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Abstract

European goverments aim at intermodal freight transport instead of road freight transport. An in-
crease of intermodal freight transport could lead to an improvement of cost effectiveness, economic
growth and the reduction of social and environmental externalities. Despite this, road transport
still remains dominant. Quantification studies could lead to a better understanding of how to pro-
mote intermodal transport. Not a lot of econometric research has been done yet, especially because
data are on country level. In this research data on a more disaggregated level, namely the level of
origin-destinations, could be used. Linear, Poisson and negative binomial fixed and random effects
models are implemented to declare the number of departures per week from a certain origin to a
certain destination. For sake of comparison market share models are applied on country level data
to describe the positions of several countries in the freight market. The results address useful and
interesting relationships and show that government policy should focus on investments in port in-
frastructure and on increasing Diesel tax. Furthermore, it shows the importance of quantification
and the importance of data on the level of origin-destination.

Keywords: Intermodal transport, Fixed effects model, Random effects model, Count models, Mar-
ket share model
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1 Introduction

In our globalized world, the demand for freight transport is continuously rising. Most freight is
still transported by road, but since the late seventies the concept of intermodality gains traction.
Briefly stated, this is transport by sea, inland water or rail. Compared to transport by road,
intermodal transport could lead to an improvement of cost effectiveness, economic growth and the
reduction of social and environmental externalities. Despite that these advantages are recognized
and supported by governments, road transport remains dominant. That is why it is so important to
better understand how intermodal transport can be promoted. Quantification studies are asked for.
In this research we will quantify European intermodal freight transport flows. We will investigate
the following main question: “How was European intermodal freight transport organised in the past
years and what factors promote a modal shift?”

Empirical models are used to unveil the intermodal freight transport flows. Not a lot of economet-
ric research has been done, because data about freight transport flows are only available aggregated
on country level. In this research we use unique and disaggregated data. We use panel data on
origin-destination level from 2014 to 2017 for freight transport by rail, inland water and sea. The
dependent variable is the number of departures per week from a certain origin to a certain desti-
nation. We want to declare the number of departures by (possibly) related variables as time, GDP
and port quality. Therefore, linear random and fixed effects models will be used. These methods
estimate parameter values for (possibly) related variables and in addition estimate the unobserved
individual heterogeneity for the dependent variable. Since this concerns a count variable, we will
also apply Poisson and negative binomial fixed and random effects models. Furthermore, we want to
estimate unobserved heterogeneity of certain countries and TEN-T corridors (main transport routes
in Europe). Therefore clustered linear and Poisson fixed and random effects models will be used.
Interesting insights about European freight transport flows are generated. In addition, we apply
market share models of country freight shares for road, rail and inland water transport. For this we
use data aggregated on country level.

The paper is set up as follows. First we present a literature review and some further specified
research questions. In the second section we address the preparation and arrangement processes and
statistics of the data set(s). Then we present and explain the used models, methods and statistics.
Next, we will present the results and shortly analyze these in terms of added value to the research
question. Finally, we conclude and we present a discussion.

2 Literature review and research questions

Since 1970 European freight transport has increased significantly. Although governments aim to
increase intermodal transport instead of road transport, the share of road transport increased com-
pared to the share of intermodal freight transport. Research in this field is therefore important. Since
the 1990s the amount of research on intermodal transport in freight distribution has grown signif-
icantly (Agamez-Arias and Moyano-Fuentes, 2017). Bontekoning, Macharis and Trip (2003) point
out that intermodal transport is addressed seperately from unimodal transport in the literature,
where a significantly amount of analytical publications specifically address intermodal transport.
In practice it is considered as a competing mode and can be used as an alternative to unimodal
transport. In addition, intermodalism has become an important policy issue.

This section will address the definition of intermodal transport, the evolution and current statis-
tics of European intermodal transport, European policy directives and its effectiveness and some
models that currently address the intermodal landscape. Furthermore, in combination with the
literature and in contribution to the main question and stated problems we formulate some more
concrete questions to consolidate the directives of this research.

In the late seventies of the twentieth century the concept of intermodality was introduced in
the transport and public policy arena (OECD, 2001). In the current literature intermodality is a
widely used term accompanied by a range of different definitions. According to the objectives and
the context the definition of intermodality changes. As in this research intermodality encompasses
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all freight movements involving two or more modes of transportation, a broad and general definition
of the OECD will be followed: Intermodalism implies the use of at least two different modes of
transport in an integrated manner in a door-to-door transport chain (OECD, 2001).

In line with the emergence of this research and the amendment of the European Combined
Transport Directive, intermodality mostly concerns transport by train, ships or barges and is served
by a short road leg in the beginning and/or end of the journey. In intermodal transport the goods are
loaded into intermodal loading units (usually containers) in the beginning of the journey. Loading
units are moved from one type of transport to another during the journey (European Commission,
2017).

A first general overlook of the recent evolution of inland intermodal transport (by road, rail and
inland waterways) follows from the EU statistics database (Eurostats, 2017). It shows that the
total inland freight transport measured in tonne-kilometres increased with 1.3% during the period
2010-2015. Furthermore, the database shows that road transport continues to dominate the EU
freight transport, in comparison to rail and inland waterways transport. As becomes clear from
Figure 1 the share of road transport slightly decreased from 2010 to 2014, but it slightly increased
from the year 2014 to 2015. In addition, the EU statistics database shows the modal split of five
different transport modes: road, rail, inland waterways, air and maritime (sea). Road transport still
keeps its main position in the share of transport modes, though maritime has the second greatest
share. There was a rise of 1.8% in total transport of the five modes from 2010 to 2015. The total
maritime transport in tonne-kilometres increased with 2.9%. The shares of maritime transport and
rail transport increased with respectively 0.4% and 0.5%. Relatively, despite an absolute small rise
of the road transport, the share of road transport decreased with 0.6% in share. The increased share
of intermodal transport is caused by a wide bunch of factors.

Figure 1: Share of road in freight transport.

As already mentioned, there is a need for Europe to target on intermodal transport instead of
transport (only) by road. The main reasons to promote this modal shift are an improvement of
cost effectiveness, the support of economic growth and the reduction of social and environmental
impacts (OECD, 2001). It is stated that intermodalism leads to an improvement of cost effective-
ness as overall transport costs are lowered by allowing each mode to be used for that portion of the
journey to which it suits best. This increasing economic productivity and efficiency enhances the
nation’s global competitiveness. More directly, a relative increase in intermodal transport reduces
congestion, accidents, noise and the burden on over-stressed infrastructure investments. The com-
mission states that road congestion costs 1% of the European’s Gross Domestic Product (European
Commission, 2016). Moreover, a relative increase in intermodal transport decreases the emission of
CO2 and air pollution. Table 1 presents an oversight of the external costs for the different modalities

5



(Kreutzberger et al., 2003). Clearly, the costs show a significant impact of a modal shift. The Eu-
ropean Commission states that the total negative externalities of transport create costs for society
estimated at 4% of European GDP in 2011, projected to increase by around 40% by 2030 (European
Commission, 2017).

Table 1: Marginal external cost per transport modality, € per 1000 tkm.

Cost Component Road Rail Inland waterway Short sea

Accidents 5.4 1.5 0 0
Noise 2.1 3.5 0 0
Air pollutions 7.9 3.8 3.0 2.0
Climate Change 0.8 0.5 Marginal Marginal
Infrastructure 2.5 2.9 1.0 Less than 1.0
Congestion 5.5 0.2 Marginal Marginal
Total 24.1 12.1 Maximal 5.0 Maximal 4.0
Cost difference with road traffic 11.8 Ca. 19 Ca. 20

Certain policy goals are set up by European governments. In 2001, this lead to the following
broadly stated objective (OECD, 2001): The objective is to develop a framework for an optimal
integration of different modes so as to enable an efficient and cost-effective use of the transport sys-
tem through seamless, customer-oriented door-to-door services whilst favouring competition between
transport operators.

More specific objectives are created to construct a framework for sustainable mobility, for example
in 2017 the European Commission mentioned the objective to shift 30% of road freight over 300 km
to intermodal transport by 2030, and more than 50% by 2050 (European Commission, 2017). Figure
2B) shows the emission during the years of all sectors. Obviously, the transport sector had a relatively
large increase in the CO2 emission. Figure 2A) shows the ambitious objective from 2010 and inwards
regarding a decrease in emissions in comparison to other sectors. The objectives could result in a
lot of policy actions, which for example are: tax on road transport and lower costs for rail transport
(Blauwens et al., 2006), implementing an information society (European Commission, 1997) and
constructing trans-European networks and nodes (TEN-T) (European Commission, 1997).

Though some of the policy actions are already implemented, the European Union still faces the
complexity of the modal shift. Partly this is caused by a lower network density of intermodal trans-
port in comparison to that of road, by a market that does not currently provide appropriate price
signals to users to shift and by longer delivery times and higher costs as a result of transhipment and
the complex planning of intermodal transport (European Commission, 2017). Also, in general, this
is caused by different approaches of the European countries and the resulting intransparency of the
intermodal transport network. Taking all these factors into account, the European Union advocates
for a harmonized quantification of the intermodal transport network (OECD, 2001). A quantifi-
cation will function as an important starting point to be able to fulfill the objectives. Moreover,
according to the European Combined Transport Directive there is a need for new data to analyse
intermodal transport. In this research we have access to a new and unique data set. We will do
a quantitative analysis of the European intermodal transport flows to further unmask its grounds,
evolution and causal relations. The last paragraph will continue on grounding the research in terms
of concrete research questions.

First, current quantitative analyses around this topic will shortly be addressed. While existing
models might be on the edge between logistical planning and econometrical analysis, there will be
focused on the latter. De Jong, Gunn and Walker (2004) wrote a review of models for forecasting,
policy simulation and project evaluation at the national and international levels. They distinguish
four types of models that have been applied in practice: Trend and times series models, system
dynamics models, zonal trip rate model and Input/Ouput models. They point out that most models
are created for the sake of policy analysis on country level. Moreover, they point out that most
data are aggregated on country level. Therefore, for further development they suggest models at
disaggregated level. Hence, a lack of data automatically lead to the relatively short amount of
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Figure 2: A) Projection of the emission objectives and B) CO2 emissions per sector.

A) B)

econometric research. Since for this research European data on the level of origin-destination could
be used, a different modelling approach as well as new and deeper insights will certainly be presented.

As the need for a modal shift and the current complexities in the research field are noticed, this
research tries to further clarify and therefore quantify the intermodal transport network in Europe.
We will answer the following main question: “How was European intermodal freight transport
organised in the past years and what factors promote a modal shift?” Additionally, more concrete
research questions both content-based and methodological are formulated to further specify the
direction of this research. This results into the following content-based research questions:

• How does the transport flows differ for the three modalities inland water, rail and sea?

• To what extent do socio-economic, financial and logistical factors explain the data?

• How could the differences in intermodal transport be explained geographically?

