
A reactive GRASP with path
relinking for the pick-up and

delivery problem with
cross-docks

Master’s thesis by

Gerhard van Ginkel

Student number: 355735
Faculty: Erasmus School of Economics
Department: Econometrics
August 28, 2017

Supervisors:
Dr. W. Van den Heuvel
Prof. Dr. J.A. dos Santos Gromicho
Dr. Ir. A.L. Kok

Abstract

The pick-up and delivery problem with cross-docks is the problem of
serving a number of transportation requests using a limited heterogeneous
vehicle fleet. Each request has to be picked-up from and delivered to a
specific location. Cross-docks can be used to temporarily store a product,
such that another vehicle can deliver the product to its final destination.
Our task is to construct routes against the lowest cost such that all re-
quests are handled and time, capacity and capability constraints are met.
Very liberal routing policies are allowed, which makes that this thesis is as
far as we know the first in literature that studies this problem. This thesis
mathematically defines this problem and presents a heuristic for it that
combines a Greedy Randomized Adaptive Search Procedure with a ruin
and recreate method for local search and Path Relinking, Furthermore,
this heuristic is embedded in an Ant Colony Optimization framework. The
heuristic is tested on 21 instances with up to 25 requests. The results in-
dicate that sizable cost decrease can be obtained by applying more liberal
routing policies and a dynamic assignment of requests to cross-docks.

Contents

1 Introduction 1
1.1 Research problem . 1
1.2 Research motivation . 1

1.2.1 Product challenges at ORTEC 2
1.2.2 Dynamic cross-docking . 2

1.3 Bridging theory and practice . 2
1.4 Thesis overview . 3

2 Literature review 3
2.1 Pure PDPCD . 4
2.2 Hybrid PDPCD . 5
2.3 Path relinking . 6
2.4 Contribution to literature . 6

3 Problem definition 7
3.1 Notation . 7
3.2 Additional specifications . 8
3.3 Network flow formulation . 8

3.3.1 Auxiliary graph . 8
3.3.2 MIP formulation . 10

4 Exact solution methods 12
4.1 MIP models . 13
4.2 Column Generation . 13

5 Heuristic solution method 14
5.1 General overview . 14
5.2 Construction phase . 16

5.2.1 Route representation . 17
5.2.2 Request insertion . 17
5.2.3 Solution update and feasibility check 19
5.2.4 Solution construction . 22
5.2.5 Computation time improvement 22

5.3 Improvement phase . 24
5.3.1 Ruin methods . 26
5.3.2 Recreate methods . 28
5.3.3 Method selection . 29

5.4 Path relinking . 30
5.4.1 Solution representation 30
5.4.2 Neighborhoods . 30
5.4.3 Solution distance . 31
5.4.4 Path relinking algorithm 32

5.5 Ant colony optimization framework 33
5.5.1 Solution characteristics 34

5.5.2 Pheromone update . 34
5.5.3 Solution quality evaluation 35

6 Results 35
6.1 Data . 35

6.1.1 Data from literature . 35
6.1.2 Data from ORTEC . 37

6.2 Parameter settings . 37
6.2.1 Parameters . 37
6.2.2 Parameter tuning . 38

6.3 Effectiveness of GRASP . 38
6.4 Effectiveness of the ant colony framework 39
6.5 Computation times . 40

6.5.1 Influence of time improvements 40
6.5.2 Time consumption per phase 41

6.6 Effectiveness per improvement heuristic 42
6.7 Relative effectiveness of RGPR phases 42
6.8 Comparison routing policies . 42
6.9 Comparison of static and dynamic cross-docking 43

7 Conclusions 44

1 Introduction

Cross-docking is a logistic strategy in which orders from several suppliers are
consolidated in cross-dock facilities and redistributed to the customers. Cross-
docks differ from traditional warehouses in the sense that received products are
typically loaded within 12 hours after arrival, without storing them in between
in dedicated storage areas.

Therefore, cross-docking can offer many benefits in a distribution network.
Besides reducing transportation cost due to the consolidation of orders, cross-
docking also results in less inventory holding cost and an increased cycle time
[Agustina et al., 2010]. Furthermore, cross-docking can be compulsory when
physical or legal constraints require different modes of transport for the pick-up
and for the delivery.

In order to maximize the advantages of cross-docking, scholars have devel-
oped a wide variety of mathematical models to improve efficiency in different
application areas. These areas range from location decision problems to dock
door assignment problems and multimodal freight transportation problems. For
further details on these topics, we refer the interested reader to the surveys of
Kara and Taner [2011], Agustina et al. [2010] and SteadieSeifi et al. [2014].

1.1 Research problem

This thesis focuses on a routing problem. The goal is to determine optimal
routes where orders are picked-up and delivered at a specific location within
given time windows. These orders can be transported via one of the cross-docks,
but direct delivery is also a possibility. Vehicles can perform so-called milk runs,
in which they pick-up or deliver multiple orders in one trip. Furthermore, not
all vehicles from the heterogeneous vehicle fleet are allowed to visit all locations;
a restriction that often occurs in practice in urban areas. The research takes
into account various realistic cost types and the time consumption associated
with cross-docking activities.

A typical application area of such a milk run system with cross-docking is the
automobile manufacturing industry, in which a lot of low-volume orders of parts
from different suppliers should be delivered to car manufacturers [Sadjadi et al.,
2009]. Moreover, the model in our thesis can also be simplified and applied to
context with more high-volume orders, such as the retailing industry where all
orders are sourced from one or a few depots.

1.2 Research motivation

This thesis conducts a research in collaboration with ORTEC. ORTEC is one of
the world leaders in optimization software for business processes. They develop
custom made solutions for a wide variety of business problems, such as loading,
routing, workforce planning and warehousing. Offices of ORTEC can be found
in all over the world, which is indicative for their diverse international client
base. Besides the consumer role of ORTEC, they also work closely together

1

with the academic world. Employees publish scientific articles regularly and are
often asked to present these at conferences. Also, since ORTEC operates in the
practical world, they can fuel the academic world with benchmark problems and
new research areas.

1.2.1 Product challenges at ORTEC

ORTEC’s core strategy is to develop one product that can serve the whole
market. Due to the large variety in requirements among different customers,
this product is highly customizable. However, ORTEC feels that in some areas
the product can be improved in order to be able to adapt better to the needs of
the client. Prior to the research conducted in this thesis, an orientation project
was set up to get an overview of the most pressing issues for which the product
of ORTEC could be made more flexible to the client’s needs. To get an idea
which problems were most valuable to tackle, they were mainly evaluated on
three points. First of all, the number of clients that face this problem should
be substantial. Secondly, it should be expected that the gain of an improved
solution method is substantial compared to existing solution methods. Finally,
the problem should be challenging from a scientific perspective.

Several problems met this criteria. Some examples are departure smoothing
(include restrictions on truck depot dock capacity), platooning (save fuel by
driving trucks close behind each other), intermodal transport (consider multi-
ple modes of transport between an origin-destination pair) and multi-manning
(include the possibility of two drivers on one truck).

1.2.2 Dynamic cross-docking

The product challenge under consideration in this thesis concerns dynamic cross-
docking. The counterpart of dynamic cross-docking is static cross-docking. In
static cross-docking, orders are already assigned to a specific cross-dock before
optimization. The problem then boils down to solving a vehicle routing problem
with dependencies between orders; a problem for which ORTEC already has
developed state-of-the-art algorithms. Dynamic cross-docking differs from static
cross-docking in the sense that orders are not assigned beforehand to a cross-
dock. In the optimization process, it is both decided whether an order should
be cross-docked or not, and to which cross-dock it should be sent.

Currently, dynamic cross-docking in ORTEC is mostly done manually or on
the basis of some straightforward heuristics. This means that a mathematical
approach could lead to substantial efficiency benefits for all clients that require
cross-docking.

1.3 Bridging theory and practice

A case of a customer of ORTEC is used as a benchmark to compare the pro-
posed theoretical solution methods with the current solution methods of OR-
TEC. Since in general, the cases to which these methods can be applied are

2

widely different from each other regarding the objective function, restrictions
and supply chain structure, it is impossible to create a one-size-fits-all solution.
At the same time, the proposed models should be applicable to multiple cases.

Therefore, on the one hand, the models will be general, such that the cases
are a simplified version of the problem. On the other hand, the models are
limited and incorporate only the most important restrictions and supply chain
features. Small adoptions and additions can be used to customize the model
according to the client’s needs.

The features that are included in our model are those that constitute the
main reasons for ORTEC’s clients to perform cross-docking. A heterogeneous
fleet should be included since consolidation is a main driver behind cross-
docking. Furthermore, capabilities are accounted for since cross-docks function
as facilities where goods are loaded to vehicles that are allowed to perform the
delivery. Finally, multiple pick-up points, cross-docks and delivery points are
included is the model in order to mimic the supply chain structure of the cases.
Time windows are also included as they heavily influence the structure of the
optimal solution.

In this way, although making a vast amount of simplifications, a reasonably
reliable comparison between existing client-specific solution methods and the
proposed general solution method can be made. The results however should be
translated carefully to practice, and are merely indicative for the performance
achieved when applying the methods to the complete cases.

Besides providing useful applications of this research to ORTEC, we mainly
aim to make a relevant contribution to the existing scientific literature.

1.4 Thesis overview

In section 2, we give an overview of the scientific literature that relates to
our problem. Section 3 defines our problem mathematically by means of a
mixed integer programming model. We describe our research on exact solution
methods for this problem in section 4. Besides the exact approach, section
5 describes an extensive heuristic solution methodology. The results of this
heuristic can be found in section 6, together with the data description. Finally,
in section 7 we draw conclusions and propose avenues for further research.

2 Literature review

The review of Guastaroba et al. [2015] classifies the problem under consideration
in this thesis as a special case of the Pick-up and Delivery Problem with Cross-
Docks (PDPCD). At a cross-dock, products arrive on inbound vehicles. The
products are unloaded from the vehicles, consolidated with other orders, and
sent away on outbound vehicles to their destinations. The main distinguishing
feature of cross-docks relative to other storage facilities, is that products often
stay less than 12 hours at a cross-dock. Typical application areas are therefore
fashion and perishable or refrigerated products.

3

The goal of the PDPCD is to find routes that handle all pick-up and delivery
requests at the lowest cost. The PDPCD extends the classical PDP in providing
the opportunity to ship loads via a cross-dock. The PDPCD is closely related to
the two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP). The main
difference is that the latter assumes that all orders originate from a single depot.

The first studies on PDPCD’s were mainly focused on many-to-many prob-
lems, where all orders consist of the same homogeneous product and thus can
be sourced from multiple suppliers. Due to their limited applicability, the focus
has shifted to one-to-one problems, where each order has a specific pick-up and
delivery location.

2.1 Pure PDPCD

In the most basic form of the one-to-one PDPCD, each request has a load and
a specific pick-up and delivery location. These requests must be handled by
a limited and homogeneous fleet of capacitated vehicles. Vehicles start at the
cross-dock, then perform pick-ups, followed by unloading and loading operations
at the cross-dock and finally handle the deliveries and return to the cross-dock.
Note that the PDPCD in this basic form falls apart in two independent CVRP’s,
one before the cross-dock operations and one after the cross-dock operations.
In the literature, authors study several additional problem specifications that
link the two stages together.

Wen et al. [2009] study a basic PDPCD with additional time-window con-
straints on both pick-up and delivery. Also, they consider a fixed and variable
loading time at the cross-dock, which intertwine the pick-up and delivery stages
of the problem even more. They give a MILP-formulation for the problem and
propose a Tabu Search (TS) heuristic to solve it. To avoid getting stuck in
local minima, they allow infeasible solutions, but only against a penalty which
increases every iteration. In order to investigate completely different regions of
the solution space, they embed the TS within an Adaptive Memory Procedure,
which repeats the TS from different starting points. Since insertion moves in TS
are computationally expensive in the PDPCD due to the interdependency be-
tween routes, Wen et al. [2009] alleviate the computational burden by estimating
the cost of such a move. It turned out that computation times decreased up to a
factor 30, with only a small deterioration of the best found solution value. Wen
et al. [2009] test their method on a dataset that is based on a Danish logistics
company. Lower bounds for the optimal solution of these instances were found
by simplifying the problem to two independent VRPTW’s and solving these to
optimality. Their methods produce solutions for 200 supplier-customer pairs
with a less than 5% optimality gap.

