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Abstract

Many companies and marketers need to decide which features and characteristics to include
in a product. This research develops a novel algorithm for Choice Based Conjoint Analysis
On-The-Fly (CBC-OTF). The goal of CBC-OTF is to find a global optimal alternative among
thousands or even millions of possible products with respect to an individual and population
level criteria. We iteratively drop uninformative levels, features, from the design in order to
quickly converge to the best configuration. A novel approach using Fedorov algorithm for
faster and more efficient designs is used. By using an aggregated logit model we manage to
get utility part-worths for the non-removed levels with very low computational costs and high
precision. Repeated simulations show that the candidate global optimum reached deviates on
average less than 15% from the individual optimal product. If a standard approach is used
i.e. CBC with no level removal, the deviation increases to 35%. If optimality at population
level is considered, precision is not very high, 35% of predictions are correct.

Keywords: Conjoint Analysis, Design generation, CBC, D-Efficiency

JEL: C15, C39, C9, M3
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1 Introduction
Many companies usually face the problem of deciding which product they should produce and
commercialize. This is not a trivial question, the amount of sales will depend on how the product
is positioned in the market and how well aligned it is with consumer preferences. The selection of
the adequate product, in terms of features and characteristics, becomes paramount.

Any product in the marketplace is conformed by a different set of features which can take many
different forms and shapes; for instance, the color of a soda can, the level of sugar, the font of the
label etcetera. But which is the right combination of features of a product that make it the most
attractive to the great majority of consumers? This research presents a new methodology to give
an answer to this frequent issue managers face.

The usual approach among marketers and market research agencies is based on Conjoint Anal-
ysis. This is a statistical technique that aims to retrieve valuation of the different characteristics of
a product by asking people to rate them. Recent developments in the field have gone in the line of
using Choice-Based Conjoint Analysis (CBC) as main method to retrieve information on the valu-
ation of features. A main goal is to retrieve the exact utility value of all attributes. This technique
consists of showing respondents product profiles, that is, feasible combinations of attributes that
shape a product, and asking them to select their preferred one among several different profiles.
This approach has some advantages: it is integrated in the most important statistical softwares like
SSI and SAS, it is a straightforward procedure from a methodological standpoint and it allows one
to estimate interaction between attributes. However, it also suffers from some important short-
comings: There is no actual learning during the data collection process. This in turn leads to less
insightful utility estimates because the tasks presented are not improved during the survey as we
do not use the information that respondents provide. Furthermore, traditional CBC requires large
amounts of respondents to get precise estimates given that there are many trade-offs to evaluate.
This means increased economic costs to undertake a traditional CBC study. In addition, the fact
that it is part of many important statistical software packages can become a problem in practice:
there is little room for customization, meaning that very little improvement can be done in the
existing code.

This research proposes a novel approach to conduct CBC studies by using past respondents
information. The objective is to reduce the space of alternatives iteratively up to the point that
the most valued alternative is left. Traditional CBC studies generate a design and ask to a large
fixed amount of respondents so as to obtain utility part-worths per level. Our proposal consists
of conducting several CBC studies each with few respondents, and on each iteration removing the
least informative levels from the design. This way we can maximize the information retrieved from
respondents choices in a more efficient way. Furthermore, we are not interested in the exact value
of all levels, we are interested in the relative value of the utilities of each level with respect to the
others. This poses an important efficiency increase as we only look for the best alternative rather
than analyzing the whole space of possibilities. Notice that an important feature of the current
research is that we allow to estimate categorical variables and main effects.

This research starts by analyzing how optimal designs have to be generated in order to con-
duct next CBC studies. A novel combination of traditional techniques with modern methods is
explained i.e. Fedorov Algorithm. Then how parameter estimation is performed using Multinomial
Logit Model. An important part of this Thesis is focused on understanding how to remove uninfor-
mative levels from the design in an iterative way. Finally, an extensive evaluation and application
with simulated and real datasets is conducted to inspect how well the approach works.

Although at first sight another technique such as Adaptive Choice Based Conjoint Analysis
(ACBC) may look similar, it is a completely different method from the one here proposed. Gener-
ally, ACBC tries to unveil part-worth utilities by generating a design with alternatives that slightly
deviate from a user-defined most preferred alternative. This implies that the respondent has to
define and create his preferred alternative beforehand. Then the space of alternatives is immedi-
ately reduced to those alternatives that are similar, with small deviations, from the user-defined
choice.
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The main goal of ACBC is to retrieve part-worth utilities to understand what features are im-
portant. In contrast, this research tries to reduce the whole space of possibilities iteratively until
we get the best, most preferred, alternative. The approach here proposed aims to fill in the gap in
the literature on CBC and propose a novel algorithm for CBC On-The-Fly (CBC-OTF).

This novel algorithm is intended to set the basis for further research in this direction as well as
to serve as a practical tool for SKIM. The use of such an algorithm represents a step forward in
Conjoint Analysis and an innovative technique in the Market Research field.
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2 Literature Review
Conjoint Analysis is a very popular market research technique which has been used for more than
forty years. It was introduced by Green and Rao (1971) and Green and Wind (1975) and they
set the foundations of the field. They proposed a method to obtain valuations of the different
characteristics of a product by asking people to rate them. Some developments on how to conduct
conjoint analyses were done some years later by Green and Srinivasan (1978). Later contributions
like those proposed by Louviere (1988) and Green and Srinivasan (1990) broadened the scope of
the techniques, for instance by introducing CBC which aims to unveil part-worth utilities by asking
respondents to select a product among several.

The need to develop faster and more efficient algorithms to design experiments was soon clear.
The size of a full factorial design increases exponentially when increasing either the amount of
attributes or levels. Several methods on Design of Experiments (DoE) were presented since the
70’s on. They all have in common that the design is optimized with respect to some criterion. A
design is said to be efficient when the parameters of the choice model are estimated with maximum
precision (Zwerina et al., 1996). The natural approach is to generate an orthogonal design (Green
and Rao, 1971) because of the extremely efficiency levels that it manages to achieve, however this
is not always possible, for that reason we may seek other optimal approaches.

The most used optimal design is the D−Optimal design which tries to minimize the inverse of the
OLS information matrix. Another approach is to use G−Optimality, where G is the criterion that
minimizes the maximum variance in the experimental region (Wheeler, 2004). I−Optimality tries
to minimize the average prediction variance. A−Optimal design seeks to minimize the trace of the
variance-covariance matrix. V −Optimality minimizes the average prediction variance in the design
space. Although they optimize with respect to different criteria these approaches have common
characteristics. For instance when considering an OLS model, Lucas (1974) suggests that the best
design in terms of D−Efficiency coincides with the best design in terms of G−Efficiency. Similarly
Donev and Atkinson (1988) developed that D−Efficient designs are usually G− and V −Efficient.
In addition, Chasalow (1992) discovered that designs that are A−Optimal have usually a poor
performance with respect to D−Optimality. All these Optimality designs are discussed more in
detail in Huber and Zwerina (1996) and Reliasoft Corporation (2015).

D−Efficient choice designs are characterized by four different properties, as explained in Huber
and Zwerina (1996). The first condition is orthogonality meaning that levels within attributes
have to be independent from each other. The second one is level balance, each level appears with
same frequency. Minimal overlap, the third property, which states that each alternative within a
choice set does not have overlapping attribute levels. The fourth condition is utility balance, in the
sense that within each choice set the utilities of alternatives are the same. In addition, the third
property only makes sense for choice designs as the contrasts between attribute levels only are only
meaningful compared to others within a choice set.

Having these conditions in mind there are several algorithms to achieve D−Optimality when
dealing only with categorical variables. The most spread algorithm among marketers is an ex-
change algorithm developed by Fedorov (1972). This algorithm starts with a full factorial design
and exchanges points with a candidate list. In every iteration the model computes the determinant
of the information matrix. After using several random starts eventually it converges to a candi-
date global minimum. This procedure is quite slow. For this reason Atkinson and Donev (1989)
consider a modified exchange algorithm, so-called BLKL, where only those candidate points with
the largest prediction variance are exchanged for those with the smallest prediction variance of
the design. Another exchange algorithm to achieve a D−Optimal is that one proposed by Meyer
and Nachtsheim (1995), which only exchanges one factor level at a time. This leads to very low
computational costs. Other valid approaches to generate D-Efficient designs but less popular are
those proposed by Wynn (1972) where the added and deleted point are determined in different
steps. Näther (1985) proposed an extension of this model to any kind of variance-covariance ma-
trix. Mitchell (1974) proposed the DETMAX algorithm which makes the size of the design vary
during the search procedure. Finally, Sandor and Wedel (2005) develop more extensively in the
generation of heterogeneous designs.

7



However, Cook and Nachtsheim (1980), Galil and Kiefer (1980), Johnson and Nachtsheim
(1983) and Nguyen and Miller (1992) arrive to the same conclusion: Fedorov algorithm requires
more computation time than the other algorithms, but it manages to produce better designs.

Once the design is generated and the survey is distributed to respondents one has to compute
part-worth utilities. This is done by the classical approach of Multinomial Logit Model proposed
by Cox (1958) and Walker and Duncan (1967). A general overview of choice modeling on the
Conjoint Analysis field is discussed in Chrzan and Orme (2000). In order to improve the accuracy
and stability of parameter estimates a common approach is to combine part-worth utilities with
Hierarchical Bayes Halme and Kallio (2011). In addition, this procedure allows for heterogeneity
among respondents. For this purpose the use of MCMC techniques like Gibbs sampling Casella
and George (1992) and Thompson (1933) become necessary. More developed Bayesian concepts
can be found in the book written by Gelman et al. (2014). However, less computational intensive
techniques such as mixed logit might be considered in order to speed up the algorithms.

