation and heteroskedasticity in section

4. In addition, we discuss statistical evaluation methods and corresponding results for both in-sample

and out-of-sample evaluation in this section. Thereafter, section 5 documents the economic profitability

prospects of our modeling setups by simulating several trading strategies based on the dynamic factor

models. Finally, the conclusion and discussion topics are provided in section 6.
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2 Implied Volatility Surface Data

In order to test the forecasting performances of our dynamic factor models in a reliable way, we use

empirical implied volatility data from the recent past. This section starts with an extensive description

of the data set we use. Further, we illustrate the construction procedure of the implied volatility surface

(IVS) by introducing the moneyness-maturity buckets in which the option contracts are being segmented.

Eventually, section 2.3 reports key summary statistics and performs preliminary analysis on the data.

2.1 Data

In this thesis we use a daily data set consisting of implied volatilities on European S&P 500 index options

traded on the Chicago Board Options Exchange (CBOE) over the period January 2, 2002 until August

31, 2015. In total, this covers 3,440 observations over a time period of nearly 14 years, including the

worldwide turbulent financial crisis in 2008. The choice of 2002 as starting year is motivated by avoiding

the years that have limited data due to a less active global option market or events like 9/11. By using

one of the most actively traded derivative securities, we aim to provide a realistic representation of the

dynamics in the total U.S. option market. Within the daily data set, OptionMetrics provides a detailed

overview of several relevant characteristics of each option contract that has been on the market. These

characteristics include end-of-day values for bid and ask quotes, time-to-maturity, ∆, implied volatility

and strike price.

Using common knowledge that out-of-the-money (OTM) options are more frequently traded than

in-the-money (ITM) options, we only select OTM options from the data set. Due to the put-call parity2

this selection has no consequences for our analyses, as also pointed out by Van der Wel et al. (2016).

Furthermore, we filter the data using the similar four restrictions as Barone-Adesi et al. (2008). In

detail, options are deleted when time-to-maturity is lower than 10 or higher than 360 days, when implied

volatility is above 70%, when option price is below $0.05, or when any values for implied volatility or

∆ are missing. By removing incomplete and inactive options, these filters make sure that our model

estimates only consider relevant option contracts and are not affected by unrealistic or extreme trades.

Although actual prices and transactions costs of individual options are unknown, we approximate

them using the difference between bid and ask quotes defined as the bid-ask spread. To determine the

price of an option, we calculate the average of both corresponding quotes. In order to set up economic

trading strategy benchmarks, we consider an additional second data set from OptionMetrics. This daily

data set contains prices of the S&P 500 index fund. Finally, on account of the economic evaluation

section we consider the data library of French (2017) to select daily global riskfree rates. On average,

the yearly riskfree rate over our full sample period amounts 1.31%.

2.2 Constructing the Volatility Surface

By spanning the data over both moneyness and maturity levels, we construct a three-dimensional IVS.

In order to arrange the large cross-section of options, among others Bollen and Whaley (2004) and

Barone-Adesi et al. (2008) group the options into several moneyness-maturity categories. In line with

their ideas, and following the approach of Van der Wel et al. (2016), we construct the IVS by dividing

the data over 24 groups. Hence, we adopt their attempts to strike a balance between forming completely

filled IVS buckets and representing common movements of options in the large cross-section of data.

The maturity dimension is split up into four groups based on time-to-maturity: 10-45 days, 45-90 days,

2Under the assumption that call option x matches put option y on moneyness and maturity levels, ∆x is per definition
equal to 1 + ∆y .
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90-180 days and 180-360 days. In order to select a proper moneyness measure, we again follow Bollen

and Whaley (2004) in their choice for the option’s ∆. They report that the more often used strike price

relative to spot price ratio fails to account for the fact that the volatility of the underlying asset also

affects the option’s likelihood to be in-the-money. On the contrary, an option’s ∆ can be interpreted

as the risk-neutral probability that the option will be in-the-money when it expires. Hence, this proves

to be a better measure for moneyness. Moreover, Van der Wel et al. (2016) confirm this statement by

showing that factor models with ∆ as moneyness measure outperform factor models with strike price

relative to spot price ratios as moneyness measure. The moneyness criteria form at-the-money (ATM),

out-of-the-money (OTM) and deep out-of-the-money (DOTM) categories for both put and call options.

In detail, we form the following moneyness categories for call options: 0.375 < ∆ < 0.5 for ATM call,

0.125 < ∆ < 0.375 for OTM call and 0 < ∆ < 0.125 for DOTM call. Likewise, put option categories are

as follows: −0.5 < ∆ < −0.375 for ATM put, −0.375 < ∆ < −0.125 for OTM put and −0.125 < ∆ < 0

for DOTM put.

In line with Van der Wel et al. (2016), on each day in each group we select an option contract nearest

to the midpoint. In detail, from all available contracts within a group we select the option that is closest

to the center regarding both moneyness and maturity dimensions.3 Clearly, these selected options have

different moneyness and maturity measures over time due to variation in ∆ and seasonality in expiry

dates. An alternative could be to construct time series for exactly the midpoint implied volatilities of the

IVS groups by smoothing the observed implied volatilities. However, we do not expect our implemented

construction approach to have negative impact on the in-sample estimation evaluation. Moreover, our

generated time series for statistical and economical out-of-sample evaluation are based on the total data

set of all available individual option contracts. Therefore, we are able to select the same contract on two

consecutive trading days. More specifically, we make sure that we only consider option contracts that

are available on subsequent trading days by tracking and matching corresponding option IDs. Hence,

our out-of-sample evaluation procedures do not suffer from inconsistent implied volatility surfaces as

well. Within each group, we daily select an option nearest to the midpoint from on average 18 available

contracts. In case of groups with no available contracts to select from, we fill groups by selecting the

closest contract from all available contracts that day. By concatenating all selected contracts, we form a

surface that represents the complete IVS over the full time period.

2.3 Summary Statistics and Preliminary Analysis

Prior to defining and estimating the dynamic factor models, we first investigate the data by analyzing the

constructed surfaces and corresponding statistics in various ways. First, in order to show stylized facts of

the IVS, we present plots of two different days within the sample period in figures 1 and 2. Both figures

are evidently in contradiction with the ideas of Black and Scholes (1973), who assume constant volatility

across all moneyness and maturity groups. Compared to each other, the figures display varying patterns

due to related economic (in)stable times. An example of the IVS during the worldwide financial crisis

in 2008 is shown in figure 1. During these uncertain economic times the S&P 500 index options prove

to have high volatility levels. Meanwhile, the volatility levels of days in more flourishing economic times

as in figure 2 are considerably lower. Hence, these figures show confirm differences in volatility levels

between stable and crisis periods. Furthermore, both figures present evidence of a common pattern in

implied volatilities across the moneyness dimensions, also referred to as the volatility smile.4 In detail, for

3The distance between center of the group and an individual contract is defined as the sum of squared deviations of
both time-to-maturity and ∆. Due to scale differences, we put ten times more weight on the distance of ∆ in order to
compare both deviations appropriately.

4To be precise, this continuously diminishing asymmetric pattern of the IVS across the moneyness groups is referred to
as the volatility smirk. The volatility smile is actually defined as the symmetric pattern in which the implied volatilities
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a given maturity category the IVS is downward sloping along the moneyness dimension, where the IVS

is lowest for the DOTM-Call categories. Correspondingly, the pattern across the maturity dimension

is referred to as the volatility term structure. However, contrary to the volatility smile this pattern

differs in slope between stable and unstable economic times. Where figure 1 shows downward slopes

across the maturity dimension in times of high volatility, figure 2 shows upward slopes in times of low

volatility. Following Van der Wel et al. (2016), these term structure dynamics can be explained by the

mean-reversion property of volatilities.

Figure 1: IVS on November 13, 2008 Figure 2: IVS on March 27, 2015
Notes: These figures show examples of implied volatility surfaces (IVS) on two days in the sample period, consisting of
implied volatilities from S&P 500 index options. The implied volatilities are displayed across the six moneyness and four
maturity groups, as set up in section 2.2.

Furthermore, an overview of the summary statistics of all selected option contracts is given in table

1. Here, the sample means and standard deviations of four different variables within each IVS group

are given. The table provides us several insights regarding the data. First, we observe two patterns in

the dynamics of the option prices by considering the mid-quotes of the selected contracts. ATM options

are traded at higher prices than OTM and particularly DOTM options. This pattern of higher prices

for options closer to being in-the-money is intimately related to our choice for ∆ as measure for mon-

eyness. Since an option’s ∆ can be considered as a Greek for the probability that the option will end

up in-the-money at expiration, deeper out-of-the-money options generally have lower prices. Besides,

we observe a pattern that longer maturities are accompanied by higher option prices. This pattern can

be simply declared by the time value of money, which implies that options with longer maturities have

higher probabilities to end up in-the-money and are therefore traded at higher prices. Next, considering

the implied volatility variables the statistics are in line with the general findings of figures 1 and 2. In

particular, the volatility smile effect turns out to be present over the full sample period, as implied by

the downward sloping average implied volatilities across the moneyness groups. In addition, the table

shows ∆ and maturity (in days) are close to the midpoints of corresponding groups. Therefore, the table

provides evidence that our selection of contracts closest to the midpoints of the IVS groups is working

properly.

By extracting the surface over the full sample period, we provide indications of strong co-movements

across the surface by demonstrating time series of the average implied volatilities within the 24 IVS

groups in figure 3. In addition, the average implied volatility across all groups is highlighted in blue.

Volatility peaks can be observed due to the presence of several striking events, like the Gulf War in

2002-2003, the financial crisis in 2008, the European sovereign debt crisis in 2010 and the debt-ceiling

crisis in 2011. Since 2013, the average volatility no longer exhibits high peaks due to little uncertainty

for both deeper out-of-the-money call and put options slope upward. However, in literature the volatility smile is widely
accepted as definition for this asymmetric pattern. Hence, we adopt this interpretation of the volatility smile.
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compared to the years before. Hence, we evidently observe larger implied volatilities during extreme

events compared to during stable times.

Figure 3: Average Implied Volatility
Notes: This figure shows time series of the average implied volatilities, both for the entire data set across all groups
(highlighted in blue) as well as within each IVS group (displayed in shades of grey). For clarity purposes, we compress
space by showing snapshots of every 8 observations.

These strong co-movements are confirmed by figure 4, which displays all available slopes of the volatil-

ity smile and term structure. Here, the slope of the volatility smile is defined as the implied volatility

of selected DOTM-Put options minus the implied volatility of selected DOTM-Call options within each

maturity group. Likewise, the slope of the term structure within each moneyness group is defined as the

implied volatility of selected options with the longest maturity minus the implied volatility of selected

options with the shortest maturity. As can be seen in the upper figure, the slope of the volatility smile is

positive for all maturity groups, with higher values during economically uncertain periods. Even during

these events, the slopes of all maturity groups show similar movements. Across the moneyness groups,

the bottom figure displays the slopes of the volatility term structure. These slopes contain both positive

and negative values, which is in line with our mean-reversion findings from figures 1 and 2. But consistent

with the slopes of the volatility smile, they also show little differences and many similar patterns. Hence,

figure 4 displays evidence of strong co-movements in both the volatility smile and term structure.

Moreover, by analyzing the cross-correlations of the IVS groups in table 12 in the appendix, we find

substantially high cross-correlations in all cases. In particular, all cross-correlations are greater than 0.83,

whereas cross-correlations between groups with similar moneyness or maturity measures are even greater

than 0.9. Logically, we also observe a trend that cross-correlations between groups become smaller when

their moneyness or maturity measures move further apart. Note that for clarity reasons, we drop the

most intermediate moneyness groups and only present the ATM and DOTM categories.

In consequence, all previous findings present evidence of strong co-movements in the average implied

volatility and slopes of volatility smile and term structure. This suggests that it might be appropriate to

use a model with common factors in our attempt to model and forecast the IVS. Hence, in order to be

able to determine this with certainty, we eventually perform principal component analysis on the data.
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Figure 4: Slopes of Volatility Smile and Volatility Term Structure
Notes: These figures show time series of the slope of the volatility smile and the volatility term structure from selected
S&P 500 index options. Here, the slope of the volatility smile is defined as the implied volatility of selected DOTM-Put
options minus the implied volatility of selected DOTM-Call options within each maturity group. Likewise, the slope of
the term structure within each moneyness group is defined as the implied volatility of selected options with the longest
maturity (180-360 days) minus the implied volatility of selected options with the shortest maturity (10-45 days). For
clarity purposes, we compress space by showing snapshots of every 8 observations.

Table 11 in the appendix provides percentages of variances explained by the principal components that

result from this principal component analysis on our S&P 500 data. For the first five out of 24 principal

components, the table reports both the variation explained by each individual principal component as

well as the cumulative percentages. Evidently, the first principal component already explains a majority

of almost 96% of the total variation. Furthermore, second and third principal components are responsible

for more than 2% and 1% respectively, resulting in a total explained variation of 99%. Hence, the presence

of various common factors in the IVS data are confirmed by these findings. In addition, table 11 in the

appendix also provides corresponding autocorrelations for lags 1, 5 and 10, and partial autocorrelations

for lags 1, 2 and 3. Again, we observe significantly high persistence in the first three principal components,

motivating the use of a vector-autoregressive model. Besides, the partial autocorrelations strongly decline

for lags greater than 1, indicating best practice for selecting the order equal to one. Hence, consistent

with the ideas of among others Dumas et al. (1998) and Goncalves and Guidolin (2006), these findings

suggest that the first three principal components are persistent and explain the majority of the total

variation. In conclusion, the results of our principal component and other preliminary analyses support

the presence of a strong factor structure in the IVS and validates our approach of using dynamic factor

models with three factors.
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3 Modeling the Implied Volatility Surface

In this thesis, we test if we can find better predictions of the IVS. To do so, we aim to improve the fit of

dynamic factor models by adding GARCH disturbances and compare corresponding results with several

benchmark models. We start this section by introducing dynamic factor models and the additional

implementation of GARCH disturbances in section 3.1. In section 3.2, definitions of various benchmark

models are given. Eventually, we discuss corresponding estimation procedures of the dynamic factor

models in section 3.3.

3.1 Dynamic Factor Models

As stated in section 2.3, fitting dynamic factor models is a convenient way to capture the dynamics

of the IVS. In particular, existing literature shows that co-movements in the cross-sections of the IVS

can be successfully captured by models with common factors. In this section, a detailed overview of

the dynamic factor models we consider can be found. First, we provide a setup of the general dynamic

factor model (DFM) adopted from Van der Wel et al. (2016) in section 3.1.1. Next, in section 3.1.2 we

introduce additional volatility disturbances for the residuals of dynamic factor models. More specifically,

we follow Harvey et al. (1992) by adding GARCH disturbances to our time series models in various ways.

To ensure a better understanding of this extension to dynamic factor models, we eventually consider the

restricted economic dynamic factor model (RFM) with time-varying loading matrix in section 3.1.3.

