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Abstract

For an insurance company, the forecasting of claims is central to a successful operation. This

process can be divided into multiple subtasks. Data preparation, dimensionality reduction,

classification, forecasting and evaluation. This research applies three dimensionality reduction

techniques: variable elimination, reduction through a decision forest and multiple correspondence

analysis. After dimensionality reduction, classification is used to determine the probability of

issuing a claim for an observation to be predicted. Four classification techniques are used: a

decision tree, a random forest, a binary logistic regression and a support vector machine. Once the

probability of issuing a claim is estimated, it needs to be transformed into a predicted claim

amount. As a benchmark, a naive model, called the ratio model, is used. This model uses ratios of

risk groups with respect to the base premium to determine the final premium. For the evaluation

of the models, classification measures, error measures and the normalized Gini coefficient are used.

The results show that dimensionality reduction is not necessarily needed for this problem and that

simple techniques, such as a decision tree or random forest, outperform the more statistically

advanced techniques, such as a support vector machine, on out-of-sample results.
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Chapter 1

Introduction

Helping clients in such a way that they are able to use their data to optimize their decision making

process is a service Finaps1 wants to provide. Having a reinsurer as a client, proposing a ‘Framework

to Forecast Insurance Claims’ to them can help them to make better decisions. Giving the reinsurer

insights in how their client data can be used to forecast upcoming claims, enables them to act

accordingly. Furthermore, Finaps and SAS2 have established a partnership and SAS wants to

use this research as a guideline to a new product called ’Dynamic Pricing’. This product enables

insurance companies to dynamically price premiums based on a risk profile.

1.1 Problem Definition

For an insurance company, the forecasting of claims is central to a successful operation. If the

claims can be forecasted accurately, premiums can be adjusted accordingly, creating the

opportunity to be one step ahead of the competitors. Charging a lower premium than the

competitors, while maintaining a sufficient buffer to make profit to stay in business, will lead to

more customers, which will in turn lead to more profit. However, charging a premium that is too

low to cover the expected expenses can lead to bankruptcy in the long run.

Table 1.1 contains the premiums asked of four different insurance companies. Since the premiums

are different, we can conclude that the different insurance companies have different pricing models.

1Finaps delivers innovative IT solutions using advanced technologies such as Mendix, SAS, Xamarin and Box. For
more information see https://www.finaps.nl.

2SAS is specialized in statistical analytical software and solutions. For more information see http://www.sas.com.
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CHAPTER 1. INTRODUCTION 2

Achmea Allsecur ANWB Ditzo
Premium1(e) 702.36 659.16 874.08 861.96

1 The premium mentioned is a yearly premium for a third party
insurance (Wettelijke Aansprakelijkheid). The car to be insured is
a Citroën C1 with license plate 58-NPF-3.

Table 1.1: Premium asked for different insurance companies

Assuming that people will always choose for the cheapest possibility and that the insurance

companies did not underprice their premiums, AllSecur is one step ahead of its competitors. They

charge a lower premium while maintaining a sufficient buffer to stay in business. It must be

mentioned that in reality, people do not always choose the cheapest option. Customer service plays

a big part in which insurance company someone chooses. However, customer service is not within

the scope of this research and is impossible to measure given the data used.

To charge a competitive premium that is neither too high nor too low, it is important to forecast

the upcoming claims accurately. To produce accurate forecasts and to give the insurance company

insights in the methods that we use, we construct a framework which can be divided into the following

five subtasks:

1. Data Preparation

2. Dimensionality Reduction

3. Classification

4. Forecasting

5. Model Evaluation

This research focuses on subtask two to five. The dataset presented in this research already

accounts for subtask one, it is a complete dataset containing multiple variables that can directly be

used. To understand the importance of subtasks two to five, simple examples are given.

Models that contain a large number of predictor variables relative to the number of

observations have the tendency to overfit. That is, the model is excessively complex so that it fits

the training data perfectly, but has a poor performance when applied to new data. As a solution,

dimensionality reduction techniques may be used to extract only useful information of the dataset.

For example, although the start date of each policy is stored into the database, it will most likely

not influence the claim amount significantly. Therefore, it is possible to delete this variable to

make the model less prone to overfitting and thereby obtain better out-of-sample results.
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Using classification, it may be possible to assign a risk profile (e.g. probability to claim) to a

client. For example, suppose customer 1 has a low probability to issue a claim next year and

customer 2 has a high probability to issue a claim next year. It may not be optimal to charge both

customers the same premium because you would overcharge customer 1 and undercharge customer

2. If other insurance companies do differentiate between the different risk profiles, clients similar to

customer 1 are likely to leave since they are overpriced compared to the market. At the same time,

clients similar to customer 2 are, with respect to their risk profile, underpriced compared to the

market. This leads to an increase of clients similar to customer 2, which increases the risk of the

portfolio. The premium that was initially charged is now too low, which can lead to bad results.

Once the risk profile of a (new) client is determined, the next step is to transform this risk

profile into a predicted claim amount. The assigned risk profile is the predicted probability to issue

a claim. To obtain predicted claim amounts, it is possible to give high predicted probabilities a

high claim amount. Another possibility is to set a threshold such that only probabilities larger

than this threshold issue a claim.

To determine the best performing model and whether this model is more informative than a

benchmark model (e.g. random walk model), one can use evaluation metrics. An example is the

absolute error. Let the total claim amount of the test data be e 1.000.000. A model that forecasts

the total claim amount to be e 970.000 seems relatively accurate. However, how does it compare to

other (more simple) models? Assume the benchmark model forecasts the total claim amount to be

e 940.000. In terms of absolute error of the total claim amount, the constructed model outperforms

the benchmark model, which implies that information is gained from the modeling approach.

Accurately forecasting insurance claims helps insurance companies to improve their pricing

model. Applying the correct methods can help insurance companies to be one step ahead of their

competitors, which can result in more clients which in turn can lead to more profit.

1.2 Research Goal

This research combines multiple existing techniques to try to construct more accurate forecasts.

For example, the research of Dal Pozzolo (2011) only uses classification techniques to make

forecasts, whereas the research of Berridge (1998) tries to fit a distribution to historical data and

simulate from it to generate forecasts. Both methods seem to work fairly well, but there might be

room for improvement if these techniques are combined.
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The goal of this research is to construct a step-by-step guide to forecast insurance claims. It is

important to map and solve each step in the forecasting process, as SAS wants to use this research

as a basis for their new Dynamic Pricing product. To be able to provide a framework and knowledge

to Finaps and SAS, the following questions need to be answered:

• Which steps are needed to prepare the data to be able to apply model building techniques?

• Do dimensionality reduction techniques on the dataset improve the forecasting performance?

• Which classification techniques can be used to determine a client’s risk profile?

• How to transform the predicted client’s risk profile into predicted claims?

• How to evaluate the constructed models?

1.3 Structure

Chapter 2 discusses related work and how this research contributes to the already existing literature.

In Chapter 3, the data and its summary statistics are presented. In Chapter 4 we explain the

modeling process and techniques. This section tackles all five subtasks as given in Section 1.1.

Chapter 5 discusses an alternative model which is commonly referred to as the ratio model. This

method can be seen as a very naive method, in the sense that it is simplistic. However, this model is

commonly used by insurance companies and therefore we use this model as the benchmark. Chapter

6 contains the expirimental results, where the different methods are evaluated. Finally, Chapter 7

presents the conclusions that can be drawn from this research as well as suggestions for future work

and possible extensions in other areas of expertise.



Chapter 2

Related Work

Forecasting insurance claims is not a new area of expertise, actuarial sciences exist as long as the

insurance business exists. All insurance companies have their internal models to forecast claims

and determine insurance premiums. This chapter discusses some of the current approaches used by

insurance companies as well as already existing forecasting methods. In Section 2.1 we discuss

already existing literature about building an actuarial forecasting model. Section 2.2 presents

literature in which individual techniques are used to predict insurance claims. Finally, in Section

2.3 we discuss relevant literature about the evaluation of actuarial models.

2.1 General Model-Building Information

Mata (2010) presents a step by step guide to design insurance rating models. The author works at

Matβlas, which is an international insurance and actuarial consultancy company. They determine

the final premium as a function of the pure premium and all costs included risks and profit loads.

While the scope of our research does not include extra costs, a risk premium and a profit margin, the

basic principles of constructing an insurance rating model can be used. Mata (2010) also provides a

theoretical background on rating models and guidelines for choosing the base exposure. While the

calculations and methods used in Mata (2010) are relatively simple, the theoretical background is

of great importance.

5
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The publication of Goldburd et al. (2016) is a comprehensive guide to creating an insurance

rating plan using generalized linear models. It has an emphasis on application over theory and is

written for actuaries practicing in the property and casualty insurance industry. The topic that is

thoroughly covered is the model-building process: data preparation, selection of model form, model

refinement and model validation. While our research does not use the generalized linear models that

the publication of Goldburd et al. (2016) does, their publication adresses the technical aspects and

gives a comprehensive guide of building an insurance claim forecasting model. It explains every step

of the model-building process in depth, which gives useful insights for our research, since we also

use these subtasks.

2.2 Model-Building Techniques

In Batty et al. (2010) it is stated that the use of advanced data mining techniques has taken root

in property and casualty insurance. However, application of data mining techniques is still in a

nascent stage. The authors describe how data mining and multivariate analytic techniques can be

used to improve decision making. It is stated that data preparation provides a solid foundation for

model development. They divide the data preparation into four steps: variable generation,

exploratory data analysis, variable transformation and partitioning the datset to construct a

model. These four steps provide a solid foundation for data preparation. After extracting

information from the dataset using the four steps, Batty et al. (2010) use a final tool to extract

information out of the data, namely a decision tree. A decision tree can be used to segment the

population into different groups. While the authors discuss how to use the information revealed by

data preperation, they leave the implementation for future discussion.