The same problem as in Wen et al. [2009] is studied by Tarantilis [2013].
They also use TS and combine it with a multi-restart algorithm that start
TS from newly generated initial solutions, based on the information extracted
from a reference set of solutions. Applying their adaptive memory components
and solution recombination schemes leads to solutions which are a substantial
improvement on the solutions reported by Wen et al. [2009]. Furthermore, they

4

extend their work by incorporating the possibility that some vehicles do not
have to return to the depot, as often happens in practice when vehicles are
rented from third party logistics providers.

More recently, Morais et al. [2014] build further on the work of Wen et al.
[2009] and Tarantilis [2013] by applying greedy heuristics combined with three
different sophisticated iterated local search heuristics. By circumventing TS and
narrowing the search to the space of feasible solutions, they make their algorithm
more efficient. They also have a restart procedure which uses a combination of
existing elite routes in order to explore different parts of the solution space.
Their results show a substantial increase in performance compared to existing
solution methods.

2.2 Hybrid PDPCD

An important assumption in these papers is that no vehicle performs a direct
route: each vehicle has to visit a cross-dock between pick-ups and deliveries.
Liu et al. [2003] were among the first to study the hybrid PDPCD, which drops
this assumption. They study the PDPCD in its most basic form with only an
unlimited vehicle fleet and the possibility of direct shipment as an additional
specification. Therefore, they consider two types of routes: direct routes that
perform pick-ups and deliveries without visiting a cross-dock in between, and
routes that stop at the cross-dock in order to load or unload. They solve this
problem with a local search method. The key characteristic of this method is
that they divide all requests in two subsets. The first subset is handled by
direct routes, while the requests in the second subset are cross-docked. Given
these two subsets, they solve the resulting routing problem with the Clark and
Wright [Clarke and Wright, 1964] heuristic for the CVRP. The local search
part of their heuristic consists of moving requests from one subset to another,
based on an estimate of the savings that move will obtain. Based on a set of
randomly generated instances, they conclude that allowing these two types of
routes instead of only one type saves on average 10% in traveled distance.

Santos et al. [2011] study a PDPCD with handling cost. They develop an
exact binary linear programming formulation that is able to solve instances of 50
requests that are extracted from the dataset of Wen et al. [2009]. In Santos et al.
[2013], they extend their work by also allowing direct routes. They show that
on average a cost saving of 3.3% can be obtained as a result of the introduction
of direct deliveries.

Qu and Bard [2012] drop one of the most important assumptions in the basic
PDPCD. They do not longer require that pick-ups are handled before deliveries,
and cross-docks can be visited multiple times by the same vehicle. Further-
more, also direct routes are allowed. In contrast with all previous research on
the PDPCD, the heuristic that they develop therefore cannot longer handle the
PDPCD as two related CVRP’s. This makes it harder to find good solutions,
as they can no longer exploit the structural properties of such a problem. To
find solutions, they develop a Greedy Randomized Adaptive Search Procedure
(GRASP). In the construction phase, multiple solutions are generated in par-

5

allel by greedily inserting requests in existing routes. A hashing procedure is
used to decrease the number of insertion positions that need to be checked.
The resulting solutions are improved by using an adaptive large neighborhood
search with several removal and insertion heuristics. Since their problem was
unique in the literature, they applied their methods on self-generated instances
with 25 requests. The heuristic was not always able to find feasible solutions,
but the found feasible solutions were within 1% optimality for 88% of the in-
stances. A more detailed description of these instances and the procedure to
reach optimality can be found in section 6.1.1.

2.3 Path relinking

In Resendel and Ribeiro [2005], the authors give an overview of the application
of path relinking in GRASP algorithms. For the fundamental ideas behind
GRASP and path relinking, we refer the reader to the papers of respectively Feo
and Resende [1995] and Glover et al. [2000]. The combination of path relinking
and GRASP has been successful in a wide range of applications. Pure GRASP
algorithms improved both in solution value as in the time to target value when
it was combined with a path relinking procedure. Most closely related to our
problem is the research of Nguyen et al. [2012] that studies the two Echelon
Location Routing Problem (2E-LRP). They combine a GRASP algorithm with
a learning process and path relinking. Path relinking is not performed on two
final solutions, but on a big tour representation of these solutions, which covers
the rudimentary structure of the solution. In the path relinking procedure, a
path is created between two different big tours by gradually transforming one
big tour in the other. The intermediate found big tours are the basis of the
newly created intermediate solutions. In this way, they circumvent the problem
of infeasible solutions along the path between two solutions. They test their
methods on instances with 200 requests and 10 satellites, and report that the
path relinking component significantly improves results.

2.4 Contribution to literature

The problem studied in this thesis is most closely related to that of Qu and
Bard [2012]. We extend their problem definition with some additional realistic
features, such as a heterogeneous fleet with capabilities, fixed and variable load-
ing time and cost and multiple cross-docks. The solution methodology used in
this thesis is a combination of GRASP and path relinking, which is embedded
in an ant colony optimization framework to make the algorithm reactive. The
GRASP part of the algorithm makes extensive use of a ruin and recreate pro-
cedure (see for example the paper of Schrimpf et al. [2000]). A more detailed
overview of the solution methodology can be found in section 5.1. To the best
of our knowledge, the combination of GRASP and path relinking is not applied
before on the PDPCD. Furthermore, the ant colony optimization framework
also has not been applied to the PDPCD, or more widely, to any pick-up and

6

delivery problem with transshipment opportunities. Therefore, our research
provides insight in both a new problem as well as a new solution methodology.

3 Problem definition

In this section, the appropriate notation is introduced and the research prob-
lem is formally defined as a Rich Pick-up and Delivery problem with Transfers
(RPDPT) using a network flow formulation. The goal of the RPDPT is to mini-
mize the total cost, while delivering all requests and satisfying all time, capacity
and capability restrictions.

3.1 Notation

The RPDPT is described on the directed graph G = (N,A). The node set
N = P ∪T ∪B, where P is the node set that contains all customer requests and
T is the node set associated with all the transshipment locations τ ∈ T . Each
transshipment location τ ∈ T is associated with multiple nodes in T , which will
be explained in the next paragraph. The set B contains the start and end nodes
of all vehicles. The arc set A consists of all feasible arcs between nodes in N .
Each node i is associated with a geographical position G(i).

Each customer request c ∈ C is associated with a load Lc ∈ R>0, which
should be picked up at node ic ∈ P and delivered at node jc ∈ P . This can
be either done by one vehicle or by two different vehicles. When one vehicle
provides the service, it picks the request up at ic and subsequently delivers is
at jc. When two different vehicles deliver the service, the first vehicle brings
the request from ic to a transshipment delivery node jcτ ∈ T and the second
vehicle brings the request from transshipment pickup node icτ to jc. Each node
i ∈ P is associated with a time window [ai, bi] in which service should start.
The transshipments points are not associated with a time window.

Each vehicle k ∈ K is stationed at node bk ∈ B and should return to node
b′k ∈ B. The sequence of nodes visited by a vehicle is called a route r ∈ R.
Vehicle k has a capacity of Qk which may never be exceeded along its route.
Each vehicle k has its own capabilities, meaning that it can only visit nodes
Nk ⊆ N . Every vehicle can visit all transshipment nodes, soNk∩T = T, ∀k ∈ K.
The set K(i) contains all vehicles that can visit node i. Furthermore, vehicle

k has a fixed (un)loading time σfk , variable (un)loading time σvk per load unit,

fixed usage cost of δfk , variable usage cost of δvk per kilometer, fixed (un)loading

cost of clfk and a variable (un)loading cost of clvk per load unit.
The travel time between two nodes i, j ∈ N is Tij and the corresponding

distance equals Dij . Note that travel times and distances are equal for all
vehicles k ∈ K.

7

3.2 Additional specifications

In addition to the problem definition given in section 3.1, we have a few addi-
tional problem specifications. First of all, the size of a request does not exceed
the capacity of the largest vehicle which can reach the corresponding pick-up
and delivery nodes. This is a weak assumption, as the model allows for split-
ting larger orders manually beforehand in separate smaller orders, which can be
picked up by different vehicles.

Secondly, the fixed (un)loading time and cost is only incurred once when
multiple requests are sequentially (un)loaded at the same location. This specifi-
cation is motivated by practice. The fixed cost and time are mainly constituted
by actions like parking a vehicle and making it ready for loading, which only
need to be executed once per location.

The fixed vehicle usage cost δfk is only incurred when vehicle k visits other
nodes than bk and b′k.

When a vehicle arrives at a location in order to (un)load, it first incurs the
fixed loading time and then it incurs the variable loading time. When picking
up requests at transshipment locations, the request must be available right after
the vehicle finishes its fixed loading tasks.

Time windows on the pick-up and delivery nodes of requests are identical for
requests with the same geographical location. Moreover, a time window of [ai, bi]
on node i only requires that the vehicle that handles the corresponding request
should arrive within this time window on the geographical location associated
with the request. For example, if a vehicle starts loading a request before time
bi and subsequently loads another request after time bi at the same geographical
location, this would still be a feasible solution.

3.3 Network flow formulation

3.3.1 Auxiliary graph

Now the RPDPT is formulated as a network flow problem. Our formulation is
loosely based on the MILP formulation of Wen et al. [2009]. As a consequence
of the specific constraints in our rich problem, the construction of the graph
on which this formulation is based, requires special attention. Since multiple
requests can be required to be picked up from or delivered to the same geo-
graphical location, the nodes of the graph could represent those geographical
locations. However, since vehicles are allowed to return to the same location,
this will lead to difficulties regarding the modeling of time. Another possibility
is that each node would represent a single request. The shortcoming of this mod-
eling approach lies in the specific way the time windows on requests are defined.
The modeling of such a restriction with this node structure is cumbersome, as
the time window on a node now depends on the route of a vehicle.

Since conventional modeling approaches cannot fully capture the require-
ments of the RPDPT, we introduce the concept of geo-nodes. A vehicle must
visit a geo-node each time it moves to a node in P that has a different geograph-
ical location than the previously visited node. We set time windows on the geo-

8

nodes instead of the nodes in P , which allows us to handle the time constraints
of the RPDPT properly. More precisely, the directed graph G′ = (N ′, A′) on
which the network flow formulation is defined, is constructed as follows.

Step 1. Create nodes. The following node sets are introduced:

• P : contains for all c ∈ C the pick-up node ic and the delivery node jc.

• T : contains for all c ∈ C and τ ∈ T a delivery node jcτ and a pick-up
node icτ .

• B: contains for all k ∈ K a start node bk and an end node b′k.

Step 2. Create arcs. We include all arcs in A that would make the graph
(P ∪T ∪B,A) a complete directed graph. In order to decrease the solution time
of the MILP model, arcs that can never be part of a feasible solution could be
removed beforehand. We removed all arcs from delivery nodes to pick-up nodes,
all arcs from end nodes to start nodes, all arcs between start and between end
nodes and all arcs from one node to nodes which can never be reached in time
by either vehicle.

Step 3. Create geo-nodes. In this step the set of geo-nodes Γ is constructed.
A geo-node is inserted between all nodes, where the head of the corresponding
arc is incident with a node p ∈ P , and the tail of the arc in incident with a node
that has a different geographical location than p. For example, the arc (bk, jc)
would be replaced by the two arcs (bk, γjc) and (γjc , jc), where γjc is the newly
created geo-node. These new arcs are included in A to create the arc set A′.
We now have constructed the graph G′ = (N ′, A′), where N ′ = P ∪ T ∪B ∪G.

Step 4. Assign arc cost ckij, arc time tij, arc capacity qij and time windows.
Initially, we set all cost, time and capacity to zero and set all time windows
infinitely wide. Then we iteratively increment the values associated with the
arcs as described below. The symbol ∆ indicates that the associated value
should be incremented.