As already stated, those more concrete research questions will strengthen the main question. Further-
more, they lead to three grounds constituting the formation of data collections: A) Mode differences,
B) Socio-economic, financial and logistical factors, and C) Geographical differences. Because of the
novelty of both the data and econometric analyses in this research field, we find it important to
critically assess its comparability and quality. That is why we raise the following methodological
questions:

• To what extent do the used methods cover the research area?

• To what extent does the new and unique data set lead to new and unique results compared to
the other data set?

Those questions will together strengthen the focus of this research and function as a starting point
to get new insights.
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3 Data

The need for further quantification of the intermodal playfield is already mentioned in the literature
review. The database Eurostat of the European Commission and the database of the World Bank
do a great job making available a lot of historic country data. For intermodal transport the availabe
data from those sources is on country level. These give a good first glimpse on the evolution of
the intermodal transport. However, the intermodal streams could not be scrutinized as the data
lack detail1. In 2014 the research based consulting firm Ecorys started collecting data on a more
disaggregated level of origin-destination, or more specifically at a origin-destination level connected
to a certain terminal and carrier for transport modes rail, sea and inland water. There is data at
six moments in time from 2014 to 2017. The collecting process was and still is set up step-wise and
is executed manually. That’s why in the latter years the data is more extensive and comprehensive.

First we will discuss some characteristics of the raw Ecorys data set. It contains the following
variables: Origin terminal, Destination terminal, Origin city, Destination city, Origin country, Des-
tination country, Carrier, Transportation mode, Number of departures, Percentage of weekend depar-
tures and Transport time. The origin-destination relation for the modes rail, sea and inland water
specify an individual. For example an individual is specified as Rotterdam-Rome or Antwerpen-
Berlin, by sea, rail or inland water. Mention that the individual Rotterdam-Rome differs from the
individual Rome-Rotterdam (for all modes).

The variable Number of departures is the dependent variable. It is also mentioned as the frequency
a certain origin-destination is carried out. If this variable has value 4 for individual Rotterdam-Rome
by rail, it means that a train travels from Rotterdam to Rome 4 times a week.

The most important independent variables in this data set are Transport time and Transportation
mode. Those cover logistical and mode-specific characteristics. Also the variable Percentage of
weekend departures could be added in the model as independent variable. It is expected that the
amount of weekend departures increases by an increasing origin-destination frequency.

The Origin country and Destination country could function as dummy variables, and later on
specifically as group indicator in the specified clustered models. More importantly is that those
two last mentioned variables connect the Ecorys data set to the data set of the World Bank (that
contains country-specific data).

In Table 2 we present statistics of the dependent variable (the number of departures) of the Ecorys
data aggregated from 2015 to 2017. Given are statistics per half year of the number of departures
for all modalities and of the number of departures per modality. We aggregate data sets of different
(half) years based on certain characteristics (e.g. origin-destination and carrier). According to the
chosen time span the number of observations included differs. This is because different years do not
contain observations with exactly the same characteristics. For example, in 2014 data from a lot of
carriers are not collected, whereby a lot of origin-destinations are not included when aggregating the
data sets from 2014 to 2017. Aggregation of data over the years only includes those observations
that are present in all the years you want to aggregate over. Statistics of the data aggregated from
2014 to 2017 are given in Appendix A.1, together with a more extensive clarification of the whole
aggregation process of the data.

Now, we briefly discuss the statistics in Table 2. It becomes clear that the mean and variance
of the number of departures (or frequency) change equally through time. From 2015 inwards the
mean becomes higher. This might be a result of a real increase in intermodal transport by the
policy actions, climate trends or economic outcomes. Furthermore, it is clear that the percentage
of observations with only one departure per week (% Frequency = 1) declined from 2015 to 2016,
subsequently staying comparable. As already mentioned, for the different modalities there is a
different amount of observations. Straightforwardly, the modality sea has the lowest frequency
mean in comparison to the two other intermodal transport modes. This might be the result of the
volume a ship over sea transports, and the time it would take, which is respectively a larger volume
and a longer time.

1On country level we are not able to scrutinize certain factors concerning specific routes (For example, we cannot
look at the relation of time and the route, we cannot select high-frequent routes only or focus on the transport
corridors). Furthermore based on expert knowledge we suspect that freight data on country level is incomplete.
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Table 2: Statistics of the number of departures per half yeara.

20151 20152 20161 20162 20171

All modalities

#obs 2401 2401 2401 2401 2401
mean 6.43 6.51 7.35 7.09 7.11
median 3 3 3 3 3
mode 1 1 1 1 1
var 134.23 140.28 190.53 171.60 172.03
max 209 188 188 188 188
% Frequency = 1 30.27 30.03 25.99 25.95 25.99

Rail
#obs 785 785 785 785 785
mean 10.69 10.89 12.55 11.90 12.07

Inland water
#obs 260 260 260 260 260
mean 13.25 13.24 14.55 15.6 15.17

Sea
#obs 1356 1356 1356 1356 1356
mean 2.65 2.69 2.95 2.67 2.69

a Only those observations that are present in all half years are selected.

In Figure 3 this frequency-time relationship becomes clear. We see that transport that requires
longer time has a lower frequency. Intuitively this sounds reasonable. Again, it is clear that transport
over sea has the lowest frequency as it takes the largest time. Also, transport by inland water in
comparison to transport by rail seems to be equally frequent and takes a little more time. Transport
by rail is obviously fast and frequent, although of course for certain origin-destinations less frequent
connections are required. This relationship will be further scrutinized in the results section.

Figure 3: The relationship of the frequency and the time certain origin-destinations comprise.

The evolution of intermodal transport based on the Ecorys data is visualized in Figure 4. It is
clear that the intermodal transport increased during the years on the east side of the Netherlands,
mainly Germany. Especially this is caused by intermodal transport by rail. Furthermore for Italy
and the parts of France and Spain nearby Italy intermodal transport by rail increased (for Spain
also by sea). On the other hand in the west side of France and Spain (according to the figure)
the transport by train and sea diminished. Logically, transport by sea is on the shores, whereas
transport by rail is inside the countries. Intermodal transport by inland water is mainly visible in
the Netherlands and for a small part in Belgium and France. This might be due to the amount of
canals in the Netherlands and the small distances to the sea, or either to the amount of data for
intermodal transport by inland water.
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Next, we discuss the data of the World Bank. As already mentioned, the World Bank data
on country level are added to the data at origin-destination level from Ecorys. Note that World
Bank data from 2014 (2015) will be added to Ecorys data from 20142 and 20151 (20152 and 20161),
etcetera. The following variables will be added: GDP per capita, Export volume index, Total pop-
ulation, Total km rail lines, Quality of the port infrastructure and Pump price Diesel. In Table 3
some statistics are presented.

Table 3: Statistics of the World Bank data from 2014-2015.

Export volume
index

GDP per
capitaa

Total
population

Quality of the
port infrastructurea

Pump price
Diesel

Total km
rail lines

mean 147 42694 45170500 56 169 16307
var 3205 250772347 9.621e+14 57 848 158918472
median 147 43636 60730582 57 165 15582
min 90 2114 556319 33 19 275
max 374 117507 91508084 68 250 33449
a There is data from 2016 available.

Next, we explain how so-called data collections will be made based on the aggregated data of
Ecorys and the World Bank2. By a data collection we simply mean a specific part of the data.

Data collections are made according to different time frames and according to the three grounds
(following from the three content-based research questions mentioned in the literature review): A)
Mode differences, B) Socio-economic, financial and logistical factors, and C) Geographical differ-
ences. Therefore, besides different time frames, data collections are based on the inclusion of certain
variables or parts of the data according to their characteristics (e.g. think of the part that only
consists of data with small or large frequency). Figure 5 visualizes the factors that determine data
collections. It is clear that we can assemble a huge amount of data collections, but only several will
be chosen.

Different and interesting dynamics and conclusions are driven by different data collections. Fur-
thermore, we make data collections because model-wise it is not feasible to include dummies and
variables covering all relationships. Moreover, this approach enhances the oversight in the research,
being able to address the results according to a structured approach. Also, not all variables are avail-
able for all years and including only a single sample (one half year) contains too less observations
for all models. Lastly, note that the use of different data collections also functions as a robustness
check.

Finally, we discuss the data of Eurostat3. It concerns data aggregated on country level with
an earlier and larger time span (1995-2013). The dependent variables from Eurostat are Inland
water freight quantity, Rail freight quantity and Road freight quantity. The following independent
variables are included: GDP per capita indexed, Population, Transport investments, Trade index,
Environment tax index, and Policy climate stringency index. Statistics are presented in Table 4.

It comes down to a panel data set of 20 countries4 and 19 years. There is a missing data point
in the year 2007 for the rail freight quantity variable. This will be imputed by taking the mean over
the years 2006 and 2008.

In the Appendix A.9 we show the change of the amount of rail, road and intermodal freight
transported in tonne-km from 2000 to 2013. We selected these time points since from 2000 there is
active policy aimed at an increase of intermodal transport. As is visible, the amount of intermodal
transport did not increase for all countries.

In the Appendix A.10 we show the shares of the countries for the above mentioned variables,
given are the shares for 1995 and 2013.

2Data collections will be used in fixed and random effects models.
3Eurostat data will be used in the market share models.
4We will analyze the following countries: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany,

Greece, Hungary, Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland
and United Kingdom.
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Figure 5: Several data collections could be made according to characteristics to be analyzed.

Table 4: Statistics of Eurostat data from 1995-2013a,b.

Road
freight

Rail
Freight

Inl. water
freightc

GDP per
cap. Population

Transport
investments

Trade
index

Environ.
tax index

Climate
index

mean 87795 20720 7571 102 27781536 5.70e+9 234 2.50 2.09
var 7.33e+09 5.57e+08 3.07e+08 1599.93 6.66e+14 3.70e+19 69370 0.27 0.68
min 2563 212 25.10 37.31 408625 132996307 6.95 1.38 0.68
max 335868 117382 66465 248 82534180 2.33e+10 1461 3.81 4.13
a This data will get log-transformed later.
b Freights are given in million tonne-km and GDP per Capita is given in index-form.
c Note that for Inland water, there is no data from the Netherlands, Italy, Spain and Poland.

4 Methods

In this section we explain and discuss the used methods. First we explain fixed and random effects
models that are applied on the (Ecorys and World Bank) data on origin-destination level. We want
to declare the number of departures by (possibly) related variables. Both linear and count models
will be addressed. Also the clustered version of those models will be discussed. Then we explain the
market share model that will be applied on Eurostat data on country level as a case study. Finally,
we briefly address the statistics.

