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Abstract

We complement arbitrage restrictions with rationality arguments to obtain tight ‘good deal’ bounds
on the set of arbitrage-free valuations in incomplete markets with a complete submarket. We show
how to select the stochastic discount factors which induce the lowest and highest option prices under
risk-neutral no-good-deal valuation. We find that rationality measured by coherent risk measures
restrict the volatility of the stochastic discount factor independent of the model parameters and
available products, making coherent restrictions robust against model misspecification and giving
them an interpretation that is consistent over different calibrations. Good deal bounds are derived in
a general pricing model with stochastic volatility and a stochastic interest rate, and the implications
of using good deal bounds in a simulation pricing framework are discussed: Most notably, without
the completeness assumption the classical Heston stochastic volatility leads to the possibility of
exploding discount processes. To mitigate this issue we propose a modified stochastic volatility
model. If risk preferences are incoherent, we find that good deal bounds do not necessarily lead to
sensible solutions without imposing additional constraints on the market.

Keywords: Good deal pricing, incomplete market, risk measure, continuous time, arbitrage
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Chapter 1

Introduction

Insurance companies face the issue of pricing long-maturity pension- and insurance products with
embedded path-dependent optionality such as interest rate floors or contingent claims on the in-
surer’s profit. These options are written on the insurer’s assets, which likely includes illiquid
products such as private equity and unlisted real estate. Because these products appear on the
liabilities side of an insurer’s balance sheet, the Solvency II Directive issued by the European Union
dictates that the pricing of these options is done in a ‘market-consistent’ manner, and as a result,
derivatives need to be priced in a risk-neutral setting when continuous hedging is out of the question
and prices of the underlying or derivatives thereof are infrequently observed.

To provide a flexible pricing instrument, Ortec Finance generates a set of risk-neutral scenarios
nested within a set of real world scenarios. Hence for each point in the future and each real-world
scenario, a set of risk-neutral scenarios is available to determine a risk-neutral price for derived
products. To generate these risk-neutral scenarios, sample paths are generated via Monte Carlo
simulation from a risk-neutral probability measure, which dictates a single price of risk for each
financial product. If the market were complete this measure would be uniquely defined, but when
the underlying is not actively traded, continuous hedging is out of the question, the completeness
assumption fails and there is an infinite set of measures to choose from. For the purposes of a
simulation framework, the actual set of risk-neutral measures is of prime importance, and less so a
closed-form pricing identity for specific derivatives, since these do not generally exist for stochastic
volatility and stochastic interest rate models.

This thesis researches how bounds can be derived on the set of risk-neutral measures in such a
manner that the restricted set can be used to simulate scenarios for pricing purposes. These bounds
are derived in a general framework such that practitioners can choose the restricting factor which
best suits their market views. The implications of modeling choices on price bounds are discussed
and it is shown that price bounds are well behaved in the presence of estimation errors, in the sense
that small estimation errors lead to small deviations in the price bounds.

Since even in liquid markets transaction costs prohibit frictionless trading, the market com-
pleteness assumption has been a topic of discussion since the iconic paper Black and Scholes (1973)
introduced a derivative pricing identity which relies on market completeness to have a unique solu-
tion. One of the first papers to accept market incompleteness as fact and instead complement the



no-arbitrage restriction with other rationality-founded restrictions is Cochrane and Saa-Requejo
(2000), who argue that trading opportunities which seem to good to be true are improbable and
hence should be disregarded. They quantify ‘too good to be true’ as a limit on the Sharpe ratio
of the payoff process and derive a stochastic differential equation for the lower and upper bounds
of the risk-neutral price process under constant volatility and risk-free interest rate. They use the
argument of Hansen and Jagannathan (1991) to show that a bound on the Sharpe ratio is equivalent
to a bound on the variance of the stochastic discount factor.

Similarly, Bernardo and Ledoit (2000) define good deals in terms of the gain-loss ratio of a
payoff process. Cerny (2003) demonstrates how bounds on the Sharpe ratio can be translated to
bounds on a truncated quadratic utility function, and generalizes the concept of good-deal bounds
to convex utility functions. Other notable generalizations include convex risk measures (Arai,
2017), neighborhoods of benchmark risk-neutral measures (Bondarenko and Longarela, 2009) and
the extension from diffusion processes to jump-diffusion processes (Bjork and Slinko, 2005), or to
Lévy processes (Kloppel and Schweizer, 2007). Xu (2006) discusses price bounds based on coherent
risk measures from a theoretical perspective, proving the existence and some other properties of
coherent risk price bounds for very general single period models. The set of measures that present
arbitrage opportunities and the set of measures that present good deals are generally not nested,
complicating the derivation of bounds. It will be shown that one solution is to express the bounds
on the payoff process as bounds on the stochastic discount factor.

In discrete time, finding upper and lower bounds is done by solving a constrained optimization
problem, while for diffusion processes bounds can be simply expressed in terms of the discount
factor diffusion differential (Cerny, 2003). Moreover, in discrete time, Cerny (2003) shows that the
bound on expected utility translates to a bound on the stochastic discount factor expectation in
a different manner for each utility function, while if the payoff process follows an It6 diffusion, a
single upper bound on the discount factor diffusion differential can be derived for the logarithmic,
negative exponential, power and truncated quadratic utility function. However, this bound is not
necessarily tight on longer horizons. This is formalized by Kloppel and Schweizer (2007), who show
that local restrictions on the more general Lévy process result in well-behaved bound processes
while global restrictions do not.

Often, illiquid securities can be observed or at least argued to correlate with liquid products.
This fact can be exploited to separate hedgeable risk and unhedgeable risk within the illiquid
security. In this framework only the unhedgeable risk must be bounded, since in the subspace
spanned by the hedgeable risk the risk-neutral measure is uniquely identified, resulting in tighter
bounds. (see for example Cochrane and Saa-Requejo (2000); Davis (2006); Floroiu and Pelsser
(2013)).

Our contribution to existing literature is the treatise of good deal bounds in the presence of
stochastic interest and stochastic volatility, which we show to be a nontrivial extension of models
with deterministic interest rate and volatility. In addition, we show how coherent risk measures lead
to bound specifications that do not depend on model parameters, giving them a single interpretation
for all products that can be valued. To the author’s knowledge, this is the first work to give explicit
price bound formulae for a large class of good deal restrictions. Other works typically either discuss
nonconstructive bound formulations for classes of restrictions or treat specific restrictions. The
derivation of coherent risk measure price bounds crucially depends on the following simple yet
elegant insight: Because (1) coherent risk measures are positively homogeneous and translation



invariant and (2) normally distributed random variables are affine functions (with positive slope) of
standard normal variables, the risk of a normally distributed variable can be expressed as an affine
function of the risk of a standard normal variable.

Chapter 2 starts with notational conventions, after which the preliminaries for this thesis and
some technical features of the tools we will require are discussed, including the relationship between
risk measures and good deals. The market model and the valuation of products in the model is
discussed in chapter 3. In chapter 4 the derivation of price bounds from risk measures is discussed.
Chapter 5 discusses the relation between parameters and price bounds, and compares bounds to the
complete market price. An example case demonstrates how price bounds can be used to quantify
the pricing error between a complete market model and observed market prices. Lastly chapter 6
provides some concluding remarks and suggestions for future research.



Chapter 2

Preliminaries

In this chapter the concepts we require to make our case are briefly discussed. We start with some
notational conventions. Following econometric conventions, primes are used to denote the transpose
of a vector or matrix. All vectors are column vectors; row vectors are denoted as transposed column
vectors. Throughout this thesis, capital letters will denote stochastic processes, and subscripted
capital letters denote the stochastic variable which the process attains at the index given by the
subscript. The space of stochastic processes on the space U will be denoted as {U;}icjo,00). M is
reserved for pricing kernels (discussed in more detail in section 2.2) and B is reserved for the bank
account, also known as risk-free price process or numeraire. p , is the correlation coefficient between

zand yand Py, = /1 — Pi,y W invariably refers to a (possibly multivariate) Wiener process. We

will be working on a single filtered probability space {2, F, P} with filtration {F;}. The filtration is
assumed to be chosen such that all processes are adapted to this filtration. The projection of z on y
is denoted by proj, (z), and orth, (z) refers to the orthogonal remainder x —proj, (). The only norm

used in this thesis is the 2-norm, which is the norm induced by the inner product: |z| = va'z.
The next section establishes that all the relevant spaces have an inner product defined. Wiener
processes, stochastic calculus and It6’s results on stochastic processes are used without introduction.
For the construction of Wiener processes (also known as Brownian motions) we refer to Schilling
(2017). Stochastic calculus and Itd’s results are treated in for example Baxter and Rennie (1996);
Cochrane (2009); Back (2010).