• ∀(i, j) ∈ A′, k ∈ K: ∆ckij = Dij · δvk and ∆tkij = Tij

• ∀(i, j) ∈ A′|i = bk ∧ j 6= b′k, k ∈ K: ∆ckij = δfk

• ∀(i, j) ∈ A′|i ∈ Γ ∨ (j ∈ T ∧ G(i) 6= G(j)) , k ∈ K: ∆ckij = clfk and ∆tkij =

σfk

• ∀c ∈ C, τ ∈ T , i ∈ {ic, icτ}, j ∈ N ′|(i, j) ∈ A′, k ∈ K: ∆ckij = clvk · Lc,
∆tkij = σvk · Lc and qij = Lc

• ∀c ∈ C, τ ∈ T , i ∈ {jc, jcτ}, j ∈ N ′|(i, j) ∈ A′, k ∈ K: ∆ckij = clvk · Lc,
∆tkij = σvk · Lc and qij = −Lc

• ∀i ∈ Γ, j ∈ N ′|(i, j) ∈ A′: [ai, bi] = [aj , bj]

9

n1

[an1
, bn1

]

i3

[3, 5]

i1

[1, 4]

j1

[16, 21]

i2

[16, 21]

i3

[3, 5]

i1

[1, 4]

γj1

[16, 21]

γi2

[16, 21]

j1

[0,∞)

i2

[0,∞)

n2

[an2
, bn2

]

(3, 6, 4)

(2, 5, 4)

(7, 5, 4)

(0, 3, 4)

(3, 6, 4)

(2, 5, 4)

(7, 5, 4)

(0, 3, 4)

(0, 8, 4)

(0, 8, 0)

(
Tn1,n2 , σ

v
k · L1, σ

f
k

)

Figure 1: Example: modification of a graph after introduction of geo-nodes

In figure 1, we provide a small example of this process. At the left, we see
a few nodes and arcs of a graph before the introduction of geo-nodes. In this
graph, the route i1 → j1 → i2 is not feasible, as we cannot arrive in time at
node i2. In a RPDPT instance however, this route could be feasible. Node j1
and i2 have the same geographical location, so loading and unloading operations
at these nodes may exceed the end of the time window, as long as we arrive at
node j1 in time. Therefore, geo-nodes are introduced in the graph at the right of
figure 1. We can see that the time cost for loading at node i1 and the time cost
for traveling from node i1 to geo-node γj1 are incurred before arriving at γj1 .
This node γj1 has the same time window as node j1 in the original graph, such
that the vehicle is enforced to arrive there in time. However, as can been seen
from the values associated with arc γj1 → j1, the unloading time cost for node
j1 is only incurred when arriving at j1. Since this node has no time window,
(un)loading operations at j1 may exceed the end of the time window of node
j1 in the original graph, as it should be able to. Furthermore, looking at arc
j1 → i2, we see that no travel time cost or fixed loading cost are incurred since
these nodes represent the same geographical location. Therefore, node i2 also
has no time window since these loading operations are allowed to exceed the
time window of node i2 in the original graph.

3.3.2 MIP formulation

The MIP formulation of the RPDPT is based on the graph G′. We define the
following variables:

xkij =

{
1 if vehicle k travels from node i to node j

0 else;

10

si = the time at which the fixed loading tasks at node i are finished

qi = the capacity of the vehicle at node i before it performs (un)loading tasks

In addition, M is a sufficiently large constant. We can now formulate the
RPDPT as follows:

minimize
∑

(i,j)∈A′

∑
k∈K

ckijx
k
ij (1)

subject to
∑
j∈N ′

∑
k∈K(i)

xkij = 1,∀i ∈ P (2)

∑
j∈N ′

xkij −
∑
j∈N ′

xkji = 0,∀i ∈ N ′ \B, k ∈ K (3)

∑
j∈N ′

xkbkj = 1,∀k ∈ K (4)

∑
i∈N ′

xkib′k
= 1,∀k ∈ K (5)∑

m∈K\{k}

∑
j∈N ′

xmbkj = 0,∀k ∈ K (6)

∑
j∈N ′

xkjcj −
∑
j∈N ′

xkicj =
∑
τ∈T

∑
j∈N ′

xkicτ j −
∑
τ∈T

∑
j∈N ′

xkjcτ j ,∀c ∈ C, k ∈ K

(7)∑
j∈N ′

xkjcj +
∑
j∈N ′

xkicj ≥
∑
τ∈T

∑
j∈N ′

xkicτ j +
∑
τ∈T

∑
j∈N ′

xkjcτ j ,∀c ∈ C, k ∈ K

(8)∑
j∈N ′

∑
k∈K

xkjcτ j =
∑
j∈N ′

∑
k∈K

xkicτ j ,∀c ∈ C, τ ∈ T (9)

sj ≥ si + tkij −M
(
1− xkij

)
,∀i, j ∈ N ′, k ∈ K (10)

qj ≥ qi + qij −M

(
1−

∑
k∈K

xkij

)
,∀i, j ∈ N ′ (11)

qi ≤ Qk +M

1−
∑
j∈N ′

xkij

 ,∀i ∈ N ′, k ∈ K (12)

sic ≤ sjcτ ≤ sicτ ≤ sjc ,∀c ∈ C, τ ∈ T (13)

sicτ ≥ sjcτ + σvk · Lc,∀c ∈ C, τ ∈ T (14)

ai ≤ si ≤ bi,∀i ∈ Γ (15)

xkij ∈ {0, 1},∀(i, j) ∈ A′, k ∈ K (16)

si, qi ≥ 0,∀i ∈ N ′ (17)

The objective function in equation (1) minimizes the total cost. Note that all
relevant costs are included in the parameters ckij . Constraints (2) state that each

11

request should be picked up and delivered by a capable vehicle. All capability
constraints are implicitly taken care of by these constraints. Constraints (3)
constitute the flow balance constraints: when a vehicle enters a node, it should
also leave that node. The exceptions on this rule are taken care of in constraints
(4) and (5), that state that a vehicle should start and end at their designated
nodes. Constraints (6) state that vehicles may not start from other nodes than
their own. Note that the subtour elimination constraints are not required in
this formulation, as they are already implicitely defined by the time constraints.
At least one node of a cycle cannot satisfy constraints (10).

Together, constraints (7) and (8) define all feasible request-handling com-
binations that a vehicle can perform. Table 1 lists the five possible variable
configurations that satisfy these constraints. Note that a vehicle is not allowed
to load a request at a transshipment point in order to unload it at another trans-
shipment point. A vehicle however is allowed to temporarily store a request at
a transshipment point. Constraints (9) require that requests are unloaded and
loaded at the same transshipment location.

Table 1: Possible configurations of request-handling variables

k picks up c k delivers c k unloads c k loads c∑
j∈N ′ xkicj

∑
j∈N ′ xkjcj

∑
τ∈T

∑
j∈N ′ xkjcτ j

∑
τ∈T

∑
j∈N ′ xkicτ j

0 0 0 0
0 1 0 1
1 0 1 0
1 1 0 0
1 1 1 1

The time and capacity variables are updated in restrictions (10) and (11).
Constraints (12) ensure that vehicles do not exceed their capacity at all times.
The correct chronological order of picking up, unloading, loading and delivering
is enforced by restrictions (13) and (14). Constraints (13) are tightened by
constraints (14), as a vehicle must finish its unloading tasks before another
vehicle can start loading. The time-windows on the geo-nodes are taken care
of in restrictions (15). Finally, all variables are defined as either binary or
non-negative continuous in restrictions (16) and (17).

Since the traveling salesman problem is a special case of the RPDPT, the
RPDPT is NP-hard.

4 Exact solution methods

In this section, we describe the research avenues we took in order to arrive at
an exact solution of the RPDPT. Exact solutions of mid-size to large RPDPT’s
would allow us to assess the quality of heuristic solution methods. We tried solv-
ing different MILP-formulations directly in Gurobi, as well as a more advanced
column generation procedure.

12

4.1 MIP models

A direct implementation in Gurobi of the network flow model described in sec-
tion 3.3 could only solve very small problem instances in a reasonable time. With
only one vehicle and one transshipment point, solution times already exploded
with just ten requests. These long solution times are among others caused by
the bad LP-relaxation of the network flow formulation. We tried to overcome
this problem by altering the formulation, inspired by Baldacci et al. [2004]. In
this two-commodity flow formulation, each arc is replaced by two new arcs, one
representing the capacity left on a vehicle, and one representing the free capac-
ity on a vehicle. The new set of variables introduced represents the amount of
flow on each arc. Despite the stronger LP-relaxation of this formulation, it was
not able to solve larger instances of the RPDPT.

4.2 Column Generation

In our problem, we can make a distinction between intra-route constraints and
inter-route constraints. Intra-route constraints affect only single routes and can
be evaluated locally. Examples are restrictions on vehicle capacities, time win-
dows and customer sequencing. Inter-route constraints affect multiple routes.
Examples are the requirements that each request should be picked up and de-
livered and that a request can only be loaded at a transshipment point if it is
unloaded there before.

An intuitive exact solution approach would be to relax these inter-route
constraints in the network flow formulation using Lagrangian Relaxation or a
Dantzig-Wolfe decomposition. The resulting subproblems deal with the intra-
route constraints and can be modeled as Elementary Shortest Path Problems
with Resource Constraints (ESPPRC) and linear node cost for which reason-
ably well exact or heuristic solution methods exist. However, we expect a bad
performance of these methods for two main reasons. The first reason is that
some big-M constraints in the network flow formulation will enter the objective
function, leading to bad lower bounds. The second reason is the potential sym-
metry problems which may arise for problem instances with a lot of vehicles of
the same type. The solutions generated by the subproblems corresponding to
these vehicles will be the same. This will lead to slow convergence and makes
it also hard to construct tight upper bounds.

To circumvent these problems, we use the set covering formulation instead
of the network flow formulation. Generally, the LP-relaxation of a set covering
formulation is quite strong. In this formulation, all inter-route constraints are
modeled explicitly, while the intra-route constraints are implicitly taken care of
in the variables.

Since the set covering formulation has exponentially many variables, we use
a column generation framework to solve the LP-relaxation. Initially, only a
small subset of all variables are included in the formulation, and iteratively,
promising new variables, which represent routes, are included. These variables
are found by solving pricing problems that find variables with negative reduced

13

cost. The pricing problems boil down to an ESPPRC with linear node costs,
which is solved by using a dynamic programming labeling algorithm.

The speed of the column generation approach depends heavily on the ability
to discard dominated labels in the labeling algorithm. One of the dominance
criteria for labels at a certain node, is that for each vehicle the set of requests
which should still be delivered is exactly the same. Due to the negative dual
variables on delivery locations and the presence of transshipment locations, the
triangle inequality does not hold in the auxiliary graph. Therefore, we are not
able to say whether the requirement to perform certain requests is desirable or
not. This leads to a very weak dominance criterion, which is why we can only
potentially discard labels that handle precisely the same requests in a different
order.

Consequently, the NP-hard pricing problem can only be solved to optimality
by a process that is close to enumeration. Since the pricing problem should be
solved to optimality at least once to provide valid lower bounds on the set
covering formulation, we expect that the column generation approach will not
be able to solve mid-size RPDPT instances in a reasonable amount of time.

Our findings are in line with those of Qu and Bard [2012], as they could only
solve a similar problem with one vehicle, one transshipment point and up to six
requests to optimality.

5 Heuristic solution method

In section 4, we saw that exact approaches to the RPDPT do not seem very
promising. Therefore, in this section, we develop a heuristic solution method
that is able to find good solutions to RPDPT-instances of 25 requests in a
reasonable amount of time. Section 5.1 states the general idea of the heuristic
method. The remaining sections work out each part of the heuristic in more
detail.

5.1 General overview

The heuristic used to solve the RPDPT is a variation on the Greedy Randomized
Adaptive Search Procedure (GRASP). The main idea of a GRASP algorithm is
to generate multiple start solutions and to subsequently improve each of them
by applying local search. We complement the GRASP by path relinking, a pro-
cedure that creates a new solution based on two existing solutions. Furthermore,
our GRASP is a reactive algorithm, which means that parameters are updated
each iteration to bias the search towards promising solutions. We refer to our
algorithm as a Reactive GRASP with Path Relinking (RGPR). Each step of our
algorithm is depicted in figure 2. We now describe the general idea of each step.

Construct multiple random solutions greedily. In the RPDPT, there is a vast
number of restrictions on time, capacity, capability and node sequencing. Due
to the constrained nature of our problem, it is likely that parts of the feasible
region will be disconnected, that is, we cannot transform a feasible solution from

14

start

Construct
multiple random
solutions greedily

Local search on
each solution

Path relinking on
pairs of solutions

Store elite
solutions

Stopping
criterion
reached?

Update pa-
rameters

Stop
yes

no

Figure 2: Outline of reactive GRASP with path relinking

15

one region to a feasible solution from the other region by a series of moves from
small neighborhoods, where all intermediate solutions are feasible. This means
that local search procedures will quickly get stuck in local optima. Therefore,
it is important for highly constrained problems to heavily diversify the search
in the early stages of the algorithm. In this step, RGPR constructs multiple
solutions. It creates each solution by iteratively inserting requests in routes
until all requests are handled. For each request, all feasible insertion positions
are evaluated based on the cost of insertion. The algorithm does not choose
the cheapest insertion move, but randomly chooses an insertion move from a
restricted list of the top-ranked moves. In this way, the average solution quality
decreases, but the search is diversified which leads to a higher probability of
finding good solutions.