4.1 Fixed and random effects models

As already mentioned, in this research we use a panel data set from Ecorys at a level of origin-
destination (aggregated is data from the World Bank). The following independent variables are
used: Transport time, Transportation mode, Percentage of weekend departures, GDP per capita,
Export volume index, Total population, Total km rail lines, Quality of the port infrastructure and
Pump price Diesel. An advantage of panel data is the possibility of mapping dynamics of individual
behaviour (Cameron, 2005). For example, it can be determined if a decrease in length of a journey
(through the time) leads to an increase of the frequency.
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Furthermore, a major advantage of panel data is the possibility of allowing for unobserved indi-
vidual heterogeneity, in other words it allows each cross-sectional unit to have a different intercept.
This leads to a individual-specific effects model. Treating unobserved individual heterogeneity as
correlated with regressors or as being distributed independently of the regressors results respectively
in fixed effects and random effects models. We find this interesting, as the latent part (unobserved
individual heterogeneity) in modelling the frequency of a certain origin-destination might be either
fixed or random in specific data sets. The quantification of the latent part is valuabe for comparison
reasons. Is the trip from Rotterdam to Rome more frequently executed than the the trip from
Rotterdam to Barcelona? And could the variables explain this difference or is there a latent part,
random or fixed?

Additionally, the fixed and random effects also can be addressed at group level. Fixed and
random effect comparisons could be made on country or TEN-T level (promoted routes by the
European Union).

Altogether, this leads to linear (grouped), Poisson (grouped) and Negative Binomial fixed and
random effects models.

4.1.1 Linear models

For comparison we will first apply an OLS regression. Clearly, this results in an overall constant
that does not cover individual unobserved heterogeneity. Although this is the most parsimonious
model, as the amount of parameters to be estimated is small, the individual-specific models are
more interesting, because we expect that a large part of the number of departures is explained by
unobserved heterogeneity.

The individual-specific effects model is formulated as follows (Cameron and Trivedi, 2005):

yit = αi + x′itβ + εit, (1)

The αi’s capture unobserved heterogeneity. As mentioned before, in case of a fixed effects model αi
will be treated as an unobserved variable that is potentially correlated with the observed regressors.
In this case the αi’s need to be estimated. The alternative model is the random effects model. Here
the αi’s are distributed independently of the regressors:

αi ∼ (α, σ2
α)

εit ∼ (0, σ2
ε ).

(2)

Parameters are estimated differently for both fixed and random effects models.
First we take a look at the fixed effects model. We will apply the so-called Within method

(leading to βW ), because it is the most efficient for T > 2. We follow the execution from the book
of Cameron and Trivedi (1998, page 726).

The distribution of the estimator for βW are required for deriving the significance of the causal
relations in question. The usual OLS results do not apply, because the error terms are correlated
over time. Hence a robust sandwich estimator has to be used, see Cameron and Trivedi (1998, page
727).

Next, we discuss the random effects model. In the data set some variables are time-invariant.
Fixed effects models are not able to estimate those parameters. As random effects models can
estimate parameters for time-invariant variables, these are valuable for the analyses of the causal
relationships. Besides this advantage, the unobserved heterogeneity might be random in certain
data collections. Furthermore, the differences between fixed and random parameter estimates are
interesting.

The random effects estimator of µ (the intercept) and β is also called the GLS estimator, which
we will estimate by OLS regression of the following transformed model:

yit − λ̂ȳi = (1− λ̂)µ+ (xit − λ̂x̄i)′βRE + (1− λ̂)αi + (εit − λ̂ε̄i), (3)

where ȳi, x̄i and ε̄i are respectively the means of (yi1 . . . yiT ), (xi1 . . . y1T ) and (εi1 . . . ε1T ). λ̂ is a
consistent estimator for λ = 1− σε

(Tσ2
α+σ

2
ε )

1/2 . In comparison to the fixed effects models, an intercept
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is introduced so that the random effects can be normalized to have zero mean. In Appendix A.3 we
elaborate on how to estimate the unknown components of λ.

For short panels the robust estimate of the asymptotic variance yields (for general formulation
of this estimate see Appendix A.2):

V [β̂RE ] =
[ N∑
i=1

T∑
t=1

x̃itx̃
′
it

]−1 N∑
i=1

T∑
t=1

T∑
s=1

x̃itx̃
′
it

ˆ̃εitˆ̃εit

[ N∑
i=1

T∑
t=1

x̃itx̃
′
it

]−1
, (4)

where x̃it = (xit − λ̂x̄i) and ε̃it = (εit − λ̂ε̄i).
Now, we have clarified the linear individual-specific fixed and random effects models.
We find it interesting to analyze the unobserved heterogeneity of certain European countries or

TEN-T corridors. Therefore, we introduce the clustered fixed and random effects models (Cameron
and Trivedi, 2005):

yitc = αc + x′itcβ + εitc, (5)

here i= 1. . .Nc, c= 1. . .C, and t= 1. . .T . Cameron and Trivedi (2005) only distinguish the
panel data case in which units are observed more than once (notation: it) and the cluster-specific
case where units are observed only once (notation: ic). In our case the data units are both observed
through time and in clusters. Since for both the panel data case and the cluster-specific case the
setup and terminology are parallel, we use an analogous approach for the combination of both. For
feasibility sake, we consider the observations over time as being separate individuals, but in the same
cluster. There is no effect on the estimation of the β parameters as well as on the parameters of
unobserved heterogeneity.

We will use the Within method for the (panel) cluster-specific fixed effects case either. The β
estimates follow from the Within method as given by Cameron and Trivedi (1998, page 840). The
cluster-robust (co)variance matrix will be calculated in a parallel manner as in the individual-specific
fixed effects case.

For the clustered random effect model we again use the GLS method. Comparably to the
individual-specific case this leads to estimation by OLS regression of the transformed model from
(3), see Cameron and Trivedi (1998, page 837). The cluster-robust (co)variance matrix will be
calculated in a parallel manner as in the individual-specific random effects case.

Now we have discussed all linear models, we will briefly mention the coefficient interpretation.
The αi’s cover the unobserved heterogeneity. In the fixed effects case they also cover the over-
all intercept. The other parameters (β) are interpreted as follows: by a one unit increase in an
independent variable, the dependent variable increases by the corresponding β.

4.1.2 Poisson models

Since the real data is count data, the linear models might not perform optimally. Therefore, we
introduce Poisson fixed and random effects models and follow the set-up of both Cameron and
Trivedi (1998) and Hausman et al. (1984).

The following is assumed about the distribution of the number of departures yit:

yit ∼ P[µit = αiλit],

λit = exp(x′itβ).
(6)

Note that λit and µit are used in a different way as in the previous chapter and that αi still refers
to the individual effect. Then, for a single observation yit the density is:

f(yit|xi, αi,β) = exp(−µit)(µit)yit/yit!. (7)

Furthermore, from the standard Poisson characteristics we know that the conditional mean is:
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E[yit|xit, αi] = µit

= αiexp(x′itβ)

= exp(δi + x′itβ).

(8)

Note here that both an additive and a multiplicative individual-specific effects model are presented.
Also, the conditional mean equals the conditional variance: E[yit|xit, αi] = µit = Var[yit|xit, αi]. In
the data section we noted that (for most data collections) the variance of the number of departures is
larger than its mean.This leaves space for further consideration. We follow the conventional approach
to (so-called) overdispersion (Allison and Waterman, 2002) and use robust standard errors.

First, we present the Poisson fixed effects model. The Poisson maximum likelihood function
simultaneously estimates β and all αi’s. Based on equation (7) the log-likelihood is:

ln L(β, αi) = ln
[∏

i

∏
t

exp(−αiλit)(αiλit)yit/yit!
]

=
∑
i

[
− αi

∑
t

λit + lnαi
∑
t

yit +
∑
t

yitlnλit −
∑
t

lnyit!
]
.

(9)

If this log-likelihood is differentiated with respect to αi and logically set to zero for its maximum,
we get: α̂i =

∑
t yit/

∑
t λit. A substitution of α̂i into (9) drops the αi’s and leads to the following

concentrated likelihood function:

ln Lconcentrated(β) =
∑
i

[
−
∑
t

yit + ln

∑
t yit∑
t λit

∑
t

yit +
∑
t

yitlnλit −
∑
t

lnyit!
]

∝
∑
i

∑
t

[
yitlnλit − yitln

(∑
s

λis
)]
.

(10)

Cameron and Trivedi (2005) state that the estimation of this Poisson fixed effects model provide
consistent estimates of β. The following estimator for panel-robust (co)variance is used (for general
formulation of this estimate see Appendix A.2):

V [β̂PoisFE ] =
[ N∑
i=1

T∑
t=1

λ̂itxitx
′
it

]−1 N∑
i=1

T∑
t=1

T∑
s=1

xitx
′
itε̂itε̂it

[ N∑
i=1

T∑
t=1

λ̂itxitx
′
it

]−1
, (11)

where ε̂it = yit − λ̂it.
Now, as we did for the linear case either, we discuss a random effects model. In general, for a

Poisson random effects model the random effects are assumed to be gamma-distributed. In Cameron
and Trivedi (2015) αi is distributed G[θ1, θ1], which automatically leads to mean is 1, variance is
1
θ1

, and density g(αi|θ1)= θθ11 α
θ1−1
i exp(−αiθ1)/Γ(θ1). The distribution parameters are limited in

the sense that the rate and the shape parameter are equal. In general this would not be seen as a
limitation to the outcome, because the estimations of β are more important. As this research also
questions the size of the latent variable, in other words the unobserved heterogeneity, αi is set to be
distributed G[θ1, θ2], which automatically leads to a mean of θ1

θ2
, a variance of θ1

θ22
and distribution

g(αi|θ1,θ2)= θθ12 α
θ1−1
i exp(−αiθ2)/Γ(θ2).

The Poisson model (7) with gamma-distributed random effects density g(αi|θ1,θ2) results to the
unconditional joint density for observation i:

f(yi|Xi,β,θ) =

∫ ∏
t

[
exp(−αiλit)(αiλit)yit/yit!

]
θθ12 α

θ1−1
i exp(−αiθ2)/Γ(θ2)δαi. (12)

Since an analytic solution for this integral is infeasible, the integral will be approximated by the
numerical Gauss–Hermite quadrature method. It approximates the integral with respect to a normal
density by a weighted sum. A general set-up and some further explanation regarding this method
is given in Appendix A.4. For this specific case the result of the log likelihood is given in Appendix
A.5. Following Cameron and Trivedi (2005) we can use the panel-robust standard errors of (11).
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Like mentioned for linear models, in this research we find it interesting to analyze unobserved
heterogeneity of certain clusters. Similar to the linear case, for feasibility sake, we take the observa-
tions over time to being separate individuals, but in the same cluster. For Poisson clustered fixed
effect models, based on (7) and comparable to (9), we get the following log likelihood:

ln L(β, αi) = · · · =
∑
c

[
− αc

∑
i

λic + lnαc
∑
i

yic +
∑
i

yiclnλct − lnyic!
]
. (13)

Following Cameron and Trivedi (2005), unlike the linear model, here it is not possible to eliminate the
incidental parameters α1, . . . , αC . Therefore we estimate the incidental parameters simultaneously
to the β parameters. Since the cluster-based approach is much more parsimonious in its incidental
parameters this is usually more feasible. Note that the cluster-robust (co)variance matrix will be
calculated in a parallel manner as in the Poisson individual-specific fixed effects case.