2.1 The incomplete market

In this paper we follow the reasoning of Cochrane and Saa-Requejo (2000); Davis (2006); Floroiu and
Pelsser (2013): We assume that some, but not all, financial products are traded frequently enough to
allow for a continuous hedging strategy such that the market for these products and their derivatives
is at least dynamically complete. These efficient assets collectively form the efficient market M€, a
subset of the market M.

Products in M\ M€ are less frequently traded, thus cannot be continuously hedged and there-
fore introduce incompleteness to the market. These products correlate imperfectly with hedgeable



products and they are the focal point of this thesis.

Without loss of generality, all equity price processes are assumed to accumulate any associated
cash flows, such as dividend, in their price. We also expect all price processes to have finite variance.
This empirically reasonable restriction yields that

Mc£2;={xt/xfdp<oo,t>o}.
Q

The technically redundant subscript ¢ is included here to stress the fact that products in the market
are sequences; the individual elements of M do not have a practical interpretation beyond being a
process observed at a specific time. We take the usual implicit quotient' over almost-everywhere
equality in M such that M is a subset of a Hilbert space?. The prime reason to work in a Hilbert
space is because in such spaces the Riesz representation theorem applies: Roughly put, every linear
function ¢(X) can be written as an inner product (Y, X) for some Y, and all X, which in a
probabilistic context equals the expectation E[Y;X]. For more details on the Riesz representation
theorem, see for example Rynne and Youngson (2008). Although not strictly necessary, the bijection
between linear functions and expectation makes the notion of pricing kernels (see section 2.2) much
more natural.

Much of the results presented in this thesis can be extended to other £P-spaces and even to Orlicz
spaces, but these generalizations do not offer insights into our problem that cannot be derived in
the simpler and more practical £2 case. With practicality in mind we therefore refrain from these
generalizations. See Arai and Fukasawa (2014); Arai (2017) for an overview of what is still possible
regarding good deal bounds under more general conditions.

2.2 Pricing kernels and probability measures

To prevent trivial arbitrage strategies, the price of a sum of payoffs must equal the sum of prices
for the individual payoffs; this economic concept is known as the Law of one Price. If the Law
of one Price does not hold, an investor could either buy the sum of payoffs and sell short the
individual payoffs or vice versa, and collect the positive price difference while having a perfectly
hedged position. By extension, the price of a payoff process must be a linear function of the payoffs.

Next, note that the payoff associated with products that do not generate a cashflow must be
the price for which it can be sold at any time, given that the product exchanges hands at that time.
This should be a time-consistent relation: The current price as derived from the expected future
sales price should not depend on the time in the future where the product is expected to be sold.
If this were the case, an investor could buy the same product at the same time for different prices,
depending on when the investor expects to sell the product again, which is an unrealistic scenario
for obvious reasons.

!Technically, £2 is not a Hilbert space because if X € £2, then X and Y : Y (w) = X (w) + lw=uw, are two different
£2 functions, yet || X — Y2 = fQ lw=wodP(w) = 0. By taking the quotient over almost-everywhere equality, X and
Y are considered equal and £2 becomes a proper Hilbert space. For more details on quotient spaces, see for example
Schilling (2017).

2Simply put, a Hilbert spaces is a vector space with an inner product and without ‘holes’; every Cauchy sequence
converges to a point in the space. For some more background, see for example Rynne and Youngson (2008).



We can therefore define a linear valuation operator ¢; : M — R for each ¢ > 0 with the property
dt(Vivs) = ¢:(V;),Vs,t > 0. Then by the Riesz-Fréchet theorem there exists a process M C L2
such that ¢;(Viys) = E[MiysVigs | Fi] for all V.C M and all ¢,s > 0. This notion leads to the
definition of the pricing kernel or stochastic discount factor (SDF).

Definition 1. A Stochastic Discount Factor or pricing kernel M is a positive random process that
correctly prices each process in M. M correctly prices the price process X with associated payoff
process C' if

M X =K {/ MSC'Sds} .
t

In particular, if X does not generate an intermediate payoff, then M X is a martingale; the only
payoff is generated by selling X, for payoff X, i.e.

MtXt = Et[Mt+th+s] VS,t > 0.

Here we defined E;[-] := E[- | F], the expectation operator conditional on the natural filtration of
- up to and including ¢.

Without loss of generality we fix My = 1.

Remark 1. The restriction M > 0 makes economical sense because each positive future payoff, that
occurs with positive probability, should currently represent a positive value. This restriction is also
a sufficient condition for the absence of arbitrage opportunities on each process correctly priced
by M. In literature where M is defined from a consumption or utility framework, the restriction
M > 0 doesn’t follow by definition but rather by assumption. Since we constructed M directly
from economically desirable properties, it was most suitable to include M > 0 in the definition.

Remark 2. Pricing via SDFs has the implication that when X and Y have the same payoff structure
almost everywhere, then both must have the same price. This Law of one Price property makes
pricing kernels an attractive instrument to value derivatives since a derivative’s payoff can at some
point in the future be expressed as a function of the underlying, such that the value of the derivative
can be determined from the underlying.

Within the complete market M€, only a single SDF can exist; this result is known as the Second
Fundamental Theorem of Asset Pricing. Conversely, the uniqueness of an SDF implies completeness
of the market. Without the assumption of a complete market, stochastic discount factors are not
unique and investors must decide on a specific pricing kernel. An investor’s choice of SDF reflects
how the investor feels about possible future developments. In fact, an SDF can by its very definition
be interpreted as the marginal rate of intertemporal substitution, and as such, the investor’s utility
function implies a specific choice of SDF.

In addition to SDFs, there are several equivalent approaches to risk-neutral pricing. One of the
most well-known approaches and the de facto approach to simulation-based risk-neutral pricing is
a change of measure to a so-called risk-neutral measure. The relation between these two concepts
is formalized in Definition 2.

Definition 2. If B is the (positive) risk-free price process and M is an SDF for all price processes
X C M, then there is a probability measure Q such that P(M;X; € A) = Q(X;/B; € A) for each
event A € F, each t > 0 and each price process X C M. Measure Q is the risk-neutral measure
defined by M.



The existence of QQ is evident since Definition 2 gives a recipe that can be used to pointwise
define Q(X € A) for all X € M, A C Q. Note that P and Q are equivalent in the sense that both
are absolutely continuous® with respect to the other. We can thus write M = %%, where % is

the Radon-Nikodym derivative, from which we can conclude that for given M and B, Q is unique.

Moreover, the discounted price process X/ B is a martingale under Q since E; o[X/B] = E; p[M X].
For this reason, Q is known as an Equivalent Martingale Measure (EMM) of P. Each EMM of P
also induces an SDF, which is almost-everywhere unique in the sense that if M and M’ are SDFs
induced by the same EMM, then M — M’ = 0 almost everywhere, which can again be deduced from
the existence of dQ/dP.

2.3 Risk-neutral pricing through Monte Carlo simulation

By definition the expectation of any payoff process X discounted with an SDF M should equal the
current price of X. It is therefore possible to deduce the value of a derivative as the M-discounted
payoff as described by the derivative’s dependence on the underlying: For example, a European call
option C with maturity 7" can be valued as the M-discounted maximum of either 0 or the value of
the underlying S minus the strike price K: M;C; = E;[Mr (St — K)™].

With the exception of some specific cases, the M-discounted expectation of derivatives can be
rather involved. Notably so when the derivative depends on intermediate values of the underlying
or when M or the underlying follow general processes (such as jump diffusions or processes with
covarying unobserved variables like conditional variance), situations that often arise in insurance
valuation. In such cases the expected value of a derivative can be approximated by sampling price
paths from the specification of X as well as pricing kernel paths from the specification of M, and
then average the value of the derivative for each of the individual paths of X discounted with M.

If M and X are drift-diffusion processes, it is sufficient to know the stochastic differential
equations describing X and M. It6’s lemma gives the identity

AMX) = dMX + MdX + dMdX,

which shows that the diffusion process driving M X is given by the diffusion processes of X and M.
M X has no drift since this would violate the martingale property.