Finally, in order to create an algorithm for design generation on-the-fly it is necessary to use cri-
teria to assess which levels should be removed in each iteration so as to obtain a new more insightful
design. For that reason we need to compare between probability distributions. A widespread and
useful measure to assess if two distributions are similar is the Kolmogorov-Smirnov Test Massey Jr
(1951) and Lilliefors (1967). Other authors like Wilcox et al. (2014) develop different methods to
compare independent groups via lower and upper quantiles. Bayesian methods for the comparison
of distributions are also interesting approaches like those proposed by Borgwardt and Ghahramani
(2009) and Betancourt (2010). This research focuses on comparing distributions by integrating the
common area shared.

Notice that this research represents a new line of research in Choice-Based Conjoint Analysis.
A relatively new and similar method to that proposed here is Adapative Choice-Based Conjoint
Analysis which departs from a user-defined best alternative, as explained in detail by Huber et al.
(2003). Although there are similarities like the optimization of tasks, there are huge differences:
in ACBC, the user-defined task reduces the space of possibilities to its neighbors meaning that the
initial choice has large influence in subsequent tasks Toubia et al. (2004). Hence other methods
for obtaining an Optimal design are used. Only very few attributes, 2 or 3, vary in every task and
every certain tasks the respondent has to answer if a certain level is unacceptable. Although this
caveats, ACBC usually leads to better results compared to traditional CBC by accepting the fact
that results may be biased to some extent by the initial choice Green et al. (1991).
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3 Choice Based Conjoint Analysis
Each and every day we face the dilemma of which product to choose in the marketplace. Some
decisions are trivial and easy to do, for instance if we want a white or black chocolate bar. Oth-
ers involve a thorougher evaluation of the possible trade-offs as they are complex, because of the
amount of features or by the inherent complexity of the product, for example an insurance plan.
However, in both examples a decision making process is involved, which usually leads to a com-
parison between competing alternatives. Consumers make their decisions based on their individual
preferences which may be or may not be aligned with overall market preferences. But what features
have more importance in the process of evaluation? What trade-offs between attributes can be
done? How can firms maximize their profit by selecting the appropriate characteristics?

Conjoint Analysis is an econometric approach which aims to determine the value of each of
the different attributes that form a product or service. The main objective of CBC is to obtain
part-worth estimates for all attribute levels, in order to know which ones are more important.
To carry out such an analysis we need to conduct surveys where respondents face different prod-
uct alternatives, so implicitly they have to evaluate trade-offs between products. A fundamental
premise when analyzing the importance of different attributes, is that people find it difficult to
evaluate each feature independently. Using a more realistic setting by confronting respondents to
choose between different realistic choice situations we are able to disentangle the importance of
each feature.

As an illustrative example for mobile phones we consider four different attributes, features, with
different levels for each attribute: size, RAM, screen, connection as in Table 1. On each task the
respondent is required to select one of the different alternatives, also called concepts, presented. By
repeating this process several times, for instance six different choice tasks, we are able to estimate
utility part-worths and disentangle what features are most important.

In Table 1 one can see an example of a Choice Based Conjoint Analysis task of technological
devices. The respondent has to select the most preferred alternative among the four displayed. In
this case he chooses Concept 2 as the most preferred one.

Table 1: Example of different mobile phones in a choice task in CBC.
Concept 1 Concept 2 Concept 3 Concept 4

Size 8’ 12’ 10’ 14’
RAM 1GB 4GB 2GB 6GB
Screen 4K HD HD 4K
Connection 3G 4G 2G 4G

◻ ✓ ◻ ◻

An interesting fact of CBC is that there is no need to evaluate all possible profiles to derive
utilities. First, because it is too costly and in most of the cases impossible, e.g. asking thousands
of combinations to a single respondent would be unfeasible. By making the right tasks, those that
maximize information thus confront with difficult trade-offs, we are able to attain equally good
estimates.

In a typical CBC study we have the following elements:

• Choice task: Selection of alternatives where respondents have to choose the most preferred
one.

• Profile/Concept: Each of the different alternatives presented in a choice task.

• Attributes: List of features that conform the product.

• Levels: Each of the different possibilities that an attribute can take.
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3.1 Illustrative example
Recall that the objective of this research is to find the very best combination of attribute levels.
We consider the following example to better understand how this is achieved. A pharmaceutical
company wants to introduce in the market a new drug to treat fleas on cats. What is the best
product design to attract the largest amount of customers?

Figure 1 depicts the different features the package has and the different characteristics, levels,
that they can take. In Table 2 there is a more explicit description of each attribute and its levels
e.g. pictures, claims, colors...

Figure 1: There are 7 different features, attributes, with different characteristics, levels. The total
amount of profiles is 108,000.

Table 2: There are 108,000 possible combinations. Testing them all is unfeasible.
Attributes Levels Nature

1 Package Concept 4 Visual Concepts
2 Pet Picture 15 Pet pictures
3 Package Color 5 Integrated in Pack Concepts
4 Claims 20 Text Statements
5 List of Chemical Components 2 Present/Absent
6 Icons 3 Present (2 versions)/Absent
7 Vet only icon 3 Present (2 versions)/Absent

# of possible combinations 108,000

Given that there are 108,000 unique alternatives we cannot test them all because of the large
costs in terms of time and money associated. Furthermore it would be too inefficient, and most
likely unfeasible, to ask for all the combinations. Notice that this research only considers categorical
variables as shown in the example in Table 1. Traditional CBC would form questions based on
the most informative alternatives, according to a criteria e.g. D-Efficiency, and then ask to n
respondents to select the preferred one in different choice tasks. As stated previously there is
no actual learning during the whole process, we only learn once about all the features and all
individuals. Furthermore, learning about bad features is not interesting. This research overcomes
this issue by iteratively removing the most uninformative alternatives and conducting a CBC
analysis iteratively up to the point that a candidate global optimum is reached. That is the
alternative that maximizes the utility to most of the people. For illustrative purposes, we could
consider Figure 2 as the most preferred alternative extracted from the OTF algorithm.
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Figure 2: After iteratively removing the least informative levels and conducting CBC analyses
iteratively we find that this is the best alternative, so the package that the company should use
for the product.
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4 Methods
This section develops the main algorithm. It starts from the basics, what a design is, how to
generate optimal designs and it builds up the whole algorithm: estimation, level assessment and
removal. The objective is to give clear insights on how the algorithm works and operates for further
developers and researchers who may be interested in implementations in other languages such as
C + +, Java etc. or practitioners who might be interested in the application of this algorithm and
want more technical details.

Recall that the main objective of this algorithm is to obtain a global optimum, that is the
best combination of levels and attributes that make the product preferred by everyone. We can
consider two types of optimality: individual and population. The first analyzes how optimal the
final alternative is with respect to individual utilities. The latter seeks a global optimum at pop-
ulation level, that is the alternative that maximizes the utility to a great majority of individuals.
The structure of this section follows the same order as Algorithm 1, which states how the OTF
algorithm works in pseudo-code.

The idea behind this algorithm comes after careful consideration of how we could achieve
individual and global optimality in iterative CBC studies. Previous internal research at SKIM
conducted mainly by K. Van der Wagt, SKIM Research Director, set the foundations of how this
framework could be stated and developed given their extensive expertise and market knowledge.
However, there was nothing at all implemented nor developed formally in addition that many
problems had to be sort out.

The algorithm first seeks to create an optimal design regarding some criteria so as to make
the most efficient questionnaires possible. Next, we conduct a CBC study to different individuals
and compute the population utility of each level. Finally, by using a Pseudo-Density Function and
probability functions we remove one level per iteration. In case that one attribute has too many
levels, one level from this feature will also be removed in order to avoid an undesired effect called
attribute importance. Once one or two levels have been removed, we will proceed with generating
a new D-Optimal design with a novel technique here presented. This whole procedure is repeated
the desired number of times until a candidate global optimum is reached.

Data: Full Factorial Design
Result: Most preferred product
for m iterations do

Generate a D-Optimal design using Fedorov Algorithm;
Ask n respondents;
Compute utility part-worths with Logistic Regression based on last n respondents;
Perform assessment tests of the levels;
Remove uninformative levels;

end
Algorithm 1: Design Generation On-the-Fly Algorithm

This section starts from the basics by explaining what Choice Based Conjoint Analysis is. Then
we move to design generation and a novel approach based on Fedorov Algorithm proposed in this
research. Then the use of multinomial logistic regression for parameter estimation is covered. We
proceed by explaining how the model evaluates and decides which the worst level is. Finally a
performance evaluation function is provided.
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4.1 Design
In Choice Based Conjoint Analysis, a design is defined as a the total sum of tasks across all respon-
dents. It is paramount to generate the most efficient design possible according to some criteria.
The more efficient a design is, the more precise parameter estimates are.

The first step is to generate a full factorial design, that is a design with all possible alternatives.
This full factorial design usually tends to be very large and the size increases exponentially with
the number of attributes and levels. If all attributes have the same amount of levels the size of
the design is defined as kl, where k are the attributes and l the levels. Given that showing all
possible alternatives is not feasible nor efficient we seek to generate a smaller, but more efficient
design which can be administered to n respondents.

