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Abstract

Currently there is a huge shift from de�ned bene�t pensions to de�ned con-
tribution pensions. In de�ned contribution pensions the contributions are
invested following a lifecycle strategy. This paper investigates the optimal
lifecycle within a set of di�erent lifecycles when investing contributions in
de�ned contribution pension plans in stocks, real estate and bonds. For this
purpose economic state, asset, interest rate, in�ation and salary data are
analysed for the period April 2005 until April 2017. The analysis and 42
years ahead simulation are done using a Markov switching model in com-
bination with a VARX model and a CIR model. In total 10,000 di�erent
paths are simulated and for each path 13 di�erent lifecycles are analysed.
The lifecycles result in a for in�ation corrected monthly pension and these
are analysed using multiple ranking criteria. This research �nds that within
the 13 analysed lifecycles the optimal lifecycle in terms of expected utility
and chance of reaching a pension of at least 75% of the average income is a
lifecycle fully invested in stocks.



Contents

1 Problem Description 1

2 Pension System & Lifecycles 3

2.1 Pension System . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Lifecycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Literature Review 8

3.1 Literature on Asset Returns . . . . . . . . . . . . . . . . . . . 9

4 Methods and Data 10

4.1 Lifecycle Construction . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Historical Data . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Wealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Lifecycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6 Lifecycle Criteria & Ranking . . . . . . . . . . . . . . . . . . . 25

5 Results 27

5.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Lifecycle Results . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Conclusion 39

7 Bibliography 41

8 Appendix 44

8.1 Descriptive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3 Matlab Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



1 PROBLEM DESCRIPTION 1

1 Problem Description

Currently there is a huge shift from de�ned bene�t (DB) pensions to de�ned
contribution (DC) pensions. This is a result of the �nancial crisis, which
had a major impact on the �nancial position of many companies. Moreover,
the historically low interest rate and the increase in life expectancy, caused
the DB pension to become very expensive. This had a huge impact on the
pension liabilities and therefore many companies opt for DC (Jansen, 2014).
For most internationally operating companies it is mandatory to determine
future obligations with respect to employee bene�ts. This also concerns pen-
sion plans. The classi�cation of a pension plan determines whether there
are any obligations. If the pension plan can be quali�ed as a DB plan (i.e.
�nal pay or average pay in the Netherlands) this could have negative conse-
quences for the balance sheet for accounting purposes. If a pension plan can
be quali�ed as a DC plan, no obligations arise for the balance sheet.

In a DC pension plan the pension bene�ts are uncertain. The predetermined
(often a percentage of salary) contributions for pension are paid into an indi-
vidual account for each employee. The contributions are invested, according
to a lifecycle, in multiple assets. Pension bene�ts depend on the asset alloca-
tion and market performance. The employee bears the risk in a DC pension
plan. On retirement, the employee's individual account is used to provide
retirement bene�ts. In the Netherlands this is done through the purchase of
a pension annuity.

Members of DC plans can choose in what way their pension money is invested.
They can choose to invest it themselves or they can choose a structure, a �life-
cycle�. A lifecycle is a premade asset allocation per age. The purpose of this
research is to investigate how lifecycle investment strategies a�ects retire-
ment income outcomes in DC plans and to �nd the optimal lifecycle within
the set of analysed lifecycles. It requires a thorough understanding of invest-
ments and of individual needs and expectations to make a rational decision
about which lifecycle to take. Empirical research shows that many people
are incapable or unwilling to make such decisions: over 95% of employees
participating in lifecycle plans leave it on the default option. For this reason,
the design of lifecycle investment options is of critical policy relevance.