3.1.1 General Dynamic Factor Model (DFM)

In order to cross-sectionally fit our dynamic factor models, we first stack implied volatilities of all 24 IVS

groups in the (24×1) observation vector yt, defined by

yt =



IVτ1,m1,t

...

IVτT ,m1,t

IVτ1,m2,t

...

...

IVτT ,mM ,t


(1)

where on day t the implied volatility for a contract with time-to-maturity τi and moneyness mj is

given by IVτi,mj ,t. As stated in section 2.2, our IVS is constructed along the lines of Van der Wel et al.

(2016) by using i = 1, 2, ..., T and j = 1, 2, ...,M with T = 4 and M = 6. Van der Wel et al. (2016) plug

this vector into the observation equation of their general DFM model, given by

yt = Λft + εt εt ∼ N(0,Σε)

ft = µ + Φ (ft−1 − µ) + ηt ηt ∼ N(0,Ση)
(2)

where these equations are referred to as observation equation and state equation, respectively. Here,

ft denotes the vector of latent dynamic factors, which is included in a vector-autoregressive (VAR) model

of order one as a result of our conclusions from the (partial) autocorrelations in section 2.3. In particular,

supported by our findings regarding principal component analysis in section 2.3, we select three as the

number of factors to include in our dynamic factor models. Hence, this results in a (24×3) loading matrix

Λ, a (3×1) vector of latent factors ft and a (24×24) covariance matrix Σε of the normal distributed vector

11



of measurement errors εt. Likewise, the state equation contains a (3×1) vector of factor intercepts µ,

a (3×3) transition matrix Φ and (3×3) covariance matrix Ση of the normal distributed vector of factor

innovations ηt.

Furthermore, the general DFM model requires identification restrictions on its loading matrix in order

to enable proper estimation. In their research, Geweke and Zhou (1996) propose to restrict the top

(3×3) part of the loading matrix Λ to an identity matrix. However, Van der Wel et al. (2016) argues

that in case of implied volatility surfaces, it seems more sufficient to restrict specific elements of the

loading matrix in order to strengthen their interpretations. Specifically, they propose restrictions to

force the three latent factors to capture the level, term structure effect en volatility smile, respectively.

This can be accomplished by setting certain loading elements λ of shortest (longest) maturity and call

(put) moneyness categories to minus (plus) one. Hence, we adopt this idea of restricting four rows of Λ

by setting 
λ2T+1,1 λ2T+1,2 λ2T+1,3

λ3T,1 λ3T,2 λ3T,3

λ3T+1,1 λ3T+1,2 λ3T+1,3

λ4T,1 λ4T,2 λ4T,3

 =


1 −1 1

1 1 1

1 −1 −1

1 1 −1

 (3)

where we still have T = 4. Similar to all upcoming models, further details on the estimation procedure

of this general DFM model can be found in section 3.3.

Although Van der Wel et al. (2016) show that this model generally fits the IVS fairly well, they

also show certain limitations. Particularly, they report that fitting the corners of the IVS appears to be

complicated due to residuals that do not seem to match with white noise processes. Moreover, section

4.3.2 confirms these findings by showing heteroskedasticity and autocorrelation in the residuals of the

corners of the IVS. Normally if a model is properly specified, corresponding residuals follow white noise

processes. Hence, we can conclude that the general DFM model is not fully effective in fitting the IVS

and consequently provides room for improvement. Therefore, in section 3.1.2 we introduce a dynamic

factor model in combination with an additional volatility model for the residuals.

3.1.2 Implementing GARCH Disturbances

In this thesis, we report supporting evidence for the statement of Van der Wel et al. (2016) that fit-

ting the corners of the IVS with a general DFM model turns out to be problematic. These signs of

heteroskedasticity and autocorrelation might indicate that the residuals have to be modeled individu-

ally. In this way, we attempt to improve our estimation and forecasting performances by converting

the residuals to white noise processes. For this purpose, we adopt the ideas of Harvey et al. (1992) by

including a GARCH(1,1) model onto the residuals of our dynamic factor model. Initially, Bollerslev

(1986) introduced a generalized autoregressive conditional heteroskedasticity (GARCH) model in order

to make the unconditional variance constant.5 In particular, Bollerslev (1986) provides a GARCH(p,q)

framework which allows for a longer memory with q residuals and a more flexible lag structure using p

autoregressive lags. However, motivated by our significance tests on lagged autocorrelations of the error

terms and corresponding GARCH errors6, we select a GARCH(1,1) model that only takes the first lags

into account. Harvey et al. (1992) already provides an extensive framework on how to incorporate this

GARCH(1,1) model into unobserved component time series models and how to deal with corresponding

5The GARCH model is a generalized version of the autoregressive conditional heteroskedasticity (ARCH) model as
proposed by Engle (1982).

6Detailed significance test statistics are not reported in this thesis and are available upon request.
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implications during estimation procedures. Therefore, we follow their ideas by integrating additional

GARCH(1,1) model specifications and estimation methods into our DFM framework. In an attempt

to find the best possible fit of the IVS, we attempt to explore various setups. For instance, Koopman

et al. (2010) specify the overall volatility as a GARCH process by decomposing the disturbance vectors

of both the observation and state equations. Inspired by their work, we therefore select three different

setups. First, we add GARCH disturbances directly to the implied volatility residuals in the observa-

tion equation. Motivated by the possibility that heteroskedasticity in the implied volatility residuals is

passed through via the latent factors, we add GARCH disturbances to the factor residuals in the second

setup. The third setup consists of a combination of GARCH disturbances on both the observation error

terms and the state error terms. Hence, by incorporating these varying GARCH disturbances we provide

extended DFM-GARCH models that are considered to be able to correct for heteroskedasticity in the

residuals and subsequently improve estimation and forecasting performances of the IVS.

Our extended DFM-GARCH model is given by

yt = Λft + Γεt + ε∗t ε∗t ∼ NID(0,Σ∗ε )

ft = µ + Φ (ft−1 − µ) + Ψηt + η∗t η∗t ∼ NID(0,Σ∗η)
(4)

where GARCH disturbances are incorporated in both observation and state equations. Specifically,

our initial residuals εt and ηt are modeled separately by subdividing them into Γεt+ε
∗
t and Ψηt+η

∗
t . Here,

the disturbance vectors ε∗t (24×1) and η∗t (3×1) are assumed to be normally and serial independently

distributed. In order to avoid identification issues, we again assume the covariance matrix Σ∗ε to be

diagonal. The GARCH effects are introduced via the scalar disturbances εt and ηt and corresponding

loading matrices Γ (24×1) and Ψ (3×1). Across the entire IVS, option prices and corresponding implied

volatilities depend on the volatility of the underlying. Hence, a shock in the volatility of the underlying

affects the implied volatilities of all IVS groups. Due to the high-dimensionality of the observation

vector yt, we therefore expect these common scalar disturbances to be proper instruments to include

GARCH disturbances into the observation equation. Although common scalar disturbances for the state

equation enforces the same volatility dynamics on the latent factors, we also introduce GARCH by

means of common scalar disturbances in the state equation due to the factor structure of its residuals.

In particular, we perform PCA on the residuals of the state equation ηt in order to determine whether

these residuals exhibit a common factor.7 Evidently, the first principal component explains more than

84% of the total variation, indicating a factor structure for the residuals and motivating our inclusion

of GARCH disturbances in the state equation by means of common scalar disturbances. In detail, the

scalar disturbances are defined by

εt = h
1/2
t εt and ηt = q

1/2
t ηt (5)

where εt ∼ NID(0, 1) and ηt ∼ NID(0, 1) are white noise processes. Furthermore, the origin of the

GARCH effects can be found in the variables ht and qt, defined by

ht = α0 + α1ε
2
t−1 + α2ht−1 (6)

qt = γ0 + γ1η
2
t−1 + γ2qt−1 (7)

where we assume that α1 + α2 < 1 and γ1 + γ2 < 1. In consequence, these GARCH disturbances

are included in both observation and state equations of the DFM-GARCH model from equation 4. For

7Detailed results of the principal component analysis are not reported in this thesis and are available upon request.
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future estimation and filtering purposes, it seems useful to rewrite our DFM-GARCH model into state

space formulation. Hence, the observation equation can be given by

yt =
[
Λ 0 Γ

]
fxt + ε∗t ε∗t ∼ NID

(
0,Σ∗ε

)
(8)

whereas the state equation can be rewritten as

fxt =

ftηt
εt

 =

Φ 0 0

0 0 0

0 0 0


ft−1ηt−1

εt−1

+

I Ψ 0

0 1 0

0 0 1


η∗tηt
εt


with

η∗tηt
εt

 ∼ NID

0

0

0

 ,
Σ∗η 0 0

0 qt 0

0 0 ht




(9)

3.1.3 Restricted Economic Dynamic Factor Model (RFM)

In previous dynamic factor models, we consider the latent factors as unidentified components. However,

regarding the setup of DFM models in relation to the three-dimensional structure of the IVS, it is a

common thought to give these factors certain interpretations. In particular, in related literature it is

widely used to consider the latent factors as representations of the volatility smile and the slope of the

volatility term structure. For example, Christoffersen et al. (2015) propose a framework that cross-

sectionally regresses implied volatility on moneyness and maturity dimensions in order to obtain level,

volatility smile and term structure components. This regression, frequently adopted by among others

Van der Wel et al. (2016), is given by

IVτi,mj ,t = lt + τict + mjst + εi,j,t (10)

where lt denotes the implied volatility level, ct denotes the volatility term structure effect and st

denotes the volatility smile. Related literature provides several alternatives to implement a restricted

dynamic factor model for the IVS, including additional factors for squared moneyness s2t and the inter-

action between moneyness and time-to-maturity ctst. However, for comparison reasons regarding both

the work of Van der Wel et al. (2016) and our general three-factor DFM model, we consider a basic

RFM model containing three factors to represent the level, term structure and volatility smile effects.

Hence, by stacking these variables into the latent state vector ft =
(
lt, ct, st

)′
, we are able to adopt this

regression into our general DFM setup. Therefore, we restrict the factor loading matrix from equation 2

by setting

Λt =



1 τ1,t m1,t

...
...

...

1 τT,t m1,t

1 τ1,t m2,t

...
...

...
...

...
...

1 τT,t mM,t


where Λt is specified time-varyingly by taking actual time-to-maturity values τi and moneyness mea-

sures ∆ of the selected contracts within all groups.8 For out-of-sample forecasting purposes in a later

8Due to its strong outperformance of the RFM setup with constant loading matrix in the research of Van der Wel et al.
(2016), we only consider the RFM model with time-varying loading matrix in this thesis.

14



stage, we simply consider current loading matrices in order to avoid complex forecasting procedures for

one-day-ahead loading matrices. Accordingly, we force the first factor to capture movements in the level

of the IVS by de-meaning second and third column on a daily basis. Hence, this enables us to allocate

the latent factors and interpret the dynamics of the IVS more specifically. Another main advantage

of this restricted economic dynamic factor model (RFM) is the relatively low number of parameters

to be estimated. By restricting the full loading matrix we obtain a deterministic matrix Λt, which

makes it able to eliminate up to 72 parameters in our general DFM setup. Hence, compared to previous

DFM(-GARCH) models this RFM model is expected to mitigate the natural problem of overfitting due

to numerous parameters. However, Van der Wel et al. (2016) report that in-sample this RFM model is

strongly outperformed by the general DFM model, motivating our choice of adding GARCH disturbances

to the general DFM model. Therefore, and to efficiently obtain a better understanding of our GARCH

extensions considering limited time, we only compare RFM model to the DFM-GARCH models in future

sections.

3.2 Other Benchmark Models for the Implied Volatility Surface

In this thesis, we focus on the IVS forecasting performances of general and extended dynamic factor

models. However, in order to properly analyze and compare their results, we select two additional

benchmark models for the IVS. First, we include a simple random walk (RW) model on the individual

implied volatilities, which is frequently used in related literature by among others Konstantinidi et al.

(2008) and Bernales and Guidolin (2014). In general, this model assumes that for each individual con-

tract today’s implied volatility is the best forecast of tomorrow’s implied volatility. Although this model

seems fairly naive, Harvey et al. (1992) state that discussions with practitioners reveal that the RW

model is widely used by traders in index option markets. Hence, we consider this as a useful standard

to compare our DFM-GARCH models with.

As a second benchmark for the IVS, we select a modified version of the two-step framework from

Goncalves and Guidolin (2006), where they first obtain the factors by cross-sectionally performing ordi-

nary least squares (OLS) and then model these factors using a vector-autoregression (VAR) model. In

detail, this comes down to a first step in which we use OLS to estimate a cross-sectional model for the

IVS on a daily basis, given by

yk = β0 + β1mk + β2τk + ek (11)

where we have that k = 1, ...,K, with k denoting a specific option of all K available contracts in each

daily cross-section. Again, mk and τ denote the maturity and moneyness (∆) measures of option k, and

e is the random error term. Meanwhile, we assemble the OLS coefficients into a vector of coefficients

β =
(
β0, β1, β2

)′
. By considering this three factor setup, we attempt to provide a proper benchmark

model for our likelihood-based dynamic factor models. As a second step, we then fit a VAR model to

the time series of OLS estimates β. Specifically, we set up a VAR model given by

βt = ν +

p∑
z=1

Θzβt−z + υt with υt ∼ NID(0,Ω) (12)

where Θz denotes the VAR loading matrix at lag z, and υ independently follows a normal distribution

with covariance matrix Ω. In order to realize appropriate comparability with our DFM(-GARCH) and

RFM models, we consider the lag length p to be fixed at 1. Except the two-step framework we consider

to estimate the model, this setup can be conceptually seen as an equivalent of the likelihood-based RFM

model introduced in section 3.1.3. Hence, this benchmark model is an alternative way to include factor

15



dynamics in the IVS and serves as proper comparison material for our DFM-GARCH setups.

3.3 Estimation Procedure

So far, comprehensive explanations of our basic and extended models are discussed. However, in order

to apply these models properly to forecast the dynamics of the IVS, a detailed outline of complementary

estimation procedures is required. Therefore, in this section we provide several methods to evaluate

the latent factors and to estimate the dynamic factor models efficiently. In particular, we describe our

estimation approach consisting of Kalman filtering and maximum likelihood estimation. In addition, we

implement the collapsed approach of Jungbacker and Koopman (2014) in order to improve efficiency of

our estimation procedures. Finally, we clarify our setup further by explaining identification restrictions

and applied methods to obtain starting values for the parameters.