A practical issue arises in Monte Carlo simulation: It is not possible to sample continuous-
time paths since such a path will not have a finite-dimensional representation. To overcome this
problem a number of discretization methods have been developed that sample a finite number of
observations at times 0 < 79 < 7; < --- < T from the approximate distribution of the process X
observed at times 7g, 7y ... respectively. In some corner cases the mismatch between the approx-
imate discrete distribution and the true continuous distribution leads to new problems. One case
is particularly relevant to us; the Euler discretization of Cox-Ingersoll-Ross processes introduces a
positive probability for negative values, something that is impossible under the true (continuous-
time) distribution. In addition to widely used heuristics such as reflecting all sampled negative
values to their absolute values, Andersen (2007) describes two discretization schemes that more
accurately proxy the true distribution, thereby alleviating the problem.

3 A measure v is absolutely continuous with respect to measure p if and only if v(A) > 0 = u(A) > 0.



2.4 Risk measures and good deals

Risk measures are functions that allow one to qualitatively compare the probability distributions of
(possibly risky) payoffs. Every risk measure corresponds to a preference profile, since a risk measure
can be used to order payoffs according to the risk perceived by the measure. Well-known examples of
risk measures include Value at Risk (VaR) and Expected Shortfall (ES)?. For a preference ordering
to be sensible, a number of constraints can be formulated, which lead to the definition of convex
and coherent risk measures.

Definition 3 (Convex risk measure). A convex risk measure is a function 9 : £2 — R which
satisfies the following constraints:

convexity Y(AX + (1 - AN)Y) < Ap(X) + (1 = N)y(Y) for all A € [0, 1],
translation invariance (or cash invariance) ¥ (X+a) = ¢(X)—a for all (deterministic) a € R,
monotonicity if X <Y almost everywhere, then ¢(X) > ¥ (Y).

Definition 4 (Coherent risk measure). Let ¢ be a convex risk measure. If, additionaly, ¢ satisfies
the following constraint:

positive homogeneity ¢¥(AX) = Ap(X) for all A > 0,
then 1 is a coherent risk measure.

These constraints can be motivated as follows. Convexity implies both that risk cannot be
increased through a merger, and that two risk factors cannot negatively influence each other simply
because an investor has both items in a single portfolio. Translation invariance implies that the
value (in terms of risk) of a single unit of cash is independent of the payoff X, as well as the size of
the cash deposit. Monotonicity guarantees consistency: if a payoff Y will be at least as high as X
regardless of the state of the world at the cash-out moment, then Y cannot be considered more risky
than X. Lastly, positive homogeneity implies that an investor is neither risk averse nor risk loving.
The investor values risk according to its dynamics and scales the value of risk appropriately with
with the scale of the risk itself. It is a well-known result that VaR is neither convex or coherent,
while Expected Shortfall is a coherent risk measure.

Then we impose a technical restriction: from here on forward risk measures are expected to be
lower semi-continuous such that, by the Fenchel-Moreau theorem (see for example Rockafellar (1997)
for some background and a proof) all risk measures are equal to their biconjugate. Although convex
or coherent functions are not by default lower semi-continuous, this hardly poses a restriction in
practical applications because lower semi-continuity is often a desirable property for risk measures:
if payoff Y is marginally larger than X, ie. X <Y < X + ¢ for a small § > 0, then one would
expect that the risk of Y is only marginally smaller than X; that is, ¥(Y) > ¢(X) — € for a small €.

4The 100a% value-at-risk of X is the value —k of X for which P[X < k] = a. The Expected Shortfall equals
E[-X | X < k]. Expected Shortfall is also known as conditional VaR (CVaR) and Average VaR (AVaR).



2.4.1 Good deals

It stands to reason that an investor whose risk profile is adequately described by risk measure
will consider a transaction to be a good deal if that transaction exposes him or her to negative
risk. Every transaction involves a payoff C'x and an initial price Px, and the investor’s risk is
P(Cx — Px) = ¢ (Cx) + Px5. As one would expect, any transaction can thus be made into a good
deal by lowering the initial price. As such, a risk measure induces the acceptance set containing all
good deals
Ay ={X € L2 | ¢(X) < 0},

and a payoff X does not present a good deal if and only if the price of X lies in the interval
[—¢(X),¥(—=X)]. To see this, note that an investor buying X at price Px will value the risk in
this transaction as (X — Px) = ¢¥(X) + Px, such that this buyer considers the transaction a good
deal if Px < —t(X). Similar reasoning from the seller’s perspective leads to the upper bound.
Note that these are bounds from the perspective of agents with risk preferences matching . An
individual will only ever be interested in one of the two limits during a single transaction, and in any
one transaction the buyer and seller may also be using different risk measures, with the possibility
that they cannot find common ground.

Each acceptance set also describes a risk measure. It can be verified that Ay is convex if and
only if 1) is convex, and that Ay is a cone if and only if 9 is positively homogeneous. For a proof,
see Lemma 1 in the appendix. Coherent risk measures v therefore impose a rationality restriction
on the market in the form of the convex cone Ay.

Good deal valuation can be seen as a generalization of arbitrage pricing. A deal to buy future
payoff X for price Px is considered an arbitrage opportunity when X is risky and X — Px > 0
regardless of the state of the world at the pay-out moment. Viewing arbitrage opportunities as
good deals, the risk measure corresponding to arbitrage pricing is

Po(X) :=inf{a e R| X +a > 0},

or in words, 1 (X) is the worst-case loss of X. Note that 1 is a coherent risk measure: homogeneity,
monotonicity and translation invariance can directly be verified from their definitions. Given that
o is homogeneous, to prove convexity it is sufficient to prove that po(X +Y) < ¢o(X) + po(Y).
Since X +¢o(X) +Y +10(Y) > 0, ¥o(X +Y +¢o(X) +0(Y)) = Yo(X +Y) —ho(X) —¢o(Y) <0,
hence the first inequality holds and v is coherent.

2.4.2 Good deals for coherent risk measures

The question remains how the acceptance set induced by 1 restricts the choice for arbitrage-free
pricing kernels, or equivalently, EMMs. The representation theorem (initially proven by Artzner
et al. (1999), later refined by Delbaen (2002); Ruszczyriski and Shapiro (2006)) shows that a risk
measure is coherent if and only if a set L C £2 and a set of probability measures Q, the risk
envelope, exist, such that for each X € M,

w(x) = sup { [ Xvap| = sup (Bolx/ ).

YeL

5Note that the perspective of the investor, i.e. whether he or she is a buyer or seller, can simply be modeled
through the sign of Cx and Px.
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Note that the dual representation implicitly defines Q as the set of measures
{Q | Eg[X/B] < 4(X) forall X € £?}.

This relation is formalized in Huber (1981, Chapter 10). The measures in Q are naturally absolutely
continuous with respect to P due to the correspondence between L and Q. On the other hand, P is
absolutely continuous with respect to Q € Q if and only if ¢ is relevant — a condition introduced in
Delbaen (2002): if X is not positive and nondegenerate (i.e. truly nondeterministic) then X must
have positive risk. It is shown in Arai and Fukasawa (2014) that the Q contains only EMMs if
additionally ¢ (0) = 0.

An attractive property of coherent risk measures is the conicity of the acceptance set. If a
specific investment position is considered acceptable by an investor, then that investor presumably
is also willing to take a leveraged position, which implies a conical acceptance set. Investors with
coherent risk tastes are therefore indifferent with regard to the leverage in their portfolio and rely
on practical arguments to determine their leverage, such as the limited willingness of lenders to
provide credit.

2.4.3 Good deals for convex risk measures

The coherent case can be generalized as follows. Convex (not necessarily coherent) lower semi-
continuous risk measures can be represented by the Legendre-Fenchel transform

Y(X) = Sup, {EIXY]—¢*(Y)}, where ¢*(Y):= s, {E[XY] = ¢(X)}.

The connection to the coherent case is that if ¢ is coherent, then ¥* acts as an indicator function
taking on the values 0 or co, thereby restricting the choices of Y to elements from L in the supremum
formulation of ¥. The details are treated in Lemma 2.

If Ay is a cone, then

*(Y) > sup {E[XY]—(X)}, such that ¢*(YV) =
XeAy

0 ifYE.Aw
00 ifY¢.Aw

since (X) <0 < ¢*(Y) for X, Y € Ay. Consequently, ©* acts as the indicator function, restricting
Q to Ay if ¢ is coherent.

Convex risk measures are relevant to model risk-averse investor preferences. In particular, 1 is
a convex function of the scale of X since ¥(AaX + (1 — A\)bX) < Mp(aX) + (1 — N\)p(bX) for any
a,b and A € [0,1]. This shows that an investor with a convex risk profile considers leverage as a
means to change the exposure to risk. Given a cashflow Cx with price Px and A > 0, one can
expect to also find the cashflow A\C'x for price APx in the market, but an investor with convex risk
preferences will generally not consider the investment attractive for all values of A.