The research of Dal Pozzolo (2011) uses a combination of regression and classification techniques

to forecast insurance claims. The data presented in the research are provided by the Allstate Claim

Prediction Challenge and to construct forecasts, they use a combination of regression, dimensionality

reduction and classification techniques. Dal Pozzolo (2011) classifies the observations to be predicted,

removes the observations that are predicted as zero and applies regression on the rest. In the

competition, the forecasting power is measured by the normalized Gini coefficient. Conclusions are

based on the normalized Gini coefficient of the method that is used, a higher coefficient concludes a

better forecasting method. The classification methods used in Dal Pozzolo (2011) are a decision tree,

random forest, näıve Bayes, K-nearest neighbors, neural network, support vector machine and linear

discriminant analysis. Between all the classifiers, they found that the three best performing methods

are the decision tree, random forest and linear discriminant analysis. These methods outperform

the results based on using a regression on all observations.
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In Berridge (1998), the author tackled the problem of forecasting claims in motor vehicle

insurance. Specificly focused on the dataset from State Insurance, the author tries to predict

claims using five predefined clusters of risk categories. As an intermediate step, the author tries to

fit a distribution to the claim amount. The author tries to fit well-known two parameter

distributions to the claim data and finds that the log-normal and log-gamma distribution tend to

fit relatively well, whereas the Pareto distribution can fit the heavy tail. Having fitted the

distributions using the method of moments estimator, the author continues his research explaining

the current approach of State Insurance, the rating approach. This approach determines the final

premium as the base premium multiplied by individual rating factors. Berridge (1998) uses both

methods to make predictions about future insurance claims. He first divides all clients into groups

with similar risk characteristics, which are predefined and based on age and gender. Thereafter,

the author proceeds to estimate the claim amount based on the fitted distributions of that

particular cluster and forecasting the expected claim amount for each client.

2.3 Model Evaluation

In the research of Frees et al. (2014), the Lorenz curve and Gini index are combined and extended to

a financial context by ordering insurance risks. They develop a Lorenz curve and Gini index that can

cope with adverse selection and is able to measure potential profit. Frees et al. (2014) finds that the

Gini index is a useful tool in predictive modeling, where the performance of the model is examined

on an independent hold-out sample. They consider an ’ordered’ Lorenz curve, which varies from

the Lorenz curve in two ways. First, they look at the amount of insurance premium paid instead

of wealth. Second, the premiums and claims are ordered by a third variable, called relativity. The

reason to opt for such a modified Lorenz curve and Gini index rather than the mean squared error

is due to the distribution of premiums and claims. Typically, the distribution of premiums tends to

be relatively narrow and skewed to the right. In contrast, the losses have a much greater range and

are predominantly zero. Therefore, they state that it is difficult to use the mean squared error to

measure discrepancies between premiums and claims.



Chapter 3

Data

Insurance claim data are confidential. Insurers construct their internal models based on their data

and try to outperform their competitors. To obtain policy and claim data, one must usually pay a

large sum of money. However, by following the masterclass Actuarial Sciences1 at the Erasmus

University Rotterdam, we obtained a dataset that contains car insurance claim data. The

summary statistics of this dataset can be found in table 3.1.

This dataset contains 10000 observations and 14 predictor variables, which is a relatively small

number of observations for an insurance company. Datasets of over 13 million observations with

over 30 predictor variables are available (see Dal Pozzolo (2011)) but to speed up the data

preparation process which does not influence the modeling techniques, we use the (prepared)

smaller dataset.

In this dataset, claim amounts range between e 0 - 50000, except for three outliers. These three

outliers have claim values between e 4 - 4.5 million, over 1000 times the average claim value. We

cap these outliers at e 50000 to bring them more in line with the other claims and to get smoother

results. For this transformation, we assume that these outliers are random and do not depend on

specific predictor variables. Note that in the final premium calculation, the actual claim values need

to be accounted for.

1The author has followed the masterclass Actuarial Sciences in 2015 at the Erasmus School of Economics. This
masterclass was organized by D. Fok (personal.eur.nl/dfok/) in collaboration with Allianz. Note that this dataset
is already prepared and ready for use, therefore a simplification of a real dataset.

8
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Values

Variable Abbreviation Type Min Max Mean StDev
Age A Integers 18 88 37.8 11.6
ListedPrice LP Integers 2924 182129 26544.2 15786.7
CarAge CA Integers 0 37 11.2 5.9

Gender G Categorical 2 Levels
Province P Categorical 12 Levels
SocialClass SC Categorical 5 Levels
Urbanisation U Categorical 8 Levels
Education E Categorical 3 Levels
FinancialType FT Categorical 6 Levels
HousingType HT Categorical 6 Levels
Make M Categorical 5 Levels
Color C Categorical 6 Levels
Fuel F Categorical 4 Levels
Mileage MA Categorical 3 Levels

Claims > 0 Continuous 389 4562272 4036.6 72679.1
Capped Claims1> 0 Continuous 389 50000 2570.3 2383.3

1 The capped value of a claim is 50000 (CappedClaim = min{Claim, 50000}).

Table 3.1: Summary statistics of the data used in this research

Figure 3.1A shows that most of the claims are equal to zero. In our dataset, 43.5% of the

observations did not issue a claim. Figure 3.1B shows the distribution of claims that are greater

than zero. For clarity, we have capped x-axis of the second figure at 10000, since only a relatively

small number of claims (< 1%) are outside this range and a more detailed histogram can be obtained.

(A) Capped Claim Values (B) Claim Values > 0

Figure 3.1: Histogram of the distribution of claims in the dataset
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Modeling Process and Techniques

Finding a framework to forecast insurance claims is a multi-staged problem. The first step is to

prepare the data. As a second step, it is possible to filter out irrelevant data to test if a model

that uses all predictor variables overfits. That is, the model performs well on the training data, but

has poor out-of-sample performance. The next step is to predict the probability to issue a claim

by using classification techniques. To obtain forecasted claims, the predicted probability needs to

be transformed into a predicted claim amount. The last step in the framework is to evaluate the

constructed models.

4.1 Data Preparation

Once the data have been collected, data preperation provides a solid foundation for model

development. Batty et al. (2010) provide four steps that summarize data preparation.

As a first step, it is important to create variables from raw data. To create variables, load the

data into the system and assign a variable name and a data format to each data field. It is also

possible to use the interactions between original variables as a new variable. An example for health

insurance can be the new variable ’Body Mass Index’, which is an interaction between the variables

’Length’ and ’Weight’, modeled by (Length2 / Weight). This process is called feature generation.

Once the data have been loaded into the system, it is important for the analyst to become

comfortable with the content of the modeling data. The data analyst should look at the descriptive

statistics (min, max, mean, frequency, ...) to get a general grasp on the data. Furthermore,

visualization of the data can be useful to spot any outliers or patterns. This step is referred to as

the exploratory analysis.

10
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If the exploratory analysis of the data reveals imperfections in the dataset, these issues must be

solved. Imperfections can be excessive categorical values, missing values or outliers. Excessive

categorical variables can lead to a model that overfits. If similar categories are grouped, the model

may have better out-of-sample performance. Instances with missing values can be removed from

the data set, but this might not be ideal due to removing useful information. A solution is to

replace the missing value with an estimate, which can be the (conditional) mean of that variable.

Outliers can skew the overall distribution to accomodate for a very small number of data points. If

the tail of the distribution is not of any particular interest, these observations can be deleted.

The last step is to partition the data set into two parts, a ’train’ and ’test’ set. The test set is

set aside until the end of the process. That set will only be used to assess the final out-of-sample

results. Within the training set, cross-validation is used to tune the model parameters. Cross-

validation evaluation consists of partitioning the data set into k subsets of equal size. Then, k − 1

subsets are used as the training set and the remaining subset as the test set. This process is repeated

k times, where in every round another subset is used as the test set. Model parameters are selected

such that they give the best average cross-validated out-of-sample performance.

4.2 Dimensionality Reduction

Once the data have been prepared, it is possible to apply techniques that reduce the

dimensionality of the data. Dimensionality reduction can improve the final classification accuracy

of out-of-sample data. Removing uninformative data can help the algorithm find more general

classification rules and thereby achieve better performance when the model is applied to new data

(Silipo et al. (2014)).

Four different techniques to reduce the dimensionality are used. First, an a priori defined subset

of variables is deleted. Secondly, a subset of the original variables are selected through forward

selection. As a third technique, random forests are used to obtain the most informative variables,

which are then used to built the model. The fourth technique is multiple correspondence analysis.

4.2.1 Variable Elimination

To reduce the number of variables, it is possible to use an a priori defined subset of the original

variables or to stepwise include only significant predictor variables. The former technique can use

expert knowledge as input variables. The latter technique can be compared to stepwise regression,

where the choice of predictor variables in the model are carried out by an automatic procedure.
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The two main approaches to include predictor variables are forward selection and backward

elimination. Forward selection starts with a model without variable terms, but just a constant.

The addition of each variable is tested using a chosen model fit criterion, adding the variable whose

inclusion gives the most statistically significant improvement of the fit. This process is repeated

until none of the variables significantly improve the model. Backward elimination uses the same

procedure, but starts with all the variables and deletes insignificant variables (Lockhart (2008)).