One of the most used criteria to generate optimal designs is the D−Efficiency criterion. We
seek that specific combination of nD unique alternatives that minimize the determinant of the
inverse of the information matrix. The size nD can be defined by the user so there is more room
for customization, in this research we use nD to be a 75% of the full factorial design so the speed
and efficiency are increased compared to lower proportions. Note that the Information matrix is
defined as the negative expected value of the Hessian matrix. The Hessian Matrix is the second
derivative of the Likelihood Function. The general expression is specified as

I(β̂) = −E [ ∂2l

∂β̂i∂β̂j
] . (4.1)

Notice that in this research although we make use of logit type models we use the general OLS
Information matrix expression as criterion to assess the efficiency of the design. The use of the
OLS information matrix is done in order to speed up computations as both methods usually lead
to very similar results, as shown in Wheeler (2004) and Rao et al. (2014).

So as to obtain the highest D-Efficiency we need to minimize the determinant of the inverse of
the OLS information matrix. To do so we define X as the matrix coding the design such that

arg min ∣(X ′X)−1∣. (4.2)

There are several methods to generate D-Optimal designs. Most softwares packages rely on
randomization algorithms for design generation (Johnson et al., 2013). This is the case for Sawtooth
Software (SSI), the most spread tool among market research agencies, which only allows to generate
random designs but using four slightly different criteria. These methods are:

• Complete Enumeration: Seeks to generate a nearly orthogonal design in terms of main effects.
Within choice sets, levels are duplicated as little as possible.

• Shortcut: Each profile is built based on the selection of the least often previously used level
for each specific respondent.

• Random: Profiles are selected completely at random.

• Balanced Overlap: This approach lies between Random and Complete Enumeration. It uses
the same logic as the latter but it allows for overlap to some extent.

A usual approach among practitioners, as done at SKIM, is the use of Balanced Overlap as
mechanism to generate designs. Interestingly, the software SSI reports the D-Efficiency but it does
not seek to maximize such criterion. A more detailed explanation on these methods can be found
on Chrzan and Orme (2000).

The approach proposed in this research relies heavily on the generation of a highly optimal
design in terms of D-efficiency. This approach allows us to obtain more reliable utility estimations.
To do so, we use the Fedorov Algorithm as proposed by Fedorov (1972). This method tries to
maximize the information matrix by starting with a random design with a user-defined m unique
alternatives. Then it creates a candidate list of random alternatives from the full factorial design.
Then the algorithm exchanges the points of the candidate list with those of the covariance matrix. If

13



the determinant of the inverse of the information matrix is smaller then it keeps the new alternative.
In mathematical notation it works as follows: first consider a k × k variance-covariance matrix M .
The update of M involves removing the k vector y and then replacing it with the k vector x.
This specified as M + FF ′, where F = (x, iy) and i2 = −1 using imaginary numbers. By applying
standard algebra rules we obtain

M−1
1 = (M + FF ′)−1,

M−1
1 =M−1 −M−1F (I2 + F ′M−1F )−1F ′M−1,

∣M1∣ = ∣M + FF ′∣ = ∣M ∣ ⋅ ∣I2 + F ′M−1F ∣.
(4.3)

If we define duv = u′M−1v, and du ≡ duu, then ∣I2 + F ′M−1F ∣ = (1 + dx)(1 − dy) + d2
xy =

1+ [dx − (dxdy − d2
xy)− dy] = 1+∆D. max∆D is chosen among the candidate vectors to add in the

algorithm. In other words, we include those vectors that maximize the available information.
An extension of this Algorithm is the so-called Modified Fedorov Algorithm or BLKL Algo-

rithm, proposed by Atkinson and Donev (1989). This method works as the original Fedorov
Algorithm but it only exchanges those points with minimum variance from the dispersion matrix
with those with maximum variance from the candidate list. This approach speeds up the process
but it usually leads to slightly worse D-efficient designs as the exchanged points are fewer.

Because the Fedorov Algorithm is a highly dependent on the initial random design and can-
didate list the optimization procedure is performed several times until convergence to a global
maximum. Fedorov (1972) suggests that 10 iterations maximum are enough due to marginal in-
crease in efficiency and high computational costs. However, notice that this approach was proposed
in the early 70’s when computational costs were extremely high compared to today. For this reason
in this paper we make use of more than 35 initial random starts to ensure we do not get stuck in
a local optimum.

Recall that this whole procedure of generating a D-optimal design is only applied on the first
iteration of the algorithm. The main objective is to have a fast method, so generating a completely
new D-optimal design on every iteration would be better in terms of design efficiency, but not in
practical terms due to its high computational requirements. For that reason, in the subsequent
iterations what it is done is excluding from the design those alternatives that include the removed
level. Then, we seek those alternatives that do not include the removed level that maximize the
D-Efficiency criteria in Equation 4.2. In short, old solution becomes the starting point for the next
iteration.

Once the optimized design has been created we need to construct different choice sets. Follow-
ing the standard approach commonly applied by most important software packages such as SSI,
we randomize the alternatives and administer them in the desired size. For example, we may want
6 different choice tasks with 4 different concepts per choice task. This selection can be made by
the researcher. However, a usual setting is to use between 4 to 6 choice tasks and 3 to 5 concepts.
This is justified by the fact that if there are too many tasks the respondent may get tired and
fill in the survey randomly. In addition, if there are too many concepts per choice task then the
evaluation of trade-offs may be too large and difficult thus respondents may reduce the decision
process to just evaluating very few features.

An example of the Fedorov Algorithm when trying to re-optimize the design can be found in
Tables 3 and 4. We can see that instead of generating a completely new design, we opt for just
substituting those alternatives which included the undesired level.
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Table 3: Suppose we have 3 attributes with 3 levels each, and we generate the following D-Optimal
design with 9 different alternatives. In this example we want to remove Level 2 from Attribute 2.
In bold you can see those alternatives that include this undesired level.

Attribute 1 Attribute 2 Attribute 3
Alternative 1 1 1 1
Alternative 2 2 1 1
Alternative 3 3 1 1
Alternative 4 3 1 2
Alternative 5 2 2 2
Alternative 6 3 1 3
Alternative 7 2 3 2
Alternative 8 1 2 2
Alternative 9 1 3 3

After exchanging only those alternatives that contain the second level of the second attribute,
we end up with a highly efficient design with very low computational costs. In Table 3 one can see
how the original design is, and in Table 4 how it would look like after removing one level.

Table 4: We only exchange Alternative 5 and 8 to generate a new D-Optimal design. We achieve
high efficiency with very low computational costs.

Attribute 1 Attribute 2 Attribute 3
Alternative 1 1 1 1
Alternative 2 2 1 1
Alternative 3 3 1 1
Alternative 4 3 1 2
Alternative 5 1 3 2
Alternative 6 3 1 3
Alternative 7 2 3 2
Alternative 8 1 1 3
Alternative 9 1 3 3

Notice that rarely, and just by chance, we might find a singular design. That implies that
there are linear dependencies among variables. In classical statistics this is usually referred as
collinearity. In such a case we will generate a completely new D-Optimal design considering only
the levels that were not removed. Although a singular design leads to infinite determinants of
the inverse matrix thus it does not represent a problem from a theoretical standpoint, from the
practical point of view might lead to technical problems when using software and existing packages
e.g. R libraries. However, this is not a serious problem as it is an extremely infrequent situation.

15



4.2 Utilities Simulation
This paper proposes a theoretical approach to the algorithm and models used. It uses simulated
data so as to have full control of the utilities thus evaluate the performance at individual and
population level with respect to standard approaches like CBC. The natural next step, which is
left for further research, is a real life implementation with real respondents.

We generate a matrix of n × κ utilities, where n is the number of respondents and κ the total
number of levels in the design, so each individual has a utility for each level of the design. We can
then draw utilities from different distributions with certain means and covariance matrix, so we
can have full control of which levels are more desired than others. A standard approach used in
this research consists of drawing from a Multivariate Normal distribution such that

Ui ∼ N (µ,Σ),

µ = [µ1, µ2, . . . , µκ],

Σ =
⎡⎢⎢⎢⎢⎢⎣

σ2
11 . . . σ1κ

⋮ ⋱ ⋮
σκ1 . . . σ2

κκ

⎤⎥⎥⎥⎥⎥⎦
.

(4.4)

Next, we compute the utility of each of the alternatives presented to each respondent on every
task. This is done by encoding the design in a dummy format and using the true simulated utilities
to obtain an alternative specific utility.

4.3 Dependent Variable Generation
One of the issues that one has to sort out when working with simulated data is the fact that we
need to generate a dependent variable, 0/1, whether the concept c out of C concepts was chosen or
not. This allows us to have a response encoded in a binary format, as in a standard CBC, which
eases the process of estimation in later stages of the modeling framework.

Firstly, we add to the simulated utility a random number out of a Generalized Extreme Value
distribution Type-I so as to modify the utilities. We specify a Gumbel Error with µ = 0 and scale
parameter β = 1. The procedure is defined as

ũict = uict + εitc where εitc ∼ GEV (0,1) (4.5)

Then we select that concept with highest final utility such that

arg maxPr(Y = 1∣Ũit) =max{ũi1t, ũi2t, . . . , ũitc} (4.6)

An example can be found in Table 5. We have four different concepts with their simulated utilities
and we add them a Gumbel Error so we introduce some noise in the utilities.

Table 5: We have four different concepts with their simulated utilities. By adding a Gumbel Error
to them we obtain new utilities. The chosen is that concept with highest utility, in this example
Concept 4.

uitc Error ũitc Chosen
uit1 2.5 -0.7 1.8 0
uit2 1 0.4 1.4 0
uit3 1.6 -0.3 1.3 0
uit4 2 1.1 3.1 1

4.4 Estimation
Two usual approaches in CBC studies consist of estimating the model parameters with Bayesian
Methods or Aggregated Logit models. The first approach allows to estimate individual utilities
thus obtaining a density function for each of the levels in the study. The later obtains utilities at
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population means, hence a single parameter per level.