As Cameron and Trivedi (2005) state, for a clustered random effects model, the estimates of
the random effects Poisson case (resulting from (40) in Appendix A.5) are consistent. Besides the
potential for small efficiency gains, there is no reason to adjust those estimators for the clustered
case. Therefore we use the estimates of the random effects Poisson model.

4.1.3 Negative binomial models

As already mentioned, the individual effects Poisson model is restricted because the conditional
variance should equal the conditional mean. In the data section it became clear that (for most
data collections) the variance of the dependent variable is larger than the mean. The model does
not account for some additional heterogeneity; which Allison and Waterman (2002) refer to as the
problem of overdispersion. The problem of overdispersion might be resolved by the use of robust
standard errors. However, this does not solve the problem of the model mis-specification. Therefore
we introduce another fixed and random effects count model: The negative binomial model.

First we discuss the negative binomial fixed effects model, conform the terminology of the Poisson
model. There are several different approaches to the negative binomial fixed effects model5. We
discuss the so-called NB2 variant of Allison and Waterman (2002).

The NB2 negative binomial model is based on the following mass function:

f(yit|µit; oi) =
Γ(oi + yit)

Γ(oi)Γ(yit + 1)

( µit
µit + oi

)yit( oi
oi + µit

)oi
. (14)

Here oi is the so-called overdispersion parameter. Furthermore the mean is µit and the variance
is µit(1 + µit/λit). Following the assumption that event counts are independent across time for
each individual, there is no manageable conditional likelihood. This is because there is no complete
sufficient statistic for the αi’s (or in additive terminology as stated in equation (8), no statistic
for the δi’s). To avoid this problem we simply estimate αi together with the other parameters,
including oi. In this research oi is assumed to be constant for all individuals, which leads to the
overall overdispersion parameter o (otherwise there would be too many parameters). Continuing on
(14), and restricting oi to be the same for all individuals, we maximize the following log likelihood:∑

i

∑
t

[
log
( Γ(o+ yit)

Γ(o)Γ(yit + 1)

)
+ yitlog

( µit
µit + o

)
+ o log

( o

o+ µit

)]
. (15)

Unfortunately, the practical problem of computational infeasability still appears, caused by too
many dummy variables (equaling to the amount of individuals). We circumvent this problem by
using the αi estimators from the Poisson distribution as starting values.

5In 1984 Hausman, Hall and Griliches introduced a certain negative binomial model (a so-called NB1 model).
Allison and Waterman (2002) notice that their formulation of the negative binomial model is not a true fixed effects
model, because the αi’s play a different role than xit. Applying this model to our data did not result in reasonable
outcomes.

Allison and Waterman (2002) also present the multivariate generalization of the negative binomial distribution
as an alternative. This formulation does not concern overdispersion and implementation leads to exactly the same
outcome as the Poisson estimators. It is of no addition in our quest for an appropriate negative binomial model.
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Previously, for both Linear and Poisson models, the (co)variance needed to be robust. For
the negative binomial fixed effects model this is not necessary, as it already takes into account
overdispersion. Therefore, we use (32) or (33) from Appendix A.2. A derivation of both are presented
in Appendix A.6.

Next, we will discuss the random effects negative binomial model. Fortunately there are less
approaches than for the fixed effects case. We follow the approach of Hausman, Hall and Griliches
(1984). The incidental parameters αi are beta distributed. Hausman, Hall and Griliches (1984)
integrate the assembly of the negative binomial distribution and the beta distribution which results
in the following individual specific mass distribution:

f(yi1 . . . yit|xi1 . . . xit) =
Γ(a+ b)Γ(a+

∑
t λit)Γ(b+

∑
t yit))

Γ(a)Γ(b)Γ(a+ b+
∑
t λit +

∑
t yit)

∏
t

Γ(λit + yit)

Γ(λit)Γ(yit + 1)
. (16)

This leads to the following total log likelihood function to maximize:∑
i

[
logΓ(a+ b) + logΓ(a+

∑
t

λit) + logΓ(b+
∑
t

yit))

−
(

logΓ(a) + logΓ(b) + logΓ(a+ b+
∑
t

λit +
∑
t

yit)
)

+∑
t

(
logΓ(λit + yit)− logΓ(λit)− logΓ(yit + 1)

)]
.

(17)

In the paper of Hausman, Hall and Griliches (1984) the (co)variance estimator is not given.
Therefore we take the other models as benchmarks for the significance of the parameters.

In comparison to the linear models, the coefficient interpretation of the Poisson and negative
binomial model is more complicated. In both models the mean of the dependent variable E[yit|xit]
comes down to αiexp(x′itβ) (or in additive notation exp(δi +x′itβ)). The αi’s cover the unobserved
heterogeneity (and the overall intercept). A one unit increase in this part would lead to an increase
of exp(x′itβ) in the dependent variable. The effect of the unobserved heterogeneity thus depends on
the value of the other independent variables and their corresponding parameter value.

Even more interesting are the marginal effects of a one-unit increase of a certain variable, or in
other words: the changes in E[yit|xit] due to a change in variable xit,j . This marginal effect equals:

δE[yit|xit]
δxit,j

= exp(x′itβ)βj . (18)

βj determines the sign of the marginal effects, as exp(x′itβ) is always positive.
A more usual interpretation is the elasticity, which is a percentage change in E[yit|xit] due to a

percentage change in xit,j . This is given by:

δE[yit|xit]
δxit,j

× xit,j
E[yit|xit]

= βjxit,j . (19)

4.2 Market share model

In this section we introduce the market share attraction model. This model is valuable for describing
(and forecasting) market shares. We apply it to the country specific data from Eurostat to compare
the positions of several countries in the freight market6. We use freight country shares for road, rail
and inland water transport. For the sake of ease and clarity, we only estimate the own effects of the
variables (GDP per capita indexed, Population, Transport investments, Trade index, Environment
tax index, and Policy climate stringency index ). For the econometric analysis we follow the paper
of Fok, Franses and Paap (2002). Note that the terminology of the fixed and random effects models
is different.

6We use the market share model since (in addition to the fixed and random effects models) we are more interested
in describing the freight amount relative to other countries than the absolute freight amount.
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We will first discuss a representation of a general market share model. Then the estimation
methods will be presented. Finally, we shortly clarify the parameter interpretation.

We implement a restricted version of the general market share model. This restriction will be
both on competition and dynamics. Therefore, let Ait be the so-called attraction (in our case the
amount of freight transport) from country i at time t, t = 1,. . . ,T, given by:

Ait = exp(µi + εit)

K∏
k=1

x
βk,i
k,it for i = 1, . . . , I, (20)

where xk,i,t stands for the k-th explanatory variable (such as GDP, export and import, CO2 emis-
sions, etc.) for country i at time t and where βk,i is the corresponding coefficient, which in this case
is assumed to be constant for all countries (this leads to βk). Further, the parameter µi is country-
specific and the error terms are normally distributed with zero mean and (co)variance matrix Σ.

We follow the market share theorem, which says that the market share of country i at time t is
equal to its attraction divided by the sum of all attractions:

Mit =
Ait∑I
j=1Ajt

. (21)

The model in (20) is linearized to enable parameter estimation. The following two steps are
followed. First, we choose country I as a benchmark country (United Kingdom). This leads to:

Mit

MIt
=

Ait∑I
j=1Ajt

/
AIt∑I
j=1Ajt

=
Ait
AIt

=
exp(µi + εit)

∏K
k=1 x

βk,i
k,it

exp(µI + εIt)
∏K
k=1 x

βk,I
k,It

.

(22)

Next, in the second step we take the natural logarithm. This leads to the (I-1)-dimensional set of
equations, given by:

logMit − logMIt = (µi − µI) + (εi − εI) +

K∑
k=1

(
βk,ilog xk,it − βk,I log xk,It

)
. (23)

Now, we discuss the parameter estimation. Although Fok, Franses and Paap (2002) also discuss
a different estimation method, we implement the one with a base brand. Two approaches will be
used: OLS and GLS.

The set of equations from (23) is rewritten as follows:

y1t = w′1tb1 + z′1ta + η1t

... =
... +

... +
...

y(I−1)t = w′(I−1)tbI−1 + z′(I−1)ta + η(I−1)t.

(24)

Here yit = logMit − logMIt, ηt
′ ∼ NID(0, Σ̂). wit and zit are k-dimensional vectors of explanatory

variables with regression coefficient vector a. For parameter estimation a matrix notation is pre-
ferred: yi = (yi1, . . . , yiT )′, Zi = (zi1, . . . , ziT )′ and ηi = (ηi1, . . . , ηiT )′ for i = 1, . . . , (I − 1). We
get:

 y1t
...

y(I−1)t

 =


W 1 0 . . . 0 Z1

0 W 1 . . . 0 Z2

...
...

. . .
...

...
0 0 . . . W I−1 ZI−1



b1
...

bI−1
a

+


η1
η2
...

η(I−1)

 , (25)

which can be stated as:
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y = Xb+ η, (26)

where η ∼ N(0, (Σ̂⊗IT )). As Fok, Franses and Paap (2002) point out, OLS estimates are consistent
and either efficient if the explanatory variables are equal for each equation. As this might not be
the case in this research, OLS might give inefficient estimates.

Also we estimate the feasible GLS estimator (by the SUR method). The iterative SUR estimator

uses the OLS estimates as its starting point to estimate the (co)variance matrix (Σ̂ = 1
T

∑T
t=1 η̂tη̂

′
t)

and is constructed as follows:

b̂SUR = (X ′(Σ̂−1 ⊗ IT )X)−1X ′(Σ̂−1 ⊗ IT )y, (27)

where η̂t (for Σ̂) results from stacking η̂it = yit−w′itb̂SUR−z′itâSUR. Those will be used to estimate
the (co)variance matrix again. This procedure will be iterated until convergence of both estimates.

The standard errors for the estimates regression parameters b are estimated as follows:

V̂ (b̂) = (X ′(Σ̂−1 ⊗ IT )X)−1. (28)

Note that a sufficiently large T to estimate the covariance of the η̂t is needed. It might lead to a
wrong outcome for the significance of the parameters.

Comparable to the Poisson and negative binomial fixed and random effects models, a coefficient
interpretation based on the elasticity is easiest. For model (20) the elasticity of the k-th coefficient
is (for a derivation of this result, see Appendix A.7):

δMit

δxk,jt

xk,jt
Mit

= (δi=j −Mjt)βk. (29)

where δi=j is 1 if i equals j and 0 if not. This rationale presents the percentage change in Mit due
to a percentage change in xk,jt.

4.3 Statistics

For the data set on origin-destination level we explained different fixed and random effects models in
detail. Since all models differ in their theoretical advantages and disadvantages, it is hard to conclude
from the theory which model fits this data set best, let alone comparisons of the best fits for the
different data collections. Therefore, we compare the models based on a test and performance
measures. The Hausman test tests if the model is random or fixed. As performance measures
the mean squared error (MSE), mean absolute deviation (MAD), mean absolute percentage error
(MAPE) and the likelihood will be used. Lastly, the variable selection procedure will shortly be
mentioned.