To begin with, we rewrite our DFM and DFM-GARCH models from equations 2 and 4 into general

state space form, given by

yt = Zft + εt εt ∼ N(0, H)

ft = d+ Tft−1 + ηt ηt ∼ N(0, Q)
(13)

where Z represents loading matrix Λ from the general DFM model in equation 2. Likewise, in our

DFM-GARCH models Z represents the combined loading matrix [Λ 0 Γ] from equation 4. For both

cases, T represents transition matrix Φ, H and Q are covariance matrices Σε and Ση, and d is defined as

d = (I−Φ)µ. This state space model is estimated by applying a Kalman filter, which is a recursive formula

running forwards through time in order to estimate latent factors from past observations. By adopting

the Kalman filtering framework of Durbin and Koopman (2012), we define the vector of all observations

up to time s as Ys = {y1, ..., ys} and initial state distribution f1 ∼ N (a1, P1). Then, subsequent means

and variances of the latent factors are defined by at+1 = E(ft+1|Yt) and Pt+1 = Var(ft+1|Yt). Hence, the

optimal filtered estimates at|t and Pt|t and optimal predicted estimates at+1 and Pt+1 can be achieved

by following the recursive Kalman filtering procedure, given by

vt = yt − Zat Ft = ZPtZ
′ +H

at|t = at + PtZ
′F−1t vt Pt|t = Pt − PtZ ′F−1t ZPt

at+1 = Tat|t + d Pt+1 = TPt|tT
′ +Q

(14)

where the Kalman Gain is defined as Kt = TPtZ
′F−1t . Because of the inclusion of prediction error

decomposition, we are also capable to evaluate corresponding log-likelihood function simultaneously.

Hence, if we define the data vector y = (y′1, ..., y
′
T ), the log-likelihood function `(y|ψ) for the Gaussian

density can be evaluated by

`(y|ψ) = −NT
2
log2π − 1

2

T∑
t=1

log|Ft| −
1

2

T∑
t=1

v′tF
−1
t vt (15)

where N is the dimension of yt, T is the length of the sample, and the definitions of Ft and vt are

provided within the Kalman filtering recursion in equation 14. By maximizing this log-likelihood func-

tion using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm of Battiti and Masulli (1990), our

procedure results in optimal estimates for all unknown parameters ψ. As a typical quasi-Newton method,

this BFGS maximum likelihood method solves our nonlinear optimization problems by considering three

stopping criteria. Besides reaching the maximum number of iterations, the optimizer stops when either

the decrease of the objective function or the norm of the projected gradient becomes marginal.
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Initially, we evaluate our dynamic factor models by performing the standard Kalman filtering algo-

rithm of Koopman and Durbin (2000). However, Jungbacker and Koopman (2014) state that in many

existing DFM applications, high-dimensional panels of time series and resulting large numbers of param-

eters make such an approach infeasible. In particular, within our dynamic factor models consisting of

24 groups, the initial filtering approach requires to invert the (24×24) matrix Ft for the log-likelihood

evaluation in equation 15. Hence, in addition to the standard Kalman filtering approach we implement

the collapsed filtering approach, recently developed by Jungbacker and Koopman (2014). By splitting

our time series into a low-dimensional vector series and a high-dimensional vector series, the number of

dimensions in the log-likelihood function diminishes and we manage to improve computational efficiency

sufficiently. More specifically, we start with carrying out signal extraction for ft in two steps. First, we

cross-sectionally project observation vector yt onto the latent factors by defining

f̂t = (Z ′H−1Z)−1Z ′H−1yt (16)

Second, we use Kalman filtering methods in order to evaluate the low-dimensional model. After

defining C = (Z ′H−1Z)−1, this low-dimensional model can be presented by

f̂t = ft + ut ut ∼ NID(0, C) (17)

In this way, we are able to consider an updated log-likelihood function belonging to the collapsed

filtering approach, given by

`(y|ψ) = c+ `(f̂ |ψ)− T

2
log
|H|
|C|
− 1

2

T∑
t=1

e′tH
−1et (18)

where c is a constant independent of both y and φ, et = yt − Zf̂t, and `(f̂ |ψ) is the log-likelihood of

the low-dimensional model from equation 16. Here, the inversion of H seems the only time-consuming

computation that is left. However, due to a diagonal structure inverting H is relatively straightforward.

In consequence, by adopting the collapsed filtering approach of Jungbacker and Koopman (2014), we

provide a convenient framework to efficiently estimate dynamic factor models for the IVS.

As stated in section 3.1.2, the three extended DFM-GARCH models can also be rewritten to general

state space forms by using equations 8 and 9. Hence, for the greater part their estimation procedures are

equivalent to the Kalman filtering approach of the general DFM model as discussed before. However,

the addition of GARCH disturbances and extra parameters requires to apply certain adjustments to

the estimation procedure. In particular, Harvey et al. (1992) argues that, although the models are

not conditionally Gaussian because knowledge of past observations does not imply knowledge of past

GARCH disturbances, we may treat the models as though they are conditionally Gaussian. For that

matter, in presence of GARCH effects the Kalman filter can be regarded as quasi-optimal filter instead

of optimal. Hence, the additional diagonal elements qt and ht in the covariance matrix of the state error

term from equation 9 can be filled in by conditional variance terms. Again, Harvey et al. (1992) provides

definitions of these conditional variance terms for both εt and ηt, given by

var
t−1

(εt) = α0 + α1

(
ε̂2t−1 + pεt−1

)
+ α2var

t−2
(εt−1) (19)

var
t−1

(ηt) = γ0 + γ1
(
η̂2t−1 + pηt−1

)
+ γ2var

t−2
(ηt−1) (20)

where pεt−1 and pεt−1 represent the conditional variances of εt−1 and ηt−1 , respectively. Hence, by ap-
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plying these calculations to a time-varying covariance matrix Qt in equation 13, we are able to estimate

our supposed conditionally Gaussian DFM-GARCH models appropriately. Besides, the collapsed ap-

proach is only effective for the GARCH extension where only the observation equation includes GARCH

disturbances. In case of GARCH disturbances within the state equation, the loading matrices Z do not

have full rank, resulting in a lack of impact from splitting the time series into a low-dimensional and a

high-dimensional series. Hence, in these cases we consider a basic univariate Kalman filtering approach.

Furthermore, our dynamic factor models require identification restrictions on their representations

matrices in order to enable proper estimation. Besides earlier restrictions on the factor loading matrix

from equation 3, we also impose identification restrictions on the covariance matrices of the error terms.

On the one hand, by forcing the covariance matrix of the observation residuals Σε to be diagonal, we

imply all cross-sectional co-movements to be attributed to the latent factors ft. On the other hand, we

follow Van der Wel et al. (2016) by estimating the parameters of the state residual covariance matrix

Ση with LDL-decomposition. Here, Ση is defined by LDL′ with L a (3×3) lower unit triangular and

D a (3×3) diagonal matrix, both containing three parameters to be estimated. Moreover, for both co-

variance matrices we force variances on the diagonals to be positive by taking exponentials before and

subsequently logarithms after running the BFGS optimizer. As discussed in section 3.1.2, we are deal-

ing with six additional α and γ parameters and 27 additional Γ and Ψ parameters in case of extended

GARCH disturbances. In order to enable their identification appropriately, we fix both α0 and γ0 equal

to 0.0001.

In addition, we provide insights on how to initialize starting values for the unknown parameters. We

start by setting up a three-step procedure for the general DFM parameters, involving Λ, Φ, µ, Σε and

Ση from equation 2. First, we again adopt the framework of Christoffersen et al. (2015) from equation

10 by regressing implied volatility on both moneyness and maturity dimensions. As a second step, by

using principal component analysis we extract latent factors from this regression. Third, we use these

principal components to perform OLS regression on the observation and state equations in order to

obtain starting values for all unknown DFM parameters. Supplementary, we rotate the loading matrix

Λ by means of corresponding restrictions given in equation 3. Next, we set up a comparable framework

for the additional GARCH loading parameters Γ and Ψ. Knowing that the GARCH terms Γεt + ε∗t and

Ψηt + η∗t from equation 4 can be regarded as individual volatility models, we are able to determine their

starting values in a same way. Specifically, we perform principal component analysis and OLS regression

directly on the estimated residuals instead of onto the implied volatilities. Hence, we manage to obtain

starting values for the additional loading matrices Γ and Ψ. For the remaining α and γ parameters we

adopt the constraints of Harvey et al. (1992), given by α1 + α2 < 1 and γ1 + γ2 < 1. As displayed in

equations 6 and 7, α1 and γ1 represent the conditional variances of εt−1 and ηt−1, whereas α2 and γ2

represent the lagged variances ht−1 and qt−1. Hence, given that these latter terms are more persistent,

we set the starting values of α1 and γ1 equal to 0.09 and the starting values of α2 and γ2 equal to

0.9. In consequence, we conduct a detailed framework on how to find starting values for the unknown

parameters in order to successfully initiate model estimations.
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4 Statistical Evaluation

In our attempt to find strong performing models to forecast the IVS, we introduced various dynamic

factor models with corresponding estimation procedures and benchmarks in section 3. In this section,

we evaluate these models statistically by investigating both their in-sample fit and out-of-sample fore-

casting performances. To begin with, we introduce two methods to test the significance of GARCH

effects in dynamic factor models by measuring autocorrelation and heteroskedasticity in the error terms

in section 4.1. Next, we provide definitions of several statistical measures for testing estimation and

forecasting performances in section 4.2. Subsequently, we evaluate both in-sample and out-of-sample

results extensively in section 4.3.

4.1 Measuring Significance of GARCH Effects

In this thesis, we attempt to find an improved specification of dynamic factor models on the IVS in

order to mitigate the problem of heteroskedasticity and autocorrelation in the error terms. In subsequent

sections, we introduce statistical methods to compare and benchmark the in-sample fit and out-of-sample

performances of those extended dynamic factor models. However, merely using these evaluation methods

will not provide us clear conclusions on whether potential improvements of our models are significantly

due to the presence of GARCH effects. Therefore, we introduce additional testing methods to measure

the significance of GARCH effects directly. Hence, although a GARCH model is originally designed

to correct for heteroskedasticity rather than for autocorrelation, we evaluate the impact of GARCH

disturbances on both aspects in order to fully explore potential of additional volatility disturbances to

dynamic factor models for the IVS. More specifically, we compare our dynamic factor models on the

levels of both autocorrelation and heteroskedasticity in the (squared) observation error terms.9

First, we test the significance of autocorrelations in the error terms of our dynamic factor models

by evaluating corresponding Ljung-Box statistics introduced by Ljung and Box (1978). These statistics,

closely connected to the Box-Pierce test from Box and Pierce (1970), assess the existence of GARCH

effects in our fitted models by examining whether the autocorrelations of the (squared) residuals are

different from zero. In case of testing for GARCH effects with using P autocorrelations, McLeod and Li

(1983) report that the Ljung-Box statistic has a chi-square distribution with P degrees of freedom χ2
(P )

under the null hypothesis of no GARCH effects. In our specific case with GARCH(1,1) disturbances, the

null hypothesis normally imposes Ho : α1 = α2 = γ1 = γ2 = 0. Inspired by the work of Harvey et al.

(1992), we select six autocorrelations (P = 6). Hence, the Ljung-Box statistic for the residuals Q(6) and

squared residuals Q2(6) are defined by

Q(6) = n
(
n+ 2

) 6∑
k=1

(ρ̂6)2

n− k
Q2(6) = n

(
n+ 2

) 6∑
k=1

(ρ̂∗6)2

n− k
(21)

where n is the sample size and ρ̂6 (ρ̂∗6) is the sample autocorrelation of the (squared) residuals at lag

six.

Likewise, we use the Breusch-Pagan Lagrange multiplier test introduced by Breusch and Pagan (1980)

to measure the significance of heteroskedasticity in the observation error terms of our dynamic factor

models. In general this method tests whether the variances of the (squared) error terms are dependent of

9In addition to our reported results involving GARCH effects in the observation equation, we also statistically test the
presence of GARCH effects in the state equation by means of Ljung-Box and Breusch-Pagan Lagrange multiplier statistics.
After performing these tests, we find similar results compared to the tests for GARCH effects in the observation equation.
For clarity purposes, we therefore leave the evaluation of GARCH effects in the state equation out of consideration.
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the latent factors. In case of dependency, heteroskedasticity is significantly present. Hence, we attempt

to find insights on whether the inclusion of GARCH disturbances in dynamic factor models at least

reduces this dependency. In detail, we start by regressing the residuals ε on the latent factors, given by

ε = β0 + β1f + v (22)

where v is the regression error term. Specifically, we test for homoscedasticity in ε which implies

that coefficient β1 is equal to zero. Following standard practice, the Lagrange multiplier statistics are

therefore calculated by multiplying the resulting coefficient of determination with sample size n, given

by

LM(ε) = nR2 (23)

In line with the Ljung-Box statistics, this test statistic again has a chi-square distribution with P

degrees of freedom χ2
(P ). In this case however, it holds that P = 3 due to the amount of three latent

factors within f . Similar to these definitions for residuals, we also perform the Breusch-Pagan Lagrange

multiplier test for squared residuals ε2 based on equations 22 and 23. By testing the (squared) residuals

of our main dynamic factor models, we attempt to find statistical insights on whether including GARCH

disturbances mitigates the problem of heteroskedasticity and autocorrelation in the residuals of dynamic

factor models.

4.1.1 Evaluation GARCH Effects Statistics

In this section, we evaluate whether the inclusion of GARCH disturbances can mitigate the problem of

autocorrelation and heteroskedasticity in the residuals of dynamic factor models for the IVS. In partic-

ular, we analyze Ljung-Box statistics in order to examine autocorrelation in the (squared) residuals of

the observation equation, whereas heteroskedasticity in these (squared) residuals is tested by analyzing

Breusch-Pagan Lagrange multiplier statistics as introduced in previous section. Table 2 reports corre-

sponding summary statistics of the average test statistics over all IVS groups.10 A full overview of the

statistics per IVS group is provided in the appendix in tables 14 and 15. In general, we find extremely

high statistics for all models and tests. In addition, nearly all individual IVS groups show significant

statistics for both autocorrelation and heteroskedasticity in the (squared) residuals. On average, the low-

est Ljung-Box and Breusch-Pagan statistics are even above 2, 527 and 174, respectively. Therefore, all

average test statistics for autocorrelation and heteroskedasticity in the (squared) residuals are significant

at a 1% significance level. Nonetheless, we observe several differences between our dynamic factor models.

Although we observe similar results for the DFM-GARCH setup involving GARCH disturbances in the

state equation, the table also shows slight improvements in both setups involving GARCH disturbances

in the observation equation. For example, the average Ljung-Box statistic for squared residuals for the

general DFM model is 3,276, whereas the two DFM-GARCH setups show sufficiently lower statistics be-

low 2,553. Likewise, corresponding Breusch-Pagan Lagrange multiplier statistics for the DFM-GARCH

setups are below 186, in comparison to 204 for the general DFM model. Hence, our DFM-GARCH

extensions seems to be more or less effective to correct for both autocorrelation and heteroskedastic-

ity in the error terms, even though GARCH disturbances are naturally more appropriate to correct

for heteroskedasticity rather than for autocorrelation. In conclusion, although we are not able to solve

the problem of a poor fit in the corner groups of the IVS entirely, we do find that including GARCH

disturbances in the observation equation of dynamic factor models can mitigate this problem. More

specifically, including GARCH disturbances proves to correct for heteroskedasticity and autocorrelation

10This table reports statistics for testing GARCH effects in the observation equation. Testing for GARCH effects in the
state equation results in similar findings.
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in the error terms of dynamic factor models to some extent. Hence, these results might indicate that our

GARCH extensions improve the fit of dynamic factor models, potentially resulting in improvements for

practitioners when forecasting the IVS based on dynamic factor models in option pricing or risk exposure

applications. In order to explore potential improvements of the inclusion of GARCH disturbances more

extensively, we evaluate the in-sample fit of our extended dynamic factor models in section 4.3.2.