4.2.2 Random Forest

A Random forest can be used for either dimensionality reduction or as a classification technique. It

was first developed by Leo Breiman (Breiman (2001)). To apply dimensionality reduction using

random forests, one generates a large set of decision trees and uses the usage statistics to find the

most informative subset of variables (Silipo et al. (2014)). The usage statistic can be interpreted as

how many times a variable is used as a split criterion in the decision trees. For more information

about decision trees and how they are constructed, see section 4.3.1.

As a first step, construct a large number (N) of shallow trees. Each tree has two levels and

randomly selects k out of n variables to perform splits on. To obtain the most informative variables,

it is necessary to assign scores for each variable. The score is calculated by counting how many

times it has been selected for a split and at which level. Levels one and two have one and two splits

respectively. The score (ṡ) of a variable (v) in tree (t) is defined as:

ṡv,t = ℘v,t,1 +
1

2
℘v,t,2. (4.2.1)

In (4.2.1) ℘v,t,1 and ℘v,t,2 are the number of splits that use variable v in tree t at level 1 and 2

respectively. The score for each variable, ŝv, is the sum of the scores in all trees. A higher score can

be interpreted as a more informative variable. ŝv is defined as:

ŝv =

N∑
t=1

ṡv,t. (4.2.2)

At this point, one more step is needed to find out which variables score higher than you would expect

by random chance. If it is assumed that each variable influences the target variable by the same

amount, one would expect each variable to have the same score and to be in the same number of

trees. The score is the expected number of times a variable is used in a split in the complete forest.

Given the scoring scheme as in equation (4.2.1), the expected score is equal to:

s̃v =

(
2

k
·N · k

n

)
=

2N

n
. (4.2.3)

If ŝv > s̃v, the variable is included, otherwise the variable is eliminated.
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4.2.3 Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) allows one to analyze the pattern of relationships of

several categorical dependent variables and is used to detect and represent underlying structures in

a data set. MCA is the categorical counterpart of Principal Component Analysis (PCA), which

tries to capture the maximum possible variance in a minimum number of linear independent

variables (factors). MCA constructs a new dataset, where each observation has a factor score for

each factor (Abdi and Valentin (2007)). The first few factors should capture most of the variance

of the original dataset.

To get more into technical detail, first define an indicator matrix. To obtain an indicator matrix,

code each level (category) of a categorical variable as a binary variable. For example Gender (Male

or Female) is one categorical variable with two levels. The pattern for male will be [1 0] and for a

female will be [0 1]. Table 4.1 illustrates how responses are coded as binary variables1.

Obs. Gender County Mileage
Male Female ZH F L <10k 10k - 20k 20k - 35k > 35k

1 1 0 0 1 0 0 0 1 0
2 1 0 1 0 0 1 0 0 0
3 0 1 0 0 1 0 0 0 1
...

...
...

...
...

...
...

...
...

...

Table 4.1: Transformation categories to binary values for MCA

The matrix of 1’s and 0’s obtained by the coding scheme as illustrated in table 4.1 is further

referred to as the super-indicator matrix (Greenacre (1984)). The super-indicator matrix has I

observations and Q categories. Define the super-indicator matrix Z ≡ [Z1, . . . ,ZQ], where Zq is an

I × Jq indicator matrix corresponding to the qth categorical variable which has Jq levels.

To obtain the new factor scores, more notation is needed. First, define the Burt matrix B ≡ ZTZ

and transform this matrix into a probability matrix denoted X ≡ N−1B. Here, N is the grand total

of the table, that is, the sum over all rows and columns. Denote the vector r ≡ Xι, the vector of row

totals and c ≡ XT ι the vector of column totals. Note that r = c since B = BT . Let Dc ≡ diag{c}
and Dr ≡ diag{r}, which are also equivalent. The factor scores are obtained from the following

singular value decomposition (Abdi and Valentin (2007)):

1For example: Observation 1 is a Male that lives in F and drives between 20.000 and 35.000 km per year.
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D
− 1

2
r (X− rcT)D

− 1
2

c = P∆PT. (4.2.4)

In this decomposition, the matrix ∆ is the diagonal matrix of the singular values. Obtain the

matrix of eigenvalues as Λ = ∆2.

The next step is to find a number of M ≤ Q factors, which can capture a large portion of the

variance. In traditional PCA, the percentage of variance explained by factor j is
λj∑J

j=1 λj
. However,

our technique created artificial additional dimensions, since one categorical variable is coded as

several columns. As a consequence, the variance of the solution space is artificially inflated.

Therefore, the percentage of variance explained by the first eigenvalue is severely underestimated

and the traditional calculation no longer holds.

To account for this inflation of the variance and underestimation of the first dimension, the

correction formula of Greenacre can be used (Greenacre (1996)). This correction takes into account

that eigenvalues smaller than 1
Q are simply coding for the extra dimensions implied by MCA. The

eigenvalues need to be corrected accordingly and the corrected eigenvalues, λcj , are obtained as:

λcj =


[(

Q
Q−1

)(
λj − 1

Q

)]2
if λj >

1
Q

0 if λj ≤ 1
Q

(4.2.5)

Given the corrected eigenvalues, use the traditional calculation

(
λc
j∑J

j=1 λc
j

)
for the percentage of

variance explained by each factor. Once the new percentages of explained variance are constructed,

find a number of M ≤ Q factors which can capture a large portion of the variance. There is no

’rule of thumb’ or criteria for keeping or rejecting dimensions for analysis based on the proportion

of variance explained (Doey and Kurta (2011)). However, in traditional PCA, one can use an elbow

plot to determine the number of factors, which can also be used for MCA.

4.3 Classification

Once the most important information is extracted from the dataset, either by stepwise eliminating

variables or through multiple correspondence analysis, the next step in the modeling process is

to classify each individual observation. Four classification techniques are used: a decision tree, a

random forest, a binary logistic regression and a support vector machine algorithm. The objective

of these techniques is to assign a probability of issuing a claim to each observation which needs to

be predicted, since the dependent variable can be binary classified. Either there was a claim (1) or

there was no claim (0).
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4.3.1 Decision Tree

Decision trees provide a structure that divides a large data set into small subsets by applying decision

rules (Quinlan (1986)). It is a flowchart like structure which tests for different attributes. It can be

seen as a questionnaire which contains conditional questions. Figure 4.1 shows a decision tree with

2 levels graphically.

Root

Leaf1

Pr
ice
<

20
k

Leaf2

Price >
20k

Age
< 21, 5

Leaf3

Ag
e <

77
, 5

Leaf4

Age >
77, 5

Age > 21, 5

Figure 4.1: An example of a decision tree with two levels

To predict a new observation for a given tree, the classification starts at the ’Root’ and goes

down the tree testing for different attributes until an endpoint, a ’Leaf’, is reached. Assume a

decision tree equal to figure 4.1, the first question to predict a new observation is ”Is the

policyholder older than 21,5?”. If the answer is ”Yes”, continue with ”Is the policyholder older

than 77,5?”. If the answer is ”No”, the observation ends at Leaf3.

To obtain a predicted probability to issue a claim, use the constructed decision tree. First, run

the entire training set through the constructed tree and count the percentage of observations that

issued a claim at each leaf. The percentage of observations in the training set that issued a claim

which ended up at Leafi is pi. To obtain the predicted probability of a new observation to issue a

claim, run the new observation through the tree and if the new observations ends at Leafi, assign

pi. Define pi as:

pi =
1

Oi
·
∑

o∈Leafi

1{Yo = 1}, (4.3.6)

where Oi is the number of observations that end up at Leafi in the training set and 1{Yo = 1} is

the indicator function that returns 1 when observation o issued a claim and 0 otherwise.
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One of the advantages of this approach is that making predictions is fast. No complicated

calculations are involved, it is simply giving answers to the predefined questions in the tree.

Therefore, it is easy to understand which variables are important in making the prediction.

Another advantage is that predicting is still possible even when data for an observation is missing.

To predict with missing variables, go through the tree until a question cannot be answered. Then,

take the average probability of all the leaves that are still possible to reach (Shalizi (2009)).

When constructing a decision tree, common issues are which variable to perform the next split

on and when to stop the splitting of variables. To obtain the variable to split, ingenious algorithms

are constructed. These algorithms boil down to the following question: Which next split gives the

best classification of the training set? That is, the next split is the split that minimizes the

misclassification rate. The misclassification rate of the tree is the rate of which the tree predicts an

observation as 1 when the actual value is 0 or vice versa. The constructed tree usually results in a

large tree that provides a good fit to the training data. However, this large tree may have the

tendency to overfit. A solution is to find a (smaller) tree that finds an optimal balance between the

misclassification rate and the complexity of the tree. This balance can be found using the C4.5

algorithm developed in Quinlan (2014) or by using cost-complexity pruning (Bradford et al.

(1998)).

For cost-complexity pruning, the optimal cost-complexity parameter CC needs to be found. This

parameter controls the tradeoff between the complexity of the tree and the accuracy. The optimal

value for CC is found by minimizing the cross-validatied misclassification rate. A higher value for

CC results in a smaller tree.