11



Chapter 3

The market model

For typical pension- and insurance questions there is an emphasis in market models on long-
term forecasting accuracy and — arguably as important — model credibility. For this reason, a model
should display some stylized facts regarding long-term effects: Volatility and interest rates should
vary over time, but periods of high volatility or interest should be clustered. As such, both volatility
and interest rate should be modeled as stochastic variables. In addition stochastic volatility helps
to explain the volatility smile (Hull and White, 1987).

Following the Heath-Jarrow-Morton (HJM) framework of Heath et al. (1992), the forward rate
fi(7) from time ¢ to time 7 is modeled as an Ité diffusion, and both the short rate r; and the
numeraire process are deterministically related to the forward rate:

dfe(r) =pu+dt + o'y, AW,
re i =f(¢), (3.1)
dBt :TtBtdt.
Both the scalar i and the vector o are allowed to vary with both the time ¢ and maturity 7. Here o
is, like dW;, a vector-valued process because fi(7) is allowed to correlate with other market-driving
processes, which manifests as the cosine between oy and the o-s of other processes. Under these
general specifications B has the undesired property that the expected value of the continuously

compounded short rate is not necessarily equal to the forward price over the same timespan. To
enforce equality the choice of u requires that

E,[B.] = E, [BO exp (/; rsdsﬂ — exp (/t f(t,s)ds) .

This restriction can be simplified to give the following choice of p:

.
_ /
ot = Jf,t,r/ of,t,sds,
t

which is consistent with practical implementations of the HIM framework (Cheyette, 1992; Ritchken
and Sankarasubramanian, 1995). The HJM interest rate model allows one to model the entire
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forward rate curve through the specification of os 7 and the forward curve at ¢ = 0. The HJM
model also allows for negative interest rates, a property that has become a desirable feature for
interest rate models in more recent years. It was also shown in Hoorens (2011) that the HJM model
provides a better fit of the swaption market volatility skew than the stochastic interest model of
Hull and White (1990).

For the volatility and price processes we consider a variant of the stochastic volatility model of
Heston (1993), describing price processes S and V:

dSt/St = (Tt + qs)dt + (1 + \/E)O’fgdWh
AVi/Vi = (e + av)dt + (1+ yir)ohdWvs, (3.2)
dl/t = H(§ — l/t)dt + \/VTfO'{,th

Here S is a frequently traded asset and V is infrequently traded, and therefore introduces incom-
pleteness in the market. The parameters in this model can be interpreted as follows: gg and ¢y are
the risk premium of S and V', respectively. Each of the processes has its own exposure to the multi-
dimensional state process dWW;, which is modeled by the vector g,. The process V' is nonredundant
if orthyg (o) # 0. /v acts as a measure of the degree of erratic changes in the world: unexpected
price movements become greater as v, increases. As such, /4 can be interpreted as the market
stress level. In this model, /7 is recurrent with asymptotic mean /¢ and mean-reversion rate « if
k>0 and £ > 0. v reacts to the state of the world W via o,.

The model 3.2 deviates from the classical Heston model in how the ‘vol-of-vol’ v; interacts with
the volatility of S and V. In our model the processes S and V have minimal volatility ||og| and
llov || respectively, while in the original Heston model their volatility was allowed to reach 0. The
reason for this change is that the constant excess returns qg and ¢y cannot be nonzero without
some compensation. If the volatility of, say, S is allowed to become zero at some point, then a
simple long position in S at that moment would be an arbitrage. The argument made here is
a technicality in the sense that 14 cannot stay 0 for a measurable amount of time, and as such
these arbitrage opportunities are not feasibly exploitable. However, allowing any price process to
haphazardly expose arbitrage opportunities is an inconsistency in the model that would prevent us
from excluding arbitrage opportunities on a theoretical basis. As an example of what can go wrong,
let for a moment X be given by dX;/X; = (r; + ¢x)dt + \/vzo’xdW;, and consider the Girsanov
transformation of X to the risk-neutral measure. From analogy with the Black-Scholes model it
can be deduced that the change of measure should be given by the Ddleans-Dade exponential of the
process %. However, this process is discontinuous in {v = 0} such that the Girsanov theorem
does not hold. The Feller condition (2 > o,0,) does not provide solace since it merely proves
that {v = 0} is a null set (Gikhman, 2011), and this is not enough to let 1/1/v be continuous.

All parameters are expected to be different from zero to exclude degenerate or trivial cases. We
further assume that x, £ > 0 to guarantee recurrence, otherwise the parameters gs, gv, pv.s, &, &, ov, 0y,
are unrestricted. The Feller condition is not assumed. The Feller condition restricts the permitted
volatility skewness and is consistently violated in market observations (Andersen, 2007), while it
fails to provide an advantage in our analysis. This model is the simplest non-trivial extension of
the Heston model to include a new infrequently traded product.

Ignoring the process V' for a moment, the stochastic volatility component v induces market
incompleteness if the volatility risk is not traded. To see this, it is sufficient to realize that if
volatility risk is not traded, there is a set of EMMs that ascribe the same probabilities to random
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variates which are orthogonal to og, but different probabilities to variates in the space spanned by
0,. EMMSs from this set will value S the same, but induce different prices for contingent claims
on S since contingent claim prices are sensitive to the variance of S. The extension theorem of
Kreps (1981) yields that this market can be completed by adding appropriate securities, and it is
shown in Bajeux-Besnainou and Rochet (1996) that a European call option on S completes the
Heston-HJM-market. Instead of modeling this product explicitly, we assume that the part of o,
that is orthogonal to og, is also orthogonal to oy . Economically, this restriction implies that V'
contains no information about v that is not also in S. Practically, this means that the parameters
describing v can be identified via the volatility smile of options on S (Sircar and Papanicolaou,
1999).

Model (3.2) specifies risk premia for risky assets as a constant rate. In the presence of a stochastic
short rate and stochastic volatility this is a plausible assumption; Investors cannot accurately
determine the current value of the (unobserved) vol-of-vol v. The best inference for future values
of v is therefore the (constant) unconditional mean &, which means that investors can only assess
their exposure to risk as a constant, by which the risk premium should also be a constant. On the
other hand, because the risk-free return is observed, changes in the short rate should reflect on the
expected return of risky assets, hence the expected return on risky assets should consist of the short
rate and a constant risk premium.

3.1 Pricing kernels in the Heston-HJM model

Assuming that the risk-neutral discounted price process is also a diffusion, we can make an educated

guess about the shape of the pricing kernel M. The process M may have both a drift and diffusion

term, and without loss of generality the diffusion term can be split in terms that correlate with

S,V, and v. It is safe to assume that M does not correlate with any risk that is independent from

S,V , and v because, lacking financial compensation, this risk does not need to be discounted.
dM,

ST apdt + opdWy i= audt + (Bios + yiorthyg (oy ) + drorth,, (0,)) dW;. (3.3)
¢

Here B:||os] is to be interpreted as the premium for the risk involved with investing a standardized
unit in S, and ¢||orthe (ov )| (resp. d¢|jorthyg (o, )]]) is the premium for the marginal risk pertaining
V' (resp. v). The functions a and 8 can be identified via the martingale property of SM and BM.
For nonnegative It6 diffusions to be a martingale it is necessary and sufficient to have zero drift,
i.e.

d(M B);

0= g, UMM Bt

dM,dB;
M; By
=(r¢ + az)dt + (Bios + yiorthyg (ov) + diorth, (0,)) dWy,

and likewise

d(MS
o= dMS), =(ry + qs + ay + (1 4+ /) Biosos)dt

M S,
+ (1 4+ /vt + Bi)os + yorthyg (oy) + drorth, (0,)) AWy,
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induce the restrictions
—qs

okos(1+/m)

Given that M correctly prices options on S, the price of a European call option on S with strike
K and maturity 7' must match E[Mr(S7 — K)*]. While an analytical identity for é; in terms of
the observed model parameters is not at hand because the distributions of M; and S; do not have
closed form representations for all choices of oy and og, the market price of volatility risk (and
with it, ;) can be estimated by fitting the market-observed volatility surface of options on S to the
theoretical volatility surface implied by the model. For the details pertaining this calibration, we
refer to for example Heston (1993); Sircar and Papanicolaou (1999); Romano and Touzi (1997).

(3.4)

ap = —Ty, By =

Given that V is infrequently traded we cannot assume that M uniquely prices V', and as such
~ remains undetermined. Instead, we will introduce rationality bounds on + to restrict the set of
feasible pricing kernels. Note that by construction M > 0 for any a, B¢, V¢, 0+, such that M does
not admit arbitrage opportunities, regardless of these parameters’ values.