Table 2: Significance of GARCH Effects

Autocorrelation Heteroskedasticity
Ljung-Box Breusch-Pagan

Q(6) Q2(6) LM(ε) LM(ε2)

DFM-GARCH
Observation 4,437 (24/24) 2,553 (23/24) 743 (24/24) 186 (23/24)

State 5,241 (24/24) 3,295 (24/24) 753 (24/24) 208 (23/24)
Obs+State 4,407 (24/24) 2,527 (24/24) 740 (24/24) 174 (23/24)

Benchmarks
DFM 5,279 (24/24) 3,276 (24/24) 746 (24/24) 204 (23/24)
RFM 5,813 (24/24) 3,963 (24/24) 1,117 (24/24) 331 (23/24)

Notes: This table provides summary statistics regarding the significance of additional GARCH disturbances in the
observation equation of the general dynamic factor model. For this purpose, we compare presence of autocorrelation
and heteroskedasticity in the observation error terms of our main dynamic factor models. In particular, we provide
significance tests of autocorrelation in the residuals

(
Q(6)

)
and squared residuals

(
Q2(6)

)
using Ljung-Box statistics.

Likewise, we provide significance tests of heteroskedasticity in the residuals
(
LM(ε)

)
and squared residuals

(
LM(ε2)

)
using Breusch-Pagan Lagrange multiplier statistics. For clarity purposes, we combine the total set of IVS groups by
taking average statistics. The number of individual IVS groups that show significant test statistics using an α = 1%
level are reported in parentheses. Full documentation of autocorrelation and heteroskedasticity statistics can be found
in the appendix in tables 14 and 15.

4.2 Statistical Measures of Predictability

Following related literature like among others Chalamandaris and Tsekrekos (2010) and Bernales and

Guidolin (2014), we provide several methods to evaluate statistical performances of our dynamic factor

models. For this purpose, we consider the full sample period running from January 2002 until August

2015. First, we evaluate in-sample fit by analyzing the factor dynamics and whether the GARCH

coefficients show persistence. Next, we compare the performances of our dynamic factor models by

means of their maximized log-likelihood values and correlated likelihood-ratio (LR) tests. Further, in

order to verify our findings, we also report Akaike (AIC) and Bayesian (BIC) information criteria.

Furthermore, we perform a recursive back-testing exercise in order to evaluate the out-of-sample

forecasting performances systematically. If these forecasts turn out to be accurate, our dynamic factor

models can have a positive impact on risk and portfolio management decisions. We set up our forecasting

evaluation by initializing a rolling window of 1,000 days, resulting in an estimation time span of almost

four years. Then, we recursively estimate our models on a daily basis by imposing forecast horizon h = 1.

This choice is motivated by the findings of among others Goncalves and Guidolin (2006), who conclude

that larger forecast horizons result in similar IVS outcomes compared to one-day-ahead predictions.

Hence, for all our models we recursively compute one-day-ahead predictions of implied volatility from

day 1,001 (December 2005) until the end of the sample period (August 2015).

In addition, we set up three measures to evaluate both in-sample and out-of-sample fit of the models

of interest. Following standard practice, we define RMSE, adjusted R2 and MCP as follows.
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RMSE The root mean squared error is defined as the square root of the mean squared deviations from

the model’s predicted implied volatilities ŷt compared to the actual observed implied volatilities

yt. This measure can be used both in-sample and out-of-sample and is given by

RMSEτi,mj =

√√√√ 1

T

T∑
t=1

(ŷτi,mj ,t − yτi,mj ,t)2 (24)

Adjusted R2 The adjusted R2, also referred to as adjusted coefficient of determination, is defined as a

measure for the fit of a model adjusted for its number of variables. This measure can be obtained

by performing a univariate regression of the actual implied volatilities yt on the model’s predicted

implied volatilities ŷt. In detail, the adjusted R2 can be calculated by

R̄2 = 1− SSres/dfe
SStot/dfy

(25)

where SSres and SStot represent the residual and total sum of squares, respectively. The degrees

of freedom of the residuals variances and dependent variable variances are referred to as dfe and

dfy.

MCP The mean correct prediction of direction of change in implied volatilities is defined as the per-

centage of the IVS for which the model correctly predicts the sign of change in implied volatility h

days ahead. An analytical formulation is given by

MCPτi,mj =
1

T

T∑
t=1

1sign[ŷτi,mj,t+h−yτi,mj,t]=sign[yτi,mj,t+h−yτi,mj,t] (26)

For our in-sample evaluation purposes we consider RMSE and adjusted R2 measures, whereas for

out-of-sample forecasting evaluation purposes we consider the RMSE and MCP measures. Although

we base our in-sample evaluation on the virtually constructed cross-sectional IVS, we generate out-of-

sample forecasts for all available individual options. These forecasts of individual option contracts are

most relevant for practitioners, as they implement implied volatility forecasts into their decision making

by focusing on individual options rather than the entire IVS. The one-day-ahead forecasts of individual

option contracts are obtained by interpolating the implied volatility forecasts of the entire surface on a

daily basis. More specifically, we start our interpolation procedure by considering the implied volatility

forecasts of the 24 selected option contracts. On each day, we then construct a two-dimensional grid of

IVS forecasts based on the moneyness and maturity dimensions of these selected contracts, following a

similar (6×4) framework as the construction of the IVS from section 2.2. Thereafter, by using actual ∆

and time-to-maturity values of the individual option contracts, we interpolate all option contracts over

these grids in order to determine their one-day-ahead implied volatility forecasts. Moreover, we further

utilize MCP statistics in order to economically evaluate the IVS models in section 5.

4.3 Statistical Evaluation Results

In section 4.2 we discussed several ways to evaluate the in-sample fit and out-of-sample forecasting

performances of the dynamic factor models and their benchmarks. Hence, we report the results of these

methods extensively for both in-sample estimates and out-of-sample forecasts in the following sections.
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4.3.1 Estimation Results

First of all, we analyze the in-sample estimation process by reporting the (first) three estimated dynamic

factors of our five main likelihood-based dynamic factor models in figure 5. As expected, these models

clearly follow a similar structure for their latent factors due to a consistent basic setup. More specifically,

our inclusion of GARCH disturbances to the general DFM model only affects its ultimate results while

leaving the conditional mean unchanged. Hence, out DFM-GARCH setups can be simply considered as

extended versions of the general DFM model. In contrast, the RFM model already captures the level,

term structure and smile dynamics to its factors. Similarities between all first factors suggest that the

level of the IVS indeed explains the major part of the co-movements in the IVS. However, the figure

shows different scales for particularly the second and third factor of the RFM model compared to the

unrestricted models. Apparently, the remaining two latent factors of the unrestricted models do not

fully correspond with the economically plausible smile and term structure effects of the RFM model. To

examine this more extensively, we provide the estimated loading matrix of the general DFM model in

table 13 in the appendix. In case of factors that fully resemble the volatility smile and term structure

effects, we would expect the loadings to display corresponding patterns. However, the estimated loadings

for the second and third factor in table 13 show inconsistent patterns across moneyness and maturity

dimensions. Therefore, this table confirms that the volatility smile and term structure effects are not

fully explained by the two latent factors of our DFM(-GARCH) setups. Moreover, the structures of the

estimated dynamic factors of our unrestricted dynamic factor models show similar patterns, whereas the

economically plausible RFM model shows reasonable differences for particularly second and third factors.

These relationships between the models are confirmed by estimates of the factor dynamics, provided

in table 3. The diagonal elements of the factor transition matrix Φ are close to one, signifying that

the (first) three dynamic factors are highly persistent. This persistence indicates potential danger of

non-stationary latent factors. Dealing with similar signs of persistent factors, Van der Wel et al. (2016)

already check robustness of their dynamic factor models by imposing a random walk for (one of) the

three latent factors. On the one hand, they report evidence of rejected random walk restrictions on the

factor dynamics by means of LR-tests, indicating the value of modeling the factors following an unre-

stricted first-order autoregressive specification. But on the other hand, they show strong similarities in

VAR-coefficients and covariance matrices across all cases, signaling that the latent factors are at least

close to being non-stationary. Hence, studying non-stationary dynamic factor models for the IVS would

be an interesting alternative practice for further research. Meanwhile, we observe off-diagonal elements

closer to zero than the diagonal elements. In addition, the table shows remarkable differences between

the basic DFM/RFM setups and our extended DFM-GARCH setups. In particular, some of the off-

diagonal transition elements within the DFM-GARCH setups are relatively high in absolute terms. This

can be explained by the adjusted model setup in equation 9, where in state space form the state equa-

tion exhibits additional dynamics from the extra GARCH factors. Considering the estimated covariance

matrices of the state error terms η, we also observe notable differences. As comparable basic dynamic

factor model setups, the DFM and RFM models show similar scales and patterns in their covariance

matrices. In contrast, all DFM-GARCH setups show some deviations due to the inclusion of additional

GARCH disturbances. Particularly, we find a strong relation between the covariance matrices of both

setups in which we added GARCH disturbances in the state equation. Including GARCH disturbances in

only the observation equation results in different deviations compared to the benchmark models. These

differences between our basic and DFM-GARCH setups are also visible in the state equation intercepts

µ, where we observe minor differences in magnitude and proportions.
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Figure 5: Estimated Dynamic Factors
Notes: These figures show the (first) three dynamic factors of our main dynamic factor models, estimated using
cross-sectional implied volatility data of S&P 500 index options over the full sample period from January 2002 until
August 2015. Specifically, we report the first three latent factors of the extended DFM-GARCH models and the general
DFM model. Besides, we provide the specified level, term structure and smile factors of the RFM model.
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Table 3: Factor Dynamics

Panel A: DFM-GARCH - Observation

Φ Σ∗η (×10−4)

µ f1,t−1 f2,t−1 f3,t−1 f1,t f2,t f3,t

f1,t 0.109 1.041 0.180 -0.351 1.602 -0.545 0.006
f2,t 0.012 -0.022 0.909 0.168 -0.545 0.192 0.000
f3,t 0.018 -0.001 -0.005 1.003 0.006 0.000 0.002

Panel B: DFM-GARCH - State

Φ Σ∗η (×10−4)

µ f1,t−1 f2,t−1 f3,t−1 f1,t f2,t f3,t

f1,t 0.098 1.032 0.138 -0.408 0.298 -0.087 0.022
f2,t 0.012 -0.020 0.921 0.202 -0.087 0.032 -0.005
f3,t 0.013 0.000 -0.003 0.996 0.022 -0.005 0.002

Panel C: DFM-GARCH - Observation+State

Φ Σ∗η (×10−4)

µ f1,t−1 f2,t−1 f3,t−1 f1,t f2,t f3,t

f1,t 0.140 1.003 0.019 -0.242 0.254 -0.106 0.026
f2,t 0.013 -0.007 0.977 0.168 -0.106 0.060 -0.012
f3,t 0.006 0.001 0.002 0.972 0.026 -0.012 0.003

Panel D: General DFM

Φ Ση (×10−4)

µ f1,t−1 f2,t−1 f3,t−1 f1,t f2,t f3,t

f1,t 0.187 0.998 0.033 -0.042 1.087 -0.469 0.051
f2,t 0.005 -0.004 0.967 0.075 -0.469 0.219 -0.022
f3,t 0.008 0.000 0.001 0.983 0.051 -0.022 0.003

Panel E: RFM

Φ Ση (×10−4)

µ f1,t−1 f2,t−1 f3,t−1 f1,t f2,t f3,t

f1,t 0.184 0.997 0.031 -0.035 1.140 -0.513 0.070
f2,t 0.004 -0.003 0.965 0.065 -0.513 0.254 -0.034
f3,t 0.006 0.000 0.002 0.981 0.070 -0.034 0.007

Notes: This table provides estimated values of the factor dynamics of all our main dynamic factor models. Panels A-C
provide factor dynamics of the extended DFM-GARCH models, whereas Panels D and E show estimated values of the
factor dynamics for the general DFM and RFM models. For each model, we report the intercept of the state equation µ,
the VAR coefficient matrix Φ, and the covariance matrix of the state residual Σeta. For clarity purposes, we only report
the upper left (3 × 3) parts of Φ and Ση in case of extended DFM-GARCH models.
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So far, we considered the (first) three estimated dynamic factors. By zooming in on our extended

DFM-GARCH setups, we provide additional time series of the GARCH factors in figure 6. For all three

setups, we plot the observation GARCH factor ε and/or the state GARCH factor η. As expected, the

extra factors from models in which GARCH disturbances are imposed in only one of the two state space

equations follow similar patterns as the factors in the combined setup. Moreover, we observe highest

deviations in the time series of η, with estimates varying between -0.5 and 2. Especially around the

financial crisis in 2008 the observation GARCH factor reacts strongly. Meanwhile, ε shows relatively

less varying estimates between -0.2 and 0.8 over the full sample period. In addition, we provide further

insights on the estimation process of our DFM-GARCH models by showing time series of the additional

GARCH variances ht and qt in figure 7. In general, we observe relatively fluctuating patterns in qt, which

is the additional variance term in case of including GARCH disturbances in the state equation. This time

series consists of several peaks, with a maximum value of around 0.8. In contrast, the variance involving

GARCH disturbances in the observation equation shows less fluctuation, with a maximum peak of below

0.2. Again, both variables show comparable patterns in case of including GARCH disturbances in only

equation compared to the combined setup.

In addition, table 4 provides the dynamics of these additional GARCH factors by reporting parameter

coefficients of associated α’s and γ’s. As discussed in section 3.3, the intercepts α0 and γ0 are fixed at

0.0001 in order to enable appropriate identification of the other parameters. These remaining parameters

are restricted based on the work of Harvey et al. (1992), implying α1 +α2 < 1 and γ1 +γ2 < 1. Based on

the table, we find optimally estimated GARCH factors with α1 + α2 and γ1 + γ2 very close to one in all

cases. In general, the coefficients of the latter parameters for the lagged GARCH terms are greater and

more significant than the coefficients of the squared scalar disturbance terms α1 and γ1. Particularly the

observation disturbances exhibit this pattern. In the meantime, the effects of the state disturbances are

closer related, with an even higher and significant coefficient for γ1 compared to γ2 in case of GARCH

disturbances in both equations.