4.3.2 Random Forest

A random forest is an ensemble of decision trees, which can correct for the overfitting of a single

decision tree. Random forests average multiple decision trees, trained on different parts of the

same training set. This can decrease the out-of-sample misclassification rate, at the expense of loss

of interpretability. Generally, random forests outperform decision trees.
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To train a random forest, repeatedly select a random sample (with replacement) of the training

set and fit a tree to this sample. Random forests have one additional constraint, at each candidate

split, only a random subset of variables can be split. The reason is to decrease the correlation of the

trees. If one or a few variables are very strong predictors, these features will be selected in many

trees, causing them to become strongly correlated (Breiman (2001)). The algorithm to construct the

forest, given observations of predictors X = [x1, . . .xn] and responses Y = [y1, . . . yn], yi ∈ {0, 1} is:

For b = 1, . . . , B

Sample subset Xb, Yb from X,Y ;

Train tree tb on Xb, Yb;

end

(4.3.7)

To obtain predicted probabilities in a random forest, either take the percentage of predicted 1’s

for an observation or take the average of the predicted probabilities for all individual trees. In SAS,

the predicted probability obtained by the forest is obtained by averaging the predicted probabilities

from all the individual trees. This research uses the SAS approach, that is:

f̂(xn+1) =
1

B

B∑
b=1

ptb(xn+1), (4.3.8)

where ptb(xn+1) is the probability of issuing a claim of observation n + 1 with predictor variables

xn+1 in tree b. This probability is obtained in the same way as in equation (4.3.6)

Recall the additional random forest constraint: ”At each candidate split, only a random subset

of variables can be split”. Let the size of this subset be the variable ’VarsToTry’, which can be

optimized to minimize the cross validated misclassification rate. The optimal value for VarsToTry

is found by comparing all possible values for VarsToTry and pick the value that minimizes the

cross-validated misclassification rate.

4.3.3 Binary Logistic Regression

The binary logistic regression models the probability of issuing a claim using predictor variables.

The objective is to compute the probability of success (Tranmer and Elliot (2008)), which is

equivalent to the probability of issuing a claim. Each predictor variable influences this probability

in a way which has yet to be determined. To determine the influence of the predictor variables, a

logistic regression can be used.

Let πi be the probability of observation i to issue a claim. It is convenient to have πi be dependent

on a vector of observed variables xi. The simplest idea is to let πi be a linear function of xi, that is:

πi = x′iβ. (4.3.9)
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One problem with this model is that πi is a probability, which has to be between the values 0 and

1, while x′iβ, can take any real value. There is no guarantee that πi will be in the correct range,

unless complex restrictions are imposed on the coefficients.

A simple two-step solution is given in Rodriguez (2007). Transform the probability to remove

the range restrictions and model the transformation as a linear function of the predictor variables.

First, move from the probability πi to the odds:

oddsi =
πi

1− πi
. (4.3.10)

Second, take logarithms, calculating the logit, or log-odds:

logit(πi) = log

(
πi

1− πi

)
. (4.3.11)

The logit is used to impose the restriction that πi is between 0 and 1. In the logistic regression

model it is assumed that the logit of the underlying probability (logit(πi)) instead of the underlying

probability (πi) is a linear function of the predictors:

logit(πi) = x′iβ. (4.3.12)

Solving for πi in equation (4.3.12), gives the following solution for πi:

πi =
exp{x′iβ}

1 + exp{x′iβ}
. (4.3.13)

By assuming that logit(πi) is a linear function of predictors, the probability of issuing a claim will

be between 0 and 1. Irrespective of x′iβ, by definition ex
′
iβ is always greater than 0. Furthermore,

it is known that x
1+x < 1. Both expressions combined indicate that 0 < πi < 1.

Equation 4.3.13 solves for πi in terms of predictor variables. However, the structure of x′iβ is

still unknown. Assume two predictor variables, Mileage and Gender. Given this simple model, it

is possible to compute five basic models of interest, ranging from the ’null model’ to the ’saturated

model’. Table 4.2 contains all five models, as well as the name of the model, a descriptive notation

and the formula for the linear predictor.

Model Notation x′iβ

Null φ η
Mileage M η + αi
Gender G η + βj
Additive M + G η + αi + βj
Saturated MG η + αi + βj + (αβ)ij

Table 4.2: Structure of x′iβ by Mileage and Gender
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The saturated model uses all possible variable interactions as possible predictors. That is, if n

variables are present, the saturated model uses all 1−, 2−, . . . , n−way interactions between them.

Empirical evidence in Rodriguez (2007) shows that the saturated model fits the data the best for

a small number of variables. However, when the number of variables exceeds 2, the number of

category interactions increases rapidly. Then, parameter estimates and uncertainty must be taken

into account. Another problem might occur: the data with many variables overfits. To find the

best selection of variables is beyond the scope of this research and relevant research can be found in

Tibshirani (1996). We use the saturated structure for x′iβ, which uses the interaction between all

variables.

4.3.4 Support Vector Machine

A support vector machine (SVM) can be used to classify observations in binary problems. A SVM

represents the training observations as points in a space. The two categories are divided by an

optimal separation line (or hyperplane in multi-dimensional space). This optimal line is found by

finding two parallel lines that seperate the categories, such that the distance between them (the

margin) is as large as possible. The optimal separation line is the line that lies halfway between

them. New observations are mapped into the same space and are predicted to belong to a category

based on which side of the line they fall (Cortes and Vapnik (1995)).

Although the reader does not need to understand the underlying theory of SVM, we briefly

introduce some SVM basics necessary for explaining the procedure. Given a training set of pairs of

observations and predictors (xi, yi), i = 1, . . . , l, where xi ∈ Rn and y ∈ {−1, 1}, the SVM requires

the following optimization problem (Boser et al. (1992), Cortes and Vapnik (1995)):

min
w,b,ξ

1

2
w′w + C

l∑
i=1

ξi

s.t. yi(w
′φ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.

(4.3.14)

In this equation, the constants ξi are set such that the constraint in (4.3.14) holds for each training

observation. The constant C is the penalty parameter which can freely be set by the researcher.

Given the optimization problem, a higher C leads to an on average lower ξi.

A feature of a SVM is, is that it can be used when the original data are not linearly separable.

Using a function φ(xi) to map the training vectors xi into a higher dimensional space, the SVM

finds a linear separating line with the maximum margin in this higher dimensional space. However,

finding the correct φ(xi) for datasets with large dimensionality will quickly become intractable
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(Kim (2013)). Luckily, Jordan and Thibaux (2004) show that during training, the optimization

problem only uses the training examples to compute pair-wise dot products 〈φ(xi), φ(xj)〉. This is

significant since there exist functions that implicitly compute the dot product of two vectors in a

higher dimensional space, without explicitly transforming the vectors to this higher space (Kim

(2013)). Such functions are called kernel functions, denoted by K(φ(xi), φ(xj)).

A kernel K effectively computes dot products in a higher dimensional space, while remaining in

the original feature space, which makes it computationally easier than finding φ(xi). Two types of

kernels will be used, the linear kernel: K(xi,xj) = xi
′xj and the radial basis function (RBF)

kernel: K(xi,xj) = exp(−γ||xi − xj||2), γ > 0. The linear kernel is a fast algorithm and works well

when the number of variables is large. The RBF kernel generally has better performance when the

model parameters are optimized to minimize the misclassification rate, but the algorithm is

computationally harder (Hsu et al. (2003)).

Solving this optimization problem with a linear kernel has one parameter: C and with an RBF

kernel it has two: C and γ, where C is the penalty parameter for misclassified training observations.

It is not known which C and pair of (C, γ) are the best for a problem, thus we must search for

the optimal parameters. Optimal parameters are found using a ’grid-search’. Basically, compare

different values of the model parameters and the one with the best cross-validated accuracy is picked.

Finding optimal parameters C and γ is important for out-of-sample forecasting. Using figure 4.2

as reference, we see that an outlier can decrease the margin by a large amount if one wants to fit

the training data perfectly. If this outlier in the training data is allowed to misclassified, but given

a penalty, it is possible to find a larger margin and thereby find a more general classification rule.

This generally improves the out-of-sample performance.

Figure 4.2: Change in SVM margin if an outlier is included

To obtain the predicted probability of an observation, the observations the furthest away from

the separation line are given probabilities 0 and 1 respectively. The closer an observation to the

separation line, the closer the probability will be to 0.5. The distance between an observation and

the separation line depends on the difference in value of w′ · φ(xi) and b.
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4.4 Forecasting

By applying dimensionality reduction and classification techniques, it is possible to assign a

probability to issue a claim for every instance. However, a probability to issue a claim is not yet a

forecasted claim amount. The objective is to apply a transformation on the predicted probability

to obtain a predicted claim amount. Two questions need to be answered, the first being ’Does

someone issue a claim?’ and secondly ’If someone claims, how much do they claim?’.

4.4.1 From Probability to Binary Value

In practice, someone either issues a claim or does not issue a claim. To obtain accurate forecasts, it

can be helpful to forecast claims as either 0 or as a value, which implies predicting 1’s (does claim)

or 0’s (does not claim) first. The probability of a claim needs to be transformed into a binary value.

A logical way to impose this transformation is to find a threshold τ for which the following holds:

ϕi =

{
1 if P (Yi = 1) ≥ τ
0 otherwise

(4.4.15)

Here, ϕi is the predicted value of issuing a claim for observation i, either 1 (issues a claim) or 0

(issues no claim) and P (Yi = 1) is the predicted probability of issuing a claim for observation i.