The most important aspect in this research is the return distribution of the
resulting monthly pension when a given lifecycle is used. Aspects that are
taken into account are economic good and bad times, investment risk, inter-
est risk and in�ation risk. Besides the return distribution the career path
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and development of salary are taken into account.
This research focusses on people following the lifepath of Jan Modaal as de-
scribed in section 4.4.1, who start investing from the age of 25 and retire at
the age of 67. Contributors are for the full period 100% in a DC pension
plan, they have no additional pension savings and receive a pension based
on a basic state pension and the lifecycle results. Furthermore this research
assumes that there can only be invested in going long in stocks, real estate
and bonds and that there are no transaction costs.

The analysis and 42 years ahead simulation is done using a Markov switch-
ing model for simulating expansion and recession period, a CIR model for
simulating the short rate and the corresponding term structure and a VARX
model for simulating the asset returns taking the previous period, interest
rate, in�ation and other asset returns into account. For this purpose the
MSCI index for European Stocks, the MSCI index for European Real Es-
tate, the 1 month Euribor, and salary and in�ation data, obtained from
CBS, are analysed for the period April 2005 until April 2017.

In total 10,000 di�erent paths are simulated and for each path 13 di�er-
ent lifecycles are analysed. The lifecycles result in a for in�ation corrected
monthly pension and these are analysed using multiple ranking criteria with
the most important criteria being expected utility and the chance to reach
a monthly pension of 75% of the average salary. This research �nds that
the optimal lifecycle, within the set of 13 analysed lifecycles, in terms of ex-
pected utility and chance of reaching a pension of at least 75% of the average
income is a lifecycle fully invested in stocks. This result is useful for pension
providers in order to improve their lifecycles. But it also can be a starting
point for further research in lifecycle optimization.

As countries have very di�erent pension structures this paper only focusses
on the Dutch pension system. Furthermore this paper assumes that members
of a DC pension plan will use the pension capital at retirement for buying
an annuity. Due to limited time, no attention is paid to the impact of the
introduction of variable annuities for DC plans which has come into e�ect in
the Netherlands as of 1 September 2016 (�Wet verbeterde premieregeling�).

In the next section, some background information is provided regarding the
Dutch pension system and regarding the lifecycle principle in DC pension
plans. Then section 3 contains a literature review followed by section 4 which
discusses the methods and data. Section 5 discusses the obtained results and
section 6 concludes.



2 PENSION SYSTEM & LIFECYCLES 3

2 Pension System & Lifecycles

Before discussing the construction of a lifecycle it is important to understand
how the pension system and lifecycles work. This section explains the Dutch
pension system and how lifecycles work.

2.1 Pension System

There are three possible ways someone receives his pension bene�ts: when
the pension age is reached, in case of death and when you are unable to
work. What happens in each case depends on the pension plan. This paper
focusses only on what happens when pension age is reached.

2.1.1 Pension Pillars

The pension system exists out of three di�erent parts, the pension �pillars�.
The de�nition used comes from the study by Centre of European Policy
Studies (Lannoo et al., 2014).
The �rst pillar is the publicly managed Pay As You Go(PAYG) system, in
the Netherlands that is the AOW(Algemene OuderdomsWet). The purpose
is to prevent pensioners to fall into extreme poverty. It guarantees an ade-
quate pension for everyone older than the pension age. First pillar pension
plans are based on the DB principle. The AOW part of pensioners is taken
into account in this research. The DB and DC principle are discussed in
section 2.1.4.
The second pillar contains the pension plans linked to labour market. It aims
to ensure a secure and adequate income level, which re�ects the income level
during the working career. These pension plans come in the form of DB and
DC. The DC plan in this pillar is where this research focusses on.
The third pillar is for the individual, voluntary pension plans. Because sav-
ing in this pillar is voluntary it is hard to distinguish pension savings from
other long- or short-term savings. For this reason these kind of savings are
disregarded in this research.