Table 4: Dynamics of GARCH Disturbances

Observation Disturbances State Disturbances

α0 α1 α2 γ0 γ1 γ2

DFM-GARCH
Observation 0.0001 0.1434* 0.8399***

State 0.0001 0.2245* 0.7717*
Obs+State 0.0001 0.2262* 0.7718** 0.0001 0.5117* 0.4713

Notes: This table provides estimated values of the dynamics of the additional GARCH disturbance terms in case of
our extended DFM-GARCH models. Specifically, we report estimated parameter coefficients of additional GARCH
disturbances in the observation equation, referred to as α0, α1 and α2. Likewise, dynamics of GARCH disturbances
in the state equation are given by reporting estimates for γ0, γ1 and γ2. For identification purposes, α0 and γ0 are
fixed at 0.0001. Detailed definitions of all GARCH parameters are provided in section 3.1.2 in equations 6 and 7.
*/**/*** denotes statistically significant results at an α = 10%/5%/1% significance level.
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Figure 6: Estimated Latent Factors of GARCH Disturbances
Notes: These figures show the additional GARCH factors of our extended DFM-GARCH models, estimated using
cross-sectional implied volatility data of S&P 500 index options over the full sample period from January 2002 until
August 2015. Specifically, we report the latent factors of the GARCH disturbances within the observation equation (ε)
and/or state equation (η). The upper two figures display the DFM-GARCH models that only includes GARCH
disturbances in the observation or state equation, whereas the bottom figure provides the DFM-GARCH variant in which
GARCH disturbances are present in both state space equations.
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Figure 7: Estimated Variances of GARCH Components
Notes: These figures show the GARCH variances of our extended DFM-GARCH models, estimated using cross-sectional
implied volatility data of S&P 500 index options over the full sample period from January 2002 until August 2015.
Specifically, we report the variances of the GARCH components within the observation equation (ht) and/or state
equation (qt). The upper two figures display the DFM-GARCH models that only includes GARCH disturbances in the
observation or state equation, whereas the bottom figure provides the DFM-GARCH variant in which GARCH
disturbances are present in both state space equations.
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4.3.2 In-Sample Fit

After having analyzed the estimated dynamic factors extensively, we provide general results of the in-

sample estimation performances in this section. First, we document key statistics of the in-sample fit

of our main dynamic factor models in table 5. Here, the general DFM model is considered as baseline

model for the likelihood-ratio tests (LR-tests). This benchmark contains 102 parameters and reports

a log-likelihood of 288, 385.11 The restricted RFM model reports a sufficiently lower log-likelihood of

257, 416, even though this already concerns the best performing RFM variant from Van der Wel et al.

(2016) with time-varying loading matrix Λt. Although the RFM model contains only 42 parameters and

suffers less risk of overfitting, this model is even outperformed considerably on statistical measures like

AIC and BIC, which take the number of parameters into account. Evidently, the remaining co-movements

in the IVS that are not explained by the implied volatility level, do not fully match with the economically

plausible volatility smile and term structure effects as imposed by the RFM model. Hence, the DFM

model significantly outperforming the RFM model motivates our choice of adding GARCH disturbances

to the better performing general DFM model. In addition, these extended DFM-GARCH models even

show improvements compared to the general DFM model, with log-likelihoods varying from 289, 586 to

298, 894. On the one hand, the setup with GARCH disturbances included in the state equation only

shows a minor improvement in both log-likelihood and AIC/BIC. This model extension therefore suggest

little impact from its five extra parameters. On the other hand, the setups with GARCH disturbances in

either the observation equation or both equations show significantly improved log-likelihoods. Even with

taking all their extra parameters (128 and 133) into account, these models deliver best performances on

AIC and BIC criteria. In consequence, we can conclude that these summary statistics confirm the poten-

tial of our GARCH extensions to dynamic factor models. Moreover, including GARCH disturbances in

both state space equations appears to be best practice, but differences with the setup including GARCH

disturbances in the observation equation only are minimal. Hence, it seems useful to explore these rela-

tionships more extensively by evaluating other statistical measures.

Table 5: Comparing Dynamic Factor Models

Loglike LR-test AIC BIC # Params

DFM-GARCH
Observation dist. 296,261 -15,752 -592,241 -591,449 128

State dist. 289,586 -2,401 -578,978 -578,314 107
Obs+State dist. 298,894 -21,017 -597,571 -596,748 133

DFM General model 288,385 NA -576,542 -575,909 102

RFM Time-varying Λt 257,416 61,938 -514,724 -514,459 42

Notes: This table provides fundamental statistics regarding the fit of all key dynamic factor models, estimated
using cross-sectional S&P 500 implied volatility data over the full sample period January 2002 until August 2015.
First, statistics are provided for our extended DFM-GARCH models with additional GARCH disturbances incor-
porated in either the observation or state equations, and with GARCH disturbances included in both equations.
Next, statistics regarding the fit of the general dynamic factor model (DFM) and the restricted economic dynamic
factor model (RFM) with time-varying loading matrix Λt are given. For each model, we report log-likelihood
values (Loglike), statistics of a likelihood-ratio test relative to the general DFM (LR-test), Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC) and the number of parameters (# Params).

In particular, table 6 reports the in-sample fit of our main dynamic factor models and their bench-

marks in terms of RMSE and adjusted-R2. In comparison to the RFM model and additional random

11In order to guarantee solid comparisons to the research of Van der Wel et al. (2016), we test our general DFM model
on the distinctive data set they consider. Overall, we find similar results with a log-likelihood of 302, 132, confirming an
accurate adoption of their estimation framework.
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walk and two-step VAR benchmarks, the DFM(-GARCH) models show a considerably better fit on both

measures. Evidently, the likelihood-based dynamic factor models prove to be more efficient and valuable

in estimating the IVS accurately than the dynamic factor model benchmark estimated with a two-step

OLS approach. Besides, by comparing our extended setups with the baseline DFM model, we observe

similar trends as in table 5. Again, the variant in which only the state equation is adjusted shows

minimal differences with the general DFM. In addition, the setups in which GARCH disturbances are

included in the observation equation show substantial improvements once more. For example, RMSE

has been reduced from 0.92 to 0.83 or 0.84, whereas the coefficient of determination is 0.003 higher in

both DFM-GARCH cases involving GARCH disturbances in the observation equation. Hence, we can

conclude that in general our DFM-GARCH setups again show accurate in-sample fits compared to their

benchmarks.

Table 6: In-Sample Fit

RMSE (×10−2) Adjusted-R2

DFM-GARCH
Observation 0.83 0.987

State 0.92 0.985
Obs+State 0.84 0.987

Benchmarks

DFM 0.92 0.984
RFM 1.35 0.967

2-step VAR 1.48 0.959
RW 1.41 0.964

Notes: This table provides statistics regarding the in-sample fit of our DFM-
GARCH models relative to their benchmark models. Specifically, we report aver-
age root mean squared errors (RMSE) and adjusted-R2. In addition to our main
dynamic factor models, we provide in-sample fit statistics for the random walk
(RW) and the two-step vector-autoregressive (2-step VAR) benchmark models.

Previously analyzed tables provide general information on the average in-sample fit. However, in

order to gain further insights on the dynamics of the IVS, we provide additional analyses of statistical

measures applied to individual IVS groups. For example, figure 8 displays the in-sample RMSEs per IVS

group in both absolute (left figures) and percentage (right figures) terms. In general, we observe minor

differences between the DFM-GARCH setups and their general DFM benchmark. On the contrary, the

restricted RFM model generally performs worse than the unrestricted setups, in particular within the

two corner groups DOTM-Put with 10-45 days and DOTM-Call with 180-360 days. Hence, this con-

firms that the outperformance of the restricted model by the DFM setups is based on the entire surface.

Overall, both the general DFM model and extended DFM-GARCH models show slightly convex curved

RMSEs, whereas likewise the levels of the curves for shortest and longest maturities are slightly higher

than the curves of centered maturity groups. Based on these results, one could argue that in general

all dynamic factor models have most troubles with estimating corner groups of the IVS. This can be

explained by the fact that contracts in corner groups of the IVS are less liquid and exhibit more erratic

trading patterns than option contracts in center groups. Furthermore, we spot an additional remarkable

pattern in the call option groups with shortest maturities. In particular, both DFM-GARCH setups

involving GARCH disturbances in the observation equation score extremely low RMSEs within these

IVS groups in comparison to the other DFM(-GARCH) setups. Hence, in specific groups on the edge

of the surface, the DFM-GARCH setups with GARCH disturbances in the observation equation and in

both equations show a better fit. In combination with similar RMSEs in nearly all other IVS groups, we
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Figure 8: In-Sample Root Mean Squared (Percentage) Errors
Notes: These figures show the absolute and proportional in-sample fitting errors per IVS group of our main dynamic
factor models. Specifically, the left figures display the absolute in-sample root mean squared errors (RMSE), whereas the
right figures display corresponding fitting errors in terms of percentage. For all four maturity categories (from top to
bottom), the fitting errors are plotted along the six moneyness categories.
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therefore can conclude that the better average in-sample fit of these two models in tables 5 and 6 are

mainly caused by a better fit in the call option IVS groups with shortest maturities. In consequence, this

might indicate the first signals of improvements in the fit of the corner groups of the IVS after including

GARCH disturbances in dynamic factor models.

In an attempt to find further confirmation of the relevance of our GARCH extensions to dynamic

factor models, we compare time series plots of the fit of our main dynamic factor models. First, in line

with Van der Wel et al. (2016) we plot general DFM fits from six of the 24 IVS groups in figure 9, where

we provide time series of both the actual and fitted implied volatilities and corresponding residuals for

two center groups and four corner groups. By analyzing the upper two subfigures, we can verify an

accurate fit of the general DFM model in center IVS groups. However, the other four plots confirm

the warnings of Van der Wel et al. (2016) that the DFM fits of corner IVS groups are problematically

worse. In particular, we observe observation residuals that do not look like merely white noise, with

sufficient peaks and volatility clustering.12 However, previously reported findings might indicate that

these deviations from white noise processes can be partly mitigated by including GARCH disturbances.

Figure 9: Fit of General Dynamic Factor Model (DFM)
Notes: These figures show the fit of the IVS estimated with the general dynamic factor model (DFM). In particular, we
display time series of the actual implied volatilities, the fitted implied volatilities and corresponding residuals. In total,
we document six different IVS groups. The upper two figures present two groups in the center of the IVS, whereas in the
bottom four figures plots of the corner groups of the IVS are provided.

To examine whether these potential improvements are valid, we plot fits of a specific corner group for

each of the four main dynamic factor models in figure 10. By considering the plots of the DFM-GARCH

models, we still observe residuals that do not seem to behave like white noise. However, in comparison

to the general DFM plot we observe slight improvements. The residuals of particularly the extended

12In addition to the residuals of the observation equation, we also checked time series of the residuals in the state equation
and find that these residuals do not look like white noise as well. These analyses are left out of consideration and are
available upon request.
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Figure 10: Comparing Fit of Corner IVS Group (DOTM-Call, 10-45 days)
Notes: These figures compare the fit of a specific corner group of the IVS (DOTM-Call, 10-45 days) estimated with four
of our main dynamic factor models. In particular, we provide the fit of the IVS estimated with our three DFM-GARCH
extensions relative to the fit of the IVS based on the general DFM model. The figures present time series of the actual
implied volatilities, the fitted implied volatilities and corresponding residuals.

models involving GARCH disturbances in the observation equation show a more constant pattern and

less volatility clustering. For other corner groups provided in the appendix in figures 16 to 18, we find

similar but less convincing patterns. Full reports of the fit of all extended and restricted models can also

be found in the appendix in figures 21 to 24. Hence, we again find indications that including GARCH

disturbances in the observation equation of dynamic factor models can mitigate the problem of a weaker

fit in corner groups of the IVS.

4.3.3 Out-of-Sample Forecasting Performance

In section 4.3.2 we already discussed that in-sample our DFM-GARCH setups including GARCH distur-

bances in the observation equation show an improved fit compared to their benchmarks. However, we

are curious to find further insights on whether these models have predicting value in an out-of-sample

setting based on individual option forecasts, which are more relevant for practitioners compared to de-

limited forecasts of the constructed IVS. In particular, it is interesting to explore whether the additional

GARCH parameters cause overfitting issues in the dynamic factor models, possibly causing decreases in

forecasting performances. In order to analyze the nature of the forecasting abilities of our DFM-GARCH

models, we therefore report out-of-sample forecasting performances in table 7. Here, we explore one-day-

ahead forecasts for individual options running from December 2005 until August 2015 by considering

a moving window of 1, 000 observations, which comes down to a time span of approximately 4 years.

Specifically, we report corresponding average RMSE and MCP statistics for our DFM-GARCH setups

and their benchmarks. In order to assess whether these differences in forecasting performances are sta-

tistically significant, we additionally perform the equal predictive ability test proposed by Diebold and

Mariano (2002). In particular, we compare the one-day-ahead forecasting performances of the general

DFM model compared to the other dynamic factor and benchmark models. For this purpose, we adopt
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the heteroskedasticity and autocorrelation consistent variance estimator from Newey and West (1986).

Inspired by among others Goncalves and Guidolin (2006), we consider performance indicators for both

statistical evaluation measures. More specifically, for testing the differences in RMSE statistics we com-

pare squared forecast errors of the general DFM model with the squared forecast errors of the other

models. Similarly, for testing the MCP significances we consider the differences in correctly predicted

directions of change as described in section 4.2. As null hypotheses, we assume the RMSE and MCP

statistics of the compared models to be equal. Overall, the general DFM model outperforms all other

models significantly on the RMSE measure with a 1% confidence interval. More specifically, the general

DFM model has the lowest out-of-sample RMSE of 0.0481, whereas it scores the highest MCP of 54.11%.

In comparison, all DFM-GARCH setups only predict the direction of change in implied volatility cor-

rectly for around 53% of the cases, from which only the MCP of the setup with GARCH disturbances

in both equations is significantly different from the general DFM model. In addition, corresponding

RMSEs are significantly higher than the general DFM model, with values ranging from 0.0605 to 0.0652.

Still, these extended DFM-GARCH setups fairly outperform the restricted RFM model. Although all

other likelihood-based dynamic factor models show better performances than the additional benchmark

models, the RFM model is even outperformed by the random walk model (RMSE) and the two-step VAR

model (MCP). Hence, in line with our in-sample findings the RFM model is less suitable for predicting

the IVS compared to general DFM(-GARCH) models.

Table 7: Out-of-Sample Forecasting Performance

RMSE MCP

Value (×10−2) DM Value (%) DM

DFM-GARCH
Observation 6.45 -4.65*** 53.26 1.02

State 6.05 -3.92*** 53.10 1.16
Obs+State 6.52 -4.81*** 52.69 1.59*

Benchmarks

DFM 4.81 NA 54.11 NA
RFM 9.02 -17.78*** 51.39 3.47***

2-step VAR 9.28 -18.32*** 51.84 2.81***
RW 7.72 -12.63*** NA NA

Notes: This table provides statistics regarding the out-of-sample forecasting performance of our DFM-GARCH
models relative to their benchmark models for our full out-of-sample period from December 2005 until August 2015.
Specifically, we report average root mean squared errors (RMSE) and mean correct predicted directions of change
(MCP) for forecast horizon h = 1, including corresponding Diebold-Mariano (DM) statistics. In addition to our
main dynamic factor models, we provide out-of-sample forecasting performance statistics for the random walk (RW)
and the two-step vector-autoregressive (2-step VAR) benchmark models. In particular, */**/*** denotes statistically
significant Diebold-Mariano results at an α = 10%/5%/1% significance level.