A research carried by Huber and Train (2001) tried to shed light on the performance of Bayesian
methods compared to Maximum Likelihood methods, like logistic regression. They found almost
identical results regarding the utility part-worths for the attributes. They also found that prediction
of a holdout task was almost identical. They concluded that Bayesian techniques are useful when
there is a large number of part-worths to estimate, because of the possible existence of local
maximum given certain distributions. They argue that in such a case, a Bayesian method is better
also because identification of parameters is not a problem due to the use of prior information. For
further information see Huber and Train (2001). The main drawback of Bayesian techniques are
the high computational costs and the large amount of time needed for convergence of the estimates.
For these reasons, in this research an aggregated multinomial logit model is preferred due to its
high computation speed and also reliable and precise estimates.

The general expression for a multinomial logit model is defined as

Pr(Yij = j) =
exp(βjXi)

J−1

∑
k=1

exp(βjXi)
(4.7)

Further information on the Maximum Likelihood Estimation for multinomial logit models can
be found in Appendix A.

Using this technique we manage to obtain utility estimates for every level. Notice that because
the variables used are categories, we need to encode it in dummy format so as to estimate the
parameters. In addition, every attribute considers that there is a base or reference category, that
means that βi = 0, thus utility of concept i is assumed to be 0. This implies that all parameter
estimates within the same attribute are be compared with respect to the reference group.

4.5 Level Assessment
This subsection is divided in three parts: first of all we study what the Pseudo-Density Function
presented is and how it is constructed. In the second part we analyze how the candidate levels to
be removed are compared by integrating functions. Finally, we develop how the levels are removed
by using probability functions.

4.5.1 Pseudo-Density Function

A major drawback in the estimation is that every attribute needs to have a reference group which
assumes βjl = 0, in turn implying that there is no standard error for the base category.

To overcome such issue we assume that the utility density of each level is normally distributed,
f(β̂jl) = N(β, sjl) where jl corresponds to the l level of the j attribute. From this we can obtain
a probability density function for every estimated level except the base category of each attribute.
Note that the reference category is defined as l∗.

We introduce the concept of Pseudo-Density Function as the probability density function of
the utility of each level including the reference group. In order to make the levels comparable we

assume sjl∗ = 1
L

C

∑
c=1

sjl for l∗.

f(βjl) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

N(β̂, sjl), if l ≠ l∗

N(0, 1
n

L

∑
l=1
sjl), if l = l∗

(4.8)

This is a very fast and efficient approach which proves to be useful for the problem in hand.
From this it is clear the name of Pseudo-Density Function, because we assume a certain standard
error for the base level.
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4.5.2 Level comparison

Once all the p.d.f. for every level of each attribute are obtained we proceed by selecting the two
levels with smallest β̂ of each attribute. This implies that we select the levels with smallest utility
on average.

Sj = min
2

{β̂J1, . . . , β̂jL} (4.9)

Then the β̂’s contained in every set Sj are compared. To do so we integrate the area between
the two regions that both utility p.d.f. cover. We use their corresponding β̂ with their respective
standard error ŝ estimate. Recall that for the reference category of each attribute we assumed

β̂jl∗ = 0 and ŝjl = 1
n

L

∑
l=1
sjl.

We decide to select the two smallest levels because the idea of the framework is to remove one
level per iteration. To do so we only want to compare few distributions so as to the speed the whole
iterative process. In addition, by comparing only two distributions at a time we can integrate the
shared area. If the area is very small it means that they are very separated distributions. So the
distance between the worst and the second worst is large.
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Figure 3: We compute the integral of the gray area in order to assess which levels are worse. Level
1 corresponds to the worst level and Level 2 to the second worst level of attribute j in terms of
average utility.

We compute the integral for each of the two worst levels per attribute. For instance, if we have
six attributes we will end up with 6 different plots like in Figure 3 comparing the two worst levels
of each attribute, namely l1 and l2. The integration of this shared area gives the total mass that
both distributions have in common.

In formal notation we define

• X1 ∼ N(µ1, σ
2
1) with p.d.f f1(x1) and CDF F1(x1)

• X2 ∼ N(µ2, σ
2
2) with p.d.f f2(x2) and CDF F2(x2)

If we assume µ1 < µ2 and denote with c the point of intersection where both probability density
functions meet, then we can compute the gray area, the intersected part as:

P (X1 > c) + P (X2 < c) = 1 − F1(c) + F2(c) = 1 − 1

2
erf(c − µ1√

2σ1

) + 1

2
erf(c − µ2√

2σ2

) (4.10)

where erf is the Gauss Error Function.
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4.5.3 Level Removal

Once we have selected the attribute whose two worst levels have smallest overlap, we need to
decide which of the two levels we remove. For this purpose we generate a probability function so
as to generalize the model. The reason behind this decision is that in some cases we might find
two distributions highly overlapped. In such a case we are not sure which one is really worse than
the other, so a probability function to decide which one to remove helps to generalize the model
and take into account such situations. Then, with probability π we will remove Level 1 and with
probability 1−π we will remove the second level. The algorithm allows the user to use two slightly
different versions of the probability functions, depending whether she wants to take into account
the variance of the estimator or not. The general approach to generate a valid probability function
that assigns higher probability to smaller values. To do so we need a transformation denoted as
t of random numbers A and B: P (A) = t(A)

t(A)+t(B) . Where t is positive and decreasing such that
smaller values obtain higher probability and to ensure that probability is defined between 0 and 1.

In this research we consider t(x) = log(1/Φ( x
ω
)), where ω > 0 and Φ is the standard normal

CDF. The default setting of the algorithm here developed is set at ω = 5. In fact, we could use any
monotonic decreasing survivor function as transformation and we would obtain similar results.

If we only consider the parameter estimate β̂jl then the probability of removing level jl1 is

πjl1 =
log ( 1

Φ( β̂jl1ω )
)

2

∑
i=1

log ( 1

Φ( β̂jliω )
)

(4.11)

This mapping function comes to say that the more negative β̂jl is the higher probability to be
removed. This is in line with common sense and statistical theory: the smaller the utility of a level
the worse compared to the other parameters.

In case we wanted to take into account the variance of the distribution we can use the standard
error of the parameter estimate as normalizing factor, which is equivalent as using the t-value of a
parameter, such that

πjl1 =
log( 1

Φ( β̂jl1 /sjlω )
)

2

∑
i=1
log( 1

Φ( β̂jli /sjliω )
)
. (4.12)

By applying this probability function we will obtain two different probabilities, π and 1 − π,
one for each of the two candidate levels to be removed. So the next step is to remove level l1 of
attribute j with probability π.

The main objective is to remove one level per iteration, nonetheless we might find important
drawbacks if we keep an attribute with too many levels. The levels of this attribute will be prob-
ably very close to each other and they may not be removed until later iterations. The fact that
an attribute with too many levels biases results in different ways is known as attribute importance
and has been very studied in Green and Srinivasan (1978), Wittink et al. (1990) and Orme (2002),
especially in the field of human behavior biases.

In order to solve this problem regarding attribute importance we also apply the same algorith-
mic procedure to that attribute which has too many levels. In order to assess what "too many" is,
we use the following rule of thumb: If an attribute has more levels than the average levels plus a
standard deviation we will also remove that level from the design. We can formalize this statement
as following:

Let v = {v1, v2, . . . , vj−1, vj} be a vector of size j where each element corresponds to the number
of levels each attribute j has. Denote with Sj a vector which contains, in a dummy encoding, the
attribute from which a level will be removed, i.e. 0 we do not remove, 1 if we do.

19



Sj =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if vj ≥ 1
j

j

∑
i=1
vi + σ̂j

0, otherwise
(4.13)

For instance, a v = {3,6,2,10} would imply four attributes with three, six, two and ten levels
respectively. The average number of attributes is 5.25 with a standard deviation of 3.59. This
implies that those attributes with more than 8.84 levels, rounding to the closest integer 9, will
have a level removed. In this particular example we would have S = {0,0,0,1} so a part from
removing the worst level overall, we would also remove those levels where Sj = 1.

4.6 Link with probabilities
The approach here presented relies heavily on analytical integration of distribution of parameters.
Another possible implementation of this algorithm could consider and work with probabilities out of
the parameter estimates. As previously explained we generalize the distribution of the coefficients,
including the reference group, assuming a normal distribution and a standard error for the base
category. This method is backed-up by statistical theory concerning multinomial logistic regression.

Once we have run our multinomial logistic regression we obtain parameter estimates for all the
alternatives except to a reference group. Having j different attributes implies having j reference
groups as well, one per attribute.

Recall the specification of a basic multinomial logit model with one single regressor

logit(πjl) = log
πjl

πJl
= βj + βjlXjl

πjl =
exp(β0 + βj1Xjl)
J

∑
j=1

exp(β0 + βjlXjl)

(4.14)

We need to transform to odds Ratio by exponentiating the coefficient such that exp(β̂jl). As
a reminder, in general terms, the odds ratio represent the constant effect of a predictor X on the
likelihood that one outcome will occur. From odds ratio we can easily go to probabilities of the
success, as presented in Equation 4.14.

Notice that one can easily derive the marginal effect, which is the change in the probability
of choice of the kth brand with respect to changes in the j − th x variable for one individual.
When dealing with dummy variables, the effect of that variable on the probability is stated as the
difference in the probabilities computed between that variable being 1 and 0. From this it is clear
that the effect of any variable is not constant as it varies with the value of the probability of choice.
For further details see Rao et al. (2014).