The shape of M signifies again why the variance of risky assets must be greater than or equal
to some € > 0. If B; were given by ﬁ, then B; would not be locally bounded and therefore M
would not be an It6 process, while the results in this paper crucially depend on M having properties
of It6 processes.

It can be verified that under restrictions (3.4) the discounted price processes of S and V' do not
depend on the short rate. The economic intuition behind this is the same as in complete market
models: Money that is not invested in the market resides in a risk free account, and therefore the
growth of a risky investment should be compared to the growth of the bank account. The fact that
the short rate is stochastic is unrelated: Even when the change in interest is correlated with changes
in a risky portfolio, the change in short rate can only be observed ex post and can therefore not be
used ex ante to change the investor’s market view — or by extension, the stochastic discount factor.
The relevance of the interest rate model therefore largely stems from the valuation of derivatives,
which may depend on the interest rate at maturity or the interest rate path through for example
the strike price.

3.2 From option price bounds to variance restrictions

European, Bermudan and American options whose payoff is a convex function of the price of the
underlying all share the property that their value monotonically varies with the measurable risk-
neutral volatility process o; of the risky asset.

Janson and Tysk (2003); Ekstrém (2004) prove this for the case where o is a general measurable
process and where the risky asset resides in the complete market. Outside of the complete market,
the problem arises that the discount factor volatility both influences the mean and variance of the
discounted price process, such that their results cannot be extended. However, in a drift-diffusion
framework the presence of a pricing kernel guarantees a monotonic relation between the volatility
of M and the price of any priceable asset:

Theorem 1. Let M be a pricing kernel as in (3.3). For any asset X with drift process ux, diffusion
process ox and cashflow process Cx, the value of X is a monotone function of ~y.
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The principal implication of Theorem 1 is that options achieve their minimum and maximum
values at the extreme values for 7, all other things left equal.

This implies that, for the purpose of determining good deal price bounds on convex options, we
only need to calculate option prices using the pricing kernels with minimal and maximal variance,
respectively, permitted under good deal bounds. For example, one could generate a single scenario
set of real-world price-path samples, and calculate the minimum and maximum pricing kernel
variance processes permitted under the good deal bound. The real-world scenario set can then be
discounted using these two pricing kernels, resulting in two scenario sets of risk-neutral price-path
samples. These sets could finally be used to price options, resulting in the approximate minimum
and maximum option prices permitted under the good deal bound. As the number of samples in
the scenario set approaches infinity, these option prices will converge almost surely to the minimum
and maximum permitted option prices.

Proof of theorem 1. This proof is an adaptation of the proof of proposition 3 in Cochrane and
Saa-Requejo (2000).

The definition of M yields that

M X, =E,; [/ MSC'XSds}
t

which can be split by the law of iterated expectations as

oo

t+At
M, X, =E, [/ M,Cyx,ds
t

+E, [EHM { MSCXSds” .

t+At
Taking the limit At | 0, we can switch to differentials finding

M X, = By [M,Cx,dt] + E¢ [My4a: X+ at]
= M;Cx,dt + E; [( My + dMy) (X + dXy)]
= M;Cx,dt + M X + By [d(My) Xy + Mpd(Xy) + d(My)d(Xy)] -

Reordering yields

MtCXtdt = (*OétMtXt — [,LXMf — O'MUXMt)dt.

The last step follows from the definition of M and an application of Itd’s lemma. Since ojs is
both a linear function of «; and the only right-hand term involved with ~;, the left-hand term is a
linear function of +; whose sign depends on ox. Therefore the integral I(v) := f too M;Cx,dt has
the property that if 4 = v + 4 where 4 is a nonnegative process, then whether I(§) > I(~) or
I(¥) < I(+) only depends on whether o/,;0x is increasing or decreasing in +, and not on the values
of «v or 4. This relation is invariant to the expectation operator which concludes the proof. The
inequality can be made strict if 4 is a strictly positive process. O
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Chapter 4

Rational restrictions

In chapter 3 we discussed a parametrization of the market and the set of pricing kernels. This set
of pricing kernels is determined by a complete subset of the market and a single process-valued free
parameter 7. This chapter formulates how rational expectations of the market lead to restrictions
of the choice of v. Combined with the monotonicity of option prices as a function of v, proven in
Theorem 1, rational restrictions can then be used to choose two processes for 7y corresponding to
the minimum and maximum option prices attainable under the rational expectations.

First, section 4.1 asserts necessary properties for rational restrictions. With these properties
the idea of good deals is then used to distill rational restrictions on the market from risk measures.
The specific case of coherent restrictions is treated in section 4.2. Finally section 4.3 discusses how
the results for the coherent case can be generalized for incoherent risk measures.

4.1 Good deal bounds

This section formalizes properties that good deal bounds should adhere to in a continuous time
setting. This is done is a somewhat axiomatic approach; it is natural to expect certain behavior
from a price bound in the real world. Appropriate mathematical properties are therefore derived
from these economical expectations.

4.1.1 Translation invariance and F;-adaptedness

The goal of good deal bounds is to exclude trading opportunities which are ‘too good to be true’,
i.e. good deal bounds should depend only on the return of an investment, and not its absolute size.
In particular should a price bound be taking the current value of a price process as given; This
means that a price bound for Xy, calculated at g, should be expressible as a price bound on the
change in X between t; and ¢1; it makes no sense to constrain the (exogenous at time tg) value of
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Xi,. To this end bounds need the following two properties.

e Bounds should be {F;}c[o,o)-measurable: This means in particular that bounds are condi-
tional on a filtration, and that b(X; | X;) = X; for bound b and any {F;}+cjo,0)-adapted
process X.

¢ Bounds should be translation invariant: b(X; +Y | Fs) = b(X; | Fs) + Y for bound b, for all
X, Fg and all Fs-measurable Y.

4.1.2 Time consistency

The idea of time consistency for price bounds presented here strongly relates to an equivalent
concept for risk measures. The idea of a risk measure can be extended to a dynamic risk measure,
which is a sequence of risk measures, each element of which values a stochastic variable at a different
moment in time. A dynamic risk measure can be thought of as measuring the risk process of a
stochastic variable. In discrete time, dynamic risk measures have been extensively studied (see
Acciaio and Penner (2011) for an overview) but the continuous time case has some mathematical
intricacies that prevent the derivation of equally general results. Time consistency for dynamic risk
measures in discrete time is the requirement that if payoff X is deemed more risky than payoff Y
at time ¢, then X should also be considered more risky than Y at times s < t. The rationale for
time consistency is that if a risky event between times s and ¢ can decrease the perceived risk of Y
at time ¢t below that of X, then this event should not weigh towards a higher observed risk of Y
than of X at time s. Simply put, inconsistency can therefore be seen as misinterpreting important
events during the assessment of risk.

The above characterization of risk is equivalent to a recursive relation: If {wt}te[o,oo) is a
dynamic risk measure then {t}¢c(o,5) is time consistent if and only if ¢ (X) = 9 (¢1s(X)) for
all nonnegative t,s. See lemma 3 for a proof. Since good deal bounds relate to an investor’s
preference through her risk measure, they should also be time-consistent; in particular should we
have that a price bound for a product over a fixed period leads to the same price range as when
one iteratively determines upper and lower bounds for said product over subintervals of the fixed
period. Analogous to the dynamic risk measure case, if a price bound is inconsistent then one could
argue that the price bound does not comprehensively capture the dynamics of the valued product,
which is an obvious design flaw of the price bound. Time-consistency is graphically explained in
Figure 4.1. The green (red) lines point connect the upper (lower) bounds b with their right tail
as determined with the current price indicated by the left tail. The bounds determined at time 1
given time 0 should be the same whether determined over the entire interval at once, or determined
conditional on intermediate bound values.