The Hausman test more specifically tests if fixed effects are present (Cameron and Trivedi, 2005).
It tests whether the fixed and random effects estimators are statistically significantly different. It
assumes that the random effects model is the true model. This leads to the null hypothesis which
says that the individual-specific effects are uncorrelated with regressors. If rejected, we can conclude
that fixed effects are present.

Following Cameron and Trivedi (2005), we assume a random effects model with αi is iid (0, σ2
α)

uncorrelated with the regressors and errors εit iid (0, σ2
ε ). It is assumed that the random effects

estimators are fully efficient. The Hausman test is given by:

H =

(
β̂T,RE − β̂FE

)′[
V̂ [β̂FE ]− V̂ [β̂T,RE ]

]−1(
β̂T,RE − β̂FE

)
, (30)

where β̂T,RE refers to the time-varying estimated parameters. This test statistic has a χ2(dim(βFE))-
distribution under the null hypothesis.

In most cases the errors will not be iid and so the RE-estimator is not fully efficient. That is
why we implemented a bootstrap approach, but this gave unreasonable results. Therefore, we only
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present results for the Hausman test presented above. It is generally known that the definition of
the Hausmann test statistics results in negative values, which is in conflict with the χ2- statistics.
Schreiber (2008) states that taking the absolute value of the test statistic is the remedy to this
problem as it leads to comparable conclusions.

Next, we discuss model performance. Model prediction errors reflect the model performance.
Model prediction is quite straightforward; We follow the model specification in the method section
and include the regressors in question. For the random effects model the αi for prediction is cal-
culated by E[αi|yi1 . . . yiT ,xi; θ]. We explain the calculation of this expectation in Appendix A.8.
Many different loss functions could be suggested to estimate the prediction errors. As the data
seem to be without outliers, the MSD, MAPE and MAD loss functions are appropriate and easy to
interpret. Note that those loss functions only inform about the model parameters and their perfor-
mance; They do not inform about the stochastic characteristics of the data, or in other words, the
distribution fit.

The MSD is a very common loss function. It simply measures the difference between the real
value and the estimation of that value, as follows:

MSE =
1

NT

N∑
i

T∑
t

(yit − ŷit)2, (31)

where ŷit logically depends on the model in question. Note that large differences will be emphasized
by the quadratic. A comparable loss function is the MAD. It expresses the loss in units of the data
whereby it explodes large errors less than the MSD does. It is calculated by replacing the quadratic
of the difference in (31) by the absolute value of the difference. Another comparable loss function
is the MAPE. The interpretation is different as the prediction accuracy is measured in percentages.
It is calculated by replacing the quadratic of the difference in (31) by the absolute value of this
difference divided by yit.

A final performance measure is the (log) likehood, which is a contribution to the just mentioned
loss functions, as it informs about the distribution fit.

For the fixed and random effects models we select independent variables in different data col-
lections based on the p-values of all models and on the condition that the models are executable.
Mention that for different models different variables are significant and that selection is based on all
models. For the market share models we select the independent variables based on the p-values (for
all different dependent variables).
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5 Results

In this section we address the results of the research. We will present the results from the point-of-
view of the main question and the content-based research questions. Thus, keeping in mind Figure
5, the results will be presented according to the following three grounds: A) Mode differences, B)
Socio-economic, financial and logistical factors, and C) Geographical differences. We present results
of a general model based only on Ecorys data. Then, we will discuss results for the models addressing
the three just-mentioned grounds.

The different models and data collections obviously lead to different results. Note that different
models involve different time frames, because not all variables are available for all years. Further-
more, using one sample for all models involves too less observations and a waste of information. Some
models and data collections have more valuable results than others. Since this empirical research is
the scoop in the area of intermodal transport, we also mention the difficulties and the unexpected
outcomes. As already mentioned, the results could lead to a starting point of quantative conclusions
and future policy actions.

In addition, we will discuss the outcome of the market share models, fully based on Eurostat
data.

5.1 Model 1: General

A small recap: An individual is specified as an origin-destination, distinguished by its modality
(Inland water, rail or sea). The dependent variable is the number of week departures of a certain
individual.

The first model is fully based on Ecorys data. We will investigate the relations of the number
of departures (frequency) and the regressors time, weekend percentage, modality sea and modality
inland water. The underlying data is from 2015 to 2017. For each time frame there are 2401
individuals. In Table 5 parameter estimates together with their variances, t-values and p-values
are presented. Where measured, we also present the robust estimates of the variance and their
corresponding t-values and p-values.

The parameter estimate of the time-component addresses the relationship of time and frequency.
In general, it is expected that time-consuming trips would have a lower frequency. For the fixed
effects models, there is a very small positive relation, rejecting the expectation. The p-values say
the estimates are not significant. For the random effects models, there is a small negative relation,
confirming the expectation. Since it is known that the variable time changes only little through time,
we expected a small parameter estimate. Besides, in the data set are relatively a lot of observations
with a small frequency and a small time-value, which contradicts the found relationship. Moreover
this freight transport database does not distinguish in type of freight. You can imagine that for
certain types of products, e.g. flowers and food, the time and frequency relation would be more
significant. At first sight, this parameter estimate does not lead to new and important insights. In a
later model we only select origin destinations with a large frequency. Also, we will address the time
variable per modality. This might lead to other results.

Next, we discuss the weekend-parameter. It is known that, due to (more conservative) legislation,
employees are more expensive in the weekends. Therefore we expect that (if possible) most journeys
would be executed during weekdays, whereby the percentage of weekend trips increases together
with an increase in the frequency. Low frequent trips will mostly not be carried out in the weekends,
whereas high frequent trips should be carried out in the weekends, for the reason of meeting the
demand. According to this theory, the parameter of this variable is positive in all models, confirming
our theory. Although we need to mention that the robust p-values mostly lead to rejections, which
means that the relationship is not significant. This might be caused by the fact that other, more
important factors might contaminate the relationship. That is why we only include this variable in
the first model.

Next, we discuss the results for the time-invariant dummy variables for inland water and rail
transport. Those are set out against the individuals that are transported by the sea. We expect
that the frequency of certain origin-destinations by train and inland waterways is higher, as in

21



general distances are shorter and less freight volume could be transported. In all random effects
models this parameter has a positive value. Also they are (very) significant. This is a first glimpse
on the different relationships that the different modalities have with the the number of departures.

Note that the parameter estimates for the fixed effects Poisson model and the negative binomial
model are almost equal. They differ in their (co)variances and t- and p-values. The overdispersion
parameter of the negative binomial fixed effects model is 1.41. Though, a higher value of this
parameter was expected, it still confirms the overdispersion.

Since the likelihood is specified differently for all models, we can only compare values for the
same model cases, across different data collections. The (other) performance measures show that
the fixed Poisson and negative binomial models perform best. Here, the improvement of specific
count models to the more common linear models is confirmed. Also, note that the performance of
the random effects models are better than OLS.

In the Appendix A.11 we give a clear overview of the effects for the different models. Obviously,
the density of the estimated fixed effects is comparable for the Linear, Poisson and Negative bino-
mial models. Differences in the fixed effects figures are hardly visible, since some fixed effects are
(relatively) extremely high. For the random effects models, the distributions are obviously different.

We address the random effects versus the fixed effects by the Hausman test. This test gives 3.67
with a p-value of 0.158. This would not lead to rejection of the hypothesis that there are random
effects. For feasibility reasons the Hausman test is only executed to the linear models, expecting
that the Poisson and negative binomial models would lead to the same conclusions. This test gives
an unexpected outcome, since the performance measures show that the fixed effects models have
better fits.
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5.2 Model 2: High frequency

For more insights in line with A) Mode differences and B) Socio-economic, financial and logistical
factors, we present a model based on more frequently executed origin-destinations, or in other
words based on origin-destinations with a higher number of departures. Data from 2015 to 2017 is
used. The frequency treshold is arbitrarily chosen to be 10, meaning that only observations with a
frequency higher than 10 will be included. This restriction leads to only 360 observations per half
year. In the model the time-frequency relation will be mentioned per modality, which comes down
to three different parameter estimates that encompass the time dependency apart from each other.
Additionally, this model includes the GDP per capita variable and the Quality of the port variable
(almost time-variant, so only present in random effects models) from the World Bank. Results for
the parameter estimates are shown in Table 6.

Note again that a negative relation between time and frequency is expected, for all modalities.
The inland water-time parameter estimate is controversial, since it has fluctuating estimates. This
variable is not significant, which is partly due to the small amounts of observations of the inland
water transport mode. The rail- and sea-time variables show a more reasonable outcome. The
relationships are negative.

In more detail, for the linear model (fixed effects) an increase in time leads to a decrease of 2.05
in its number of departures (frequency). For the Poisson fixed effects model (and even so for the
negative binomial model) the parameter estimate is -0.04. Assuming exp(x′itβ) = 1, the marginal
effect is equal to -0.04. Easier interpretable is the elasticity, which is -0.04 if the time variable equals
1. It shows that the time variable is inelastic. This means that the frequency of an origin-destination
changes less than proportionally compared to the change in time an origin-destination journey takes.

Again, it is clear that the dependency of the change in the intermodal frequency is minimally
explained by the time an origin-destination journey takes. Though it is significantly present for the
origin-destinations with a high frequency. A comparable effect is measured for the sea transport.
For now, we mentioned and scrutinized this relationship sufficiently.

Next, this model also leads to the first results for the so-called socio-economic, financial and
logistical factors.

First we will analyze the parameter showing the relationship between the frequency and the
quality of the ports (on country level). Obviously, this relationship is positive. It means that the
port quality has a positive effect on the amount of intermodal transport. This is according to our
expectation. Since the ports function as so-called transportation hubs, ports with a high quality
would lead to more frequent rail transport as well. Therefore, the result brings quantitative support
for policy on promoting intermodal transport.

It follows that the parameter of GDP per capita is significantly negative for all models. On
first sight a negative relationship between the level of GDP per capita and the frequency of origin-
destinations sounds unexpected. Though from an expert opinion this result is reasonable since
countries with a higher GDP per capita in general also have a higher level of concentration in
intermodal hubs, while countries with a lower GDP per capita in general have less hubs that facilitate
the intermodal transport. In other words, the larger the GDP per capita the larger the probability
of relatively large fragmentation of an intermodal network.

Next, the performance measures show (again) that the Poisson and the negative binomial fixed
effects models perform best. A large Hausman-value with high significance leads to the conclusion
that a fixed effects model fits the data best. An overdispersion parameter of 6.28 for the negative
binomial fixed effects model confirms a high expected variance in comparison to the mean of the
dependent variable.