This explanation helps us to understand why our approach is a valid way to tackle the issue
of selecting which levels to remove. In our approach we choose the worst two levels per attribute.
These two levels have a direct connection with the odds ratio and probabilities associated. They
turn out to be the worst ones in the sense that they are less likely to be chosen.

As an illustrative example we can consider one single attribute with 4 different levels. After
running the algorithm and performing the multinomial logistic regression we obtain the following
parameter estimates βj = {0,3,−1,2}. From this we can already know the ordering: β3 < β1 < β4 <
β2. We can also compute the odds ratio and probabilities as presented in Table 6.

A crucial conclusion emerges from Table 6, by using our algorithm the two candidate levels
to be removed would be the the third or the first. If we used probabilities to decide which the
candidate levels to be removed are, as in Table 6, we would obtain the same answer. This is
because of the direct link between coefficient estimates and probabilities, which make using only
the parameter estimates an equally efficient and faster approach than computing probabilities on
each iteration. Given that we prefer high computational speed, we stick to the algorithm presented
instead of computing odds and probabilities.
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Table 6: Illustrative example of probabilities on Logistic Regression.
Estimate Odds Probability

β1 0 1 0.034
β2 3 20.08 0.697
β3 -1 0.36 0.013
β4 2 7.38 0.256

4.7 Simulation Assessment
4.7.1 Individual Level

Once the candidate global optimum has been achieved, we need a measure to know how the model
performs, that is if the final combination of levels is the most preferred alternative among all. We
can use completely simulated individual utilities, for instance from a multivariate normal distri-
bution, or we can also use individual utilities from previous studies carried out by SKIM. This
approach allows us to have a better control and understanding what levels are preferred before
even starting the algorithmic procedure presented in this paper.

The way to proceed consists of creating an individual scale from 0 to 1, called Z-Scale, where 0
is the worst possible combination, and 1 the best possible alternative, and then locating the final
product from the algorithm in this scale. Doing such a procedure yields a standardized individual
ranking of the final product with respect to the worst and best alternatives.

z∗i =
U∗
i −min(Ui)

max(Ui) −min(Ui)
(4.15)

where min(Ui) corresponds to the utility of the worst combination of levels possible for in-
dividual i, max(Ui) is the maximum utility possible, and U∗

i is the utility of the final product
derived from the algorithm presented. This allows us to create a distribution of the position of
the candidate global optimum achieved in a scale from 0 to 1 and see if we really end up far away
from the individual optimum. We can also generate confidence intervals out of the distribution,
for instance by taking the 5th and 95th quantile. This approach can be seen as an extension of the
usual Hit Rate measure, which is the average of correctly predicted best choices over all respondents.

As a measure of comparison we use a multinomial logit model considering all levels and at-
tributes and then selecting those levels with highest utility. This proofs useful as we can compare
our algorithm with a standard CBC approach. By computing the Z-Values for our method versus a
standard CBC approach we can understand if there is an improvement in performance in selecting
the most preferred alternative.

4.7.2 Population Level

Another approach to evaluate the performance of the algorithm is to look at the optimality of
the final alternative at population level. Given that we simulate the utilities we can compute the
average true utilities per level. The levels with highest average utility will be considered as the true
optimal product. This alternative is compared to the final alternative output by the algorithm.
An example can bee seen in Table 7. We have four different attributes where the first column
displays the best level and the second the worst level. The third column is the predicted level by
the algorithm. The last one whether the prediction was correct or not.

Table 7: Example of optimality at population level. Three out of four attributes are correctly
predicted.

Best Worst Predicted Correct
Attribute 1 5 3 5 ✓
Attribute 2 6 10 9
Attribute 3 2 4 2 ✓
Attribute 4 3 2 3 ✓
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5 Data
In order to evaluate the performance of the algorithm we need to test it with data. This research
uses two kinds of data, first of all we simulate individual utilities with certain means and covariance
matrix. This allows us to have full control of the distributional assumptions of our real utilities,
thus making possible all kinds of variations. In addition to the simulated data we use real indi-
vidual utilities extracted from previous studies at SKIM. This proves useful to see if the algorithm
converges to the candidate global optimum in real situations, which usually are trickier due to the
fact that people’s preferences may not follow standard distributions.

For the empirical part we use five different datasets from different studies which contained
individual part-worth utilities retrieved from Hierarchical Bayes estimation. Due to intellectual
property issues, most of the information on the attributes cannot be disclosed.

• The first dataset which contains utilities is from a CBC study for a Dutch telecommunications
company. There are 8 different attributes with the following number of levels each one:
v1 = {6,3,7,5,2,5,5,6}. The study tried to unveil what factors make a phone rate more
attractive. In total the dataset has 2057 different individuals with their respective utility-
part worths.

• The following dataset used in this research concerns an important bank in the EU. It analyzes
what features influence people the most when opening a bank account. It has 5 attributes
with v2 = 7,3,3,4,4 and 242 different individuals.

• The third dataset has 9 attributes with the following levels v3 = {3,3,5,4,3,4,3,4,5}. As
aforementioned, due to IP the utilities are unlabeled so it is impossible to know what it is
about. We have 817 different individuals in total.

• The fourth dataset used counts with 6 attributes with levels v4 = {8,17,4,5,4,3}, and 1723
different individuals. It is analysis about the banking sector, but no further information can
be provided.

• Finally, the fifth empirical data with its corresponding individual utilities has 8 attributes
and levels v5 = {12,3,2,3,2,3,5,6} and a total of 273 individuals. It is a CBC study for the
automotive industry.

As one can see the different datasets used come from different industries, with different numbers
of attributes, levels and individuals. This is very helpful as we can compare the behavior of the
algorithm under different circumstances and scenarios. Recall that we only measure main effects,
so possible interaction between attributes and levels are not taken into account. On the other hand,
given that data is unlabeled we cannot easily distinguish interactions. For instance, the variable
price usually has interaction with other terms. As we do not know which variable is price this
cannot be taken into account. The fact of only computing main effects may lead to some bias in
the estimates of the model thus to sub-optimal results. However, we leave this for further research.
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6 Results

6.1 Design Generation
A central pillar of the present research is the capability of generating new D-Optimal designs in a
very short time. Using such procedure poses an improvement with respect to traditional software
like SSI: the efficiency of the design is higher than using a random sampling of alternatives trying
to keep the levels balanced, and computation time is lower. For instance, in Figure 4 we generate
a design with 1,000 alternatives and 7 attributes whose number of levels are v = {3,3,3,3,3,3,3},
a 37 design, takes only 0.01 seconds. However, as we increase the number of levels per attribute,
going from a 47 to a 87 design, we observe that the computation time increases exponentially up
to the point that generating a 87 design takes around 5.7 hours. This can be explained by the fact
that the design is extremely large, there are 2,097,152 unique alternatives, and from these ones we
have to select only 1,000. This process becomes very slow when the full factorial design is very
large. Nonetheless, studies with so many attributes are not common in practice due to its practical
limitations.
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Figure 4: Computation time to generate a new D-Optimal design using Fedorov Algorithm. We
keep all parameters constant, i.e. 7 attributes and 1000 alternatives, and only change the number
of levels.

Notice that generating a D-Optimal design in Sawtooth Software with the same characteristics
with 7 attributes and 3 number of levels each takes around 3 hours. Due to the high computational
costs a comparison between the approach here presented and the one posed by SSI is unfeasible.

The Fedorov Algorithm is proved to be a fast algorithm for the problem in hand. But how
efficient is it compared to a random design like those generated by SSI?

We can compare them by computing the D-Efficiency criteria, Equation 4.2, of each design
and comparing one with the other, using the same parametrization as in Figure 4. As seen in
Figure 5 the D-efficiency of the design generated by the Fedorov Algorithm is always larger to the
D-efficiency of the random design. For instance, a 37 full factorial design, the Fedorov approach
is a 0.37% more efficient than the random. It is clear that the larger the full factorial design, the
larger discrepancy between methods, thus the better the Fedorov algorithm performs.
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Figure 5: Ratio between D-Efficiency of Fedorov/Random. Fedorov Algorithm outperforms a
random design like those generated by standard software packages.

In order to maximize the information from respondents we need a D-Optimal design. Instead
of generating a new D-Optimal design on every iteration we just reuse the original one. Those rows
that contained a removed level are exchanged using Fedorov Algorithm. This approach speeds up
computations notably as we only need to evaluate few rows. In the simulation here presented we
use 6 different tasks and 4 concepts per individual for a total of 75 respondents per iteration.
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Figure 6: Computation time to generate D-Optimal designs when removing levels. The more levels
removed the faster the algorithm as the design is smaller and fewer points need to be evaluated.

As one can see in Figure 6 the computation time to generate a new D-Optimal design departing
from the original is very small. It takes less than a second to exchange the undesired alternatives
with optimal ones. This is an important fact, because we manage to avoid the generation of
completely new designs which tend to take longer to be created. By using the novel approach
reported in this research we only need to evaluate few candidate points instead of evaluating all
possible combinations.
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6.2 Simulation
In order to test the algorithm we first need to set up few assumptions. We have to simulate the
real individual utilities. As seen in Equation 4.4 we assumed a Normal Distribution with certain
means and covariance matrix. The selection of such a distribution is not arbitrary. We use a
Normal distribution because of its usefulness in a very wide range of situations; it is the most
common distribution in nature; and has some properties which make it very special, for instance
the Central Limit Theorem. In addition to the theoretical arguments, we can motivate the choice of
individual utilities normally distributed, from empirical data. As explained in Section 5, we use 5
different datasets with real utilities from previous studies at SKIM. If we look at the distribution of
individual utilities from these real data, we observe that the distributions are Normal with certain
mean and covariance. In Figure 7 we can see the distribution of four different attributes with their
respective levels plotted for four different datasets.
As we can see there is certain variation between distributions, e.g. ones are flatter, others more
peaked, different mean etc. This comes to say that assuming Normal distributions for the simulated
utilities is a natural and legitimate approach.
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Figure 7: Distribution of individual utilities of specific attributes in four of the different real
datasets. Distributions are approximately normal distributed.