It is yet unknown which value of τ gives the best classification accuracy. For example, if τ = 0,

all observations will be predicted as 1, but this does not lead to accurate results. We opt for three

different values of τ . First, let τ = 0.5. This value performs well when the dataset is balanced but

struggles when the number of 1’s and 0’s in the dataset are unbalanced. To account for this problem,

it is possible to scale τ such that it corresponds with the percentage of 1’s in the dataset. Since the

objective is to maximize the classification accuracy, a more sophisticated possibility is to determine

τ by maximizing the cross-validated Accuracy (see equation (4.5.24)). Let the three possibilities be

defined by the following equations respectively:

τh = 0.5, (4.4.16)

τx =

∑
i 1{YOi

= 1}∑
iOi

, (4.4.17)

τa = maxτ{Accuracy}. (4.4.18)
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4.4.2 From Probability to Claim Amount

To obtain expected claim values, the probability needs to be transformed into a claim amount. We

propose two solutions for this transformation. The first is to multiply the predicted probability of

issuing a claim by the average claim amount of the training data:

1Ξi = P
(
Yi = 1

)
· CappedClaims > 0. (4.4.19)

An advantage of this solution is that low predicted probabilities are assigned a low predicted claim

amount and high predicted probabilites are assigned a high predicted claim amount. We have

chosen to multiply by the average claim amount for the following two reasons. First, it prevents

extreme expected claim amounts. If we let the expected claim amount be a proxy for the premium,

we want to prevent extreme values, since people with extreme values will never take an insurance.

Secondly, while it is possible to simulate a draw from the historical distribution, one can either be

(un)lucky in their predicted claim amount due to the nature of simulating a draw from the

historical distribution. A disadvantage of this approach is that it is impossible to obtain claim

amounts that are greater than the average claim amount in the training data.

Another possibility is to first classify the observations and let each observation that is predicted

to issue a claim have a predicted claim amount equal to the average claim amount of the training

set. That is:

2Ξi = ϕi · CappedClaims > 0. (4.4.20)

If the model can classify accurately, this solution should be able to precisely predict the total claim

amount. A disadvantage is that if the number of predicted false positives and false negatives are

equal, even though there are many, this model also has a good performance. This is due to the fact

that the false positives and false negatives cancel each other out in the total premium calculation.

4.5 Model Evaluation

The different techniques explained in the previous sections provide different probabilities of issuing

a claim. However, it is yet unknown which combination of techniques is the most accurate. Earlier

research (Myung (2000), Babyak (2004)) shows that complex models tend to overfit. That is, they

return a minimal error when applied to the training data, but relatively poor results when applied

to new test data. On the other hand, simple models tend to underfit. They cannot capture the

dependency between the input variables and the output variable, the forecast. Hence, the model

needs to be able to capture the important information, but should not overfit on the training data.

The following sections explain different evaluation techniques that can be used to find the best model

to the insurers liking.
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4.5.1 Classification Measures

To evaluate the classification performance of the different techniques, a confusion matrix can be

used. A confusion matrix is a 2 × 2 matrix with the two dimensions ’actual’ and ’predicted’. The

observations to be predicted have an actual and predicted value (true or false) and the performance

of a model is determined by the number of correctly predicted observations (Visa et al. (2011)).

Table 4.3 shows how a confusion table is defined.

Predicted

True False

Actual True TP FN
False FP TN

Table 4.3: Confusion table

In Table 4.3 TP is a ’True Positive’. That is, the actual value is ’True’ and the predicted value

is also ’True’. FP is a ’False Positive’ (actual = false, predicted = true) and is regarded as a Type

II Error. FN is a ’False Negative’ (actual = true, predicted = false) and is regarded as a Type I

Error and TN is a ’True Negative’ (actual = false, predicted = false).

A model perfectly predicts if (TP +TN) = n, where n is the number of observations of which the

classification needs to be predicted. However, in modeling human behaviour, almost no model can

predict perfectly. Therefore, the following performance measures based on the confustion table can

be used for evaluation. Equation (4.5.21), (4.5.22) and (4.5.23) are the True Positive Rate (TPR),

True Negative Rate (TNR) and Positive Predictive Value (PPV) respectively. A higher value for

each measure indicates a better performance. The performance measures can be defined as follows:

TPR =
TP

TP + FN
, (4.5.21)

TNR =
TN

TN + FP
, (4.5.22)

PPV =
TP

TP + FP
. (4.5.23)

The objective is to minimize FP and FN simultaneously because on one hand, too many positives

increases the premium, which can lead to customers switching to other companies (which classify

better). On the other hand, too many negatives leads to a premium that is too low, which can lead

to bankruptcy in the long run. To minimize the false positives and false negatives simultaneously,

one should maximize the classification accuracy, which is defined as:

Accuracy =
TP + TN

n
. (4.5.24)
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4.5.2 Error Measures

While a confusion table can be used to determine the classification power of a model, it cannot

determine the prediction error of the total claim amount. For an insurance company, it is

important to know the total expected claim amount for the upcoming year, to set the premiums

accordingly. To evaluate whether the upcoming total claim amount is forecasted correctly, use the

difference between the predicted and actual total claim amount.

It can be useful to split the evaluation of a model into two parts. First, evaluate the

classification and as a second step, evaluate whether the total claim value is forecasted correctly. If

the model performs poorly in the first step, it can be regarded as a poor model. If the model can

classify with great accuracy, but the predicted total claim amount does not match the actual total

claim amount, the transformation of predicted probability to predicted claim amount is incorrect.

Assume a model that does not classify the observations correctly, but the predicted total claim

amount is close to the actual total claim amount. Such a model might perform well on error terms,

but is up for discussion whether this is desirable. For example, if FP = FN and the average claim

amount in the training and test set are equal, the absolute error will be 0 if equation (4.4.20) is

used. However, this might not be an optimal model for an insurance company.

4.5.3 Normalized Gini Coefficient

The Allstate Claim Prediction Challenge2 uses the normalized Gini coefficient (NGC) to measure

the results in the competition. In this metric, observations are sorted from ’largest prediction’ to

’smallest prediction’ and only the order determined by the predictions matters (Dal Pozzolo

(2011)).

With the normalized Gini coefficient, it is important to correctly predict the relative size of the

claim, rather than give a precise estimate. To get a high score, one needs to give high observed

claims, high forecasted claims and policies that have a low claim amount or a claim amount equal to

zero need to have a low predicted value. For example, assume three observed claims [4286, 1287, 0]

and two predictive models that predict these claims as [3471, 5642, 928] and [12532, 3753, 760]

respectively. With respect to the NGC, the second model outperforms the first due to predicting

the order of claims correctly, despite having a larger absolute error.

2For more information about this challenge, see https://www.kaggle.com/c/ClaimPredictionChallenge.

https://www.kaggle.com/c/ClaimPredictionChallenge.
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Figure 4.3: Normalized Gini coefficient: example figure

Figure 4.3 plots three lines, the performance of the null model (the benchmark), the

performance of the constructed model and the performance of the perfect model. The x-axis

represents the proportion of the data used, where the observations are sorted from largest claim to

smallest claim. The y-axis represents the proportion of the cumulative losses for the leftmost x% of

the data.

In Dal Pozzolo (2011) and on the website of the Allstate Claim Prediction Challenge, they use

no model for a benchmark. They state that it is expected to accumulate 10% of the loss in 10% of

the predictions when no model is used, so their benchmark model is a straight line. This

benchmark line is needed to compute the normalized Gini coefficient.

The Gini coefficient corresponds to the area between the curve of the predictive model and the

benchmark model, which is the shaded area in figure 4.3. The perfect model predicts the claims as

the actual observed claims, obtaining the maximum Gini coefficient. The normalized Gini

coefficient is obtained by deviding the Gini coefficient of the predictive model by the Gini

coefficient of the perfect model.



Chapter 5

Baseline Method: Ratio Model

A whole spectrum of econometric methods exist that should be able to predict future insurance

claims. However, it is found that insurance companies often use a more simplistic approach. Mata

(2010) explains that many insurance companies use a so called ’Ratio Model’. The final premium

is calculated by multiplying a base premium with the cluster risk ratios. Section 5.1 explains the

basics of this model and section 5.2 explains how to construct clusters of categories that can produce

credible results (for example, a cluster with only 5 observations is not credible).

5.1 Introduction

The ratio model is an approach that measures the risk of a category relative to the risk of the

complete dataset. This model is easily explained by using a simple (car insurance) example. Let the

objective be to calculate the expected claim of a record in the database. Assume a simple database

with four variables with their categories and the relative risk ratio of a category respectively as given

in Table 5.1.

Gender Age County Mileage

Cat. Ratio Cat. Ratio Cat. Ratio Cat. Ratio

Male 1.01 < 30 1.21 Zuid-Holland 0.98 < 10000 0.89
Female 0.99 30 - 50 0.94 Friesland 1.04 10000 - 20000 0.95

50 - 70 0.92 Limburg 0.97 20000 - 35000 1.02
> 70 1.07 > 35000 1.12

Table 5.1: Example of categories and their ratios for the ratio model

26
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Calculating the expected claim amount for an observation is easy, but to mathematically define

the model some notation is needed. Let C be the average of all the claims in the training set

(including claims equal to 0), referred to as the ’base’ or ’base risk’. Furthermore, denote the

variables as v (v = 1, . . . , V ) and categories as c. Let Cv,c be the average claim of the observations

in the training set that are of category c for variable v and compute the ratio, Υv,c, as:

Υv,c =
Cv,c

C
. (5.1.1)

Once the base risk and the ratios are known, it is possible to calculate the expected claim amount

for an observation. Assume the dataset contains V unique variables. The expected claim amount

for observation i with response categories ci is1:

Ψi = C ·
V∏
v=1

Υv,ci
. (5.1.2)

An extension to the ratio model is to include additional optional coverages, denoted by Θ.