Mathematically, an (upper or lower) price bound is a continuous function that maps the possible
development of a process between two points in time to an extreme value for that process at the
end of the interval. That is, bound b : [0,00) x [0,00) X {£}}1c[0,00) — R is a function that maps
the distribution of the process X at time ¢; to an (upper or lower) price b(Xy, | X¢,) at to, for times
0 < tg < t;. Time consistency is then the requirement that b(X;, | Xo) = b(Xy, | b(Xt, | Xo)). Note
that this formulation of time consistency has a strong analogy with the law of total expectation.
Since this latter formulation of time-consistency is a recursive relation, price bounds for larger time
intervals can simply be recursively defined from smaller interval price bounds. In a continuous-time
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Figure 4.1: Green (red) lines connect the upper (lower) bound on the right to the current price
on the left for the process X. The associated price bounds are shown as curved black lines. To
be time-consistent, the price interval derived at time O for X; (right curve) should be equal to
iterated price intervals (left curves) over period t = 2/3. The iterated price intervals are shown at
the boundary values of the previous interval. b denotes the upper price bound.

setting, time consistency therefore implies that price bounds on X; can be expressed as restrictions
of the differential of X;. Time consistency in conjunction with translation invariance yields that

t
b(X¢ | Xo) = b(Xe—ae+H[Xe—=Xe—ae] | B(Xe—ar | Xo)) = b(Xe—ar | Xo)+b( dX [ b(Xi—ae | Xo)),

t—At
and by repeating the above process one can find
n ti
b(X; | Xo) = Zb(/ AX, [ B(Xe, | Xo)) withO—tfo <ty <---<tn—t,  (41)
i=1 “ti-1

which shows that it makes sense to define b(X) as the sum of bounds on small increments in X.
Given the continuity of X as a function of time, the limit
¢

lim b( dXS | b(Xt—At ‘ Xo)) = b(dXt | b(Xt | Xo))
A0 S At

is well defined. This in turn guarantees that the sum (4.1) is well defined as n 1 co. In particular
we find that

b(X, | Xo) = / b(dX, | X,),

such that if a process X satisfies the bound b(dX;), then it also satisfies the bound b(X;). In the
remainder of this thesis we will refer to restrictions of the form b(dX}) as instantaneous restrictions.

4.2 Coherent risk measure restrictions

In the continuous-time drift-diffusion framework an interesting property arises for instantaneous
coherent and lower semi-continuous risk measure restrictions: All risk restrictions can be expressed
as restrictions of the discount factor volatility in terms of the risk of standard normal variables,
and therefore independent of the model parameters. These restrictions are time-consistent price
bounds on all products in the market.
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Theorem 2. Let v be a coherent lower semi-continuous risk measure in a market as described in
chapter 8. Under the time-consistent pricing restriction

—’1/1<Xt/Bt) S ]E[MtXt] S ’l/](—Xt/Bt) fO’f’ all t Z 0, (42)

where B[M X] is the price process of the generic payoff process X discounted with SDF M, v induces
the restriction

loall < 1(2)],

where Z is a standard normal random variable.

Remark 3. Note that X is explicitly time-discounted using the risk-free account, because M should
value both risk and time, while 1 only values risk.

The intuition behind Theorem 2 is straightforward. When price processes are drift-diffusion
processes, the risky part involved with small changes in a price process is approximately normally
distributed. Since (1) normally distributed variables scale linearly with volatility and (2) coher-
ent risk measures are positively homogeneous, the instantaneous risk also scales linearly with the
volatility. As a result, price restrictions are insensitive to the diffusion of price processes. Since co-
herent risk measures are translation invariant, also the drift of price processes cannot influence price
restrictions. Consequently, price restrictions can be expressed for a generic normally distributed
variable. Since M is defined by its drift and diffusion, and since the drift is determined by the bank
account, restrictions only need to address the volatility of M.

The inequality in Theorem 2 is only tight in a market-wide sense: In a market where the traded
products are not strictly limited to some known set, one can reasonably expect to find products
for which the bound is tight. On the other hand, we are free to select a subset of the complete
market in which the bound is verifiably slack. The complete market however is of course of limited
relevance in pricing contingent claims on illiquid securities.

The inequality ||oa]| < |¥(Z)| works in two ways. First the efficient market yields a minimum
value for ||oa||, effectively restricting the risk measures investors may consider if they want to
participate in the market. If an investor’s risk preference yields ¥(Z) < |lop|| with v = 0, that
investor considers the market-wide risk /reward tradeoff unfavorable and therefore such investors will
retain their wealth in a strict subset of the complete market with the risk/reward tradeoff of their
liking. Second, given the efficient market and a feasible risk measure, the inequality in Theorem 2
limits the choice of « since ||oa|| is an increasing function of ||y||. This result can intuitively be
interpreted as follows: Investors with coherent risk preferences can restrict their expectations about
products outside of the complete market based on information retrieved from the complete market
and their own beliefs.

Furthermore, the implications of Theorem 2 reach beyond the pricing of contingent claims. The
restriction of the pricing kernel affects the valuation of all products in the market, and therefore
is related to asset pricing problems where the assets fit our market model and assets are possibly
illiquid.

Theorem 2 shows that in continuous time the coherent risk measure restriction can be written
in our market model as

lloaml|? = BEosos + yPorthy (oy ) orthy, (oy) 4 62orth,, (0, ) orthy, (0,) < 73,
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or equivalently

,\/2 < ,?2 _ 6J2VI - q%(utofgos)_l - 51520rthos (0,) 00 (4.3)
b= orthy 4 (ov) ov ’ '

using the pairwise orthogonality of the risk components og,orth, (oy), and orth,.(c,). Here
gy = ¥(Z) is independent of the model parameters. This inequality yields two extreme values for
¢, namely 4; and —%;. By virtue of the results in section 3.2, these values must correspond with
minimum and maximum prices for products attainable under restriction 4.3.

Proof of Theorem 2. Consider a generic scalar drift-diffusion process dX; = pu(X¢, t)dt+o (X, t) dW;
and a coherent risk measure 1. By the definition of It6 processes as the limit of normally distributed
increments, as the time increment At goes to zero, the increment AX/At := (Xipar — X))/ Al ap-
proaches a normally distributed random variable with mean p(X;,t) and variance o (X4, t)' o(Xy, t).
Therefore, using the lower semi-continuity of 1 and the continuity of X; as a function of ¢,
PY(AX/At) will approach ¥(u(Xe,t)+||o(X¢, t)||Z), where Z is a standard normal random variable.

The instantaneous risk of X; is thus given by
P(u(Xe, t)dE + [lo(Xy, 8)]| Zdt) = [|o(Xe, ) [|9p(Z)dt — pu( Xy, t)dE. (4.4)

That is, the instantaneous risk of X is a linear function of the volatility of X. Using the fact
that Es;[M;X;] = X,/Bs and the translation invariance of both coherent risk measures and the
expectation operator, equation (4.2) can also be written as

— (Xiys/Birs — Xt/Bt) < E[MypoXips — M Xy) < (Xigs/Bigs — Xi/By) .
Taking the limit s | 0 to obtain instantaneous restrictions, we find
—¢ (d(X/B):) < E[d(MX)] < ¢ (=d(X/B):).

Suppressing the t-dependence (which will shortly be justified), writing ox := o(X¢,t) and px =
w(Xy,t), the restrictions can now be simplified as

(nx —re/By = |lox|[(Z)) dt <(ux —re/Be + ojyox)dt < (nx —re/Be + |lox|[(=2)) dt

or more simply

ohox
= < (2],
lox|l

where we used (3.3), (3.4) and (4.4) in the first step, and the symmetry of Z for ¢(—2) = ¢¥(Z)
in the second step. Because the choice of X was arbitrary, the above restriction must hold for any
ox. By Schwartz’s inequality, o,0x < |loam]|||lox||. However, if ops = ox, there is equality. Thus
the left-hand side takes on its maximum value when ox = o), independent of ¢, such that the
restriction for all coherent risk measures can be expressed as

loall < [(2)].
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4.3 Restrictions from general risk measures

For inhomogeneous but cash-invariant risk measures the first steps of the proof of Theorem 2 can
be followed to find the inequality

lopox| < [W(lox|2)]

If all market processes are considered attainable, and therefore all possible values for ox are known,
then the above inequality can — at the least numerically — be solved for o, from which restrictions
on ~ can be deduced. If some part of the market is incomplete, we have no choice but to solve the
left-hand side for its maximum and the right-hand side for its minimum independently. For a given
length a|loas|| of ox, the left-hand side is still maximized if ox = aopr, such that the restriction

becomes
U (lox2)]

loar]l <
lox|l

The minimum of the right-hand side over ||ox || depends on the choice of ¢ and the values attainable
by the process ox. Not all incoherent risk measures will yield sensible bounds due to the loss of
dependence between the left- and right-hand side.