By comparing the three DFM-GARCH setups to each other, we observe different patterns compared

to in-sample estimation. On the one hand, including GARCH disturbances in both equations scores

the highest RMSE, whereas GARCH disturbances in only the state equation even performs better than

the observation equation variant in terms of RMSE. On the other hand, based on the MCP statistics

we observe a distinctive pattern. Here, the observation equation variant performs best, whereas the

model with GARCH disturbances in both equations show lowest MCP of our extended setups. However,

these differences in MCP are relatively small, especially between the state equation and observation

equation variants. The conflicting patterns between those two setups in terms of RMSE and MCP can

be explained by the fact that, although it predicts the direction of change correctly more often, the
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Figure 11: Out-of-Sample Root Mean Squared (Percentage) Errors
Notes: These figures show the absolute and proportional out-of-sample forecasting errors per IVS group of our main
dynamic factor models for our full out-of-sample period from December 2005 until August 2015. Specifically, the left
figures display the absolute out-of-sample root mean squared errors (RMSE), whereas the right figures display
corresponding forecasting errors in terms of percentage. For all four maturity categories (from top to bottom), the
forecasting errors are plotted along the six moneyness categories.
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predictions of the observation equation variant are more volatile or more excessive when the direction

of change is predicted incorrectly. In an attempt to find most profitable trading strategies in section 5,

the MCP statistics are considered to be more relevant for our purposes. Overall, these findings indicate

that including GARCH disturbances in only the observation equation slightly outperforms the other

DFM-GARCH setups economically. However, in a plain out-of-sample setting these extended models are

in general still outperformed significantly by the general DFM model.

Similar to our in-sample evaluation procedure, we proceed with performance evaluation per group in

an attempt to gain further insights on the predictability of the entire IVS. Specifically, figure 11 displays

the RMSE in absolute (left subfigures) and percentage (right subfigures) terms for all IVS groups. In

general, we again observe a trend that center groups perform better than groups in the corner of the

IVS, both in terms of absolute and percentage RMSEs. More specifically, we observe higher RMSEs in

groups with maturities 10-45 days and 180-360 days, whereas within each subfigure we detect convex

arches. In nearly all IVS groups the general DFM model shows lowest RMSEs, followed by a relatively

good fitting DFM-GARCH setup involving GARCH disturbances in the state equation. The remaining

DFM-GARCH setups perform worse, especially in case of DOTM-Call options. Once more, we find worst

results for the RFM model, confirming that the remaining co-movements in the IVS do not fully match

with the economically plausible volatility smile and term structure effects as imposed by the RFM model.

So far, we analyzed forecasting performances by considering average statistics and statistics per IVS

group over the full out-of-sample period. However, to gain more insights on whether our models have

predicting value in real life, it seems useful to evaluate performances dynamically by plotting the sta-

tistical measures over time. Therefore, figure 12 displays time series of RMSE and MCP statistics for

our main likelihood-based dynamic factor models, using a one-year moving window consisting of 252

observations. By analyzing the plots, we find multiple remarkable things standing out. First, the rel-

atively weak performances of the RFM model are not valid over the full time period. In particular,

during the worldwide financial crisis in 2008 the RMSE of this model grows strongly compared to the

other models. At the same time, the bottom figure displays great improvements in terms of MCP, from

around 48% by mid-2007 to above 56% by mid-2008. Afterwards, the performances worsen again with

negative peaks around relatively calm periods like 2013-2015. On the contrary, the general DFM model

and all DFM-GARCH setups show reversed patterns. In detail, during the financial crisis we observe

worst performances in terms of RMSE, whereas these performances show improvements after 2012. In

contrast, the MCP statistics of these DFM(-GARCH) models show a weaker relationship with the state

of the global economy. However, the figures do show some overlap between maximum RMSE peaks

and minimum MCP peaks. Compared to each other, the four DFM(-GARCH) models exhibit notable

differences. For example, in terms of MCP these models alternate over time in being the best performing

model. The DFM-GARCH setup involving an adjusted state equation only show highest MCP in 2008

and lowest MCP in 2012/2013, whereas including GARCH disturbances in both equations causes com-

pletely reversed results. Hence, except for the dynamical performance of the RFM model these results

do barely point out additional insights on differences between our DFM-GARCH setups and the general

DFM model. Therefore, practitioners have a lack of preference between the unrestricted dynamic factor

models when they attempt to gain information on expected market volatility by using implied volatility

forecasts. Given that these relative accuracy and performance measures of our DFM(-GARCH) models

vary over time, it might be of interest to construct forecast combinations in order to improve overall

forecasting performances of dynamic factor models. However, these forecast combinations are beyond

the scope of this thesis and can be relevant for further research.
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Figure 12: Dynamic Out-of-Sample Forecasting Performance
Notes: These figures show the dynamic out-of-sample forecasting performances over time for our main dynamic factor
models. In particular, the upper figure plots the average root mean squared error (RMSE) and the bottom figure plots
the mean correct predicted direction of change (MCP), using a one-year moving window consisting of 252 observations.

Currently, we focus on forecast horizons equal to h = 1 day. However, to gain a better understanding

of predicting value of dynamic factor models, we provide additional average out-of-sample statistics for

longer forecast horizons in figure 13. In case of using implied volatility forecasts within option pricing

applications, practitioners particularly can benefit from these predicted market volatility further ahead

in the future. Specifically, we plot RMSE and MCP statistics for our main models and benchmark models

Figure 13: Performance for Longer Forecast Horizons
Notes: These figures show the out-of-sample forecasting performances of our main dynamic factor models and their
benchmarks for different forecast horizons. In particular, the left figure plots the average root mean squared error
(RMSE) and the right figure plots the mean correct predicted direction of change (MCP) for our full out-of-sample period
from December 2005 until August 2015. Both figures provide results for forecast horizons h = 1, 2, ..., 10 days.
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as functions of the horizon h. As expected, for all models the RMSE increases for expanding forecast

horizons, whereas MCP slightly declines accordingly. This is in line with our expectations based on the

fact that, due to more insecurity, longer forecast horizons exhibit more volatility in the implied volatility

forecasts. Besides, the general DFM model dominates both rankings based on RMSE and MCP at all

horizons, Moreover, the differences between all models increase with the horizon. Hence, these figures

broaden our findings on the relative differences between the basic and extended dynamic factor models

over longer forecast horizons. Therefore, in their attempt to gain insights on future market volatility

for option pricing or risk management purposes, practitioners will have similar preferences for dynamic

factor model setups in case of predicting implied volatility further ahead compared to one-day-ahead

forecasts.
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5 Economic Evaluation

In section 4 we reported evidence of statistical significance in the predictability of the IVS by estimating

general and extended dynamic factor models. However, these statistical findings do not directly imply

that our models are valuable for traders and investors in real life. For example, it could be the case that

our models appear to be successful based on statistical evaluation methods, while applying these same

models in actual trading strategies can result in losses due to overfitting caused by the large number of

estimated parameters. Therefore, in this section we explore whether predictability of the IVS is not only

a statistical fact, but indeed signals imperfection of the S&P 500 option market. More specifically, we

evaluate economic significance of the predictability by examining whether trading strategies involving our

dynamic factor models can potentially generate profitable results. By evaluating economic potential of

our GARCH extensions to dynamic factor models for the IVS, we also attempt to determine whether the

implied volatility forecasts are economically affected by overfitting issues due to the additional GARCH

parameters. In particular, section 5.1 illustrates how we economically evaluate the various dynamic factor

models. Thereafter, related results regarding both with and without transaction costs are provided in

section 5.2.

5.1 Constructing the Trading Strategies

Related literature shows several ways to simulate trading strategies in order to examine profitability

of dynamic factor models. Section 5.1.1 outlines the trading strategies we implement in this thesis

extensively. By evaluating these simple strategies, we report lower bounds of the actual profits traders and

investors theoretically can realize. However, evaluating trading strategies without including additional

costs does not provide realistic outcomes of actual profitability. Therefore, in section 5.1.1 we provide

methods to incorporate transaction costs in our trading strategies in order to gain more insights on

whether these strategies could be profitable in real life.

5.1.1 Trading Strategies

Evaluating economic performances of estimated models by simulating trading strategies is not new in

option markets. For example, Day and Lewis (1992), Harvey and Whaley (1992) and Noh et al. (1994)

already consider this additional evaluation procedure by introducing several different simulation setups.

Afterwards, Goncalves and Guidolin (2006) and Bernales and Guidolin (2014) adopt similar setups in

more recent developed dynamic factor models regarding predictability in implied volatilities. In line

with their best practices, we exploit one-day-ahead forecasts of all models by investing a fixed amount

of $1.000 in analytically created portfolios on a daily basis. By analyzing associated average returns and

their standard deviations, we eventually provide insights on whether our IVS dynamic factor models can

theoretically be profitable for investors. For this purpose, we make use of the MCP measure introduced

in section 4.2, which evaluates the accuracy of the correctly predicted directions of change in implied

volatilities. Overall, this measure is widely used in numerous trading strategies and is therefore crucial

in financial decision making. Correct predictions enable investors to implement well-considered decisions

successfully. In case of incorrect predictions, traders usually make conflicting decisions and are therefore

exposed to undesirable risks. Hence, success of a model’s trading strategy largely depends on this MCP

accuracy.

Inspired by Bernales and Guidolin (2014), we first introduce a plain-vanilla straddle trading strategy

that is free of risk caused by changes in the prices of the underlying. This strategy requires us to trade

combinations of both put and call option contracts with the same time-to-maturity and strike price.
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Here, a long straddle involves buying these combinations of option contracts and can be regarded as

a pure bet on higher future volatility levels. Likewise, a short straddle involves selling these contracts

and can be regarded as a pure bet on lower future volatility levels. We determine whether we buy or

sell options by evaluating whether our models predict an increase or decrease in one-day-ahead implied

volatility, respectively. Again, these one-day-ahead forecasts of individual option contracts are obtained

by interpolating the implied volatility forecasts of the entire surface on a daily basis. Besides, we follow

Bernales and Guidolin (2014) once more by adopting their delta-hedged portfolios as a second trading

strategy. Here, we combine our investments in put and call options with certain trades in the underlying

stock. By selecting these specific trading volumes on the basis of the option’s ∆, we manage to form

delta-hedged positions. By daily re-balancing portfolios in both cases, we retain our constant investments

of $1.000 over the full back-testing period. Initially, we illustrate economic performances of our models

by using full sets of option contracts over the entire IVS. In order to gain more insights on potential

improvements when focusing our trading strategies on specific IVS groups, we also set up an additional

framework to apply similar trading strategies within single categories.

In order to illustrate our trading strategies analytically, we start with introducing our straddle strategy

by defining Qt,+ (Qt,−) as the subset of call and put option contracts that should be purchased (sold)

following constructed buy (sell) signals. Next, we define Cm,t (Pm,t) as the call (put) price of a specific

option contract m within these subsets. In addition, we only select a call (put) contract if all relevant

data is available for its current value Cm,t (Pm,t), the value of its counterpart Pm,t (Cm,t), and next

day’s values of both itself Cm,t+1(Pm,t+1) and its counterpart Pm,t+1(Cm,t+1). Overall, at day t the total

value of all formed straddle positions V straddlet is given by

V strt =
∑

m∈Qt,+

(
Cm,t + Pm,t

)
−

∑
m∈Qt,−

(
Cm,t + Pm,t

)
(27)

where we consider all m options within the subsets of respectively the buy and sell contracts Qt,+

and Qt,−. Next, in case of a positive portfolio value V strt > 0, we define the one-day net gain of a

corresponding long straddle Gstr−Lt+1 by

Gstr−Lt+1 = Xstr
t

[ ∑
m∈Qt,+

(
(Cm,t+1 + Pm,t+1)− (Cm,t + Pm,t)

)]

+Xstr
t

[ ∑
m∈Qt,−

(
− (Cm,t+1 + Pm,t+1) + (Cm,t + Pm,t)

)] (28)

where we buy a number of Xstr
t portfolio units. Alternatively, in case of a negative portfolio value

V strt < 0, we sell a number of Xstr
t portfolio units. Here, the number of portfolio units in both cases is

defined by

Xstr
t =

$1.000

|V strt |
(29)

However, in the latter case we retain our untouched capital due to selling portfolios instead of pur-

chasing. Hence, we define a specific one-day net gain for short straddle positions given by

Gstr−St+1 = Gstr−Lt+1 + $2.000 ∗
(
exp

(
rt

252

)
− 1
)

(30)

where we invest our initial $1.000 plus an additional $1.000 from the sale at the one-day riskfree rate

rt as discussed in section 2.1. Moreover, in the event that none of the available options are indicated by

the model’s predictions to either buy or sell, we invest our initial capital fully at this riskfree rate.
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Likewise, to illustrate our delta-hedged trading strategy we define the total daily value of all delta-

hedged positions V DHt by

V DHt =
∑

m∈Qcallt,+

(Cm,t − St∆C
m,t) +

∑
m∈Qputt,+

(Pm,t + St∆
P
m,t)

−
∑

m∈Qcallt,−

(Cm,t − St∆C
m,t)−

∑
m∈Qputt,−

(Pm,t + St∆
P
m,t)

(31)

where St is the price of the underlying S&P 500 index fund at time t, and ∆C
m,t (∆P

m,t) is the absolute

value of the call (put) option’s ∆. In line with our straddle definitions, we also define Qcallt,+ (Qputt,+) as the

subset of call (put) option contracts that should be purchased following constructed buy signals, whereas

Qcallt,− (Qputt,−) denotes the subset of call (put) option contracts that should be sold following constructed

sell signals. In addition, corresponding one-day net gain GDH−Lt+1 in case of going long due to a positive

portfolio value V DHt > 0, is given by

GDH−Lt+1 = XDH

 ∑
m∈Qcallt,+

((Cm,t+1 − St+1∆C
m,t)− (Cm,t − St∆C

m,t))


+XDH

 ∑
m∈Qcallt,+

((Pm,t+1 + St+1∆P
m,t)− (Pm,t + St∆

P
m,t))


+XDH

 ∑
m∈Qcallt,+

(−(Cm,t+1 − St+1∆C
m,t) + (Cm,t − St∆C

m,t))


+XDH

 ∑
m∈Qcallt,+

(−(Pm,t+1 + St+1∆P
m,t) + (Pm,t + St∆

P
m,t))



(32)

Similar to our straddle trading strategy, we calculate the number of delta-hedged portfolios XDH
t

and one-day net gain for short delta-hedged positions GDH−St+1 using equations 29 and 30.

In order to avoid extreme portfolio positions for both trading strategies, we implement two general

constraints. First, we attempt to avoid unreliable forecasts by demanding the absolute predicted change

in implied volatility to be higher than 1%. Besides, it may occur that our total portfolio value Vt is

extremely small due to almost equally valued partial buying and selling portfolios. Then, our trading

strategy generally imposes to buy or sell an extremely large number of portfolio units Xt, resulting

in excessive risks and unrealistic trading positions. Therefore, as a second constraint we restrict our

strategies to only perform a trade only if the total portfolio value is V straddlet > $1.