Common practice for policy holders is to limit the amount of coverage provided for certain types

of losses. Those with greater exposure to specific types of losses are encouraged to buy additional

coverage. The risk premium of these optinal coverages is additive rather than multiplicative, which

implies the following extension of the model:

Ψi = C ·
V∏
v=1

Υv,ci +

O∑
o=1

Θo,ci . (5.1.3)

5.2 Merging Categories

The example in section 5.1 is very straightforward. However, databases used at insurance

companies contain more variables and categories. A problem might occur when there are too many

possible combinations of categories relative to the number of observations, or when a category does

not have enough observations to make credible statistical statements. In table 5.1, the categories of

the variable Age are already partitioned into four clusters. However, in practice it is more common

to know the exact age of the driver, which can lead to a lot of Age categories.

Two problems occur when there are too many categories for a variable, explained by an example

with the variable Age. First, it is likely that not a lot of policies have a policy holder aged 18, making

it hard to produce credible statements about the ratio of 18 year olds. Second, the ratio of people

aged 22 and 23 will most likely be statistically the same, is it best practice to rate them differently,

or is it more common to combine them into one cluster? The following two steps can be used to

overcome these problems:

1For example, the risk premium of a 25 year old male who lives in Friesland and drives between 10.000 and 20.000
km per year is equal to: C · 1, 01 · 1, 21 · 1, 04 · 0, 95.
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• Merge categories that have too few observations

If a category has only a few observations, it is difficult to make statistically credible statements.

A solution is to merge categories that have too few observations. Categories are merged until

the number of observations in a cluster exceeds an arbitrary sufficiently large number N .

Merging is done from the top down and from the bottom up simultaneously.

Age Observations
18 12
19 20
20 78
21 175
...

...
75 142
76 89
77 43
78 5

Table 5.2: Merging categories with few observations

Merge
Merge

Merge
Merge

• Merge clusters that have statistically the same ratio

Even when the categories are combined into clusters with observations that exceed N , the

number of clusters can still be large. A solution is to combine clusters that have similar risk

ratios. An advantage is to produce even more credible statements. Furthermore, if clusters

are not merged, the model might calculate the ratios on idiosyncratic features of the training

data, which might lead to poor out-of-sample performance. However, a disadvantage of merging

clusters is that there is a slight loss of information.

Age(s) Observations Ratio
18, 19, 20 110 2.18

21 175 1.16
22 225 1.14
23 255 1.15
...

...
...

Table 5.3: Merging clusters with similar ratios

Merge
Merge
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To determine whether two categories are statistically different, a t-test is used. Clusters

are significantly different if the calculated test statistic exceeds the threshold for statistical

significance (1.64 for a 95% confidence interval). The test statistic can be calculated as:

T =
X̄i − X̄j√
S2
i

Ni
+

S2
j

Nj

∼ t(p,Ni +Nj − 2). (5.2.4)

For numerical clusters, only consecutive elements will be merged. That is, even though people

with ages 22 and 52 might have the same ratio, they will not be merged if any other cluster

in between has a significantly different ratio. For categorical variables, we might merge non-

consecutive unique elements, since the euclidian distance between two categorical variables is

unknown.



Chapter 6

Experimental Results

This chapter presents the experimental results based on the dataset presented in chapter 3. Section

6.1 starts with the model preparation. We explain which variables are selected through the different

dimensionality reduction techniques, how the parameters can be tuned and which threshold to use

to obtain optimal classification accuracy based on the training data. In section 6.2 we discuss the

out-of-sample results based on the classification accuracy, the normalized Gini coefficient and the

total error.

6.1 Model Preparation

Given the structure of the framework, three model preparation steps are needed. First, the (reduced)

datasets need to be constructed by using the dimensionality reduction techniques. To obtain an

optimal classification accuracy, tune the parameters for the different classification techniques. As a

final step, it is possible to find the optimal classification threshold, which can further improve the

classification accuracy. To assess the cross-validation results, 8000 of the 10000 observations and

10-fold validation are used, which are further referred to as the training data.

6.1.1 Variable Selection

The first ’dimensionality reduction’ technique is to apply no reduction. All predictor variables in

the original dataset are used in the classification techniques. Another simple approach is to use

expert knowledge to determine the predictor variables (Section 4.2.1). Our expert used his prior

knowledge and common sense to predict that the following 5 predictor variables are of significant

influence on the probability of issuing a claim: Age, Province, Make, ListedPrice and Mileage.

30
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Another possibility is to stepwise include significant predictor variables through forward selection

(Section 4.2.1). This procedure starts with a model without variables but just a constant and stepwise

includes variables until the model selection criterion no longer improves. In SAS, the model selection

criterion is the Schwarz Bayesian Criterion (SBC) and the summary of the selection procedure can

be found in table 6.1. The optimal SBC is found after the variable ’Gender’ is included in the model.

This selection procedure includes the following 6 variables: Urbanisation, Province, Mileage, Color,

Make and Gender.

Step Effect Entered SBC

0 Intercept -14.022,07
1 Urbanisation -17.845,83
2 Province -21.337,57
3 Mileage -22.508,80
4 Color -23.183,79
5 Make -23.606,79
6 Gender -23.639,94*

7 Age -23.636,42
8 CarAge -23.628,53

* Optimal Value of SBC Criterion

Table 6.1: Forward selectionpProdecure details

As a fourth possibility, a random forest can be used to obtain the most informative variables

(Section 4.2.2). Variables that are present in more than the expected number of splits are informative

and included in the model. The forest to determine the most informative variables used 2000 trees

with a depth of 2 and randomly selected 3 of the 14 variables in the dataset to perform a split on.

This leads to an expected number of splits of 429 (Equation (4.2.3)). Variables that are used in more

than 429 splits are included in the model. Table 6.2 presents the number of splits in the forest of

each variable. This selection procedure includes the following 6 variables: Urbanisation, Province,

Mileage, Age, Color and Make.

Variable # Splits Variable # Splits

Urbanisation 1139* Gender 217
Province 1090* FinancialType 173
Mileage 906* Fuel 131
Age 699* CarAge 101
Color 593* HousingType 70
Make 531* SocialClass 32
Listed Price 291 Education 27

* Predictor variable that outperforms the expected number of splits.

Table 6.2: Random forest variable scores
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As a final technique, multiple correspondence analysis is used (Section 4.2.3). This technique

does not select a subset of the original variables, but imposes a transformation such that the first

few dimensions in the new dataset try to capture the most of the variation as possible. Once the

new dataset is constructed, the next step is to determine the number of dimensions to include.

As a first solution, we decided to use the first two dimensions as the new dataset. Figure 6.1

shows that after two dimensions, there is a large drop in the proportion of variance explained by

the following dimensions. This can be compared to to the elbow plot which is commonly used to

determine the number of dimensions for principal component analysis. As a second possibility, 10

dimensions are used. Multiple correspondence analysis can only use categorical variables as input

variables and the dataset presented in this research contains 10 categorical variables. We decided to

use 10 dimensions to see whether the transformation implied by multiple correspondence analysis

can help with the classification accuracy.

Figure 6.1: Inertia explained by the MCA components
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6.1.2 Parameter Tuning

Once the selected variables are known, the parameters for the classification techniques can be

tuned in such a way that the cross-validated misclassification rate is minimized. First, we find the

optimal cost-complexity parameter CC for the decision tree. For the random forest, the optimal

number of VarsToTry need to be found and finally we obtain the optimal penalty parameter C

and model parameter γ for the support vector machine. Recall that the binary logistic regression

does not have any parameters to optimize.

In SAS, the procedure that constructs the decision tree selects the cost-complexity parameter

value that minimizes the average misclassification rate, obtained by 10-fold cross-validation.

However, it is possible that the average misclassification rates for several other values of the cost-

complexity parameter are nearly the same, while resulting in a smaller tree. Breiman’s 1-SE rule

chooses the parameter that corresponds to the smallest subtree for which the misclassification rate

is less than one standard error above the minimum misclassification rate (Breiman et al. (1984)).

Table 6.3 shows the selected cost-complexity parameter and the corresponding average cross-

validated misclassification rate for every dimensionality reduction technique. This table also presents

the number of leaves in the final decision tree. A smaller number of leaves corresponds with a less

complex tree. Corresponding figures that show how the misclassification rate varies with the cost-

complexity parameter can be found in Appendix A.

CC Misc. Rate nleaves

No Reduction 0.0004 0.0420 83
Expert Opinion 0.0031 0.1530 6
Forward Selection 0.0003 0.0509 67
Random Forest 0.0004 0.0556 51
MCA 2 Dimensions 0.0018 0.2425 1
MCA 10 Dimensions 0.0010 0.1531 26

Table 6.3: Optimal cost-complexity parameter for decision trees

The results in Table 6.3 show that the best performing model applies no dimensionality reduction.

When forward selection or a random forest are used to reduce the number of variables, there is

only a slight loss in accuracy. The decision trees for these techniques have a low cost-complexity

parameter, indicating that the selected variables can keep on finding splitting criteria which also

lead to a good out-of-sample performance. Furthermore, this table shows that both the expert

and multiple correspondence analysis are not able to accurately classify out-of-sample data using a

decision tree. Having relatively small trees, the variables used cannot capture the important factors

that determine whether or not someone issues a claim.
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To construct a random forest in SAS, the procedure needs the input variable VarsToTry. That

is, the size of the random subset of variables that can be used for each split. The SAS procedure does

not find the value of VarsToTry that minimizes the average misclassification rate, thus we have to

compare all possibilities and find the optimal value ourselves. Table 6.4 presents the optimal value

of VarsToTry for all dimensionality reduction techniques. The figures that show how the average

misclassification rate behaves for different values of VarsToTry as the number of trees of the forest

increases can be found in Appendix A.