Consider for example the convex risk measure f(X) = Var[X] — E[X]. The right-hand side of
the last inequality becomes |f(||ox||Z)|/|lox| = |lox]||, which attains its minimum 0 if ||ox| = 0,
which holds for X = B. This bound is not admissible since it is safe to assume that |oas] > 0
in practical situations. An investor who values risk according to f therefore will not enter any
risky positions that contain products outside of the complete submarket, contrary to investors with
coherent preferences. Generally put, not all investors with incoherent preferences can use their
beliefs to restrict their expectations of the products outside of the complete submarket based on
the complete market.
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Chapter 5

Model analysis

Good deal bound pricing is by definition a subjective (albeit rational) pricing methodology due
to its relation with risk measures. Understanding the interplay between parameters is therefore of
paramount concern to choosing bound values in line with one’s expectations. This chapter relates
the model parameters to the price bound spread in section 5.1. In section 5.2 price bounds are
discussed for investors that trade products from the complete markets, but cannot apply (near)
continuous hedging strategies for practical reasons.

Throughout this chapter we assume that the underlying product of the modeled contingent
claims can also be used to form hedging strategies, but with limited liquidity such that perfect
hedging strategies are infeasible. This implies that the processes S and V' have the same drift, but
correlate imperfectly. Unless otherwise noted we fix pgy = 0.75.

5.1 Parameter stability

Figure 5.1 shows that the width of the option price bounds is a parabolic function of the correlation
ps,v between S and V for fixed sizes ||oy || of the illiquid asset’s volatility. This parameter models
how well we can formulate a hedging strategy; a |ps,v| close to 1 means that investors can create
hedging strategies using S that closely mimic the infeasible Black-Scholes hedging strategy for
options on V. On the other hand, a |pg | close to 0 means that investors must almost purely rely
on their expectation that good deals do not prevail within the market to price options on V. As
|ps,v| decreases ceteris paribus, V' will more strongly correlate with the risk component of the SDF
priced by v, and the price bounds will be wider. On the other hand, as |pg | approaches 1, the
correlation between V' and the 7, component of the SDF volatility goes to 0 and the price interval
closes. In fact, for a constant multiple ¢ depending on the product being priced, the bound width

relates to pg,y via ¢y/1 — p% /.

The upper bound attains its maximum when the total volatility of MV, (oas +0ov) (oam +ov),
is maximal. Consider a decomposition of oy as pgvos + psvorthy,(oy) for the (fixed) vectors
os, and orth,(oy ), orthogonal to og. Fixing everything except the correlation between V and S,
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Figure 5.1: Call option price bounds as a function of the correlation between S and V. Option
price bounds are average values over 100,000 simulated sample price paths.

lloar +ov | is maximized when o),y is maximal. Moreover, from the decomposition and Equations
3.3), (3.4) we can derive that the upper bound attains its maximum at time ¢ when
) PP

—qsps,v + vpPs,v

attains its maximum, which happens at pgy = qu(q?g +'yt2)*1/ 2. Similarly the lower bound attains
its lowest value at ps v = gs(¢% +~7)~/2.
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0.6 0.8 1 1.2 14 1.6 0.6 0.8 1 1.2 14 1.6
strike price (fraction of underlying) strike price (fraction of underlying)

Figure 5.2: Call option price bounds as a function of the strike price. Option price bounds are
average values over 100,000 simulated sample price paths.

The logistic relation between bound width and strike price, shown in Figure 5.2, is up to a
constant multiple given by the lognormal survival function for call options and by the lognormal
cumulative distribution function for puts, both with volatility |jov||. As the strike increases, the
probability that a call option matures in-the-money follows the lognormal survival function. The
price bound decreases accordingly since the region where the option matures in-the-money also
drives the option price.

The bound (4.3) denotes a hyperbolic relationship between the parameter 4; and the maximum

volatility of M. Because the value of Vp, Ep[MV] = exp(fOT qv + \/vioy [Bros + yortheg (ov)|dE),
depends linearly on =, the price bounds on V will also be hyperbolic with respect to the volatil-
ity bound. In particular, the price bounds will always fall within the asymptotes exp( fOT qv +
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Figure 5.3: Call option price as a function of the volatility bound. The option shown has a strike
of 150%. Note that both asymptotes are slightly upward-curving.

\/Eﬁtagov + ryoprdt). The same does not hold for contingent claims on V' due to the nonlinear
relation between the volatility of M and the option price, although nonlinear asymptotes can be
derived by valuing options with v; = &,.

Figure 5.3 shows how the volatility bound influences the option price bound. A call option with
a strike of 150% is used because the nonlinearity is (somewhat) more pronounced for high strikes.
For reasonable values of ojs, the asymptote provides a decent approximation of the true option
price bounds. This observation is particularly useful during model calibration and exploratory
analysis. One can use the asymptote as approximate bounds during the calibration phase, allowing
one to approximate good deal bounds before the definitive calibration for the price of volatility risk,
or the exact specification of the stochastic interest rate- or stochastic volatility model is known.
Moreover, simulated asymptotic discount factors remain valid when the parameters of the interest
rate and volatility models are changed, which can be used to reduce the computational load when
calibrating option bounds on real-world data.

5.2 Incompleteness through limited market access

In this section we demonstrate the implications of good deal bounds for an investor who has limited
trading opportunities. A trader with limited market access cannot apply a continuous hedging
strategy and could therefore resort to good deal bound pricing, even when issuers of the option can
efficiently hedge their position. In such situations, good deal bounds are a means to quantify the
risk an investor is willing to take on a single investment.

This section considers Expected Shortfall at the 100 x a-percentile as the price bound generating
risk measure, i.e. ),(X) = ES,(X) := E[-X | X < sup{k : P(X < k) < a}]. This is a coherent
risk measure that is decreasing as a function of «, such that lower values of o generate wider

25



price bounds. An investor who measures risk with ES,, considers a risk-free sum of money as less
attractive than a risky payoff if the expected payoff is higher than the sum of money, given that
the payoff ends in the worst a-quantile.

Note that 1 expresses the total risk on a position and not the ‘hedging risk’, the risk that
remains after the best feasible hedging strategy is applied. To distill the hedging risk, we would
need to be explicit on which hedging strategies are allowed, which is a different question altogether.

strike: 50% strike: 60% strike: 70% strike: 80%
0.25 0.4
0.30 A
0.151 0.25
0.20 A
0.10
0.15 1
0.05 1 0101
0.05 A
0.00 0.00 A
0.0 25 50 75 10.0 00 25 50 75 100 00 25 50 75 100 0.0 25 50 75 10.0
strike: 90% strike: 100% strike: 110% strike: 120%
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0.4 a=69%
a=43%

® true price
0.24

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0

Figure 5.4: European put option prices (y axes) as a function of maturity (x axes) for different
strikes. Price bounds based on the Expected Shortfall at a% is shown for different values of «.
Note that all y-axes have different scales; the model-market pricing mismatch is around 0.015 for
strikes of both 50% and 150% and lower for strikes closer to 100%. The efficient price and the
price bounds are estimated from 10,000 Monte Carlo simulated paths. For low « (high op) the
simulation variance explodes giving volatile price bound estimates.

Figure 5.4 shows the calibration results of the market model, calibrated on SPX implied volatil-
ity quotes for June 30, 2017 from ICE Data Services. To limit the computational complexity the
pairwise correlation between interest rates, the volatility process and equity is set to 0. The calibra-
tion was performed by optimizing the model parameters over Monte Carlo simulated price paths,
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interest rate paths and volatility paths using a basin hopping algorithm to limit the risk of finding
local minima. The objective function used in the optimization is

S fitky = 3 @D — Pk D)

ke K beK pm(k,t)
teT teT

where K is the set of strike prices, T is the set of maturities and p(k, t) (resp. pm (k, 1)) is the efficient
model (resp. market-observed) price for strike k& and maturity ¢. This objective function seeks the
middle ground between squared absolute pricing errors’ and squared relative pricing errors?. It
gives a better fit for out-of-the-money options than the squared absolute pricing error, since large
relative errors for out-of-the-money options are often small in absolute terms due to the low price
of such options. For the same reason the squared relative pricing error tends to underfit options
with a high strike price.

The efficient market values risk as the exprected shortfall at o = 0.834, which is denoted in
Figure 5.4 by the efficient price. We assume that the inefficient investor can feasibly obtain a
correlation of 0.75 between her own hedging strategies and efficient hedging strategies. Under these
conditions the price bounds are shown for a € {0.43,0.69,0.82} in Figure 5.4. As the strike price
increases the price bounds become more pronounced and more easily capture the variation in the
observed prices. Put options with low strike prices on average deviate more, measuring deviation
as the decrease in a required to capture observed prices within the price bounds. This is largely
due to the low value of such options, which leads to a high relative difference between model price
and market price.