Local search on each solution. In the previous step, all solutions were created
greedily, which means that it is likely that local search methods can improve
each individual solution. We define multiple ruin and recreate neighborhoods.
In each iteration, the algorithm randomly chooses a neighborhood in which the
algorithm tries to find a move that improves the incumbent. The size of the
neighborhood increases if the algorithm was not able to improve the incumbent.

Path relinking on pairs of solutions. Path relinking is used as an intensifica-
tion strategy that combines the features of two different solutions. Each solution
that results from the local search phase is matched with an elite solution, which
is one of the already found solutions with the lowest cost. The path relinking
procedure transforms one solution in another solution by making a sequence of
small changes. The best intermediate solution found in this process is returned
by the algorithm.

Store elite solutions. After each RGPR iteration, a list with the best solu-
tions is updated. This solution pool is contains the solutions with a low cost, but
is also diversified in order to make the path relinking procedure more effective.

Stopping criterion reached? The algorithm terminates if the maximum num-
ber of iterations is reached.

Update parameters. Our RGPR algorithm is reactive and embedded in an
ant colony optimization framework, what means that current solutions are used
to alter the search for new solutions in the future. Based on the current solution
pool, we search for solution characteristics that are present in good solutions
and absent in bad solutions. Based on these characteristics, the cost function
that is used to evaluate (partial) solutions in the algorithm is altered in favor of
those characteristics. This reactive cost function biases the algorithm towards
favorable patterns in the solution, while keeping the search diversified by the
randomness present in the algorithm. Additionally, the probability of investi-
gating a neighborhood in the local search phase is altered based on the relative
success of each neighborhood to find a cost reducing move.

5.2 Construction phase

In this section, we give a detailed description of the construction phase of the
algorithm, which is mainly inspired by Qu and Bard [2012].

16

5.2.1 Route representation

A (partial) solution S of a RPDPT is fully represented by the following infor-
mation:

• A set of routes R, where route rk ∈ R of vehicle k is represented by a
sequence of nodes, starting with bk and ending with b′k. If bk and b′k are
the only nodes in route rk, we refer to the route as being null or empty.

• For each node i in a route, ti represents the arrival time at that node, σfi
the time spent on fixed (un)loading at i, σvi the time spent on variable
loading at i and qi represents the remaining capacity of the vehicle just
before arriving at this node.

• The set of unsatisfied requests U ⊆ C, which contains all requests that
are not in any of the routes in K.

5.2.2 Request insertion

The basis for the construction phase is the sequential insertion of requests ic →
jc for customer c into routes of the partial solution S. Due to the presence of
transshipment points, the pick-up node can be either ic or icτ and the delivery
node can be either jc or jcτ . There are two types of insertion operations. The
first one is single insertion, where request i → j for customer c is handled by
inserting the nodes ic and jc in route rk1 . Both nodes must be inserted after
node bk1 and before node b′k1 . Moreover, node jc must be inserted after node
ic, as the request can only be delivered if it is picked up first.

The second type of insertion is double insertion, whereby the request is
shipped via a transshipment location. The request i → j for customer c is
split up in the two requests ic → jcτ and icτ → jc for some τ ∈ T . Request
ic → jcτ is inserted into route rk1 and request icτ → jc is inserted into route rk2 .
Possibly, rk1 and rk2 are the same routes. Again, the nodes must be inserted
after the start node end before the end node of the route. Furthermore, ic must
be inserted before jcτ and icτ must be inserted before jc.

Algorithm 1 describes the basic insertion procedure. The algorithm tries all
possible insertion positions of both single and double insertions, and returns
the nmaxC cheapest ones, according to some cost function Q(), which is further
specified in equation (33). For step 1, all insertion combinations are tried for
|K| routes. Since the CheckFeasible procedure runs in O (|N |) time, step 1
has a time complexity of O

(
|K||N |3

)
. Step 2 evaluates for each pair of routes(

O
(
|K|2

))
, for each transshipment location (O (|T |)) and each possible insertion

position
(
O
(
|N |4

))
the feasibility (O (|N |)), resulting in a computational com-

plexity of O
(
|T ||K|2|N |5

)
. The complexity of the BasicInsertion algorithm

is therefore O
(
|T ||K|2|N |5

)
.

17

Algorithm 1 Basic insertion

Input: Request c, partial solution S, maximum number of solution nmaxC

Output: Set of solutions SL resulting from the best nmaxC possible insertions
of c in S

1: function BasicInsertion(c, S, nmaxC)
//Step 0: Initialization

2: SL← ∅
//Step 1: single insertions

3: for all r ∈ R do
4: for all possible insertions of ic → jc in r do
5: S0 is the solution with the inserted nodes and NL = {ic, jc}
6: if CheckFeasible(S0, NL) then
7: Remove c from open shipment pool U in S0

8: if |SL| < nmaxC then
9: SL← SL ∪ {S0}

10: else
11: Sworst = argmaxS∈SL (Q(S))
12: if Q (Sworst) > Q (S0) then
13: Replace Sworst with S0 in SL
14: end if
15: end if
16: end if
17: end for
18: end for

//Step 2: double insertions
19: for all r1 ∈ R do
20: for all r2 ∈ R do
21: for all τ ∈ T do
22: for all insertions of ic → jcτ in r1 and icτ → jc in r2 do
23: Set S0 = S and NL = {ic, jcτ , icτ , jc}
24: if CheckFeasible(S,NL) then
25: Remove c from open shipment pool U in S0

26: if |SL| < nmaxC then
27: SL← SL ∪ {S0}
28: else
29: Sworst = argmaxS∈SL (Q(S))
30: if Q (Sworst) > Q (S0) then
31: Replace Sworst with S0 in SL
32: end if
33: end if
34: end if
35: end for
36: end for
37: end for
38: end for
39: return SL
40: end function

18

5.2.3 Solution update and feasibility check

After each single or double insertion into S, the route, time and capacity infor-
mation contained in S must be updated accordingly. Also, it must be checked
if the performed insertion is indeed feasible. If new nodes are inserted in S,
not all nodes in S are affected. For efficiency reasons, the updating algorithm
therefore only checks affected nodes, which are stored in the list NL. After a
single insertion of i → j, the nodes i and j are added to NL. After a double
insertion of i1 → j1 and i2 → j2, these four nodes are added to NL. When the
request i → j is deleted, the nodes right after i and j in their original routes
are added to NL. The algorithm takes the original solution and NL as input,
and returns whether the insertion or deletion results in a feasible solution. If
that is the case, it also returns the solution with the updated time and capacity
information. The algorithm for the solution update and feasibility check is given
in algorithm 2.

We will clarify some of the steps in algorithm 2. The first and computation-
ally most inexpensive feasibility check is performed in step 2. Requests can only
be inserted in routes that are performed by vehicles that are capable to handle
that request.

In step 3, the time and capacity information of the nodes is updated, making
use of algorithm 3. In line (3)-(9) of algorithm 3, it is calculated whether the
node incurs fixed and variable time cost. This information is needed for the
calculations in line (10) and (18). Note for example, that fixed (un)loading cost
are not included when the previous node had the same geographical location.
In line (10), the arrival time at the node is calculated, based on the arrival
time at the previous node and the time windows. In line (18), the arrival time
is adjusted for transshipment pick-up nodes, such that it can start its variable
loading tasks only after the unloading of the request has been finished.

In step 4 of algorithm 2, the nodes that are affected by the changes in the
current node are identified. The affected nodes are the nodes right after the
current node, as time and capacity values have changed. Secondly, it should be
checked if deliveries are not planned before pick-ups. However, with these prop-
agation rules, infinite loops may occur. Suppose for example that the vehicle
of route r1 loads request c1 and subsequently unloads request c2. Furthermore,
vehicle r2 unloads request c1 and loads request c2. Such a cross-synchronization
cannot be feasible and will cause infinite looping of the algorithm. In line (5),
cases of cross-synchronization are recognized, and the solution is marked as
infeasible.

In order to speed up the algorithm, the list FL should always be sorted in
such a way that if node j is visited before node i, j should be listed higher than
i. In the opposite scenario, all nodes after i would first be updated. After that,
they would need updating again, since all nodes after j would be updated. The
proposed list sorting speeds up the algorithm by avoiding double updating of
nodes.

19

Algorithm 2 Solution update and feasibility check

Input: Partial solution S, set of affected nodes NL
Output: Updated partial solution S′, feasibility indicator feasible
1: function CheckFeasible(S,NL)

//Step 0: initialization
2: FL← NL

//Step 1: check affected nodes
3: if FL = ∅ then
4: return S′, feasible = true
5: else if FL contains a node that is located anywhere in a route before a

transshipment delivery node in NL then
6: return feasible = false
7: else
8: i = FL(0), k is the associated vehicle, c the associated request
9: FL← FL \ {i}

10: end if
//Step 2: check capability

11: if k /∈ K(i) then
12: return feasible = false
13: end if

//Step 3: update node information
14: S′ =UpdateNodeInformation(S, i)
15: if (ti > bi ∧ G(i) 6= G(i− 1)) ∨ qi > Qk then
16: return feasible = false
17: end if

//Step 4: Propagation
18: Find if there is a node j visited after i
19: FL← FL ∪ {j}
20: if node i is a transshipment delivery node then
21: Find the corresponding transshipment pick-up node
22: FL← FL ∪ {j}
23: end if
24: Go to step 1
25: end function

20

Algorithm 3 Update node information

Input: Partial solution S, node i
Output: Updated partial solution S′

1: function UpdateNodeInformation(S, i)
//Step 1: update node information based on route path

2: Let j be the node visited right before i
3: if G(i) = G(j) then

4: σfi = 0, σvi = σvk · Lc
5: else if i = b′k then

6: σfi = 0, σvi = 0
7: else
8: σfi = σfk , σ

v
i = σvk · Lc

9: end if
10: ti = max{tj + σfj + σvj + Tji, ai}
11: if node j is pick-up node for customer c′ then
12: qi = qj + Lc′

13: else if node j is delivery node for customer c′ then
14: qi = qj − Lc′
15: end if

//Step 2: update node information based on shipment path
16: if i is a transshipment pick-up node then
17: Find the corresponding transshipment delivery node j
18: ti = max{ti, tj + σfj + σvj − σ

f
i }

19: end if
20: return updated partial solution S′

21: end function

21

Performing step 1 to 4 in algorithm 2 has a computational complexity of
O(1). In the worst case scenario, the algorithm loops over all nodes inN\{bk|k ∈
K}. The computational complexity of algorithm 2 is therefore O (|N |).

5.2.4 Solution construction

Algorithm 4 states how a solution is constructed from scratch. First, a list CL
is created that contains the best nmaxC insertions, aggregated over all requests.
Randomly, one of these insertions is chosen based on the probability function
PROB. This process is repeated until all requests are routed, or until no feasible
insertion can be found. Steps 1 and 2 are executed |C| times. Step 1 loops over
all requests and in each loop, the BasicInsertion algorithm is called. There-
fore, the SolutionConstruction algorithm has a computational complexity
of O

(
|T ||K|2|N |5|C|2

)
.

5.2.5 Computation time improvement

As mentioned in section 5.2.4, the theoretical computational complexity of the
construction phase is O

(
|T ||K|2|N |5|C|2

)
. Although polynomial, in practice

the computation times turn out to be too high for larger problems. Since a
lower theoretical computation complexity can only be achieved at the cost of
the quality of the construction phase, we aim to lower computation times by
diminishing the practical computation time.

Reduce combinations double insertion
A closer look at the construction algorithm can reveal where the main compu-
tation burden is located. Note that the values of |T |, |K| and |C| are relatively
small in comparison with |N |. This |N | is raised to the fifth power since we
evaluate all insertion position combinations for requests that make use of dou-
ble insertion. Request c for transshipment node τ is split up in request ic → jcτ
for route 1 and request icτ → jc for route 2. This operation requires checking
O
(
|N |4

)
configurations in combination with a feasibility check of O (|N |) for

each combination.
We develop a faster way to evaluate all these combinations. Therefore, we

take the following three steps:

1. Try all insertion positions of ic → jcτ in route 1 and store all feasible
positions in combination with the resulting cost of the solution in list L1.
Subsequently, do the same for request icτ → jc for route 2 and store the
results in list L2. In this step we evaluate O

(
|N |2

)
different combinations

and do perform a feasibility check for each. The complexity therefore
equals O

(
|N |3

)
.

2. Sort L1 and L2 in ascending order based on their cost. This step has a
computational complexity of O (|N | log |N |)).