First of all we simulate two slightly different settings. Firstly, we use a very sparse covariance
matrix, with high variance then we compare with the same model but with smaller variance on
the utilities. To assess the performance of our model we use the computation time and the rank
of the final alternative for each individual with respect to the worst and best possible individual
alternative. One can find the covariance matrix of both simulations in Appendix B, Equation B.1
and B.2.

In Figure 8 one can observe that the utility of the optimal product derived from the algorithm is
close to each individuals’ best alternative. In this case we considered 100 respondents per iteration,
with a design that consists of 6 attributes with the following levels v = {6,11,4,6,4,7}. We account
for the high variance of the utilities by using the removal procedure presented in Equation 4.12.
The whole algorithm needs about 50 seconds to find a candidate global optimum. Taking into
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account that there are 44,352 possibilities, we can say it is a relatively fast algorithm.
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Figure 8: Distribution of the individual Z-Scores, where 0 is the worst possible product and 1 the
best one. The red solid line is the mean for the OTF Algorithm and the dashed one the average
Z-Score if we did not remove any level and just select the levels with highest utility. The final
product has very high scores on the Z-Scale in this Low Variance case.

If we look at population level we see in Table 8 that the optimal alternative output by the
Algorithm manages to converge to the best alternative except for Attribute 2 which predicts level
number 9 when the true is the 6.

Table 8: Optimal product at population level compared to the best and worst possible alternatives
for the Low Variance case.

Best Worst Predicted Correct
Attribute 1 5 3 5 ✓
Attribute 2 6 10 9
Attribute 3 2 4 2 ✓
Attribute 4 3 2 3 ✓
Attribute 5 3 4 3 ✓
Attribute 6 1 3 1 ✓

In case of high variance the Algorithm fails dramatically to converge to the population best
alternative. This is caused by the fact that the variance is extremely high so the algorithm removes
the correct levels when it should not do it. In Figure 9 one can see that the performance at
individual level is very poor. In Table 9 we see that at population level we do not manage to
converge to the optimal alternative as only two attributes are correctly identified as optimal.
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Figure 9: The scenario with a large covariance matrix yields worse results; Given that variance
is larger, there is also more heterogeneity among respondents, thus it is more difficult to achieve
a candidate global optimum. The red line is the average Z-Value for the OTF algorithm and the
dashed one for the utility in case we did not remove any level.

Table 9: Optimal product at population level compared to the best and worst possible alternatives
for the High Variance case.

Best Worst Predicted Correct
Attribute 1 4 6 4 ✓
Attribute 2 1 3 8
Attribute 3 3 2 4
Attribute 4 1 2 5
Attribute 5 4 3 4 ✓
Attribute 6 2 4 6

In order to further explore the capabilities of the algorithm here presented, we conduct a sen-
sitivity analysis. To do so, we compare the average fit of the final product in the Z-Scale, that is
how much the final product scores from 0 to 1, with respect to utilities with different variances.
We start by creating 6 different attributes with the following levels v = {4,5,4,6,4,3}. We generate
the individual utilities by sampling random numbers from a normal distribution with mean µ, the
interested reader can find them on Appendix B Equation B.4. For the variance we generate a
diagonal covariance matrix, i.e. no cross-correlations between levels and attributes, but we modify
the diagonal elements, that is the variance, increasing them iteratively. As seen in Figure 10, if
we keep everything constant but we increase the variance of the real individual level utilities, the
average fit decreases. So higher variance on the utilities leads to less optimal final products. That
can be explained by the fact that heterogeneity is very large so it is more difficult to find a global
optimum, in other words, a population best alternative.

If we look at the optimal product by population means, that is that product whose level utilities
are highest per attribute, we see that it is never removed or it is removed in the very last iterations.
This will depend on several factors such as the original D-Optimal design, the subsequent designs,
and the overlap between levels.
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Figure 10: If we increase the variance of the simulated true utilities, the average fit of the final
product decreases. The individual fit is very poor in very extreme cases.

A more general approach to understand if the results of the algorithm were produced by chance,
we generate 6 attributes with the following levels v = {4,5,4,6,4,3} and assume a random uniform
distribution for the mean of each level. In addition, we generate random utilities out of a multivari-
ate normal distribution. By repeating this procedure 1,000 times we can compute a distribution of
the average value of the Z-Scale on every iteration, thus how we expect to perform the algorithm
in more general terms.
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Figure 11: Distribution of the mean of the final product on the Z-Scale, using 1,000 random
simulations of utilities. The algorithm here presented deviates a 15% on average from the most
optimal product at individual level. If we only run one iteration the deviation is around 0.35%.

In Figure 11 we depict the distribution of means using 1,000 different utilities configurations.
As you can see, we expect the mean value of the Z-Scale to be between 0.7 and 0.95 on average,
being around 0.85 the most frequent value. That is only a 15% deviation of the final product with
respect to the most preferred product possible. The implication is straightforward: if we use a
standard CBC study and select those levels with highest utility we will obtain worse results than
applying the CBC-OTF algorithm. Therefore, this Thesis poses a significant improvement in the
field of CBC and Market Research when dealing with optimal products.
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If we consider optimality at population level as in Table 10 we see the percentage of correct
predicted levels is quite high: Attribute 3 is predicted correctly in 95.4% of the cases, Attribute 2
is predicted correctly in 66.7% of the time taking into account 1,000 iterations.

Table 10: Percentage of correct predicted levels with 1,000 different settings.
Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Attribute 6

True Level 1 1 2 5 4 3
% Correct 89.3 66.7 95.4 72.1 71.2 79.5

Interestingly, the algorithm only converges to the optimal alternative in 35.8% of the cases.
However, if we consider nearly-optimal allocations, those where less than two levels are incorrectly
predicted, the percentage increases to 78.6% of correct.

This research uses individual and population level measures although some improvement in the
population level measure could be done in order to increase accuracy. This paper intention is to
set up the guidelines for further research.

29



6.3 Sensitivity Analysis
When working with the CBC-OTF Algorithm the researcher needs to take decisions regarding some
of the settings. First of all, he needs to decide how many respondents he uses in every iteration.
Another important element to analyze is if we could arrive to the optimal solution at individual
level with fewer iterations. These two settings are paramount for practitioners and users of the
algorithm.

To understand how these elements behave we design a sensitivity analysis i.e. holding every-
thing constant, Ceter Paribus, just modify these settings to see how the changes occur. We use
the usual approach of 6 tasks with 4 concepts each, and use the same utility means and covariance
matrix as in B.1 and B.3. As can be seen in Figure 12, if we increase the number of respondents
per iteration there is a slight improvement in the individual utilities measure or Z-Score. The
marginal increase is very small over 50 respondents, it even gets staggered in terms of Z-Score.
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Figure 12: The marginal increase in the average Z-Score is decreasing when more respondents are
used on each iteration.

Another setting a researcher can tweak is the total number of levels to be removed. It may
happen that by removing a certain amount of levels we may also reach the optimal product. In
Figure 13 one can see that the more levels we remove the higher the individual utility measured
in terms of Z-Score.
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Figure 13: Ceter Paribus, the more levels removed the higher the Z-Score.

From this analysis we can propose some general guidelines for practitioners. Using around 50
respondents per iteration seems a reasonable amount of people to obtain precise enough results. In
addition, if time is not an important constraint, we suggest to remove all the possible levels until
only one alternative is left.
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6.4 Empirical Application
As explained in the Data Section we use five different real datasets to evaluate how well our al-
gorithm performs. The input individual utilities are assumed to be true ones. They come from
a Hierarchical Bayes estimation for previous research projects for SKIM clients. Given that the
present research is intended for future application, for each of the datasets analyzed we use the
standard approach of SKIM for a CBC study of these characteristics: 6 different tasks with 4
different concepts each one.

6.4.1 Dataset 1

Recall the main setting of this scenario:

• Attributes: 8

• Levels: v1 = {6,3,7,5,2,5,5,6}

• Individuals: 2057

For this scenario, we use 75 individuals per iteration when fitting the logit model. We take into
account the variance of the parameter estimates to assess which levels are not informative enough.
The computing time needed for the algorithm to find a candidate global optimum with the current
settings
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Figure 14: Distribution of the individual ranked utilities, where 0 is the worst possible product
and 1 the best one. The red solid line is the mean and the dashed ones the 5% and 95% quantiles.
The final product has very high utility, over 0.75, for more than 40% of the sample.

We observe in this case that the average location of the global product in the Z scale is 0.64
and the 5% and 95% quantiles are between 0.37 and 0.87. This means that we manage to obtain
quite good results for the general population. We have to consider that individual preferences are
not uniform across population, so finding a product that maximizes utility for every individual,
i.e. zi = 1,∀i = 1, . . . , n, is something unfeasible. In addition, the computation time of the whole
algorithm is 103.8 seconds and 19 iterations. The interested reader can find in appendix B Table
16 the progression of level removal iteration by iteration.