In section 3.2 we already provided two benchmark models for forecasting the IVS in order to examine

and compare the performances of our dynamic factor models. To be able to compare the profitability

results of these models to an even better extent, we also introduce two additional trading benchmark

strategies. First, we consider a passive benchmark strategy consisting of an effortless investment of

$1.000 at the riskfree rite over the entire time period. Here, we use the global Fama and French riskfree

rate indicators as discussed in section 2.1 once more, resulting in a benchmark that only yields the time

value of money. Associated one-day net gain is given by

GRFRt+1 = $1.000 ∗
(
exp

(
rt

252

)
− 1
)

(33)
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As a second trading strategy benchmark, we implement the underlying buy and hold strategy along

the lines of Chalamandaris and Tsekrekos (2010). This strategy daily invests $1.000 fully in the under-

lying, which in our case is the S&P 500 index fund with current value St. Motivated by its illustrative

representation of the S&P 500 market developments, this strategy is referred to as market representation

and can be evaluated by analyzing its one-day net gain given by

GMarket
t+1 = $1.000 ∗ (St+1 − St)

St
(34)

Accordingly, we report the average daily profits and corresponding standard deviations for all models

in following results sections. In addition, we provide further insights on the value of these models by

providing t-test statistics and Sharpe ratios. The two-tailed t-test statistics naturally examine whether

the returns of the trading strategies implemented on all models are significantly different from zero.

Besides, Sharpe ratios are proper measures of profitability when investors have mean-variance preferences.

To obtain Sharpe ratios we calculate risk-adjusted returns, where we consider similar daily riskfree rates

as in our first benchmark strategy. In detail, Sharpe ratios are defined by

SRp =
r̄p − rf
σp

(35)

where r̄p and σp denote expected return and standard deviation of portfolio p, and rf again denotes

the average daily riskfree rate. In contrast to meaningful positive Sharpe ratios, we do not report negative

Sharpe ratios due to its misleading interpretation.13 By evaluating and comparing our models by means

of these criteria, we gain a better understanding on whether the models are attractive for traders and

investors.

5.1.2 Transaction Costs

Initially, we attempt to evaluate economic performances of our dynamic factor models by applying basic

trading strategies. However, these trading strategies suffer from limitations. In particular, we leave out

the impact of transaction costs, resulting in unrealistic potential outcomes for traders and investors in

real financial markets. Hence, we introduce methods to incorporate transaction costs in order to test

sensitivity of our trading strategies to these additional costs. Related literature already shows several

ways to incorporate these costs. For example, Goncalves and Guidolin (2006) suggest to apply two fixed

levels of unit costs, namely $0.05 and $0.125 per traded contract. However, a more realistic inclusion

of transaction costs is proposed by Bernales and Guidolin (2014), who suggest to use effective bid-ask

spreads. Although Battalio et al. (2004) support the benefits of this idea, they also state that the effective

bid-ask spread is generally different from the quoted spread available in our data set. Therefore, we adopt

their findings by using a conservative effective bid-ask spread equal to 0.5 times the quoted spread in line

with Bernales and Guidolin (2014). As a robustness check, we impose $0.05 fixed transaction costs per

trade as suggested by Goncalves and Guidolin (2006) as an alternative approach to include transaction

costs. Still, we find similar conclusions as for imposing transaction using the bid-ask spread. Hence, we

leave this alternative transaction costs approach out of consideration. In both cases, transaction costs

are incorporated by subtracting them from our one-day net gains on a daily basis. Hence, in section

5.2.2 we provide additional results with transaction costs included to gain further insights on whether

our dynamic factor models could be used by traders and investors to gain profits theoretically.

13When the mean return is negative, the Sharpe ratio improves when volatility is higher. This results in misleading
impressions of economic performances when analyzing negative Sharpe ratios.
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5.2 Economic Results

After having illustrated our trading strategies and additional implementation of transaction costs in

section 5.1, we report whether these strategies can potentially be profitable in this section. Specifically,

the results of plain trading strategies without transaction costs are discussed in section 5.2.1, whereas

section 5.2.2 provides corresponding trading results after including transaction costs.

5.2.1 Trading Results before Transaction Costs

Table 8 reports summary statistics of trading results before transaction costs for all dynamic factor

models and corresponding benchmarks, obtained by applying both straddle and delta-hedged trading

strategies. Overall, we observe that without taking transaction costs into account, all trading strategies

Table 8: Trading Results before Transaction Costs

Panel A: Straddle Portfolios

Before Transaction Costs

Mean profit
(%)

Std. profit
(%)

t-test Sharpe ratio
(%)

DFM-GARCH
Observation 1.31 14.78 4.38*** 8.76

State 1.26 14.77 4.20*** 8.42
Obs+State 1.15 14.32 3.97*** 7.94

IVS Benchmarks
DFM 1.47 16.51 4.39*** 8.80
RFM 0.33 9.77 1.69* 3.27

2-step VAR 0.54 12.19 2.18** 4.31

Trading Benchmarks
Market 0.03 1.31 1.02 0.97

T-bill 0.01 0.01 87.07*** 0

Panel B: Delta-Hedged Portfolios

Before Transaction Costs

Mean profit
(%)

Std. profit
(%)

t-test Sharpe ratio
(%)

DFM-GARCH
Observation 0.83 7.39 5.52*** 10.99

State 0.85 7.21 5.80*** 11.55
Obs+State 0.65 7.58 4.21*** 8.33

IVS Benchmarks
DFM 0.95 7.79 6.02*** 12.00
RFM 0.64 5.79 5.43*** 10.81

2-step VAR 0.48 7.02 3.37*** 6.63

Trading Benchmarks
Market 0.03 1.31 1.02 0.97

T-bill 0.01 0.01 87.07*** 0

Notes: This table provides economic summary statistics excluding transaction costs for our recursive out-of-sample im-
plementation of trading strategies on S&P 500 index options over the full out-of-sample period from December 2005
until August 2015. In particular, we provide average returns and corresponding standard deviations of straddle portfolio
strategies (Panel A) and delta-hedged portfolio strategies (Panel B) applied to our DFM-GARCH models and associated
benchmark models. In addition, we document trading results of two trading benchmarks, consisting of the S&P 500 index
fund (Market) and a plain T-bill investment. In order to be able to compare risk-adjusted returns of all trading strategies,
we report additional t-test statistics including significance levels and Sharpe ratios as defined in section 5.1.1. In particular,
*/**/*** denotes statistically significant t-test results at an α = 10%/5%/1% significance level.
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based on dynamic factor models for the IVS result in positive average returns. Hence, all our focus and

benchmark models outperform both trading benchmarks significantly. In terms of mean profit for both

trading strategies, we find the highest average returns for the general DFM model. However, this model

also exhibits highest standard deviations, resulting in more risky decisions when implementing these

strategies in real life. Therefore, corresponding risk-adjusted returns in terms of t-test statistics (4.39

and 6.02) and Sharpe ratios (8.80 and 12.00) only show minimal differences compared to other dynamic

factor models. In particular, our DFM-GARCH setups with GARCH disturbances in only one of the state

space equations also perform relatively well. In case of straddle portfolio strategies, including GARCH

disturbances in the observation equation results in the second highest daily average return of 1.31%, with

a significant t-test statistic of 4.38 and Sharpe ratio equal to 8.76. Including GARCH disturbances in

the state equation is the best alternative in case of delta-hedged portfolio strategies, with an even more

significant t-test statistic of 5.80 and Sharpe ratio equal to 11.55. Straddle portfolio strategies generally

show substantially higher profits compared to delta-hedged portfolio strategies, potentially being caused

by different decision criteria and the inclusion of the index price St in the formulation of the delta-hedged

strategy from equation 31. More precisely, the straddle strategy is expected to incorporate all available

information of the IVS, whereas success of the delta-hedged strategy partially depends on forecasts of

the price of the underlying index. Although our DFM-GARCH setups differ in both mean returns and

standard deviations, their general trading results are very similar compared to each other. Hence, we can

conclude that for economic purposes, it barely matters how to include GARCH disturbances in dynamic

factor models for the IVS. Even after comparing these models to the general DFM model, we hardly find

significant economic differences. Therefore, the general DFM benchmark seems to be the best alterna-

tive in case of economically exploiting dynamic factor models. But although risk-adjusted returns of all

our DFM-GARCH setups are only slightly lower than the general DFM model, these extended models

still outperform the market and a riskfree T-bill investment significantly. For that reason, we can also

conclude that without taking transaction costs into account, our DFM-GARCH models have sufficient

economic value in predicting the dynamics of the IVS.

In line with our previously documented statistical out-of-sample evaluation, we analyze dynamic

forecasting performance of all dynamic factor models by evaluating average returns over time in figure

14. Again, we consider a one-year moving window for both trading strategies, running from December

2005 until August 2015. Evidently, all unrestricted dynamic factor models follow similar patterns. More

specifically, in times of economic uncertainty these four models show declining performances, like dur-

ing the financial crisis in 2008 and the debt-ceiling crisis in 2011. On the contrary, the models show

performance improvements in relatively prosperous times like 2013-2015. Interestingly, we also observe

a relatively flat curve for the restricted RFM model. We expect this to be caused by less risky trading

decisions due to less sensitivity in the implied volatility forecasts. For example, in turbulent economic

times the DFM(-GARCH) models react strongly with suggestive forecasts, whereas the RFM model ab-

sorbs relatively less disturbances in its forecasts. This pattern was already visible statistically in figure

12, where the RMSE of the RFM model increases strongly in times of crises.

Initially, we evaluate economic potential of our dynamic factor models by applying trading strategies

on the full set of available option contracts. However, a full surface consisting of both center and corner

groups exhibits various dynamics. Based on the statistical differences between the IVS groups, we expect

these dynamics to cause a wide variety in economic performances of the models. Therefore, in order to

gain a better understanding of the dynamics of the IVS in relation to our dynamic factor models, we

also evaluate all IVS groups individually in an economic setting. More specifically, we apply our trading
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Figure 14: Dynamic Profitability Performance before Transaction Costs
Notes: These figures show the dynamic economic profitability performances over time for our main dynamic factor
models, before including transaction costs. In particular, the upper figure plots the average returns obtained by applying
straddle portfolio strategies, whereas the bottom figure plots the average returns obtained by applying delta-hedged
portfolio strategies, using a one-year moving window consisting of 252 observations.

strategies within single IVS groups and report associated trading results in table 9. The table contains

Sharpe ratios with corresponding t-test significance levels, and reveals several findings. First, apply-

ing straddle portfolio strategies within (D)OTM-Put categories, based on unrestricted dynamic factor

models, results in highly significant profits. In the corner of the IVS where we consider DOTM-Put

options with short maturities, we even document Sharpe ratios larger than 18. Hence, within these

specific IVS groups our straddle trading strategy indicates to be most profitable. However, by analyz-

ing corresponding call options we find a reversed pattern. Here, our models show insignificant profits in

most cases with longer maturities, whereas trading within shortest maturity categories results in extreme

losses.14 Exactly the opposite pattern is visible when we apply a delta-hedged trading strategy. This

strategy performs extremely well for call options with shortest maturities, whereas corresponding put

option categories show extreme losses. In center groups, we again find risk-adjusted returns that are

not significant different from zero in most cases. Overall, we can conclude that applying our trading

strategies within corner groups of the IVS is extremely risky and causes excessive results. Although

reported ratios already take associated risks into account, we find extremely positive Sharpe ratios for

some of these corner groups, whereas other corner groups show extremely negative average returns. This

in line with our statistical findings, which suggest that our dynamic factor models are not able to fit the

IVS fairly well in corner groups. Besides, option contracts in corner groups are already expected to be

less liquid than contracts in center IVS groups. In an economic setting, we therefore find extreme profits

and losses when applying trading strategies within these high risk corner groups.

Hence, without taking transaction costs into account we report the following four economic findings.

First, all considered likelihood-based dynamic factor models show economic value in their predictability

of the IVS. Second, our extended DFM-GARCH setups do not differ significantly in their potential to

be exploited in profitable trading strategies. Even compared to the general DFM model, we hardly find

significant differences. Hence, these findings indicate that including GARCH disturbances in dynamic

14In table 9, only Sharpe ratios and significance levels of associated t-tests are reported. For clarity purposes, corre-
sponding average returns and standard deviations are left out of consideration and are available upon request.
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factor models has little impact on their economic results. Third, our trading results propose the RFM

model to be a sound alternative for low risk investments. Although the co-movements in the IVS prove

to mismatch with the economically restricted smile and term structure factors, this RFM model is

apparently able to limit risk within investment decisions. Fourth, due to a weaker fit of the corner

groups of the IVS, our dynamic factor models bring along high risks when applying trading strategies

within these groups.

5.2.2 Trading Results after Transaction Costs

In previous section we discussed trading results before taking transaction costs into account. We pro-

vided several findings, including significant economic value of our constructed dynamic factor models in

Table 10: Trading Results after Transaction Costs

Panel A: Straddle Portfolios

After Transaction Costs

Mean profit
(%)

Std. profit
(%)

t-test Sharpe ratio
(%)

DFM-GARCH
Observation -27.10 26.25 -51.0*** NA

State -27.71 25.52 -53.6*** NA
Obs+State -28.42 23.96 -58.7*** NA

IVS Benchmarks
DFM -26.87 29.74 -44.6*** NA
RFM -29.22 15.91 -90.7*** NA

2-step VAR -28.89 18.42 -77.1*** NA

Trading Benchmarks
Market 0.03 1.31 1.0 1.0

T-bill 0.01 0.01 87.1*** 0.0

Panel B: Delta-Hedged Portfolios

After Transaction Costs

Mean profit
(%)

Std. profit
(%)

t-test Sharpe ratio
(%)

DFM-GARCH
Observation -28.99 10.98 -130.4*** NA

State -28.97 10.77 -132.9*** NA
Obs+State -29.18 11.71 -123.2*** NA

IVS Benchmarks
DFM -28.84 11.94 -119.2*** NA
RFM -29.25 7.54 -191.6*** NA

2-step VAR -29.56 9.92 -146.5*** NA

Trading Benchmarks
Market 0.03 1.31 1.0 1.0

T-bill 0.01 0.01 87.1*** 0.0

Notes: This table provides economic summary statistics including transaction costs for our recursive out-of-sample im-
plementation of trading strategies on S&P 500 index options over the full out-of-sample period from December 2005
until August 2015. In particular, we provide average returns and corresponding standard deviations of straddle portfolio
strategies (Panel A) and delta-hedged portfolio strategies (Panel B) applied to our DFM-GARCH models and associated
benchmark models. In addition, we document trading results of two trading benchmarks, consisting of the S&P 500 index
fund (Market) and a plain T-bill investment. In order to be able to compare risk-adjusted returns of all trading strategies,
we report additional t-test statistics including significance levels and Sharpe ratios as defined in section 5.1.1. In particular,
*/**/*** denotes statistically significant t-test results at an α = 10%/5%/1% significance level. Due to its misleading
interpretation, negative Sharpe ratios are omitted.
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their predictability of the IVS. However, in real life these strategies suffer from the limitation of leaving

transaction costs out of consideration. Hence, this section reports corresponding trading results after

including transaction costs in table 10, by using a conservative effective bid-ask spread equal to 0.5

times the quoted spread. After including transaction costs, we find extremely negative returns for all

models and trading strategies. In particular, we document daily average returns ranging from -26% to

-30%. Hence, in these cases the trading strategies based on all our dynamic factor models are highly

outperformed by the market and T-bill benchmarks. Relative to each other, our dynamic factor models

show similar relationships as before including transaction costs. This is expected, as we consider similar

option contracts and trading capitals in all cases. Again, we find the general DFM model to be the least

poorly performing model for both strategies. The DFM-GARCH setups involving GARCH disturbances

in only one of the two equations show similar results, whereas adjusting both equations results in a

slightly worse performance. Hence, we can conclude that after taking transaction costs into account, all

trading strategies based on our DFM(-GARCH) models are substantially outperformed by their trading

strategy benchmarks. Therefore, although our dynamic factor models prove to be valuable in predicting

the dynamics of the IVS in section 5.2.1, they appear to be ineffective when exploiting them directly

into simple trading strategies due to the impact of transaction costs. However, practitioners might still

be able to make use of their predicting value by implementing our dynamic factor models indirectly into

option pricing and risk management applications.