Remarkably, again the fixed effects and random effects estimates fulfill for a large part in explain-
ing the data as they are relatively large. This means that there might be a lot of latent information
which could be useful for the model.
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5.3 Model 3 & 4: Socio-economic and financial factors

Next, we add even more socio-economic and financial regressors into the model. In addition to
the variables GDP per capita and Quality of the port, we add the variables Export volume index,
Population, Pump price Diesel and Km rail-lines. Furthermore, we add a dummy variable for inland
water and rail. The data set consists of the first period of 2015 and the first period of 2016. This
is because for some (World Bank) regressors only data from the 2015 and 2014 can be used (where
data from 2015 is connected to the Ecorys data set of the first period of 2016). Since there are
relatively a lot of variables to estimate, estimation for the negative binomial random effects model
seems to be very sensitive to its starting values and is infeasible. The results are shown in Table 7.

As in the first model, the time parameter concerning all modalities is fluctuating from positive
to negative and has negative p-values, rejecting its significance.

The parameter concerning the export volume index shows in most models a positive relation,
which at first sight seems reasonable. The frequency of intermodal transport would increase by an
increase in the export volume. Exceptionally, this parameter has a very high p-value for the Poisson
fixed effects model, only in the robust case.

Again the parameter for the relationship between the GDP per capita and the frequency is
included. Remarkably, in the common OLS and the random effects model this parameter is positive
in contrast to the other models. In these two cases the parameter has a very high p-value and will
be rejected.

A next interesting variable is the population of a certain country. As expected, a larger population
leads to more frequent intermodal transport. All models, with exception of the random effects
Poisson model, show positive parameter estimates that are significant in all fixed effects cases. It
seems like the random effects Poisson model is not functioning very well for the included variables.
For the fixed effects models the elasticity for e.g. Germany is 0.6, which means that 10% increase in
the population would lead to 6% increase in the number of departures. This sounds quite reasonable.

Although the random effects models do not function very well for this specific model, the positive
relation between port quality and the amount of departures, as well as the positive values for the
the inland water and rail parameters, are again present and significant.

Furthermore, the (almost) time-invariant parameters for diesel price and the total length of
rail-lines in a country are not significant. This might be explained by the fact that the different
modalities have different relationships with those variables. By a high Diesel pump price less road
transport leads to more rail transport, but on the contrary a high Diesel pump price leads to less
inland water transport. The amount of rail-lines might have a positive effect for the rail mode, but in
the other way might lead to less other intermodal transport (and road transport). This relationship
is not clear and significant in this model.

Again the Hausman test and the performance measures advocate the fixed effects instead the
random effects. The overdispersion parameter of the negative binomial fixed effects model is 5.85.

Next, we estimate exactly the same model only including observations of the rail modality.
Results are shown in Table 8. We will only discuss the parameter values for Diesel pump price and
KM rail-lines. Since the effects of different modalities are removed, those parameter estimates are
easier to interpret.

The parameter for diesel pump price is positive and significant. This is a logical and interesting
result, since higher Diesel prices lead to relatively higher costs for road transport and inland waterway
transport in comparison to the costs of rail transport. Thus, a higher diesel price might facilitate
more frequent train departures (and a mode shift from road to rail transport).

Also a positive parameter value of the total amount of rail-lines is logical, since more rail-lines
mean that the rail facilitation in a country is better and therefore lead to a higher amount of train
departures.
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5.4 Model 5: General forecasts

Comparably to the now mentioned models, forecasts will be made for 2016 based on parameter
values using data from 2014 to 2015. We include the variables GDP per capita and Quality of the
port, and the combination of time and the three modalities. We estimate the model based on 813
observations. The results are presented in Table 9.

Clearly the performance measures again advocate fixed effects models. The linear fixed effects
model (unfortunately) does a better job in forecasting than the Poisson and negative binomial
models, based on the MSD (and MAD). On the contrary, the Poisson and negative binomial models
do a better job in forecasting than the linear models based on the MAPE.

5.5 Model 6 & 7: Geographical differences

Next we should address the geographical differences of intermodal transport. First this will be done
at country level. Therefore we make use of the cluster random and fixed effects models. Origin-
destinations will simply be assigned to the country cluster. Furthermore in the analysis we added the
variables GDP per capita, Quality of the port and the combination of time and the three modalities.
In addition we added also dummy variables for the modalities rail and sea. Estimates are based on
the data set from 2015 to 2016. The results are shown in Table 10.

We will not discuss the parameter estimates thoroughly, as they mostly agree with the already
mentioned models. Only the fixed and random effects, which are based on the belonging country,
will be addressed.

Remarkably, the linear random effects model performs better than the linear fixed effects model
according to its MSD, MAD and MAPE. This suggests that the latent part for country clusters could
be randomly explained, meaning that the number of departures fluctuates within the countries. For
the Poisson models, the fixed effects model performs way better and performs better than the linear
random effects model according to its MSD and MAPE.

In Figure 6 a visualization of the Poisson fixed effects is presented on country level. Here, darker
areas have higher fixed effects (white areas are not taken into account). It is clear that in the
Netherlands, as it know looks like the epicentrum of intermodal transport (what a proud!), the
amount of departures at specific origin-destinations is highly determined by a latent part. Then
Germany and France follow. And since the colour fades away from the Netherlands, the latent part
in the model becomes less, or in theoretical terms: the country clustered fixed effects are lower. For
a large part this could be explained since the Netherlands (together with France and Germany) is
literally a central point in Europe, where several transport routes should cross. Products from Italy
will first be transported to the Netherlands, France or Germany before transport to Scandinavian
countries. This seems to be a logical explanation of this outcome.

Next, we execute the cluster analysis at TEN-T level. The TEN-T Programme was established
by the European Commission to support the construction and upgrade of transport infrastructure
across the European Union (European Commission, 2016). This European program aims at certain
TEN-T routes, which means that the intermodal transport development and the increase of transport
at those routes needs to be promoted. We calculate the models based on a cluster of the origins
belonging to a certain TEN-T against a cluster of all other origins. This means that for the interesting
TEN-T routes different models will be made (since some origins do overlap in the different TEN-T’s).
The clustered fixed effects from both a linear and Poisson model are presented in Table 11.

A TEN-T route that already functioned according to its aims (since it concerns an industry-rich
area), is the Rhine-Alpine TEN-T. As we see, the number of departures at this route are for a
significantly larger part explained by latent variables, leading to a higher number of departures. We
find this a reasonable outcome since in the basic model a certain TEN-T or river variable or industry
area is not accounted for.

Contrary to the Rhine-Alpine route, for the Baltic Adriatic TEN-T the number of departures at
this route are less explained by a latent part, leading to a relatively smaller number of departures in
this area in comparison to the overall latent part. We find this intuitively reasonable since economic
relations in Europe are mostly from the east to the west.
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Furthermore for the North Sea Baltic, the number of departures at this route are for a significantly
larger part explained by a latent part. There is a large stream of intermodal water transport (sea
and inland waterways) in and around the North Sea.

Lastly, for the Mediterranean route the number of departures at this route are less explained by
a latent part. This is simply caused by the fact there is a low amount of infrastructure in these
areas.

All in all, again some logical and interesting quantitative insights are given through the fixed
effects model specification.
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Table 10: Parameter estimates of model 6a.

Linear Poisson
FE RE FE RE

(clustered effect)

(µ = 10.59,

σ2 = 24.00)

∼ iid(0.42,

134.22)

(µ = 10.21,

σ2 = 0.69)

∼ Gamma(1.19, .

2.01)
inlandW/time -1.49 -0.21 0.19 0.48
p-value(Robust) 0.00 0.70 0.00 0.00
rail/time -0.19 -1.54 0.19 -0.17
p-value(Robust) 0.10 0.00 0.00 0.01
sea/time -0.04 -0.01 -0.13 -0.01
p-value(Robust) 0.00 0.94 0.00 0.14
GDP per capita(×10−5) -8.18 -0.46 0.64 2.44
p-value(Robust) 0.00 0.00 0.00 0.00
port quality 0.15 0.00
p-value(Robust) 0.00 0.00
rail 2.62 1.58
p-value(Robust 0.08 0.00
sea -5.31 0.77
p-value(Robust) 0.00 0.04
MSD 150.31 146.01 145.58 195.57
MAD 5.91 4.83 5.53 5.88
MAPE 1.87 0.99 1.53 0.67
Likelihood -19121 -243923 -26639 -64096
a The transport frequency is regressed on time and transport mode variables, GDP per capita and the

quality of the port (dataset of 2015-20161). Clusters are based on the origin country.

Table 11: Fixed effects of model 7a.

Linear fixed effect Poisson fixed effect

Rhine-Alpine 15.08 17.16
Others 4.95 7.56
Baltic-Adriatic 4.07 5.29
Others 5.97 8.77
North Sea Baltic 11.91 12.57
Others 5.61 8.19
Meditarrenean 2.23 3.76
Others 6.07 8.95
a The fixed effects for the TEN-T corridors are presented. Those come from

a model where transport frequency is regressed on time and transport mode
variables, GDP per capita and the quality of the port (data set of 2015-
20161).
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5.6 Case study: Market share model

At last, we discuss the results of the case study on aggregated data. A market share model is
introduced. For rail, road and inland water the counrty shares of are calculated and used as the
dependent variables in the model. The shares are given in the Appendix A.10 Figure 9 (for compar-
ison reasons together with the country shares of other variables). According to the method section,
the United Kingdom will function as benchmark country. The results for the market share model
are shown in Table 12.

At first it becomes clear that for all modalities the outcomes of the two approaches are different.
The parameter estimates are relatively comparable in their size and sign. For the rail and inland
water market shares models the estimates are very comparable. There is a large difference in the
(co)variances of the approaches, leading to different p-values. Furthermore there is a difference in the
MSD and likelihood. The OLS-estimator by definition leads to the smallest MSD. On the contrary
this approach leads to the smallest log likelihood and the largest p-values.The SUR estimator leads
to higher likelihoods. As Fok, Franses and Paap (2002) state that the SUR-estimates maximize the
log likelihood function, we will discuss the results of this estimator.

We discuss the elasticities. The SUR-parameter estimate for GDP has an elasticity of (1−Mj,t)∗
0.15, which comes down to an elasticity of 0.12 for Germany and 0.14 for the Netherlands (taking
the market shares of 2013). This means that a 1% increase in GDP leads to respectively 0.12% and
0.14% increase in the road market share. In case of the rail shares those elasticities are respectively
0.77 and 1.19. In case of waterway shares this is 0.27 for Germany (The amount of freight in tonne-
km for the Netherlands is unknown). These positive relationships between the market shares and
the GDP seem reasonable (and significant).

Furthermore, the relationship between population and market shares for all modalities is positive
and therefore reasonable as well.

Since the environment tax and policy climate index change less through the years and furthermore
differ (relatively) less, it is expected that they will function as the overall constant variable7.

There seems to be a negative relationship between the market shares of rail and road, and the
trade and infrastructure investment variables. On the contrary this relationship is positive for the
road transport, which is a more reasonable result.

Important factors still seem to be GDP and population. Unfortunately, the results of the market
shares do not lead to other insights. This might partly be caused by the few amount of observations
that are available. Also, this shows again the complexity of the relationships between certain vari-
ables, meaning that small changes in for example environment tax do not directly lead to significant
changes in the market shares. Furthermore, it shows the added value of the data at a disaggregated
level and the results from the random and fixed effects model analysis.