As explained before, this approach only considers main effects. However, in this dataset we know
the presence of price in one of the variables which probably may lead to sub-optimal allocations.
For instance, we may end up selecting those attributes that only consider free features, because
they yield the maximum utility compared to those that cost money. As we do not have further
information about the data we cannot confirm this hypothesis.
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Regarding at population level we see in Table 11 that the algorithm here presented fails to
find the most optimal product at average population utility. Only two attributes of the final
alternative coincide with the levels with highest utility. There might be different reasons that
make the Algorithm fail. Most likely it is due to the fact of cross effects between levels and
probably the presence of a variable such as price.

Table 11:
Best Worst Predicted Correct

Attribute 1 3 6 2
Attribute 2 1 2 1 ✓
Attribute 3 4 1 5
Attribute 4 1 3 2
Attribute 5 1 2 1 ✓
Attribute 6 3 4 2
Attribute 7 3 5 4
Attribute 8 6 3 4
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6.4.2 Dataset 2

Main setting of this scenario:

• Attributes: 5

• Levels: v2 = 7,3,3,4,4

• Individuals: 242

For this scenario, we use 50 individuals per iteration when fitting the logit model. We want to
obtain reliable estimates quickly. The total computation time using such a setting is only 16
seconds and 8 iterations to obtain a candidate global optimum. The factors that contribute to
such a high speed of convergence are that the full factorial design is not large, only 1008 possible
alternatives in total, and we use only 50 individuals per iteration.
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Figure 15: Distribution of the individual ranked utilities, where 0 is the worst possible product
and 1 the best one. The red solid line is the mean and the dashed ones the 5% and 95% quantiles.
We find a very large peak at 0.72 in the Z-Scale.

In Figure 15 we can find the distribution of the Z value. Both mean and median are 0.6 and
the 5% and 95% quantile are between 0.33 and 0.85. The distribution is clearly bimodal, with a
peak at around 0.72 and a smaller peak at 0.43. Although there is room for improvement, results
invite to optimism. We manage to get very good utility levels for a large amount of individuals,
and very few people have very low values in their utilities. As we can see, almost there are not
individuals below 0.2.

If we consider optimality at population level as in Table 12 not all the levels converge to the
optimal point. Attribute 1 and Attribute 5 converge to a suboptimal allocation.

Table 12: Three out five levels converge to the optimal level. The product is nearly optimal.
Best Worst Predicted Correct

Attribute 1 3 6 7
Attribute 2 2 3 2 ✓
Attribute 3 3 1 3 ✓
Attribute 4 2 1 2 ✓
Attribute 5 4 2 3
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6.4.3 Dataset 3

Main setting of this scenario:

• Attributes: 9

• Levels: v3 = {3,3,5,4,3,4,3,4,5}

• Individuals: 817

This dataset, which we have no information at all of what it is about, has very balanced
attributes, in the sense that they only have 3 to 5 levels. We use 75 respondents per iteration
to obtain parameter estimates. Taking into account that around 1200 respondents is a standard
figure for an average CBC study at SKIM; 75 respondents per iteration considering that we will
probably have around 10-15 iterations is a reasonable size.
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Figure 16: Distribution of the individual ranked utilities, where 0 is the worst possible product
and 1 the best one. The red solid line is the mean and the dashed ones the 5% and 95% quantiles.
The great majority of the individuals almost maximize their utility with the final product.

The whole process takes 55.5 seconds and 14 iterations to find a candidate global optimum.
As one can see in Figure 16 the utility of the candidate global optimum is excellent for a large
proportion of individuals. A mean of 0.8 and median 0.84 make this algorithm an appropriate
approach to arrive to the best product. Over 50% of the individuals only deviate ∼ 15% from their
most possible optimal product.

However, if we consider the population level measure we find that there is not convergence
at all as in Table 13 is shown. Not even a single level of the optimal alternative output by the
Algorithm manages to be the one with highest true utilities.

Table 13: The Algorithm does not manage to converge to the optimal alternative.
Best Worst Predicted Correct

Attribute 1 3 1 1
Attribute 2 1 3 3
Attribute 3 1 4 4
Attribute 4 2 3 4
Attribute 5 1 3 2
Attribute 6 3 1 1
Attribute 7 2 3 1
Attribute 8 1 2 2
Attribute 9 2 4 1
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6.4.4 Dataset 4

Main setting of this scenario:

• Attributes: 6

• Levels: v4 = {8,17,4,5,4,3}

• Individuals: 1723

This is an interesting case because there is an attribute with many levels, 17. This may have a
relatively high attribute importance because of the fact that utilities of each level will be probably
close to each other. The process takes in total 53.5 seconds and 19 iterations using 75 respondents
per iteration. Again, the reader can find the progression of the removal of levels on Appendix B
Table 19.
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Figure 17: Distribution of the individual ranked utilities, where 0 is the worst possible product
and 1 the best one. The red solid line is the mean and the dashed ones the 5% and 95% quantiles.
Over 50% of the sample deviate less than 30% from the most optimal possible combination.

The mean of the Z-Scale is at 0.68 and the median at 0.7. This means that results are good
for a large proportion of the respondents, over 50% of the individuals are only a 30% off from the
most optimal product.

In terms of optimality at population level we find that the Algorithm converges in half of the
levels as shown in Table 14.

Table 14: At population level the Algorithm predicts correctly half of the levels.
Best Worst Predicted Correct

Attribute 1 3 6 4
Attribute 2 5 2 8
Attribute 3 1 2 1 ✓
Attribute 4 2 4 2 ✓
Attribute 5 1 2 3
Attribute 6 1 3 1 ✓
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6.4.5 Dataset 5

Main setting of this scenario:

• Attributes: 8

• Levels: v5 = {12,3,2,3,2,3,5,6}

• Individuals: 273

In this case we have again an attribute with too many levels compared to the other attributes.
We decide to ask 250 respondents per iteration. Notice that the original utilities are only 273 so
the same respondents utilities may be reused in different iterations. This configuration is to proof
how fast the algorithm can be and deal with very large designs in a relatively short time. The total
computation time to find a candidate global optimal product is 110.1 seconds and 15 iterations.
This is a very fast algorithm as in the full factorial design we can find 38880 different alternatives,
within one minute and a half we can empirically select the best alternative.
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Figure 18: Distribution of the individual ranked utilities, where 0 is the worst possible product
and 1 the best one. The red solid line is the mean and the dashed ones the 5% and 95% quantiles.
Results are excellent, individual utilities for the final product rank very high.

As we can see in Figure 18 results are astonishing. For 35% of the respondents we manage to
create a product that deviates less than 10% from their most optimal alternative. In fact, the 95%
quantile is at 1, and the 5% at 0.47.

However, if we consider the population level measure it predicts correctly half of the levels as
one can see in Table 15.

Table 15: At population level half of the levels are correctly identified.
Best Worst Predicted Correct

Attribute 1 3 10 11
Attribute 2 1 2 3
Attribute 3 1 2 1 ✓
Attribute 4 3 2 3 ✓
Attribute 5 1 2 1 ✓
Attribute 6 2 3 3
Attribute 7 1 2 5
Attribute 8 1 3 1 ✓
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7 Software Implentation
The algorithm presented in this research only makes sense if it is applicable. For that purpose, an
R package has been developed. The library is called OTF and it contains several functions to run
the analysis with simulated data. It can contain completely simulated utilities from user-defined
distributions, or the user can also source a file with utilities from previous studies. The package
includes instructions on how to use the functions.

The functions included are the following:

• fedorovGenerator: Allows to create D-Optimal designs using Fedorov exchange algorithm.
The user has to specify different parameters such as the number of attributes and levels.

• startingDesign: This function generates subsequent D-Optimal designs with the specified
levels removed departing from an initial D-Optimal design.

• CBC_Generator: Generates a CBC study assigning different tasks and concepts to every
individual.

• DependentVariable: Generates a dependent variable from the simulated individual utilities.

• CBC_Utils: We obtain a full CBC study with every concept shown on every task for each
individual and the concept she selected.

• ModelEstimation: Fitting of a multinomial logit model.

• RemoveLevels: The function makes the level assessment and outputs those levels that have
to be removed on every iteration.

• MainSimulator: This function is the core of the package. It combines all previous functions
to make a very simple simulator which requires very few inputs. It starts from a full factorial
design and it ends up giving as output the most optimal product and how the iterative
process was carried out.

• LevelAssessment: We use this function to evaluate how optimal the final product is compared
to other alternatives. It uses the Z-Scale as method of evaluation and it outputs summary
statistics of the distribution.

The package has been coded in such a way that someone with little experience in R and Conjoint
Analysis can use it easily. All the functions have been written in a way that are easily adaptable
for further implementations and development.
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8 Conclusions
Deciding which product should be commercialized and in which shape is not a trivial question.
This research has focused on developing a new modeling framework which is capable of providing
the best alternative, the most preferred product by the great majority of consumers depending on
individual preferences. An implementation of Choice Based Conjoint Analysis has been exposed.
This approach tries to iteratively remove the undesired levels so as to reduce the space of alter-
natives. The goal is to to learn about respondents to optimize the following tasks they have to
complete. This leads to higher efficiency and increased accuracy in the parameter estimates.

The algorithm starts with the generation of a design. As opposed to common statistical pack-
ages that generate designs randomly, we use the D-Efficiency criteria by recurring to the Fedorov
Algorithm to generate an optimal design. Although the computation time to generate such a design
increases exponentially with the size of the full factorial design, it is still very fast, below 45 seconds
for a 67 design for instance, and it has an increased efficiency compared to randomized designs.
The use of a very optimal initial design and the subsequent modification of this for later iterations
leads to an extremely efficient design generation in terms of D-Efficiency and computation time.