V arsToTry Misc. Rate

No Reduction 12 0.0304
Expert Opinion 1 0.2030
Forward Selection 5 0.0594
Random Forest 3 0.0596
MCA 2 Dimensions 2 0.4143
MCA 10 Dimensions 4 0.1631

Table 6.4: Optimal number of VarsToTry for random forest

To construct the support vector machine, we considered both a linear or an RBF kernel. To

decide which kernel to use, there are two main factors to consider, computation time and accuracy.

Solving the optimisation problem with a linear kernel is faster. The CPU time for an RBF kernel

can be one hour, whereas the CPU time for a linear kernel is usually less than one second in SAS.

However, typically, the predictive performance is better for an RBF kernel (Hsu et al. (2003)).

Given the scope of this research as well as computational limits, we have chosen only the following

parameter values for the support vector machine with an RBF kernel1: C = {0.1, 1, 10} and γ =

{0.01, 0.1, 1}. For a linear kernel, it is possible to compare more values of C = {0.05, 0.1, . . . , 10}.
The parameter values that minimize the average cross-validated misclassification rate, as well as the

misclassification rate itself, are given in Table 6.5.

Linear Kernel RBF Kernel

C Misc. Rate C γ Misc. Rate

No Reduction 0.75 0.0711 10 1.00 0.0607
Expert Opinion 1.00 0.2315 10 1.00 0.2300
Forward Selection 0.10 0.0720 1 1.00 0.0405
Random Forest 0.05 0.0720 1 1.00 0.0715
MCA 2 Dimensions 1.00 0.4354 1 0.10 0.4210
MCA 10 Dimensions 1.70 0.2244 1 0.10 0.1885

Table 6.5: Optimal parameters and misclassification rates for SVM

1We have chosen these values of C and γ by doing our own a priori grid-search. During the training of the models,
we compared multiple pairs of (C, γ) and found that these values work best. For example, we compared C = 0.001
and C = 10 and found that C = 10 gives better results for different values of γ.
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Given Table 6.5, we see that the RBF kernel outperforms the linear kernel for all

dimensionality reduction techniques. The best performing model uses forward selection to

determine the predictor variables. A support vector machine is the only technique where

eliminating variables has a positive effect on the classification accuracy. When less informative

variables are eliminated, the support vector machine is able to find a more general separation line

through the data, resulting in a better out-of-sample performance. This can be explained due to

the fact that when less informative variables are taken into account, different observations may

seem to be more alike then they should be, resulting in a less general separation line.

6.1.3 Optimization of Classification Threshold

By tuning the classification threshold τ , it may be possible to further improve the cross-validated

classification accuracy. The optimal value for τ is found by computing the Accuracy for different

values of τ and choose the τ that obatins the maximum Accuracy. For each combination of

dimensionality reduction and classification technique, the optimal Accuracy (Acc.) and

corresponding τ are given in Table 6.6. The figures that show how the Accuracy varies with the

value of τ can be found in Appendix A.

DT RFclass BLR SVM

Acc. τ Acc. τ Acc. τ Acc. τ

None 0.9679 0.34 0.9971 0.56 0.9328 0.50 0.9393 0.50
Expert 0.7938 0.39 0.8329 0.48 0.7851 0.55 0.7700 0.50
Forward 0.9453 0.35 0.9540 0.48 0.9320 0.56 0.9595 0.50
Forestdim 0.9406 0.34 0.9595 0.60 0.9328 0.51 0.9285 0.50
MCA 2D 0.5839 0.47 0.9703 0.54 0.5708 0.54 0.5780 0.50
MCA 14D 0.8114 0.38 0.9959 0.46 0.7765 0.55 0.8115 0.50

Table 6.6: Cross-Validatied Accuracy for optimal threshold τ

Comparing Table 6.6 with Table 6.3 - 6.5, we see that by optimizing the classification threshold

τ , it is possible to slightly improve the cross-validated classification accuracy, except for the support

vector machines. The results in Table 6.6 show that for this particular dataset, the combination of

using no dimensionality reduction and a random forest as classification technique obtains the best

cross-validated Accuracy. Note that the optimal value for τ is relatively close to 0.5. This is due to

the fact that our dataset is relatively balanced, with 56% of the observations issuing a claim.
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6.2 Out-of-Sample Results

To assess the final out-of-sample results, the remaining 2000 of 10000 observations that were not

selected for the training set are used. The models will be evaluated on three different metrics.

First, we evaluate the classification accuracy. The second metric to assess out-of-sample model

performance is the normalized Gini coefficient and finally, model performance is evaluated on the

error of the total claim amount.

The main focus of the out-of-sample results is on the classification accuracy. Given the

constructed framework, it is possible to extend this research into other areas of expertise. If we can

classify accurately, any data-driven decision that can be answered with ’Yes’ or ’No’ can be solved.

This, in turn, is useful for Finaps as they can provide this service to their clients.

6.2.1 Classification Accuracy

Confusion tables are used to evaluate the classification performance of the models. A confusion table

is a 2× 2 matrix with the two dimensions ’actual’ and ’predicted’. The observations to be predicted

have an actual and predicted value (true or false) and the performance of a model is determined

by the number of correctly predicted observations. Table 6.7 presents the out-of-sample confusion

tables. The results in this table are obtained using the optimal model parameters and τ as specified

in Section 6.1. To easily present how accurately we can classify the out-of-sample data, the Accuracy

of each model is given in Table 6.8.

DT RFclass BLR SVM

1’ 0’ 1’ 0’ 1’ 0’ 1’ 0’

None 1 1046 47 1056 37 1014 79 1022 71
0 54 853 26 881 89 818 63 844

Expert 1 864 229 906 187 809 284 825 268
0 234 673 244 663 162 745 192 715

Forward 1 1033 60 1029 64 1001 92 1044 49
0 60 847 39 868 65 842 32 875

Forestdim
1 1039 54 1025 68 1014 79 1016 77
0 115 792 76 831 85 822 87 820

MCA 2D 1 994 99 698 395 1085 8 1032 61
0 762 145 423 484 892 15 821 86

MCA 10D 1 884 209 951 142 857 236 944 149
0 244 663 219 688 259 648 228 679

Table 6.7: Out-of-Sample confusion tables for all constructed models
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DT RFclass BLR SVM

No Reduction 94.95 96.85 91.60 93.30
Expert Opinion 76.85 78.45 77.70 77.00
Forward Selection 94.00 94.85 92.15 95.95
Random Forest 91.55 92.80 91.80 92.85
MCA 2 Dimensions 56.95 58.65 55.00 57.80
MCA 14 Dimensions 77.35 81.95 75.25 81.15

Table 6.8: Out-of-Sample Accuracy for all constructed models (in %)

Given Table 6.7 and 6.8, we see that the combination of applying no dimensionality reduction

and using a random forest to classify has the best out-of-sample classification performance,

misclassifying only 63 of the 2000 observations, obtaining an accuracy of 96.85%. A close second is

the combination of forward selection and a support vector machine with an accuracy of 95.95%. A

downside of both models is that the interpretation for someone without statistical knowledge is

difficult. It is not immediately clear how each variable influences the probability to claim.

Therefore, we must give a honorable mention to the most simple model, the combination of no

reduction and a decision tree. In a decision tree, interpreting the influence of variables is easy.

At the same time, we see that the variables picked by the expert are not able to classify as

accurately, but we are not surprised by this result. Statistical methods of finding the most

informative variables should outperform ’randomly’ selected variables. Furthermore, the

transformation using multiple correspondence analysis does not improve classification accuracy.

Given these results, we can conclude that for this problem, a model that uses all the variables

available in the dataset outperforms. This result can be expected. An insurance company has to

invest time and money into obtaining predictor variables. It would be a waste of resources to obtain

predictor variables that have no effect on the classification performance. A useful result for further

research or other applications is that it is possible to reduce the number of variables significantly,

with only a slight loss of accuracy. This is especially useful when the number of variables is large,

when dimensionality reduction shows its benefits.

6.2.2 Normalized Gini Coefficient

For an insurance company, being able to predict the (relative) size of the claims is useful. We use

the normalized Gini coefficient to evaluate how accurately we can predict the relative size of the

claims. In this metric, observations are sorted from ’largest prediction’ to ’smallest prediction’ and

only the order determined by the predictions matters. To obtain a high score, it is important to

correctly predict the relative size of the claim, rather than the actual value (Dal Pozzolo (2011)).
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We expect the ratio model to perform well on the normalized Gini coefficient, especially when

the size of the claims are relatively large. The ratio model includes the size of the claims, which

helps identifying large expected claims. The constructed models only use the binary claim value,

which might not be able to accurately identify large claims. However, since the constructed models

are able to accuractely classify, we expect them to outperform the ratio model when the size of the

claims goes to zero. The ratio model is unable to accurately predict claims of size zero, due to the

nature of the model. Table 6.9 presents the normalized Gini coefficient of the constructed models.

The normalized Gini coefficient of the ratio model is 0.664 and is outperformed by 11 of the 24

constructed models. Figures 6.2A - 6.2F show the performance of the models. These figures are in

line with our expectations. The ratio model outperforms the constructed models on the relatively

large claims, but as the size of the claim goes to zero, the constructed models tend to outperform.