22

Algorithm 4 Solution construction

Input: Set of requests U , set of vehicles K, maximum number of solutions nmaxC

Output: Solution S with all requests handled
1: function SolutionConstruction(U,K, nmaxC)

Step 0: Initialization
2: Initialize all routes in S as empty

//Step 1: build candidate list CL
3: CL← ∅
4: for u ∈ U do
5: SL = BasicInsertion (u, S, nmaxC)
6: for S0 ∈ SL do
7: if |CL| < nmaxC then
8: CL← CL ∪ {S0}
9: else

10: Sworst = argmaxS∈CL (Q(S))
11: if Q (Sworst) > Q (S0) then
12: Replace Sworst with S0 in CL
13: end if
14: end if
15: end for
16: end for
17: if CL = ∅ then
18: No feasible solution can be found. Stop.
19: end if

//Step 2: choose new solution
20: Select new solution S randomly from CL with probability 1

|CL|
21: if U = ∅ then
22: return S
23: end if
24: Go to step 1
25: end function

23

3. Pick the insertion positions at the top of the list L1 and L2 and insert
ic → jcτ and icτ → jc at these positions in the original solution. If this
results in a feasible solution, we stop and return the solution. Otherwise,
we take the next least cost combination from list L1 and L2 and repeat
step 3. If we do never find a feasible solution, such a solution does not
exist.

Note that the theoretical complexity of step 3 still equals O
(
|N |5

)
as we have

to iterate through all possible combinations of insertion positions in L1 and
L2 in the worst case. However, since the algorithm terminates in step 3 as
soon as we find a feasible solution, the practical computation time will decrease
drastically. Note that the returned solution is guaranteed to be the least cost
solution regarding the double insertion of c into the solution.

Anticipate infeasibility
Suppose that in the BasicInsertion algorithm we insert request i → j in a
route r. We now check all possible insertion combinations of i and j and check
their feasibility. However, if an infeasibility occurs due to the position of i in
the route, we do not need to check all other (i, j)-combinations with i at that
specific position. But we can only skip these combinations provided that the
infeasibility was not caused by the position of j in the route. Since we update
the node information in the direction from the start node to the end node, this
is only true if the infeasibility was detected at a node 1) in r before j, or 2) in
a route that is being updated due to the change of node information of a node
before j.

Arriving too late
If the insertion of i at position x in route r is infeasible due to the fact that we
do not arrive within the time-window of node i, we also do not have to evaluate
all insertion combinations with i in r at position x+ 1, x+ 2, We would also
arrive too late at these positions, as visiting more nodes before i only can delay
our arrival at i.

Capabilities
If the insertion of i in route r is infeasible due to capabilities, all insertion
combination with i in r are also infeasible and do not need to be checked.

5.3 Improvement phase

In the local search phase of the RGPR algorithm, we try to improve each in-
dividual solution that resulted from the construction phase. Many heuristic
approaches in vehicle routing make use of local search, in which small alter-
ations of the incumbent solution are evaluated. A relatively new approach is
the ruin and recreate method, in which a relatively large part of the solution
is first destroyed and then rebuilt. Such an approach is particularly useful for
complex problems that have to meet a lot of constraints. Neighbor solutions

24

are often infeasible, which causes local search methods to be quickly stuck in
local optima. A ruin and recreate approach defines a larger neighborhood and
it thus more likely to find admissible and better solutions.

A general outline of the ruin and recreate phase is given in algorithm 5. In
each iteration, a ruin and a recreate method are selected in line (5). According to
these methods, the solution is destroyed and subsequently rebuilt (line (6)-(7)).
The algorithm starts by exploring a small neighborhood, removing and inserting
only one request. If after iteru iterations this does not result in an improvement
of the incumbent solution, the neighborhood is expanded, up to removing and
inserting umax requests. If this also does not improve the incumbent solution,
the solution is allowed to drift (line (8)-(18)). If this results in a new global
optimum, this solution is stored in line (9). After all the solutions are handled
by the ruin and recreate procedure, the weights which influence the likelihood
of a heuristic to be chosen are updated, as further described in section 5.3.3.

Algorithm 5 Ruin and recreate

Input: Set of solutions Sset, maximum number of removed requests umax, num-
ber of iterations iterrr and iteru

Output: Set of improved solutions S∗set
1: function RuinAndRecreate(S, u, iterrr, iteru)
2: for S ∈ Sset do
3: S∗ ← S , u← 1, Sinit ← S
4: for iterrr times do
5: Randomly choose a ruin and a recreate method based on weight
6: S ← Ruin(Sinit, u)
7: S ← Recreate(S, u)
8: if Q(S) < Q(S∗) then
9: S∗ ← S, Sinit ← S, u← 1, countu ← 1

10: else
11: countu ← countu + 1
12: end if
13: if countu = iteru then
14: u← u+ 1, countu ← 0
15: end if
16: if u = umax then
17: Sinit ← S, countu ← 0
18: end if
19: end for
20: S∗set = S∗set ∪ S∗
21: end for
22: Update heuristic weights
23: return S∗set
24: end function

25

5.3.1 Ruin methods

In this section, we develop several methods that destroy the current solution.
Each ruin method removes u requests from the solution and stores them in the
set U . When a request is removed from a solution, the pick-up and delivery node
are taken out, plus the transshipment nodes if applicable. We make a distinction
between methods that focus on the transshipment points and methods that are
not specifically designed for transshipment problems.

General ruin methods
We make use of several general ruin methods, each with their own advantages.

Random removal This method randomly removes u requests with equal
probability. This method assures diversification of the ruin and recreate proce-
dure, which allows us to avoid getting stuck in local optima.

Shaw removal The Shaw removal heuristic aims to remove requests that
are in some sense similar to each other. This heuristic was first proposed in
Shaw [1997], and we adapt it to our problem. Especially in highly constrained
problems, it is more likely that a request can be inserted in a different place
if similar requests are removed. The similarity of two requests depends on the
load, time windows, pick-up location, delivery location and vehicle capabilities.
Equation (18) defines the relatedness measure for request c1 and c2.

Rc1,c2 =
θ1
L∗
|Lc1 − Lc2 |+

θ2
D∗

(
Dic1 ,ic2

+Djc1 ,jc2

)
+
θ3
T ∗
(
|aic1 − aic2 |+ |bic1 − bic2 |+ |ajc1 − ajc2 |+ |bjc1 − bjc2 |

)
(18)

+
θ4
K∗

(
1

2
− |K (ic1) ∩K (ic2) |+ |K (jc1) ∩K (jc2) |
|K (ic1) |+ |K (ic2) |+ |K (jc1) |+ |K (jc2) |

)
The constants in equation (18) are calculated as follows:

C∗ =
1

2|C| (|C| − 1)
(19)

L∗ = C∗
∑
c1∈C

∑
c2∈C

|Lc1 − Lc2 | (20)

D∗ = C∗
∑
c1∈C

∑
c2∈C

(
Dic1 ,ic2

+Djc1 ,jc2

)
(21)

T ∗ = C∗
∑
c1∈C

∑
c2∈C

(
|aic1 − aic2 |+ |bic1 − bic2 |+ |ajc1 − ajc2 |+ |bjc1 − bjc2 |

)
(22)

K∗ = C∗
∑
c1∈C

∑
c2∈C

(
1

2
− |K (ic1) ∩K (ic2) |+ |K (jc1) ∩K (jc2) |
|K (ic1) |+ |K (ic2) |+ |K (jc1) |+ |K (jc2) |

)
(23)

26

According to equation (18), if request c1 and c2 are more related, the value of
Rc1,c2 becomes smaller. Requests are more related if their load is more simi-
lar and if the distances between their respective pick-up locations and delivery
locations are smaller. Additionally, requests are more similar if their time win-
dows overlap more. The fourth term decreases if more vehicles can handle the
pick-ups or deliveries of both requests, and increases in the number of vehicles
that can handle at least one task of these two requests. Note that Rc1,c2 ≥ 0
and Rc1,c1 = 0 for all c1 and c2.

Each term is weighed with a positive parameter θ1, θ2, θ3 or θ4. In order
to arrive at meaningful parameter values for a variety of instances, we scale
each parameter with an instance specific value as defined in equations (19)-
(23). These scaling values are calculated by averaging the corresponding term
over all request combinations.

The Shaw removal heuristic executes the following steps:

1. Randomly pick a request c1 and remove it from the solution.

2. Sort all the requests c2 that remain in the solution in list L in ascending
order based on their relatedness Rc1,c2 .

3. Choose a random number p ∈ (0, 1) and remove the request on position
dpαs |L|e from the solution and from L. Repeat step 3 until u requests are
removed.

The value of the parameter αs ∈ [1,∞) determines the degree of randomness
in choosing related requests. If αs = 1, the heuristic is the same as the random
removal heuristic. If αs = ∞, the u − 1 most similar requests are chosen. The
value of αs is fixed, and set by making use of tuning instances.

Route removal This heuristic randomly picks a route and removes all
the requests which are handled in that route. We keep removing routes until a
route removal would result into more than u requests being removed. In that
case, the random removal heuristic is applied to that route to bring the amount
of deleted requests up to u. It can happen that a route only contains a segment
of a request, that is, it handles either the pick-up or the delivery, but not both.
In that case, the other segment is also removed from the current solution. The
aim of this ruin method is to allow for new route structures to arise, by freeing
up a vehicle.

Ruin methods dedicated to transshipment
We develop two more ruin methods, that are specifically designed to take ad-
vantage of the transshipment option.

Transshipment removal The transshipment removal heuristic randomly
chooses a transshipment point and removes all requests that make use of the
transshipment point in the current solution. We keep selecting new transship-
ment points, until the removal of all related requests would lead to a removal of

27

more than u requests. In that case, we remove a random subset of these requests
to bring the number of deleted requests op to u. If the total number of requests
that are routed via a transshipment point is less than u, only these requests
are removed. This heuristic aims to reroute requests via other transshipment
points.

Cluster removal Requests of which the pick-up locations or the delivery
locations are geographically close to each other are more likely to be handled by
the same vehicle in the optimal solution. For example, one vehicle might pick-up
all of these clustered requests and deliver them to a transshipment point, from
which multiple vehicles deliver them to their geographically scattered delivery
locations. The cluster removal heuristic therefore takes the following steps:

1. Randomly pick a request c1 and remove it from the solution. Also, ran-
domly decide whether we consider pick-up or delivery locations.

2. Sort all the requests c2 that remain in the solution in list L in ascending
order based on either the distance Dic1 ,ic2

or Djc1 ,jc2
.

3. Choose a random number p ∈ (0, 1) and remove the request on position
dpαc |L|e from the solution and from L. Repeat step 3 until u requests are
removed.

If the value of the parameter αc ∈ [1,∞) increases, the degree of randomness in
choosing nearby requests also increases. In the case that αc = 1, the heuristic
is equal to the random removal heuristic. Alternatively, if αc = ∞, the u − 1
nearest requests are chosen. The value of αc is fixed, and determined by using
tuning instances.

5.3.2 Recreate methods

After the ruin phase, a partial solution and u or more unhandled requests re-
main. The goal of the recreate methods is to insert these unhandled requests
back in the partial solution against the lowest cost. It is important to emphasize
that the recreate methods only determine the order in which the requests are
inserted. The insertion place in the solution for each request is determined in
the same way as in the construction phase, which comes down to inserting a
request at that position in the solution which leads to the smallest cost increase.

Greedy insertion The greedy insertion method is identical to the inser-
tion method in the construction phase described in algorithm 1. All possible
insertion moves for all requests are evaluated, and a move is randomly selected
from a list of moves that lead to the smallest cost increase. The solution is
updated, and the insertion process is repeated with the unhandled requests.

Since we want to add more intelligence to the improvement phase, the order
of insertion can also be chosen with more advanced methods than the greedy
method.

28

Regret k-insertion The regret k-insertion method first inserts the re-
quests which would lead to the largest regret if they were not inserted first. For
every request c, the k best insertion positions in the solution are evaluated, with
associated cost f1c , . . . , f

k
c . Then, request c∗ is inserted, with

c∗ = argmax
c∈U

k∑
j=2

(
f jc − f1c

)
(24)

Then, c∗ is inserted at its most profitable position and removed from U , and
the process is repeated until all requests are inserted. The intuition behind this
insertion heuristic is that we should first insert requests which have only a few
low-cost insertion positions, and many high-cost insertion positions.

Random insertion The random insertion methods randomly determines
the order of insertion. This method assures diversification in the improvement
phase.