< < o
i =N g
! ! !

fraction market prices
within bounds
=)
o
|

T T T T T
0 0.2 0.4 0.6 0.8
«

Figure 5.5: The number of market prices within bounds as a function of a, where the bounds are
given by oy < ES,. The efficient market values products at most at a = 0.834. As « approaches
0, the volatility of the discounted processes explode such that simulated bounds haphazardly cross
the true data, causing the fraction of market prices within bounds to decrease.

As « is decreased and the price bound widens, the variance of the stochastic discount factor
inherently increases. This increases the noise in the Monte Carlo-estimated price bounds, which
can clearly be recognised in Figure 5.4 as the increased ragedness of the a = .43 price bound with
respect to the o = .69 and o = .82 price bounds. For high strike prices and long maturities the

IThe squared absolute pricing error is given by f(t, k) = (p(k,t) — pm (k,t))2.
2The squared relative pricing error is given by f(¢, k) = (p(k,t) — pm (k,1))?/pm (K, t).
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upper bound at o = .43 even drops below the more tight upper bound at a = .69. Such irregularities
could be removed by increasing the sample size; however, as « approaches 0, the variance oy, grows
without bounds and with it, the required sample size for a stable estimate for the price bounds.

Another question of interest is how many market observed prices fall within the price bounds
for a choice of a. Figure 5.5 shows that values of « close to the efficient market « yield bounds
that contain the lion’s share of market observed prices. Only very short maturity options or low
strike price options fall outside reasonably tight price bounds. As « decreases further, the fraction
of market prices captured within the price bounds only marginally increases and for very low values
of « the fraction decreases again. The latter is the result of unstable estimates due to the increase
in the sample path variance of the stochastic discount factor.
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Chapter 6

Concluding remarks

This thesis demonstrates how preferences expressed over risk can be used to obtain option price
bounds in a general continuous-time pricing framework that allows for stochastic interest and
stochastic volatility, while excluding arbitrage opportunities. The model is formulated as a general-
ization of continuous-time complete market pricing models with stochastic volatility and stochastic
interest such that results are consistent with findings in a complete market setting.

It is shown that, given a risk measure restriction, three discount factors can be readily identified
which correspond to the efficient price, the lower price bound and the upper price bound respectively,
for all securities. There is therefore no need to numerically search for a minimum or maximum
price amongst the range of admissible stochastic discount factors. This result is particularly useful
in a Monte Carlo pricing context where risk-neutral scenarios are used to evaluate the price of
complex derivatives. Because price bounds are determined by the on beforehand identified stochastic
discount factors, the real-world price paths need only be sampled once and can simply be discounted
with the appropriate discount factors to obtain price bounds. The additional computational load
with respect to complete market Monte Carlo pricing is thus limited to computing the additional
discount factors.

The entire class of coherent risk measures is shown to generate bounds that are independent of
model parameters. Restrictions from this class limit the total volatility of of the stochastic discount
factor by the risk measured on a standard normally distributed variable. An interesting track for
future research would be to generalize this result to other risk measures or to other market models
— e.g. in the presence of jumps.

Taking a queue from Cochrane and Saa-Requejo (2000) who reversed the Hansen-Jagannathan
bound to obtain good deal bounds, the good deal bounds derived in Theorem 2 can be reversed
to obtain a lower bound on a measure for market risk. It might be very interesting to compare
this measure to other risk- or stress measures of the state of the world. There might be interesting
analogies that can be used to choose a specific risk measure or to obtain selection criteria for risk
measures eligible for the calculation of good deal bounds.

Determining risk-neutral price processes in an incomplete market Heston model presented an
issue that is lacking in the complete market. If excess returns are bounded away from zero (i.e.
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always greater than some € > 0) the ‘market price of risk’ can become arbitrarily large because risk
can become arbitrarily small in the Heston model. In the complete market the unbounded market
price of risk does not pose a problem because the exposure to risk and the market price of risk
cancel each other out by the completeness assumption. This thesis resolved the unboundedness
issue by enforcing a minimum market risk in the model. An alternative solution would be to force
the excess return of risky assets to scale with the vol-of-vol v. Since in this case both excess return
and risk exposure scale with v, the market price of risk will be independent of v. On the other hand,
the market price of risk does not wholly explain the excess return in this model, which is why it has
not been used in this thesis. A qualitative comparison between different stochastic volatility models
suitable for incomplete market valuation would be an interesting pursuit for further research.

The framework presented in this thesis can also be used to explain the bid-ask spread if one
assumes that all trades are performed in the incomplete market. This assumption poses the problem
that the parameters related to the complete submarket are no longer identified. If this issue can
be tackled, the methods employed in this thesis could provide new insights in the behavior of the
bid-ask spread.
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Appendix A

Proofs

Lemma 1. Let ¢ : L — R be a function on a linear space L that extends R in some way such that
the following statement makes sense: Let ¢ be translation invariant: Y(X + a) = (X) — a for all
a in R. 9 is convez if and only if Ay :={X € L | Y(X) <0} is convez. ) is positive homogeneous
if and only if Ay is a cone.

Proof. Let {X,Y} C Ay and X € [0,1]. If ¢ is convex, then
BOX + (1= \)Y) < XE(X) + (1 - \)(Y) <0

by convexity, such that AX + (1 —\)Y € A,. Conversely, assume that A, is convex, and note that
Y(X +Y(X)) = (Y +¢(Y)) = 0. Then by the convexity of Ay, M(X +9(X))+(1-N) Y +¢(Y)) €
Ay, hence

0= pAMX +9(X)) + (A=Y +¢(Y)) = p(AX + (1 = N)Y) = Mp(X) = (1 = A)gp(Y).
Reordering gives p(AX + (1 = A\)Y) < Mp(X) + (1 — A)p(Y), proving that ¢ is convex.

Now let A > 0. First assume that 1 is positive homogeneous. Then ¥(AX) = A)(X), hence if
X € Ay, it must be that
0= M(X) = p(AX),

and therefore AX € Ay, which in turn implies that Ay, is a cone.

On the other hand, when AX € Ay, for each X € Ay, then by similar logic, again X +¢(X) € Ay,
and therefore
0= P(MX + (X)) = P(AX) — (X)), (A1)
which shows

Y(X) = P(ATIAX) < ATHAX) < ATIP(X) = 9 (X),
from which equality in (A.1), and with it positive homogeneity follows. O

Lemma 2. If is a coherent risk measure on L£2, then its convex conjugate ¥* acts as an indicator

function on the set
L:={Y |E[XY] < ¢(X) for all X € L?}.
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This implies in particular that

Y(X) = sup {E[XY]—¢*(Y)} = sup {E[XY]}. (A2)
YeL? YeL

Proof. Let A > 0. We consider three cases: ¥*(Y') is positive, negative or zero. First, let Y such
that ¥*(Y) > 0. Then by the properties of the supremum there exists an X and an € > 0 such
that EAXY) — ¢(AX) = ME[XY] — (X)) = Xe. But then ¢*(Y) > Xe for all A > 0, and thus
(V) = oo

If on the other hand ¥*(Y") < 0, then the preceding holds for an € < 0, in which case 0 > ¢*(Y) >
Ae for all A > 0, which yields the contradiction *(Y) = 0. This shows that ¢*(Y") € {0, 00} for all
Y.

Then, note that if *(Y) <0,
0> g*(¥) > E[XY] - 4(X)

such that ¥(X) > E[XY], implying that Y € L. Conversely, ¢*(Y) > 0 implies E[XY] > ¢(X)
for some X such that Y ¢ L. This demonstrates that ¥(Y) = 0 for all Y € L, and oo otherwise.
Clearly, the left supremum in Equation (A.2) is not obtained where ¥*(Y) = oo, validating the
restriction from £2 to L. 0

Lemma 3. Let {t;}1e(0,00) be a dynamic risk measure {L3}ie(0,00) = {Ri}tep,00)- The following
characterizations of time consistency are equivalent:

(monotonicity) ;. s(X) > 4s(Y) = 9 (X) > (V) for allt,s >0 and X,Y € L2,
(recursive) Yy (—1sys(X)) = i (X) for allt,s >0 and X € L2.

Proof. First, assume that {9t };c[0,0) has the recursive property. Because 9, is a risk measure for
all ¢, it is monotone, and therefore ;4 s(X) > ¥45(Y) implies

Yi(X) = Ve(—hi4s(X)) > e (=hiqs(Y)) = e (V).

Now assume that {1;};c[0,00) has the monotonicity property. Set Y = —);;,(X). Then by cash
invariance, ¥;45(Y) = t:45(X), and with the monotonicity property follows ¢:(X) = (V) =
V(=5 (X)) O

35