7The complete analysis is also executed including a constant. Unfortunately this leads to insignificant parameter
estimates (only the constant is significant).
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Table 12: Parameter estimates for the market share models.

Road Rail Inland water
OLS SUR OLS SUR OLS SUR

GDP 2.08 0.15 0.63 1.21 0.68 0.92
p-value 0.018 0.05 0.59 0.00 0.68 0.05
Population 1.14 0.67 0.41 0.52 0.46 0.59
p-value 0.03 0.00 0.49 0.000 0.49 0.00
Trans.Inv. -0.17 0.05 -0.04 -0.21 -0.09 -0.11
p-value 0.67 0.00 0.93 0.00 0.88 0.28
Trade -0.63 0.05 -0.16 -0.06 -0.16 -0.19
p-value 0.07 0.00 0.57 0.00 0.69 0.00
Env.Tax. 0.19 0.39 0.57 0.03 1.11 0.39
p-value 0.85 0.00 0.55 0.00 0.52 0.20
Policy 0.13 0.02 0.05 -0.07 0.05 0.16
p-value 0.75 0.05 0.05 0.00 0.91 0.03
MSD 1.79 2.35 1.78 1.97 2.12 2.18
Likelihood -666 -544 -627 -542 -450 -427
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Figure 6: This figure shows the size of the fixed effects for European countries relative to each
other. It is based on the model where transport frequency is regressed on time and transport mode
variables, GDP per capita and the quality of the port. A dataset of 2015-20161 is used. The countries
form separate clusters.
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6 Conclusion

In this paper we used both linear and count fixed and random effects models to analyze the European
intermodal transport flows. The models provide us with attractive model representations used for the
the estimation of fixed and random effects parameters, as well as common parameters. In addition,
we used a market share model to analyze causal relations explaining changing country shares for
certain modalities.

Governments and intermodal operators are in need of quantification of the European intermodal
transport flows. Until now there is limited econometric research. This paper acts as a starting
point. The research answers the following main question: “How was European intermodal freight
transport organised in the past years and what factors promote a modal shift?” For the sake of
clarity, intermodal trends are assessed along the following three lines: A) Mode differences, B)
Socio-economic, financial and logistical factors, and C) Geographical differences. The mentioned
models are used to conduct analysis that lead to interesting quantified insights.

Clearly, the models show that rail and inland waterway transport generally have a relatively larger
number of departures than sea transport. Whereas the relationship between time and the number of
departures for a certain origin-destination is not significant, models based on high frequent departures
show a negative relationship between time and the number of departures, for each modality. This
means that longer journeys depart less frequently. Next, it becomes clear that when the GDP per
capita is higher, departures for origin-destinations are less frequent. This finding confirms that those
countries generally have a more fragmented transport network. In addition, countries with a higher
GDP have a larger share of transport, for all modalities. Thus, in countries with a higher GDP per
capita intermodal transport is more fragmented, but the total (intermodal) transport is relatively
higher. Further, we concluded that countries with a higher export volume have more frequent
departures at specific origin-destinations. Another interesting finding is that high port quality leads
to an increase in intermodal transport. Based on this finding policy on promoting a modal shift
should focus on improvement of the ports. Furthermore, higher amount of rail lines and a higher
pump price logically lead to a higher amount of train departures. The pump price could be taxed to
increase the amount of departures by train. Also, from the clustered fixed effects models it becomes
clear that the Netherlands, together with Germany and France, function as a central intermodal
transport spot. Clearly, based on the height of the latent part (the fixed effects) the amount of
departures lays higher for the Rhine-Alpine and North Sea Baltic TEN-T corridors, whereas it lays
lower for the Baltic Adriatic and Mediterranean TEN-T corridors. Those first results indicate that
the Rhine-Alpine and North Sea Baltic TEN-T corridors are promoted with success.

We stated two methodological questions to critically asses the validity of the data and the models.
Overall, it is clear that the models are valuable for quantification of the intermodal transport

flows. Conclusions mainly based on qualitative research could from now on be drawn and quantified
by the fixed and random effects models. Note that the fixed effects models functioned clearly better
at the origin-destination level, since the latent part in the number of departures is not random,
but explained by latent (omitted) variables correlated to the present variables. However, for the
clustered approach, the random effects models approximate the fixed effects models’ performances.
Both models are valuable. Overall the Poisson and negative binomial models perform better than
the linear models.

Furthermore it is clear that Ecorys data at origin-destination level, in other words data at
disaggregated level, add value in the research. Only aggregated data (country level) hardly lead
to significant quantifications by a lack of observations. Therefore, collection of the data on origin-
destination level should be continued.

It is widely known that road transport still remains dominant in the transport world. But since
a modal shift could lead to an improvement of cost effectiveness, economic growth and the reduction
of social and environmental externalities, the intermodal shift should be promoted. This research
functions as a good starting point to promote the modal shift.
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7 Discussion

In this section we will highlight difficulties and problems regarding the data, the used models, validity
of the outcomes and we address some recommendations for further research.

At first, we need to mention that the data from Ecorys bring opportunities for quantification in
the intermodal transport field (in comparison to the data on country level). Since the collection of
this valuable asset, the data on origin-destination level, just started, a lot of improvements could be
made. For example it is known that in the data there is still a lack on the amount of East-European
origin-destinations (Poland and further East). Also it is clear that the data collection started from
the Netherlands, since relatively a lot of departure spots are established in the Netherlands. For this
reason, by including a geographically broader zone in the future the conclusions can be toughened.
Furthermore, the data could be improved by adding other variables. Information about the transport
distance, the freight volume, the transported products and the costs of transport will generate new
insights. Those extensions cannot be made to the data on country level.

Quite interesting is the fact that the Ecorys data set does not contain any missing observa-
tions. This is because the collection process is set up bottom-up. Only the known and most basal
information is included. Since missing data in a sense can be informative, stating that this leads
to non-missing information/data on the side, a more top-down collection process could be started
besides. This questions in what way the dataset should and could be improved.

A more specific point is the fact that the data set consists of many origin-destinations that are
only executed once a week. In fact some of those origin-destinations are executed more frequently.
However, the carriers that also provide this origin-destination journey are not included in the data
set. For a better picture of the intermodal landscape, those should be included in the future. Lastly,
about the data, a lot of information needed to be thrown away because the data sets are analyzed
over time and needed to be aggregated. This removed (informative) data could still be analyzed.

Apparently, the calculation of robust errors is not always comparable between the models, since
different specifications of the robust standard errors were given. Clearly, for all models this robust
error lead to a higher (co)variance and therefore higher p-values. For the random effects models,
the estimations did not always lead to the same conclusions. This might be encouraged by the
infeasibility of the maximum likelihood to maximize over a relatively large amount of parameters.
This is also visible in some results. For example, for some model specifications the gamma parameters
did hardly change in comparison to its starting values. This is a common econometric problem, but
should be mentioned. Improvement on this feasibility could be made.

Furthermore, negative binomial fixed and random effects models could be problematic. Several
specifications of the negative binomial fixed effects models come down to the Poisson model. This
is often mentioned as being problematic in the literature and needs further research.

Despite some differences of the outcomes in the fixed and random effects models, overall there
were valid outcomes based on the significance of parameter estimates.

In contrast, the outcomes from the market share model were not very informative. The OLS-
estimates were completely different from the SUR-estimates. Both outcomes are doubtful since there
were too less observations.

Some outcomes from this research could function as a starting point for policies of the European
Commission. Based on expert knowledge there are two findings that are mainly useful for certain
policy actions. The first is the result that port quality leads to an increase in the number of
intermodal transport departures. To promote intermodal transport Europe should invest in the
port infrastructure. The second is the finding that tax on Diesel leads to an increase in transport
by rail. This confirms the policy of certain European countries on increasing their Diesel tax for a
better climate. Those are valid quantifications, but still need to be scrutinized further.

In general, still a lot of research should be done. It is quite clear that this intermodal research
area needs quantification. For further research more econometric analysis could be generated. First
of all, mixed models could be applied on the data since even if the effects are mainly fixed, a random
effect still could be present. Furthermore, there might be options to transform qualitative knowledge
to quantitative knowledge. A rather Bayesian approach might generate interesting results as well:
it assigns a hypothetical distribution to the known data and thereby might enrich the research.
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A Appendix

A.1 Explanation of the aggregation process of the Ecorys data

Here we explain the aggregation process of the Ecorys data set. We have data sets per half year.
We need to aggregate those data sets to create a panel data set. When aggregating the data sets
there is a loss of observations, since not every observation is in all half years. We should aggregate
at several levels. In Figure 7 the different levels of data aggregation are shown together with the
percentage observation loss, both for aggregation of 2014 with 2017 and of 2015 with 2017. The

Figure 7: The percentage whereby each aggregation level shrinks the amount individuals, or in other
words: the percentage each aggregation level adds to the total loss of observations. The order of
aggregation is according to the order of the legend.

order of aggregation is according to the order of the legend.
In the raw database the data are at carrier level. When aggregating the data set of 2014 with

the data set of 2017, 14% of the total loss of observations in the data set is caused by removing
carriers that are not in both years (In the dataset from 2017 more carriers are present). 48% of the
total observation loss is caused by missing origin-destinations, mostly due to a comparable reason:
the data set from 2014 contains less origin-destinations, even for the same carriers as in 2015. A
next 33% is caused by aggregating the frequency of origin-destinations, counting up frequencies
from different carriers for the same origin destinations (and the same modality). Only 4% is due to
aggregation for different transport times (calculating a mean transport time in case of aggregation),
which means that most origin-destination individuals have the same transport times (and if not
they differ according to their transport mode). Clearly, a last aggregation over the transport mode
encompasses a minimal percentage in loss of observations. This is due to the fact that certain origin-
destinations are mostly concerned with certain modalities. For example, in Düsseldorf there is no
sea, which makes transport by sea impossible. Moreover this last aggregation will be seen as a loss
of information and will in general not be executed.

In Table 13 only aggregation per half year apart from other half years is given. Clearly, the
number of observations increases during the (half) years - in exception of the first and second data
set in 2015, that almost stays the same.

In Table 14 statistics are given for the aggregation of datasets over the years from 2014 to 2017.
This does not take into account the earlier mentioned aggregation over the modalities, as this variable
is informative in the model. Since the aggregation over all years leads to a large loss of observations,
further analysis mostly refers to the data set aggregated from 2015 to 2017. The statistics of this
aggregation are given in Table 2. As you can imagine aggregation over a selection of other half years
leads to inclusion of different observations.

All in all, this preparation process raised the questions and complexities that aggregation could
lead to. The trade-off between the loss of observations by the amount of years and the loss of
observations by aggregation over the included years leads to different and interesting dynamics and
conclusions in this research. Obviously, this should not be neglected.
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Table 13: Statistics of the number of departures per half year, without aggregation over the
yearsa.