5.3.3 Method selection

The effectiveness of ruin and recreate methods may vary per method and per
problem instance. In order to speed up the algorithm, we would like to favor
the successful heuristics over the less effective ones. Therefore, we choose each
method based on their weight using the roulette wheel principle, as proposed by
Ropke and Pisinger [2006]. If we have k heuristics with weight wi, i ∈ {1, . . . , k},
we choose heuristic j with probability

pj =
wj∑k
i=1 wi

(25)

We let the weights reflect the effectiveness of each heuristic by adapting these
weights based on the capability of the heuristic to find both better and new
solutions. When entering the improvement phase of the algorithm, all scores πi
of heuristic i are set to zero. Each time heuristic i is used in the improvement
phase, this score can be increased. The score is incremented by three if the
heuristic was able to find a new global optimum. The score is incremented by
two if the heuristic found a new solution that also improved the incumbent. The
score is incremented by one of the heuristic did find a new solution. In all other
cases, the score stays level.

The weights of the heuristics are updated at the end of the improvement
phase. If we have completed the improvement phase for the j-th time, the
weight wi,j+1 of heuristic i for the next improvement phase is equal to

wi,j+1 = wi,j(1− r) + r
πi
θi

(26)

The value of r ∈ [0, 1] in equation (26) determines how quickly the weights
change based on recent performance. θi counts how many times heuristic i is
used. At the start of the RGPR, we do not know which heuristics will be most
effective, so we set all wi,1 equal to each other.

29

5.4 Path relinking

The purpose of the path relinking procedure is to explore paths between pairs
of elite solutions of the RPDPT. The first solution is referred to as the initial
solution, and the second solution is called the guiding solution. Path relinking
gradually transforms the initial solution into the guiding solution by choosing
moves from its neighborhood. Therefore, the solutions that are explored along
the way contain characteristics of both the initial and the guiding solution,
which constitutes the main power of the path relinking procedure.

In this chapter, we first describe how the path relinking procedure works on
a given pair of solutions. Secondly, we show how the path relinking procedure
is embedded within the RGPR.

5.4.1 Solution representation

When transforming the initial solution into the guiding solution, we do only
evaluate solutions in terms of the requests that each vehicle handles, and the
order in which it does so. The capacity and time information is not relevant in
the definition of path relinking neighborhoods and distance measures. All the
solution information that is required for these steps can therefore be accessed
by using the following two functions:

• The function F1 (S1, S2, k) returns for solution S1 and S2 and vehicle k ∈
K the ordered set that contains all the nodes in the route handled by
vehicle k in solution S1 that are also handled by k in solution S2.

• The function F2 (S, k) returns for solution S and vehicle k ∈ K the ordered
set that contains all the request legs that are handled by k.

A request leg is defined as the combination of a pick-up node and a delivery
node of a request. For example, request c can either be handled in one request
leg ic → jc or in two request legs ic → jcτ and icτ → jc.

5.4.2 Neighborhoods

The path relinking procedure transforms the initial solution into the guiding
solution by iteratively selecting moves from neighborhoods. In this section, we
define these neighborhoods. A neighborhood needs to satisfy two conditions.
Firstly, all requests in C must be present in the solution. Secondly, the order of
nodes in the solution must be feasible with respect to the pick-up and delivery
constraints, i.e., pick-ups have to happen before deliveries. We use the following
two neighborhoods:

• Replace node: remove a node from a route and insert it at a different
position in the same route, while satisfying the pick-up and delivery con-
straints.

30

• Relocate request: delete all request legs that are associated with a request
and insert the new request legs at a different route. The insertion positions
of the nodes must be such that the replace node neighborhood does not
have to be applied on these nodes in order to arrive at the guiding solution.

By exclusively making use from moves of these two neighborhoods, each initial
solution can be transformed to every guiding solution.

5.4.3 Solution distance

The path relinking distance PRD(Sa, Sb) between two solutions Sa and Sb is
defined as a weighted minimum number of neighborhood moves that is needed
to transform solution Sa into solution Sb. This distance can be seperated in two
parts: the weighed minimum number of relocate request moves RRD(Sa, Sb)
that is needed and the minimum number of replace node moves RND(Sa, Sb)
that is needed. Hence,

PRD(Sa, Sb) = RRD(Sa, Sb) +RND(Sa, Sb) (27)

The correctness of equation (27) follows directly from the observation that a
number of relocate request moves cannot lead to the same result as a number
of replace node moves and vice versa. RRD(Sa, Sb) is calculated as in equation
(28).

RRD(Sa, Sb) =
∑
k∈K

(|F2 (Sa, k) | − |F2 (Sa, k) ∩ F2 (Sb, k) |) (28)

+
∑
k∈K

(|F2 (Sb, k) | − |F2 (Sa, k) ∩ F2 (Sb, k) |)

The first term of equation (28) calculates the number of request legs to delete,
and the second term of equation (28) calculates the number of request legs to
insert. Note that the weight of a relocate request move depends on the number of
request legs associated with this move. For example, the deletion of request legs
ic → jcτ and icτ → jc from one route and the insertion of ic → jc in another,
has a weight of 3, while a relocation of request ic → jc to another route has a
weight of 2.

Now we need to define RND(Sa, Sb), the minimum number of replace node
moves needed. First, we observe that moves in the relocate request neighborhood
already insert the corresponding nodes at such positions that they do not need
to be relocated anymore. Therefore, to calculate RND(Sa, Sb), it suffices to
look for each vehicle k ∈ K at the partial routes SRNDa,k = F1(Sa, Sb, k) and

SRNDb,k = F1(Sb, Sa, k), that is, to look at the sequence of nodes corresponding
with all requests that will not be subject to a relocate request move.

Now, we can calculate the number of moves needed as in equation (29).

RND(Sa, Sb) = RND(SRNDa , SRNDb)

=
∑
k∈K

(
|SRNDa,k | − SS(SRNDa,k , SRNDb,k)

)
(29)

31

Here, the function SS(SRNDa,k , SRNDb,k) determines the length of the longest sub-

sequence in SRNDa,k that is ordered as in SRNDb,k . For example, SS((1, 5, 3, 2, 6, 4),
(1, 2, 5, 3, 4, 6)) equals 4, as the sequence (1, 5, 3, 6) is present in both sequences.
The minimum number of moves is therefore 6− 4 = 2: only the numbers 2 and
4 do need to be replaced.

Note that the distance measure PRD(Sa, Sb) is symmetric, so PRD(Sa, Sb) =
PRD(Sb, Sa).

Symmetry problems
In the RPDPT, a subset of the vehicles might be homogeneous. In the above
definition of the distance measure this may cause very similar solutions to have a
large distance. For example, if in one solution vehicle A executes the same route
as the identical vehicle B in the second solution, the path relinking procedure
will unnecessarily try to transfer all requests from vehicle A to vehicle B.

Therefore, we want to pair vehicles in the one solution with vehicles in the
other solution in such a way that the distance measure is minimized. As the
number of possible assignments is factorial in the size of the homogenous subset
of vehicles, we rely on a greedy heuristic to make the assignment. A random
vehicle from one solution is selected and paired with the vehicle of the other
solution which has the most shared nodes in its route. In order to guarantee the
finiteness of the path relinking algorithm, the same vehicle assignment is kept
until the guiding solution is reached.

5.4.4 Path relinking algorithm

Algorithm 6 describes the procedure for path relinking. In line (2), the best
found solution is initialized. Line (3) initializes the current solution, which
is gradually transformed from Sa to Sb. The algorithm starts in line (5) with
considering all possible moves on the current solution. This can be either relocate
request nodes or replace node moves. The moves that result in a solution which
is closer to the guiding solution than the current solution are stored. In line (6)
the lowest cost solution is picked from this list.

Since the RPDPT is often heavily constrained, it is likely that a move would
result in a solution which is infeasible with respect to the time and capacity
constraints. Therefore, we try to improve each solution in step (7). This step
executes the RuinAndRecreate algorithm with one key difference. If a request
is handled by direct delivery, the recreate methods will never assign the request
to a transshipment point. Also, if a request is handled via transshipment point τ ,
the recreate methods will always send the request via the same transshipment
point. The reason for this adaption is that the main strength of the path
relinking algorithm is that it combines the solution structures of two different
solutions. Since the decisions whether requests are sent via a transshipment
point, and which one, are defining for the structure of the problem, we do not
allow the AugmentedRuinAndRecreate algorithm to change this structure.

32

Algorithm 6 Path relinking

Input: Initial solution Sa and guiding solution Sb
Output: Improved solution S∗

1: function PathRelinking(Sa, Sb)
2: S∗ ← Sa
3: Sc ← Sa
4: while Sc 6= Sb do
5: Store all solutions Sm in the neighborhood of Sc in list L, for which
PRD(Sm, Sb) < PRD(Sc, Sb)

6: Sc ← the feasible solution Sm in L with the lowest Q(Sm). If there
are no feasible solutions, the one with the lowest Q(Sm)

7: S∗c ←AugmentedRuinAndRecreate(Sc)
8: if Q(S∗c) < Q(S∗) then
9: S∗ ← S∗c

10: end if
11: end while
12: return S∗

13: end function

In line (8), the best solution found is stored. If the path from the initial
solution to the guiding solution is completed, the best intermediate solution is
returned in line (12)

5.5 Ant colony optimization framework

The ant colony optimization technique is a metaheuristic that finds it inspiration
in the natural behavior of ants. When ants need to find the shortest path
between their colony and a food source, they start by randomly choosing a
path. Along the way, they all drop a chemical substance called pheromone,
which gives off a smell that decreases in strength over time. When ants choose
a path randomly, they choose paths with a higher level of pheromone with a
higher probability. In this way, the probability that a short path is chosen
increases over time, as the pheromone on short paths has less time to decrease
than the pheromone on long paths. Eventually, all the ants will choose the
shortest path with probability 1.

Our ant colony optimization technique loosely mimics this process. In the
first iteration of the RGPR algorithm, we start with a probabilistic procedure
that constructs and improves a batch of solutions. The quality of these solu-
tions is evaluated solely on the real cost. However, at the end of the first RGPR
iteration, we might discover that good quality solutions exhibit certain charac-
teristics that bad quality solutions do not have and vice versa. We exploit this
information by making it more likely that solutions which are constructed and
improved in the future, will contain the same characteristics as the good qual-
ity solutions. According to the same principle, it will be less likely that future
solutions will contain characteristics that are present in bad quality solutions.

33

5.5.1 Solution characteristics

In this section, we state which solution features will be regarded by the ant
colony framework. The set of solution characteristics should have two properties.
First of all, it should fully define the solution, that is, there is exactly one
solution that satisfies a given set of solution characteristics. This property
is needed in order to effectively steer the algorithm in making good quality
solutions. Secondly, if a solution characteristic is present in a certain partial
solution, it should also be present in the solution if more requests are added
to this solution. This property ensures that the algorithm does not become
short-sighted in focusing on partial solutions, but aims at finding good quality
complete solutions.

We will use the following solution characteristics variables:

ξ1nmS =

{
1 if node m is handled after node n by the same vehicle in solution S

0 else;

ξ2nkS =

1 if node n is handled by a vehicle with the same vehicle type as

vehicle k in solution S

0 else;

This set of solution characteristics satisfies both properties. Note that in the
definition of ξ1nmS , this variable is also set to 1 if there are some nodes between
n and m: m does not have to be directly after node n, as this would not satisfy
the second property.

5.5.2 Pheromone update

At the final stage of a RGPR iteration, the pheromone levels ξ1nm and ξ2nk
associated with each solution characteristic are updated in the following way:

ξ1nm ← (1− ρ)ξ1nm +
H

|§|
∑
S∈§

ξ1nmS
COST (S)

(30)

ξ2nk ← (1− ρ)ξ2nk +
H

|§|
∑
S∈§

ξ2nkS
COST (S)

(31)

Here, COST() is the functions that evaluates the real cost of a solution, § is
the set of the newly generated solutions in the current RGPR iteration and
ρ ∈ [0, 1] is the pheromone evaporation coefficient that determines the degree of
influence of previous iterations on the next one. H is a constant scaling param-
eter. From equations (30) and (31), it becomes apparent that characteristics
exhibited by low-cost solutions are awarded a higher amount of pheromone than
characteristics exhibited by high-cost solutions.

34

5.5.3 Solution quality evaluation

The total amount of pheromone ξS associated with a solution S can straight-
forwardly be calculated as

ξS =
∑
n∈N

∑
m∈N

ξ1nmξ
1
nmS +

∑
n∈N

∑
k∈K

ξ2nkξ
2
nkS . (32)

The function that evaluates the quality of a solution is given in equation (33).

Q(S) =
(COST (S))

α

(ξS)
β

(33)

The quality function Q(S) is decreasing in the real cost of the solution S and
is increasing in the amount of pheromone associated with the solution. The
values of the parameters α and β jointly define the influence of both factors on
the solution quality. If α � β, the ant colony part of the RGPR is turned off.
If β � α, the real costs are not considered anymore and we would quickly get
stuck in local optima.