Given that one of the main concerns of the framework here presented was the speed of con-
vergence towards a candidate global optimum, we rejected the use of Hierarchical Bayes model in
favor of a multinomial logit model.

An important feature of this novel algorithm is the use of the integrated part between the
so-called Pseudo-density functions. This allows us to select the worst two levels per attribute in
terms of utility. They are selected because we want to remove on every iteration those levels that
we know for sure that people dislike. Thus comparing between worst and best levels does not
provide additional information in the removal process. The fact of using a probability function to
decide which exactly level should be removed from a specific attribute helps to generalize the model.

The generation of the subsequent designs, as proved by simulations and empirical application,
is extremely fast, less than 3 seconds. This feature makes the algorithm very special: we can
converge to a candidate global optimum very quickly.

In order to evaluate how optimal the final product is we create a Z-Scale. This scale ranks from
0 to 1, where 0 is the worst possible individual product and 1 the best. The final product given
by the OTF algorithm falls inside this range. In addition, a population best measure is included
in order to assess the optimality at population level.

Finally an empirical part with simulated and real data was carried out. We proved that higher
variance in the individual utilities leads to less optimal final products. This is greatly caused by
high heterogeneity across individuals. By generating 1,000 random distributions with different con-
figuration on the mean and covariance matrix, we are able to evaluate how the algorithm performs.
We found out that the final alternative deviates no more than 15% from the most optimal product
at individual level. A great amount of individuals deviate less than 5%. This comes to say that
on average the algorithm is able to find an extremely optimal product for a great majority of the
population. Notice that achieving a 100% accuracy deems as impossible, otherwise it would mean
that all the respondents are almost the same and there is no heterogeneity across preferences on
individuals.

Results regarding the empirical application with SKIM’s anonymous data are very positive. We
find that deviations from the most optimal product at individual level are relatively small, thus
we manage to find a very good product for a great majority of the respondents.

This approach poses a new line of research in the Conjoint Analysis field. It sets the foundations
for further exploring the capabilities of such algorithmic approaches to the optimization of products.
Although results are very optimistic and promising there is still room for improvement and further
research.
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9 Limitations
This research represents a first step on this line of research. However, we are aware of the practical
limitations that this approach has.

If the full factorial design is too large, millions of unique alternatives, we may face compu-
tational issues to generate new designs as this process may take up to several hours. Another
important issue that needs to be addressed is the fact that only main effects can be computed.
This implies that attributes that may affect severely the estimates due to the correlation with other
attributes may not be included. A clear example would be a variable such as price: an attribute
which theoretically should have larger utility, like better Internet connection, is worse because the
price associated is too high.

Given that this is the first paper considering such an approach and sets the foundations for
further developments, the algorithm does not allow to have real respondents on real time. Thus
all results that can be extracted at this stage come from simulation schemes either with simulated
or empirical utilities.

10 Further Research
We suggest that further improvement and research can be done in improving the generation of
faster and more efficient designs. Although this is a very difficult task because the intrinsic effi-
cient nature of the Fedorov Algorithm, some other algorithms may lead to different results.

An interesting line of research that was considered for this paper but was finally dismissed
consists of removing one level per attribute on every iteration instead of one or two levels in total
per iteration. Undoubtedly this would decrease the number of iterations hence increase the speed
of the whole algorithm, but it may eventually lead to worse results. The present research intends
to set the foundations on the field of CBC-OTF thus we leave for further research such a line of
investigation.

We recommend to inspect the possibilities of writing the code in a compiled language due to
is increased speed. The fact that the programming language used has been R probably decreases
the computation speed.
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A Appendix

MLE Multinomial Logit Model

log( πij
πiJ

) = log( πij

1 −∑J−1
j=1 πij

) =
K

∑
k=0

xikβkj (A.1)

for i = 1,2, . . . ,N and j = 1,2, . . . , J − 1

Solving for πij we have

πij =
exp(

K

∑
k=0

βkjxik)

1 +∑J−1
j=1 exp(

K

∑
k=0

βkjxik)
j < J

πiJ =
1

1 +∑J−1
j=1 exp(

K

∑
k=0

βkjxik)

(A.2)

The Likelihood function is then given by

N

∏
i=1

J−1

∏
j=1

exp(yij
K

∑
k=0

βkjxik)(1 +
J−1

∑
j=1

exp(
K

∑
k=0

βkjxik))
−ni

(A.3)

If we take logs we obtain the log likelihood function which is defined as

l(β) =
N

∑
i=1

J−1

∑
j=1

(yij
K

∑
k=0

βkjxik) − ni log(1 +
J−1

∑
j=1

exp(
K

∑
k=0

βkjxik)) (A.4)

By maximizing this equation it follows that

∂l(β)
∂βkj

=
N

∑
i=1
yijxik − niπijxik (A.5)

Thus we have (J − 1)(K + 1) equations and we need to solve for each βkj .

B Appendix
ΣLow = diag{5,6,5,9,2,9,6,9,3,3,2,2,4,2,9,7,6,6,9,

2,8,3,9,3,9,10,2,3,6,1,5,6,1,1,2,1,9,3}
(B.1)

ΣHigh = diag{1797,3399,3502,3690,1887,1356,5372,3294,1223,4039,4493,4390,

3362,4976,2569,3872,4320,2295,1867,5404,3427,5153,2113,2684,3679,

4381,4250,3115,1792,1501,3776,4002,5496,4107,1684,4952,5383,2682}
(B.2)

µLow = {15,−15,14,7,−13,−7,161,69,143,87,163,162,132,110,74,150,65,

3,15,11,17,6,−18,−8,0,−11,−13,6,−15,13,−8,7,−12,6,17,1,−2,2}
(B.3)

µHigh = {15,1,−1,−8,142,143,55,102,107,−8,6,−18,−17,

− 2,0,−4,−4,8,16,12,5,−4,16,9,−10,15}
(B.4)
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Table 16: Progression of level removal iteration by iteration for Dataset 1.
X1 X2 X3 X4 X5 X6 X7 X8

1 6 3 7 5 2 5 5 6
2 6 3 6 5 2 5 5 6
3 6 3 6 5 2 5 4 6
4 6 3 6 5 2 5 4 5
5 5 2 6 5 2 5 4 5
6 5 2 4 5 2 5 4 5
7 5 2 4 4 2 5 4 5
8 5 2 4 4 2 5 3 5
9 4 2 4 4 2 5 3 5
10 4 2 4 4 2 3 3 5
11 4 2 3 4 2 3 3 4
12 3 2 3 4 2 3 3 4
13 3 2 3 3 2 3 3 3
14 2 2 3 3 2 3 3 3
15 2 2 2 3 2 3 3 3
16 2 2 2 3 2 3 3 2
17 2 2 2 3 2 3 2 2
18 2 2 2 2 2 3 2 2
19 2 2 2 2 2 2 2 2

Table 17: Progression of level removal iteration by iteration for Dataset 2.
X1 X2 X3 X4 X5

1 7 3 3 4 4
2 6 3 3 4 3
3 5 3 3 3 3
4 4 3 2 3 3
5 3 3 2 3 2
6 2 3 2 3 2
7 2 2 2 3 2
8 2 2 2 2 2

Table 18: Progression of level removal iteration by iteration for Dataset 3.
X1 X2 X3 X4 X5 X6 X7 X8 X9

1 3 3 5 4 3 4 3 4 5
2 3 2 4 4 3 4 3 4 5
3 3 2 4 4 3 4 2 4 4
4 3 2 4 4 2 4 2 4 4
5 3 2 4 4 2 4 2 4 3
6 3 2 4 4 2 3 2 4 3
7 3 2 3 4 2 3 2 4 3
8 3 2 3 4 2 3 2 3 2
9 3 2 3 3 2 3 2 3 2
10 3 2 3 2 2 3 2 3 2
11 3 2 2 2 2 3 2 3 2
12 3 2 2 2 2 2 2 3 2
13 3 2 2 2 2 2 2 2 2
13 2 2 2 2 2 2 2 2 2
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Table 19: Progression of level removal iteration by iteration for Dataset 4.
X1 X2 X3 X4 X5 X6

1 8 17 4 5 4 3
2 8 16 4 5 3 3
3 8 15 4 5 3 2
4 7 14 4 5 3 2
5 7 13 4 4 3 2
6 6 12 4 4 3 2
7 6 11 4 4 2 2
8 6 10 3 4 2 2
9 6 9 2 4 2 2

10 5 8 2 4 2 2
11 4 7 2 4 2 2
12 4 6 2 4 2 2
13 4 4 2 4 2 2
14 3 4 2 4 2 2
15 2 4 2 4 2 2
16 2 3 2 4 2 2
17 2 3 2 3 2 2
18 2 3 2 2 2 2
19 2 2 2 2 2 2

Table 20: Progression of level removal iteration by iteration for Dataset 5.
X1 X2 X3 X4 X5 X6 X7 X8

1 12 3 2 3 2 3 5 6
2 11 3 2 2 2 3 5 6
3 10 3 2 2 2 2 5 6
4 9 3 2 2 2 2 5 5
5 8 3 2 2 2 2 5 4
6 7 2 2 2 2 2 5 4
7 6 2 2 2 2 2 5 4
8 6 2 2 2 2 2 4 4
9 5 2 2 2 2 2 3 4
10 5 2 2 2 2 2 2 4
11 4 2 2 2 2 2 2 4
12 4 2 2 2 2 2 2 3
13 4 2 2 2 2 2 2 2
14 3 2 2 2 2 2 2 2
15 2 2 2 2 2 2 2 2
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