DT RFclass BLR SVM

No Reduction 0.668 0.454 0.698 0.676
Expert Opinion 0.087 0.521 0.735 0.545
Forward Selection 0.710 0.706 0.206 0.641
Random Forest 0.702 0.490 0.703 0.694
MCA 2 Dimensions 0.143 0.617 0.703 0.497
MCA 10 Dimensions 0.675 0.657 0.232 0.655

Table 6.9: Out-of-Sample normalized Gini coefficient

The best performing model on the normalized Gini coefficient is obtained by the expert when a

binary logistic regression is used to obtain the probabilities to issue a claim. This is a rather

remarkable result. For all other classification techniques, the expert has a poor performance.

Furthermore, Table 6.7 shows that this combination does not classify accurately. Given these

results, we regard the outperformance of this model as luck and do not consider this result credible.

The next best performing model uses the combination of forward selection and a decision tree.

Table 6.9 shows that decision trees obtain a high score, except when expert opinion or multiple

correspondence analysis with 2 dimensions is used. This is due to the fact that these techniques

obtain very small trees with only 6 and 7 leaves respectively. Therefore a lot of similar

probabilities will be found and exactly similar probabilities need to be randomly sorted, which

leads to a low score.

For an insurance company, we recommend to use a combination of the ratio model and the

constructed models to predict the relative size of the claims. Use the ratio model to identify large

expected claims. However, as the size of the claims goes to 0, use the models that have a high

Accuracy. If a model classifies an observation as 0, give it 0 expected claim. Using a combination

would most likely generate a better performance than using the individual models.
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(A) No Reduction
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(C) Forward Selection
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(D) Random Forest
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(E) MCA 2 Dimensions
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Figure 6.2: Results of the out-of-sample normalized Gini coefficient
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6.2.3 Error

Being able to classify correctly or to determine the size of the claims correctly is useful, but for an

insurance company it may be more important to correctly predict the total claim mount.

Eventually, this total claim amount needs to be at least covered by the premiums.

Table 6.10 presents the out-of-sample error for the total claim amount for all models. 1Ξ and 2Ξ

are defined in Equation (4.4.19) and Equation (4.4.20) respectively. The error is measured as the

sum of the predicted claims in the test data minus the sum of the actual claims in the test data.

The total amount claimed in the test data is equal to e 2.766.230.

DT RFclass BLR SVM

1Ξ 2Ξ 1Ξ 2Ξ 1Ξ 2Ξ 1Ξ 2Ξ

None 72.0 70.9 81.1 24.4 89.5 78.6 -114.1 32.2
Expert 147.0 65.7 154.4 199.8 110.5 -261.8 -192.4 -120.0
Forward 102.9 52.8 93.8 -11.8 85.9 -16.8 -117.0 11.5
Forestdim 121.4 210.1 111.7 73.4 90.8 68.3 -46.7 107.0
MCA 2D 163.6 1762.8 141.1 125.0 169.7 2332.8 348.5 581.6
MCA 10D 137.4 143.1 151.5 251.4 150.5 112.1 -31.5 251.4

Table 6.10: Out-of-Sample error (in e 1.000) on total claim amount

The best performing model on 1Ξ is the combination of using multiple correspondence analysis

with 10 dimensions and a support vector machine. This model has an error of e 31.541, which is

an error of 1.14% on the total claim amount. While this model misclassifies many observations, it

still can predict the total claim amount accurately. The best performing model on 2Ξ applies

forward selection and uses a support vector machine. This model has an error of e 11.532, which is

an error of 0.42% on the total claim amount. Looking back at table 6.7, this model also is able to

classify relatively accurate, which is a very useful result for further applications.

A simple benchmark model for this metric is the number of observations in the test set, multiplied

by the average claim amount of the training set. This leads to a total claim amount of e 2.925.891,

which is an error of e 159.661. The ratio model performs bad on this metric. Assume the expected

claim amount is equal to the premium as defined in equation (5.1.2). The sum of the expected

claims in the test set is equal to e 4.203.288, which is an error of e 1.437.057. Our best performing

models outperform both benchmarks, indicating that we have gained information from the modeling

approach.



Chapter 7

Conclusion and Future Work

For an insurance company, the forecasting of claims is central to a successful operation. If the

claims can be forecasted accurately, premiums can be adjusted accordingly. To forecast expected

claim amounts, models are constructed that use a combination of a dimensionality reduction and

classification technique. The constructed models are evaluated on their classification accuracy,

normalized Gini coefficient and error of the total claim amount. An overview of the findings is

presented in Section 7.1. Section 7.2 discusses suggestions for future work, as well as possible

extensions into other areas of expertise.

7.1 Conclusion

This research constructed a framework to forecast insurance claims. While the forecasting of

insurance claims is not a new area of expertise, we decided that given the clients of Finaps and

their direction as a company, we can apply machine learning techniques to obtain accurate

forecasts that can be extended to other areas of expertise.

In this research, three dimensionality reduction techniques and four classification techniques

were introduced to tackle the problem. First, we explained how we can extract useful information

using either forward selection, a random forest or multiple correspondence analysis. Once the most

useful information is extracted, classification techniques can predict whether observations are likely

to issue a claim. To classify, we either used a decision tree, a random forest, a binary logistic

regression or a support vector machine.

41
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We further improved the performance of the constructed models by optimizing the model

parameters. For a decision tree, optimize the cost-complexity parameter CC such that the tree can

find more general rules while maintaining a minimal misclassification rate. When constructing a

random forest, the size of the subset of variables that can be used for each split, VarsToTry, can be

optimized to minimize the average cross-validated misclassification rate. For the support vector

machine, we optimized the model parameters C and γ. As a final step for all techniques, it is

possible to optimize the classification threshold τ , such that the average cross-validated

misclassification rate is minimized.

As a benchmark, we used a commonly used model, the ratio model. This model estimates the

expected claim amount as the base risk of the historical dataset, multiplied by a relative risk ratio.

This ratio is calculated by the features of a client and the relative risk of these features compared

to the base risk of the complete dataset. The base risk is the average claim amount of the

historical dataset and the risk ratio is the conditional average claim amount on a feature.

We evaluated the models on three metrics, the classification accuracy, normalized Gini

coefficient and error on total claim amount. We find that the two models that are able to classify

most accurately use the combination of ’No Reduction’ and ’Random Forest’ or the combination

’Forward Selection’ and ’Support Vector Machine’. These models have an classification accuracy of

96.85% and 95.95% respectively. To obtain a minimal error on total claim amount, a support

vector machine can be used. The ratio model should be used to identify large expected claims, but

has a poor performance when used to identify small expected claims or to determine the total

expected claim amount.

To model data-driven decisions that can be answered with either ’Yes’ or ’No’, we recommend to

use either a random forest or support vector machine to classify when interpretation is not necessarily

needed. If interpretation of variable influence is a must, a decision tree can be used without too much

loss of accuracy. For an insurance company, to predict the relative size of the claims, we recommend

a combination of the ratio model and the best performing model on classification accuracy. The

ratio model is used to identify large expected claims, whereas the model that classifies accurately

can identify claims equal to zero.
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7.2 Future Work

The methods presented in this research are an attempt to construct a framework that can forecast

insurance claims as accurately as possible. There are still areas where the methods can be

improved. We decided to reduce the forecasting of claims to a binary classification problem, but it

is possible to formulate the problem as a multiclass classification problem. Instead of forecasting

whether someone issues a claim, it is possible to divide the claim value into bins and predict the

probability of the observation being in each bin. This will most likely improve individual accuracy,

but may have a negative impact on the error of total claim amount.

By solving a multiclass classification problem, individual claims may be more accurately

estimated. However, this may have a negative impact on the error of total claim amount, since this

problem focuses more on individuals than on the grand scheme of things. We may use a

combination of both, where we try to forecast the total expected claim amount through a binary

classification problem and specialize on individuals by using a multiclass classification problem.

Improvement on the transformation from claim probability to claim value is possible when

more data is available. For instance, we now multiply by the average claim amount of the complete

training set, but we can also multiply by a conditional average claim amount. That is, the average

claim amount of similar records in the historical database. However, a much bigger dataset is

needed since our dataset is too sparse and this would lead to very volatile results.

By essentially solving a binary classification problem with many predictor variables, this

framework can be extended into other areas of expertise. Almost every data driven decision that is

needs to be answered with either ’Yes’ or ’No’ can be solved with this framework. A direct

business case for Finaps is CV-OK. CV-OK is specialized in employment screening and offers the

possibility to screen candidates and employees through an online portal. CV-OK screens whether

somone has lied on their resume or not, which can also be reduced to a binary classification

problem. Using our constructed framework and the characteristics of a person, we can built a

model that can predict the probability that someone has lied on their resume or not.
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(A) No Reduction (B) Expert Opinion

(C) Forward Selection (D) Random Forest

(E) MCA 2 Dimensions (F) MCA 14 Dimensions

Figure .1: Selected and minimum cost-complexity parameter for decision trees
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(A) No Reduction (B) Expert Opinion

(C) Forward Selection (D) Random Forest

(E) MCA 2 Dimensions (F) MCA 10 Dimensions

Figure .2: Misclassification rate for different values of VarsToTry
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(A) No Reduction (B) Expert Opinion
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(C) Forward Selection
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(D) Random Forest
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(E) MCA 2 Dimensions
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Figure .3: Classification accuracy for different values of τ
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