6 Results

In this section, we describe the obtained results of the RGPR algorithm. The
algorithm was implemented in JAVA and executed on a computer with a 2.7GHz
Intel Core Processor and 16 GB of RAM. First, we give a description of the
used data and secondly, we evaluate the performance of the algorithm and the
influence of different cross-docking policies on the costs.

6.1 Data

6.1.1 Data from literature

As our problem is relatively new in literature, there is only one dataset publicly
available that closely resembles our problem structure. This is the dataset of Qu
and Bard [2012], which these authors made available on request. These problem
instances lack the presence of a heterogeneous fleet, fixed and variable costs and
loading or unloading times. However, these factors do not heavily define the
problem structure. The most important aspect which makes this dataset suit-
able for us is that there is no obligated order of picking-up, delivering, loading
or unloading operations, just like in our problem description.

Qu and Bard [2012] were only able to solve instances with six requests and
two vehicles to proven optimality. As this instance size is generally too small to
test the quality of an algorithm, they expended the solved instances to instances
with 25 requests in such a way that the optimal solution remained the same.
This is done by adding requests along the optimal route, with feasible time
windows and loads.

35

Although this method is a creative way of getting optimal solutions to large
instances, there are some drawbacks to the resulting dataset. Firstly, it turns
out that it is quite hard to find a feasible solution for these instances. Since
the locations of the extra nineteen suppliers and customers and the loads of
the associated requests are all derived from the optimal solution of the instance
with six requests, it becomes harder to satisfy these requests in a suboptimal
route. Secondly, if a solution is feasible, it is likely that the objective value is
close to the optimum, which biases the results of solved instances towards good
solutions. In their paper, Qu and Bard [2012] report that they could not find a
feasible solution for a large part of their instances.

Another drawback of this dataset is that the number of cross-docking op-
erations in the optimal solutions is low. Typically, only one or two of the 25
requests are cross-docked, which makes the dataset unsuitable to evaluate our
algorithm that focuses on optimizing cross-docking operations.

There are other datasets in literature with reported optima, such as the
dataset of Wen et al. [2009] and Dondo and Cerdá [2013]. However, their prob-
lem instances differ from our problem description in two important ways. Firstly,
they require that all pick-ups should happen before deliveries. Secondly, they
require that each vehicle visits a cross-dock in between and only once. Santos
et al. [2013] drop the second requirement, and reports the resulting optima of
instances that are based on those of Wen et al. [2009]. Therefore, their dataset is
the closest to our problem description after those of Qu and Bard [2012]. How-
ever, for some instances, our algorithm did find feasible solutions with lower cost
than their reported optima. We thoroughly verified the feasibility and cost of
our solutions, and can only conclude that at least some of the reported optima
of Santos et al. [2013] are incorrect. This makes their dataset unsuitable for
benchmarking our algorithm.

In summary, there are no suitable instances in literature that can be used to
compare the results of the RGPR-algorithm with optima. Therefore, we focus
on analyzing the performance of our algorithm in relation to the computation
time. Also, we investigate how different routing policies influence the cost.

The dataset of Santos et al. [2013] is used for these purposes. The data is
generated from a real dataset of Transvision, a Danish logistics company. There
are 200 supplier-customers pairs which all require a number of pallets. The sup-
pliers are mostly located in Zealand, the eastern part Denmark. The customers
are situated in Jutland, which is the western part of Denmark. Both customers
and suppliers have time windows which are generally two hours long. There is
one cross-dock, situated in the western part of Jutland, near Copenhagen. All
vehicles start at this cross-dock and should be back there at the end of the day.

Santos et al. [2013] extracted part of these supplier-customer pairs, resulting
in instances with 10, 15, 20, 25 and 30 requests with respectively 4, 6, 7, 9 and 10
homogeneous vehicles. For each size, five different instances are created. We
refer to each instance with a code that is the number of requests, followed by
a letter from the alphabet. For example, we refer to the third instance of the
instances with 25 requests with the code 25c.

36

6.1.2 Data from ORTEC

The dataset from ORTEC comes from a Chinese distribution company. In order
to test improvement to case-related software improvements, they use a test case
that is based on the data of this company. Each request has to be picked up
at one of the 23 suppliers, and has to be delivered to a final DC. Furthermore,
there are three cross-docks which can be used. The geographical distribution of
all locations is such that all three cross-docks are situated between the pick-up
and delivery location. The company has access to a diverse heterogeneous fleet.
It has eight vehicles with a capacity of two tonne, four vehicles with a capacity
of five ton and six vehicles with a ten ton capacity. Each of these vehicles starts
at one of the 23 pick-up points and should be returned to the same location.
Furthermore, there are three fifteen and three thirty ton vehicles, dispersed over
the three cross-docks.

In the original case, loads and capacities are three-dimensional. Since our
algorithm can only handle one-dimensional loads, the three-dimensional loads
are mapped to a one-dimensional load, in such a way that a solution which was
provided for this case is still feasible in terms of capacity. Furthermore, different
variable costs are associated with each vehicle type. All the precise case data is
available on request.

In this case, the distribution company has additional requirements for the
vehicle routing process. The small trucks of two, five and ten ton can only be
used for local pick-ups. If used, these vehicles have to deliver their requests to
a cross-dock. Only the big trucks of fifteen and thirty ton can do deliveries.
Additionally, the big trucks can do at most three stops besides the start and
end location. Direct delivery by a big truck is a possibility.

Most importantly for our analysis purposes, the company uses static cross-
docking, meaning that it has pre-assigned each request to one of the three
cross-docks. This implies that each request either has to be handled by a direct
delivery, or is handled via its designated cross-dock. Each request is assigned to
that cross-dock for which the difference between the travel distance for direct de-
livery and the travel distance with cross-docking is the smallest. Our algorithm
can deal with these constraints by marking all solutions that do not adhere the
constraints as infeasible. Section 6.9 analyses the gains from using a dynamic
cross-docking policy instead of the described static cross-docking policy.

6.2 Parameter settings

In this section, we describe how the parameter values were chosen. Section
6.2.1 states the parameters that need to be tuned and section 6.2.2 describes
the tuning process.

6.2.1 Parameters

The parameters that need to be tuned are the size of the option list nmaxC for
each greedy insertion, the maximum number of removed requests umax in the

37

ruin methods, the parameters θ1, θ2, θ3 and θ4 that determine the weight of
each component of the relatedness measure, the number of evaluated insertion
positions k in the regret-k insertion heuristic, the parameters αc and αs that
determine the degree of randomness in respectively the cluster removal and the
Shaw removal heuristic, the rate of change r in the weight updates of the heuris-
tics and the parameters H, ρ, α and β that shape the function that evaluates
the quality of a solution in the ant colony framework.

Furthermore, a trade-off between solution quality and computation time has
to be made in choosing the number of improvement iterations per solution iterrr,
the number of unsuccessful improvement iterations before increasing u, iteru,
the number of RGPR iterations iterrg, the number of improvement iterations
in the path relinking procedure iterpr and the batch size b.

6.2.2 Parameter tuning

We use a two stage strategy to determine the parameter values. First of all, a
parameter setting is obtained by an ad-hoc trial-and-error phase. These param-
eter values are found while developing and testing the heuristic. In the second
phase, these parameter values are improved by changing one parameter value,
while keeping all the others fixed. We start by changing the value of the first
parameter. The heuristic is applied on the instances 10a, 15a, 20a and 25a. For
each instance, the average value of the best 10 solutions found by the heuris-
tic under the new parameter value is compared with the average value of the
best 10 solutions found by the heuristic under the initial parameter value. The
percentual deviation of these values is averaged over the four instances. The
parameter value which leads to the best results is chosen.

Given this new value for the first parameter, the second parameter undergoes
the same process, and so on until all parameter values are handled. We repeat
this process two more times in order to arrive close to a local optimum.

The parameters iterrr, iteru, iterrg, iterpr and b do not go through the second
phase, as these parameter values should be evaluated in terms of solution quality
versus computation time.

The parameter tuning results in the parameter vector (nmaxC , umax, θ1, θ2, θ3,
θ4, αc, αs, r, iterrr, iteru, iterrg, iterpr, b,H, ρ, α, β) = (4, 0.25, 2, 5, 3, 1, 5, 4, 0.2,
100, 5, 6, 5, 25,−,−,−,−). Furthermore, the solution quality appeared to be
insensitive to the parameter values of θ1, θ2, θ3, θ4 and αs. No satisfying values
were found for the parameters H, ρ, α and β, as further discussed in section 6.4.

6.3 Effectiveness of GRASP

The GRASP construction phase chooses an insertion randomly from the best
nmaxC insertions. Therefore, it is a hybrid algorithm that positions itself between
two extremes. The first extreme is a purely random multi-start procedure,
that chooses an insertion randomly out of all possible insertions (nmaxC = ∞).
This algorithm produces bad, but diverse solutions. The second extreme is a
greedy algorithm, that chooses always the least-cost insertion (nmaxC = 1). This

38

∞ 100 30 20 15 10 5 4 3 2

2,500

3,000

3,500

nmaxC

so
lu

ti
o
n

va
lu

e
Average all solutions

Average best 10 solutions

Figure 3: Influence of nmaxC on effectiveness GRASP

algorithm produces only one solution, albeit of better quality. In this section, we
evaluate the relation between the value of nmaxC and the effectiveness of GRASP.

To show the influence of this parameter on GRASP, we run the construc-
tion phase 500 times on instance 15a for different values of nmaxC , ranging from
infinity to two. Figure 3 shows the average objective value over these 500 so-
lutions, together with the average objective value of the best 10 solutions for
each parameter setting. As expected, the average objective value declines as
the construction phase becomes less random. However, the average objective
value increases again after nmaxC = 4, which indicates that for these values the
construction phase is not very diverse and gets stuck in local optima. This
presumption is strengthened by the observation that the average solution value
of the best 10 solutions sharply increases if nmaxC is changed from 3 to 2. This
also indicates that the degree of randomness becomes too low to avoid local
optima. Figure 3 shows that a value of nmaxC = 4 results in both good average
solutions, as well in enough randomness to provide a diverse batch of solutions
to the improvement phase.

6.4 Effectiveness of the ant colony framework

The ant colony framework aims to alter the quality evaluation function for each
solution in such a way that solutions with a low value are more likely to be
created by the construction or improvement algorithm. If the framework is
effective, we would see that the average solution value of a solution batch would
decrease each RGPR iteration. However, we are not able to find parameter
settings for which this is the case, proving that the ant colony framework is not
an effective addition to the RGPR algorithm. In this section, we will give a

39

possible explanation why this is the case.
The main reason for the poor performance of the ant colony framework

is that solutions which are very different can have a relatively large amount
of the same solution characteristics. Consider for example the routes A =
(1, 2, 3, 4, 5, 6, 7, 8), B = (2, 1, 4, 3, 6, 5, 8, 7) and C = (1, 2, 3, 4, 5, 6, 7, 9). Not
a single leg of route A is present in route B, but they still share 24 of the 28
solution characteristic variables ξ1. In contrast, route A and C are very similar,
but they share only 21 of the 28 solution characteristic variables, less than A
shares with B.

The proposed ant colony framework therefore cannot effectively recognize
solution traits. This makes the steering mechanism inadequate. The remaining
results in this section are given for parameter values α = 1 and β = 0, effectively
disabling the ant colony framework.

6.5 Computation times

6.5.1 Influence of time improvements

In this section, we analyze the reduction in computation time that results from
the improvements described in section 5.2.5. In order to gain more insight, a
new instance 35a is created by duplicating 5 random requests from instance 30a.
Since all the proposed improvements are applied in the construction phase, we
compare only the computation times for this phase. For the instances 10a, 15a,
20a, 25a, 30a and 35a the construction phase is run a 100 times, and the average
computation time is calculated. Testing showed that the variance of the average
computation time is negligible over a 100 runs. This process is repeated, but
then the construction phase is executed without enabling the improvements.
Figure 4 shows the resulting computation times.

We should note that the results of figure 4 are very much dependent on
the specific problem instance. In general, we expect the computational gain
factor to be larger if the instance is more tightly constrained. In this case, it is
more likely that we can anticipate infeasibility or that we arrive too late at a
node, which would result in a reduction in the number of the possible insertion
positions that need to be checked. Also, we expect the computational gain
factor to be larger for instances with a higher request-to-vehicle ratio. In this
case, it is more likely that we can cut down the number of checked possible
double insertion combinations. Since our instances are only moderately tight
constrained, and since a vehicle handles on average only around three requests,
the computational gain factor is relatively small and around 8. We also came
across instances with a computational gain of a factor 60.