2014 20151 20152 20161 20162 20171

All modalities

#obs 1516 4254 4247 4935 5009 5468
mean 6.73 5.11 5.19 5.28 5.13 5.45
median 3 2 2 2 2 2
mode 1 1 1 1 1 1
var 184.23 101.06 107.79 129.03 116.08 136.77
max 188 209 188 188 190 236
% Frequency = 1 30.47 42.29 41.53 40.97 39.50 38.89

Rail
#obs 380 1319 1309 1365 1363 1365
mean 12.41 9.39 9.64 10.82 10.34 10.56

Inland water
#obs 248 323 329 349 365 368
mean 12.30 11.96 11.87 12.49 13.01 13.21

Sea
obs 888 2612 2599 3221 3281 3735
mean 2.75 2.10 2.12 2.15 2.08 2.81

a It means that all the carriers, modes and origin-destinations are selected, even if not present
in all half years.

Table 14: Statistics of the number of departures per half year, completely aggregated over
the five half yearsa.

2014 20151 20152 20161 20162 20171

All modalities

#obs 813 813 813 813 813 813
mean 8.10 8.6 8.84 10.69 10.06 10.07
median 4 4 4 4 4 4
mode 1 1 1 1 1 1
var 247.38 271.12 285.92 418.96 377.65 376.20
max 188 209 188 188 188 188
Frequency = 1 18.94 17.10 16.97 16.97 17.47 17.22

Rail
#obs 198 198 198 198 198 198
mean 13.1 13.22 13.65 19.45 17.36 17.46

Inland water
obs 190 190 190 190 190 190
mean 13.57 14.79 15.18 16.51 17.47 17.36

Sea
#obs 425 425 425 425 425 425
mean 3.32 3.70 3.76 4.00 3.34 3.36

a It means that only the carriers, modes and origin-destinations are selected which are
present in all half years.
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A.2 General form robust sandwich (co)variance estimate

The general robust sandwich (co)variance estimate Â
−1
B̂Â

−1
is formed by taking the derivatives

of the likelihood function q(y,x,θ):

A = E
[δ2q(y,x,θ)

δθδθ′

]
, (32)

B = E
[δq(y,x,θ)

δθ

δq(y,x,θ)

δθ′

]
. (33)

A.3 Elaboration on the linear random effects model

For (3) we require estimates of σ̂2
ε and α̂2

ε (Cameron, 2005). We calculate σ̂2
ε by the Within method:

σ̂2
ε =

1

N(T − 1)−K

N∑
i=1

T∑
t=1

(
(yit − ȳi)− (xit − x̄i)′βW

)2
. (34)

From the Between method of ȳi on an intercept and x̄i, we obtain the other variance component:

σ̂2
α =

1

N −K − 1

N∑
i=1

(ȳi − µ̂B − x̄′i)β̂B)2 − 1

T
σ̂2
ε . (35)

A.4 General form of Gaussian Quadrature

Suppose the following integration needs to be computed (θ is given):∫
f(yi|;xi; θ;αi)g(αi; θ)δαi. (36)

Numerical integration means making a grid of P points α1
i < · · · < αPi and evaluating the surface

of the function between the grid points. By Gaussian Quadrature a weighted sum of the function
values is calculated. Therefore equation (36) is rewritten and approximated as follows:∫

f(yi|;xi; θ;i )g(αi; θ)δαi

=

∫
w(αi)

f(yi|;xi; θ;αi)g(αi; θ)

w(αi)
δαi

≈
P∑
p=1

wp
f(yi|;xi; θ;αp)g(αp; θ)

w(αp)
.

(37)

The function w() is chosen according to the region of αi; Values of wp depend on the chosen function
and can be found in the handbook of Abramowitz and Stegun (1972, page 900-924).

A.5 Result of the log likelihood of the Poisson random effects model

The Poisson model with gamma-distributed random effects density g(αi|θ1,θ2) results to the uncon-
ditional joint density for observation i:

f(yi|Xi,β,θ) =

∫ ∏
t

[
exp(−αiλit)(αiλit)yit/yit!

]
θθ12 α

θ1−1
i exp(−αiθ2)/Γ(θ2)δαi. (38)

Since an analytic result for this integral seems to be infeasible, the integral will be approximated
by the numerical Gauss–Hermite quadrature method (see Appendix A.4 for a general explanation).
We get the following integral and approximation:
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f(yi|Xi,β,θ) =

∫ ∏
t

[
exp(−αiλit)(αiλit)yit/yit!

]
θθ12 α

θ1−1
i exp(−αiθ2)/Γ(θ2)δαi

=

∫
w(αi)

w(αi)

∏
t

[
exp(−αiλit)(αiλit)yit/yit!

]
θθ12 α

θ1−1
i exp(−αiθ2)/Γ(θ2)δαi

≈
P∑
p=1

wp∗
exp(−αp)

∏
t

[
exp(−αpλit)(αpλit)yit/yit!

]
θθ12 α

θ1−1
p exp(−αpθ2)/Γ(θ2).

(39)

By definition of the gamma function, αi could only be positive. Therefore the so-called Laguerre
integration is followed. Here, w(αp) is exp(−αp) and wp∗ follows from the handbook of Abramowitz
and Stegun (1972). The maximum log likelihood function of the Poisson random effects model,
based on the Laguerre integration, is approximated as follows:

n∑
i=1

log

P∑
p=1

wp∗
exp(−αp)

∏
t

[
exp(−αpλit)(αpλit)yit/yit!

]
θθ12 α

θ1−1
p exp(−αpθ2)/Γ(θ2). (40)

In comparison to previous log likelihoods, the logarithm of this log likelihood cannot be taken further
inside and transform log

∏
t into

∑
t log. As the

∏
t could lead to infeasible calculations - in the

data set this is the case - the formula should be rewritten taking an exponent and a log of the term
inside the product over p:

n∑
i=1

log

P∑
p=1

exp
(

log(
wp∗

exp(−αp)
) + log(

∏
t

[
exp(−αpλit)(αpλit)yit/yit!

]
) + log(θθ12 α

θ1−1
p exp(−αpθ2)/Γ(θ2))

)
.

(41)

A.6 Derivation of the negative binomial (co)variance estimator

Both a derivation of the gradient and of the hessian -in general form given in Appendix A.2- could
be used as (co)variance estimate. Here, both forms will be derived. Therefore, the following log
likelihood is used:∑

i

∑
t

[
log
( Γ(o+ yit)

Γ(o)Γ(yit + 1)

)
+ yitlog

( µit
µit + o

)
+ o log

( o

o+ µit

)]
. (42)

The derivations are comparable to the ones given by Ismail and Jemain (2007) (without panel
data). Since a derivative to the β parameters is taken, it becomes clear that the first log part is
removed immediately. The Gradient is as follows:

δ

δβ

∑
i

∑
t

[
log
( Γ(o+ yit)

Γ(o)Γ(yit + 1)

)
+ yitlog

( µit
µit + o

)
+ o log

( o

o+ µit

)]
=
∑
i

∑
t

(
yit(

1

µit
− 1

µit + o
)xit − o(

1

o+ µit
)xit

)
.

(43)

The Hessian is as follows:

δδ

δβδβ′
∑
i

∑
t

[
log
( Γ(o+ yit)

Γ(o)Γ(yit + 1)

)
+ yitlog

( µit
µit + o

)
+ o log

( o

o+ µit

)]
=

δ

δβ′
∑
i

∑
t

(
yit(

1

µit
− 1

µit + o
)xit − o(

1

o+ µit
)xit

)
=
∑
i

∑
t

(
yit(
−1

µ2
it

+
1

(µit + o)2
)xitx

′
it + o(

1

(o+ µit)2
xitx

′
it)
)
.

(44)
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The estimator A is simply calculated by the Hessian and the estimator B as follows:

B =
∑
i

∑
t

(
yit(

1

µit
− 1

µit + o
)xit − o(

1

o+ µit
)xit

)(∑
i

∑
t

(
yit(

1

µit
− 1

µit + o
)xit − o(

1

o+ µit
)xit

))′
.

(45)

A.7 Derivation of the elasticities of the market share model

The following result will be derived:

δMit

δxk,jt

xk,jt
Mit

= (δi=j −Mjt)βk, (46)

where δi=j is 1 if i equals j and is 0 if not. Here, the case where i equals j will be derived. First,

the derivative will be calculated. Given that Ait = exp(µi + εit)
∏K
k=1 x

βk,i
k,it and Mit = Ait∑I

j=1 Ajt
, it

follows from the quotient rule that:

δMit

δxk,it
=

(
∑I
j=1Ajt −Ait)exp(µi + εit)

∏
g 6=k x

βg,i
g,it (βk,ix

(βk,i−1)
k,it )

(
∑I
j=1Ajt)

2
. (47)

Next, the derivative part will be multiplied with the remainder part. This leads to:

δMit

δxk,it
=

(
∑I
j=1Ajt −Ait)exp(µi + εit)

∏
g 6=k x

βg,i
g,it (βk,ix

(βk,i−1)
k,it )

(
∑I
j=1Ajt)

2

xk,it
∑I
j=1Ajt

Ait

=
(
∑I
j=1Ajt −Ait)exp(µi + εit)

∏K
g=1 x

βg,i
g,it βk,i∑I

j=1AjtAit
=

(
∑I
j=1Ajt −Ait)Aitβk,i∑I

j=1AjtAit

= βk,i −
Ait∑I
j=1Ajt

βk,i = (1−Mit)βk,i.

(48)

If i does not equal j, the numerator of the derivative would be−Aitexp(µi+εit)
∏
g 6=k x

βg,i
g,it (βk,ix

(βk,i−1)
k,it ).

The denominator would stay the same. Obviously, the result would have been −Mitβk,i.

A.8 Expected value of the random effect

For both the in-sample and out-of-sample forecasts (necessary in the loss functions) of the random
effects model we need a value for the random effect. A random effect drawn completely random
would not make sense. Also the expected value of the random effect would not make sense. There-
fore, we introduce the expected value of the random effect given the data and the parameters:
E[αi|yi1 . . . yiT , ]. We get the following:

E[αi|yi1 . . . yiT ,xi; θ] =

∫
βig(βi|yi1 . . . yiT ) =∫

αif(yi1 . . . yiT |xi, αi; θ)g(αi; θ)δαi∫
f(yi1 . . . yiT |xi, αi; θ)g(αi; θ)δαi

.

(49)

Here the function f() corresponds to the underlying distribution of the model (normal, Poisson and
negative binomial). The function g() corresponds to the distribution of the fixed effects (normal,
gamma and beta). The integrals are approximated numerically:

1
rep

∑
rep αrepf(yi1 . . . yiT |xi, αrep; θ)g(αrep; θ)

1
rep

∑
rep f(yi1 . . . yiT |xi, αrep; θ)g(αrep; θ)

, (50)

where rep refers to the number of different α’s are drawn from its distribution g().
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A.10 Country shares

Figure 9: The shares of the countries for the variables in the market share model, given for 1995
and 2013.
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