In addition, we provide dynamic performances of all trading strategies after including transaction

costs in figure 15. Once more, we find similar patterns as before including transaction costs. In general,

we observe highly negative returns over the full out-of-sample period for both straddle and delta-hedged

portfolios. Our general DFM and extended DFM-GARCH setups show similar patterns, with increasing

performances in stable times and decreasing performances during crises. The restricted RFM model

again exhibits relatively constant performances over the full sample. Hence, we can conclude that, in

contrast to our findings before taking transaction costs into account, we are not able to directly exploit

our dynamic factor models into profitable trading strategies in real life.

Figure 15: Dynamic Profitability Performance after Transaction Costs
Notes: These figures show the dynamic economic profitability performances over time for our main dynamic factor
models, after including transaction costs. In particular, the upper figure plots the average returns obtained by applying
straddle portfolio strategies, whereas the bottom figure plots the average returns obtained by applying delta-hedged
portfolio strategies using a one-year moving window consisting of 252 observations.
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6 Conclusion

The implied volatility surface explains the dynamics between different option contracts by representing

the total set of implied volatilities across moneyness and maturity dimensions. In recent literature, dy-

namic factor models have been investigated extensively in order to find an appropriate way to capture

these dynamics. Although the overall fit of these dynamic factor models for the IVS seems promising,

the corner groups of the IVS generally show a poor fit in terms of heteroskedasticity and autocorrelation

in the error terms. In this thesis, we examine whether we can improve this fit of dynamic factor models

by integrating an additional volatility model onto their residuals. More specifically, we aim to find im-

provements in the predictability of the dynamics of implied volatility surfaces, by including GARCH(1,1)

disturbances in one or both equations of dynamic factor models in state space form. Due to its ability

to mitigate the problem of heteroskedasticity in the error terms, we consider this additional GARCH

model on the residuals as a promising extension to dynamic factor models for the IVS. We implement

an efficient estimation approach by using maximum likelihood estimation including a collapsed Kalman

filtering approach. By analyzing statistical and economic evaluation methods, we compare performances

of our extended DFM-GARCH setups in relation to general dynamic factor models. In addition, we ex-

plore the relevance of our extension by testing the dynamic factor models on significant GARCH effects

using statistical tests for heteroskedasticity and autocorrelation.

We provide four key findings. First, although we still find significant heteroskedasticity and autocor-

relation in the error terms, including GARCH disturbances into dynamic factor models can mitigate this

problem of heteroskedasticity and autocorrelation in particularly the corner groups of the IVS. Second,

the extended DFM-GARCH setups are able to outperform general dynamic factor models regarding the

in-sample fit. In particular, including GARCH disturbances results in residuals that look a bit more on

white noise processes, especially for corner groups of the IVS. However, in an out-of-sample setting all

three DFM-GARCH variants are rejected as improved extensions of the general dynamic factor model

in terms of statistical measures. This is possibly due to overfitting caused by the additional GARCH

parameters in the DFM-GARCH setups. Hence, although we do not succeed in finding improvements

in out-of-sample forecasts of the IVS, our improved in-sample estimation of the IVS indicates potential

value of including GARCH disturbances into a general dynamic factor model. Third, all extended and

general dynamic factor models prove to have economic value in their predictability of the IVS, before

taking transaction costs into account. However, in a more realistic simulation including the impact of

transaction costs, these potential profits disappear and transform into great losses. Besides, applying

our constructed trading strategies within corner groups of the IVS causes extremely risky investment

decisions, due to corresponding poorer fit and relatively illiquid options contracts. Again, the general

DFM model economically performs best based on these out-of-sample forecasts of individual option con-

tracts. Hence, our economic evaluation results confirm that our extended DFM-GARCH setups are less

effective in economically exploiting their out-of-sample forecasts compared to the general DFM model.

Fourth, performances of all three DFM-GARCH setups for the IVS are roughly similar and show fairly

small differences compared to each other, both in-sample and out-of-sample. Hence, our findings sug-

gest no significantly preferred way to incorporate GARCH disturbances into dynamic factor models for

the IVS. However, since including GARCH disturbances in only the observation equation appears to

cause marginally better results, we slightly recommend to consider this variant in further research. In

conclusion, we can address our research question by confirming that integrating additional volatility

models into the residuals of dynamic factor models can indeed improve the in-sample fit of the IVS.

However, considering out-of-sample forecasting performances these extended models are outperformed

significantly by the general dynamic factor model. Nonetheless, we find strong indications of potential
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improvements of a general dynamic factor model for the IVS, after including GARCH disturbances to

correct for heteroskedasticity in its error terms.

Finally, we suggest seven main directions for further research. First, it seems valuable to extend our

work on improving dynamic factor models to obtain a better fit for the corner IVS groups. Considering

promising improvements of the in-sample fit and corresponding out-of-sample limitations of our simplified

GARCH extension setup, we recommend to further explore the potential of including additional volatility

models into dynamic factor models for the IVS. For example, our GARCH extension to the residuals

is naturally more efficient to correct for heteroskedasticity rather than for autocorrelation. Therefore,

we suggest to consider other stochastic volatility models for the residuals like an ARMA model. Due

to its modeling of the moving average, an ARMA model might be a powerful alternative to correct

for autocorrelation in the residuals of dynamic factor models specifically. Besides, including GARCH

disturbances to the restricted RFM setup can also be considered as interesting alternative in further re-

search. Second, we recommend to explore alternative methods to fully correct for heteroskedasticity and

autocorrelation in the error terms of dynamic factor models. In particular, although we initially impose

linearity in volatility smile and term structure effects, in practice we are dealing with logistic patterns in

both moneyness and maturity dimensions. In an alternative attempt to force the residuals to be white

noise processes, one could therefore include additional factors to capture these logistic curve dynamics.

Third, we examine the impact of our GARCH extensions on predictability in the dynamics of S&P 500

index options. In order to examine the potential of our extensions and similarities in the IVS dynamics

of for instance equity options, implementation of our DFM-GARCH setups onto other types of options

could also be explored in further research. As a fourth direction, we suggest to investigate the impact of

GARCH disturbances into other types of dynamic factor models accordingly. For example, one could in-

clude GARCH disturbances into the spline-based model from Van der Wel et al. (2016), which combines

the flexibility of a general dynamic factor model with the economically plausible factor interpretation of

a restricted dynamic factor model. Fifth, we study basic trading strategies that highly suffer from the

impact of transaction costs due to the large amount of selected trades. In addition to our basic trading

strategy setups, we therefore suggest to explore more complex trading strategies based on our extended

dynamic factor models. For example, one could attempt to reduce the impact of transaction costs by

only selecting a limited amount of investments on days potentially high profits are expected. Sixth,

we recommend to explore the impact of combining forecasts of our various dynamic factor models. In

particular, we show that the relative forecasting performances of these models vary over time, indicating

the potential benefit of combining IVS forecasts based on our various DFM(-GARCH) models. Seventh,

we examine the dynamics of the IVS by considering a daily balanced panel of 24 groups differing across

moneyness and maturity dimensions. As an alternative approach, we propose to investigate predictabil-

ity in the dynamics of the entire cross-section of individual option contracts. Hence, we consider this

alternative IVS construction and previously discussed directions as main suggestions for further research

regarding predictability in the dynamics of the implied volatility surface.
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Appendix

Table 11: Principal Component Analysis - Explained Variation and Persistence

Explained Variation ACF PCF

Percentage Cum. Perc. 1 5 10 1 2 3

PC 1 95.98% 95.98% 0.978 0.923 0.884 0.978 0.112 0.069
PC 2 2.13% 98.11% 0.955 0.864 0.804 0.955 0.107 0.120
PC 3 1.04% 99.15% 0.859 0.653 0.566 0.858 0.144 0.148
PC 4 0.26% 99.40% 0.790 0.523 0.335 0.789 0.149 0.101
PC 5 0.17% 99.58% 0.706 0.522 0.459 0.706 0.304 0.146

Notes: This table provides various results from principal component analysis on the initial S&P 500 index options
data. First, the table reports both the variation explained by each individual principal component as well as the
cumulative percentages for the first five principal components. Second, the table provides (partial) autocorrelations
of those principal components in order to determine its persistence. Specifically, the table shows autocorrelations
for lags 1,5 and 10, whereas partial autocorrelations are reported for lags 1, 2 and 3.
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Table 13: Estimated Loading Matrix Λ of General DFM Model

Λ from General DFM

Factor 1 Factor 2 Factor 3

10-45 1.19 -0.51 6.48
DOTM 45-90 1.18 0.34 7.79

Put 90-180 1.14 1.21 9.51
180-360 1.08 2.17 10.76

10-45 0.99 -1.01 4.04
OTM 45-90 1.04 -0.25 3.42
Put 90-180 1.04 0.51 3.82

180-360 1.02 1.31 4.43

10-45 1 -1 1
ATM 45-90 1.02 -0.33 0.33
Put 90-180 1.02 0.32 0.57

180-360 1 1 1

10-45 1 -1 -1
ATM 45-90 1.04 -0.28 -2.15
Call 90-180 1.02 0.36 -1.62

180-360 1 1 -1

10-45 1.06 -0.94 -4.13
OTM 45-90 1.05 -0.28 -4.58
Call 90-180 1.02 0.27 -3.89

180-360 0.99 0.82 -3.16

10-45 1.15 -0.78 -7.85
DOTM 45-90 1.09 -0.22 -7.70

Call 90-180 1.04 0.24 -6.79
180-360 1.00 0.69 -5.84

Notes: This table provides estimated values of the loading matrix Λ based
on the general DFM model. Elements of the loading matrix that are fixed
for identification purposes, are highlighted in bold.
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Figure 16: Comparing Fit of Corner IVS Group (DOTM-Put, 10-45 days)
Notes: These figures compare the fit of a specific corner group of the IVS (DOTM-Put, 10-45 days) estimated with four
of our main dynamic factor models. In particular, we provide the fit of the IVS estimated with our three DFM-GARCH
extensions relative to the fit of the IVS based on the general DFM model. The figures present time series of the actual
implied volatilities, the fitted implied volatilities and corresponding residuals.
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Figure 17: Comparing Fit of Corner IVS Group (DOTM-Put, 180-360 days)
Notes: These figures compare the fit of a specific corner group of the IVS (DOTM-Put, 180-360 days) estimated with four
of our main dynamic factor models. In particular, we provide the fit of the IVS estimated with our three DFM-GARCH
extensions relative to the fit of the IVS based on the general DFM model. The figures present time series of the actual
implied volatilities, the fitted implied volatilities and corresponding residuals.
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Figure 18: Comparing Fit of Corner IVS Group (DOTM-Call, 180-360 days)
Notes: These figures compare the fit of a specific corner group of the IVS (DOTM-Call, 180-360 days) estimated with
four of our main dynamic factor models. In particular, we provide the fit of the IVS estimated with our three
DFM-GARCH extensions relative to the fit of the IVS based on the general DFM model. The figures present time series
of the actual implied volatilities, the fitted implied volatilities and corresponding residuals.
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Figure 19: Comparing Fit of Middle IVS Group (ATM-Put, 45-90 days)
Notes: These figures compare the fit of an arbitrary middle group of the IVS (ATM-Put, 45-90 days) estimated with four
of our main dynamic factor models. In particular, we provide the fit of the IVS estimated with our three DFM-GARCH
extensions relative to the fit of the IVS based on the general DFM model. The figures present time series of the actual
implied volatilities, the fitted implied volatilities and corresponding residuals.
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Figure 20: Comparing Fit of Middle IVS Group (ATM-Call, 90-180 days)
Notes: These figures compare the fit of an arbitrary middle group of the IVS (ATM-Call, 90-180 days) estimated with
four of our main dynamic factor models. In particular, we provide the fit of the IVS estimated with our three
DFM-GARCH extensions relative to the fit of the IVS based on the general DFM model. The figures present time series
of the actual implied volatilities, the fitted implied volatilities and corresponding residuals.
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Figure 21: Fit of DFM-GARCH (Observation) Model
Notes: These figures show the fit of the IVS estimated with the extended DFM-GARCH model with GARCH
disturbances incorporated in the observation equation only. In particular, we display time series of the actual implied
volatilities, the fitted implied volatilities and corresponding residuals. In total, we document six different IVS groups.
The upper two figures present two groups in the center of the IVS, whereas in the bottom four figures plots of the corner
groups of the IVS are provided.
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Figure 22: Fit of DFM-GARCH (State) Model
Notes: These figures show the fit of the IVS estimated with the extended DFM-GARCH model with GARCH
disturbances incorporated in the state equation only. In particular, we display time series of the actual implied
volatilities, the fitted implied volatilities and corresponding residuals. In total, we document six different IVS groups.
The upper two figures present two groups in the center of the IVS, whereas in the bottom four figures plots of the corner
groups of the IVS are provided.
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Figure 23: Fit of DFM-GARCH (Observation+State) Model
Notes: These figures show the fit of the IVS estimated with the extended DFM-GARCH model with GARCH
disturbances incorporated in both the observation and state equation. In particular, we display time series of the actual
implied volatilities, the fitted implied volatilities and corresponding residuals. In total, we document six different IVS
groups. The upper two figures present two groups in the center of the IVS, whereas in the bottom four figures plots of the
corner groups of the IVS are provided.
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Figure 24: Fit of Restricted Economic Dynamic Factor Model (RFM)
Notes: These figures show the fit of the IVS estimated with the restricted economic dynamic factor model (RFM). In
particular, we display time series of the actual implied volatilities, the fitted implied volatilities and corresponding
residuals. In total, we document six different IVS groups. The upper two figures present two groups in the center of the
IVS, whereas in the bottom four figures plots of the corner groups of the IVS are provided.
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