Since the two lines in figure 4 are more or less parallel, we conclude that
the computational gain factor is independent of the instance size. Following the
reasoning in the previous paragraph, this makes sense, as the instances do not
differ in how tightly constrained they are and in their request-to-vehicle ratio.
For these instances, the performance improvements allow us to solve instances
with around 10 requests more in the same amount of time.

40

10 15 20 25 30 35

10−1

100

101

number of requests

av
er

a
g
e

co
m

p
u

ta
ti

on
ti

m
e

(s
) Improved

Not improved

Figure 4: Computation time comparison with and without performance im-
provement

6.5.2 Time consumption per phase

Table 2 shows the computation time averaged over five instances. Clearly, the
time needed for the construction phase is only a fraction of the total time needed.
Since the recreate procedure in the improvement phase uses the construction
procedure, the time efficiency of this procedure mainly becomes apparent in the
computation times of the improvement phase.

Table 2: Average computation time per phase

Number of requests
10 15 20 25

Construction (s) 0.8 4.5 16.0 38.7
Improvement (s) 48.1 142.6 308.6 529.4
Path relinking (s) 13.8 92.3 501.5 1610.2

The time needed for path relinking rapidly increases in the size of the in-
stance. Note that the augmented improvement phase is called every time a
new neighbor solution is accepted. If we compare the increase in computation
time of the improvement phase with the increase in time of the path relinking
phase, we see that both stages need more time due to the increased instance size,
which makes the (augmented) improvement phase more complex. However, in
the path relinking phase, the number of times that this procedure is called also
increases, due to the larger distance between solutions. This leads to the fact
that computation times for the path relinking phase increase faster.

41

6.6 Effectiveness per improvement heuristic

The quality of each improvement heuristic relative to each other can be deduced
from the roulette wheel probabilities in equation (25). Due to the way the
weights are calculated, if at the end of the algorithm a heuristic has a high
probability of being chosen, it means that it was often able to improve the
incumbent solution in the improvement phase. Since the resulting probabilities
are similar for each instance, table 3 displays these probabilities, averaged over
all instances.

Table 3: Effectiveness per improvement heuristic

Heuristic Probability Heuristic Probability
Random removal 0.21 Random insertion 0.28
Shaw removal 0.21 Greedy insertion 0.33
Route removal 0.20 Regret insertion 0.39
Transshipment removal 0.18
Cluster removal 0.20

Table 3 shows that the ruin methods perform equally well, while the recreate
methods differ in performance. Apparently, it matters more to build a solution
in a smart way, than it matters to destroy the solution smartly. We see that
the greedy insertion heuristic outperforms the random insertion heuristic, which
corresponds with the results in section 6.3. Furthermore, the regret insertion
heuristic performs best. Because of the look-ahead feature of this heuristic, it
is more likely to produce feasible and low-cost solutions.

6.7 Relative effectiveness of RGPR phases

On average, the improvement phase reduces the average solution value with
12.5%. Furthermore, executing the path relinking procedure after the improve-
ment phase reduces the average solution value with an additional 2.3%. The
path relinking procedure is more effective in the later batches than in the early
batches. This is due to the fact that the average quality of the elite pool in-
creases each batch. Each solution is paired up with a better elite solution, which
increases the quality.

6.8 Comparison routing policies

The routing policy studied in this thesis is more complex than that of the
most commonly studied PDPCD’s. The main complex feature is that direct
deliveries are allowed and that there is no prescribed order of pick-ups, deliveries
and cross-docking. In this section, we analyze the gain of incorporating these
complex features by comparing best solutions. In the unconstrained version,
we solve each instance with the problem structure as defined in section 3. The
constrained version requires that each vehicle visits the cross-dock once, and

42

that all pick-ups happen before the deliveries. Table 4 shows the difference
between the best solutions found for each instance.

Table 4: Best solutions for constrained and unconstrained instances

Instance
10a 10b 10c 10d 10e

Constrained 1415 2108 1922 1513 1879
Unconstrained 1415 2063 1902 1513 1879

Instance
15a 15b 15c 15d 15e

Constrained 2421 2931 2561 2478 2851
Unconstrained 2392 2895 2516 2413 2805

Instance
20a 20b 20c 20d 20e

Constrained 3257 3434 3209 3454 2997
Unconstrained 3057 3342 3126 3411 2914

Instance
25a 25b 25c 25d 25e

Constrained 4128 4498 3641 4219 4084
Unconstrained 4034 4311 3545 4107 4001

Three of the five small instances with 10 requests have the same solution
under both routing policies. For all other instances, a more liberal routing
policy results in a cost reduction. Note that this reduction is larger for the
bigger instances. The average gain of the instances with 10 requests is 0.6%,
while the average gain of the 25-request instances is 2.84%.

These gains are sizable, especially when we consider the data structure of
the instances. The instances originate from a case where the pick-up locations
are clustered east from the cross-dock, while the delivery locations are clustered
west from the cross-dock. This makes that the optimal solution under the
unconstrained routing policy automatically will contain routes that are also
feasible under the constrained routing policy. However, even with this data
structure, routing costs can be decreased by deviating from the most commonly
used constrained routing policy.

6.9 Comparison of static and dynamic cross-docking

A comparison between static and dynamic cross-docking is made by solving
the case of the Chinese distribution company. First, we run the algorithm for
the case of static cross-docking: solutions in which a request is handled by a
non-assigned cross-dock are considered infeasible. Then, we run the algorithm
again without this restriction. The algorithm itself determines the best cross-

43

dock location for each request. When we use dynamic cross-docking instead of
static cross-docking, the structure of the solution changes. Only thirteen of the
23 request routes remain unchanged. Furthermore, less vehicles are required.
In both solutions, four big trucks are used, but the number of small trucks
used declines from six to three. Small trucks can pick their pick-up routes
more efficiently since they are not forced to visit certain cross-docks. Most
importantly, when using dynamic cross-docking, the costs decrease with 2.7%
from 607.7 to 591.0.

This cost decrease is remarkably large when we take a closer look at the prob-
lem structure of this distribution company. When each request has a different
pick-up and delivery location, cross-docking also has the function of consolidat-
ing requests with distant pick-up locations and close delivery locations and vice
versa. Each cross-dock then serves its own geographical area. However, since
in our case all the requests have the same delivery locations, this functionality
of cross-docks becomes less important. This means that the gains of using dy-
namic cross-docking instead of static cross-docking are expected to be smaller
when there is only a single delivery location. Since in this case, there are still
gains of 2.7%, we expect that gains in cases with dispersed delivery locations
will be even larger.

7 Conclusions

In this thesis, we studied a new complex problem that has its roots in the
PDPCD literature. We clearly define this problem and give a mathematical
formulation for it, which is our first contribution. Our main contribution is that
to solve this problem, we developed an heuristic that combined a constructive
GRASP algorithm with a ruin and recreate procedure and path relinking and
embedded this in an ant colony optimization framework.

We applied our heuristic to 20 different instances, and found that GRASP,
ruin and recreate and path relinking are an effective combination. The ant
colony framework was not effective, as it failed to harmonize with the other parts
of the algorithm. Furthermore, we showed that sizable gains can be achieved by
having a more liberal routing policy than the one most used in literature, even
for problem instances that seem to be tailored for those conservative policies.

Using dynamic instead of static cross-docking lowers cost with 2.7%. We
deem that to be a conservative estimate of the average savings companies will
obtain by applying this dynamic assignment of cross-docks.

For further research, the main step would be to benchmark our heuristic
against optimal solutions, or against the performance of other heuristics. Cur-
rently, there is no suitable benchmark data available. Such benchmarking would
provide more insight in the quality of the heuristic.

To our knowledge, the ant colony optimization method has never been ap-
plied to cross-docking problems. We attempted to incorporate ant colony opti-
mization by making use of solution characteristics that fully define a solution.
Due to the fact that the heuristic makes abundantly use of insertion opera-

44

tions, this method fails. This removes the reactive part from our algorithm.
Further research could investigate whether more simple solution characteristics
that focus on only a few features of the solution will be more effective.

Our heuristic only makes a few assumptions about the structure of problem
instances. On the one hand, this makes that our heuristic can be applied to a
wide variety of problems. On the other hand, the quality of the heuristic may
decrease as it makes use of general methods that cannot make use of many data
structures. Therefore, it could be useful to tailor our heuristic for different sets
of problem instances, and see if the performance improves.

References

Dwi Agustina, CKM Lee, and Rajesh Piplani. A review: Mathematical modles
for cross docking planning. International Journal of Engineering Business
Management, 2(2):47–54, 2010.

Roberto Baldacci, Eleni Hadjiconstantinou, and Aristide Mingozzi. An ex-
act algorithm for the capacitated vehicle routing problem based on a two-
commodity network flow formulation. Operations research, 52(5):723–738,
2004.

Geoff Clarke and John W Wright. Scheduling of vehicles from a central depot
to a number of delivery points. Operations research, 12(4):568–581, 1964.

Rodolfo Dondo and Jaime Cerdá. A sweep-heuristic based formulation for the
vehicle routing problem with cross-docking. Computers & Chemical Engi-
neering, 48:293–311, 2013.

Thomas A Feo and Mauricio GC Resende. Greedy randomized adaptive search
procedures. Journal of global optimization, 6(2):109–133, 1995.

Fred Glover, Manuel Laguna, and Rafael Mart́ı. Fundamentals of scatter search
and path relinking. Control and cybernetics, 29(3):653–684, 2000.

Gianfranco Guastaroba, Maria Grazia Speranza, and Daniele Vigo. Interme-
diate facilities in freight transportation planning: A survey. Transportation
Science, page (to appear), 2015.

Bahar Y Kara and Mehmet R Taner. Hub location problems: The location
of interacting facilities. In Foundations of location analysis, pages 273–288.
Springer, 2011.

Jiyin Liu, Chung-Lun Li, and Chun-Yan Chan. Mixed truck delivery systems
with both hub-and-spoke and direct shipment. Transportation Research Part
E: Logistics and Transportation Review, 39(4):325–339, 2003.

Vinicius WC Morais, Geraldo R Mateus, and Thiago F Noronha. Iterated local
search heuristics for the vehicle routing problem with cross-docking. Expert
Systems with Applications, 41(16):7495–7506, 2014.

45

Viet-Phuong Nguyen, Christian Prins, and Caroline Prodhon. Solving the two-
echelon location routing problem by a grasp reinforced by a learning process
and path relinking. European Journal of Operational Research, 216(1):113–
126, 2012.

Yuan Qu and Jonathan F Bard. A grasp with adaptive large neighborhood
search for pickup and delivery problems with transshipment. Computers &
Operations Research, 39(10):2439–2456, 2012.

Mauricio GC Resendel and Celso C Ribeiro. Grasp with path-relinking: Recent
advances and applications. In Metaheuristics: progress as real problem solvers,
pages 29–63. Springer, 2005.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Trans-
portation science, 40(4):455–472, 2006.

SJ Sadjadi, Mostafa Jafari, and T Amini. A new mathematical modeling and
a genetic algorithm search for milk run problem (an auto industry supply
chain case study). The International Journal of Advanced Manufacturing
Technology, 44(1-2):194–200, 2009.

Fernando Afonso Santos, Geraldo Robson Mateus, and Alexandre Salles
Da Cunha. A novel column generation algorithm for the vehicle routing prob-
lem with cross-docking. In Network Optimization, pages 412–425. Springer,
2011.

Fernando Afonso Santos, Geraldo Robson Mateus, and Alexandre Salles
Da Cunha. The pickup and delivery problem with cross-docking. Computers
& Operations Research, 40(4):1085–1093, 2013.

Gerhard Schrimpf, Johannes Schneider, Hermann Stamm-Wilbrandt, and
Gunter Dueck. Record breaking optimization results using the ruin and recre-
ate principle. Journal of Computational Physics, 159(2):139–171, 2000.

Paul Shaw. A new local search algorithm providing high quality solutions to
vehicle routing problems. APES Group, Dept of Computer Science, University
of Strathclyde, Glasgow, Scotland, UK, 1997.

M SteadieSeifi, Nico P Dellaert, W Nuijten, Tom Van Woensel, and R Raoufi.
Multimodal freight transportation planning: A literature review. European
journal of operational research, 233(1):1–15, 2014.

Christos D Tarantilis. Adaptive multi-restart tabu search algorithm for the
vehicle routing problem with cross-docking. Optimization letters, 7(7):1583–
1596, 2013.

Min Wen, Jesper Larsen, Jens Clausen, Jean-François Cordeau, and Gilbert
Laporte. Vehicle routing with cross-docking. Journal of the Operational Re-
search Society, 60(12):1708–1718, 2009.

46