2.1.2 Pension Triangle

In pension plans linked to labour market (second pillar) there is a triangular
relation between the employee, employer and the pension provider shown in
Figure 1. These relations are:
1. Employer-Employee: The employer and employee engage in a pension
agreement as part of the labour contract. A pension agreement is a pension
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plan in which the employer and the employee make contributions. The aim
is to generate income for the employee after retirement.
2. Employer-Pension provider: According to Dutch law the employer and
pension provider must be two strictly separate businesses. The employer
and the pension provider have an administration agreement. The adminis-
tration agreement must be in line with the pension agreement and contains
�nancial and exit conditions between employer and pension provider.
3. Employee-Pension provider: They have a relation as a result of the out-
sourcing of the execution of the pension agreement to the pension provider.
The pension provider makes a pension plan and sends a start letter to the
employee. The content of the pension plan is based on the pension agreement.

Figure 1: Pension triangle

2.1.3 Legal Framework

While there is no legal obligation for employers to o�er a pension to employ-
ees, more than 95% of the employees in the Netherlands are in a supplemen-
tary pension plan provided by their employer. The reason for this high rate is
that in approximately 70% of the cases, a compulsory supplementary pension
plan applies for the industry in which the employer operates. Such plans are
provided through industry-wide pension funds, managed by employers and
employees.

Pension rights are not taxed at the time they are awarded if the particular
plan quali�es for wage tax purposes. A pension plan quali�es if:
a. the limits set by the Dutch Wage Tax Act are not exceeded;
b. all formal provisions are complied with;
c. the pension provider is permitted to operate as such under the law.

In the Netherlands, the Dutch Central Bank (DNB) and the Authority Fi-
nancial Markets (AFM) are responsible for monitoring pension providers.
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DNB performs material and prudential supervision over pension funds and
considers the �nancial assessment framework and pension fund governance.
The AFM supervises the conduct of pension administrators, covering the
provision of information prescribed by law and the duty of care with regard
to DC plans.

2.1.4 Pension Plans

There are various systems for accumulating pension bene�ts in the Nether-
lands. Every pension plan must take the state pension (AOW) into con-
sideration as pensions can only be built-up on the salary minus the AOW-
deductible (Franchise). The di�erent plans are:
De�ned Bene�t (DB), De�ned Contribution (DC) and Cash Balance (CB)

The most common pension plan is the De�ned Bene�t plan. In this plan the
bene�ts are certain and known in advance, regardless of the returns of the
underlying investments. The bene�ts are based on the number of years in
service, the salary history and age.
Other important aspects of DB plans are that:
Individuals don't have in�uence on the investment strategy. Risk is spread
over di�erent years/generations. This means that results of excess return on
investments, interest rate movements and changes in longevity risk whether
positive or negative can be spread over multiple years. E�ectively this causes
solidarity between participants of di�erent generations.
There are a few di�erent DB agreements. The two most used are the �nal
pay agreement and the career average agreement. In these two agreements
the �nal salary and average salary are used to determine pension bene�ts.
In a DB plan the employer pays a premium to the pension provider. This
premium is set in such a way that it minimizes the risk that the pension
provider cannot pay the bene�ts. The premium increases if the interest rate
drops, the �nancial market is performing poorly and/or the life expectancy
increases, because then a lifetime of pension bene�ts becomes more expen-
sive.

In De�ned Contribution plans companies do not get any obligations on the
balance sheet which is good for accounting purposes. This causes the DC
plan to grow in popularity. In a DC plan the contributions are predetermined
and paid by the employer, the employee or both. Most times the contribu-
tions made by the employer are matched to some degree by the contributions
made by the employee. At retirement the total build up capital depends on
the amount of contributions and the investment return. The total capital is
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then used to buy an old age pension. The employee bears the risk in invest-
ment, longevity and interest rate.

Then there is the Cash Balance pension plan. A rarely used plan, it is a
combination of DB and DC. In the CB plan the capital at retirement is cer-
tain and known in advance, but the pension bene�ts are not. At retirement
age the capital will be used to buy an old age pension. This causes the risk
to be more spread between employer and employee. The employer bears the
investment risk and the employee the longevity and interest rate risk.

2.2 Lifecycles

In a DC pension plan contributions are invested by the pension provider.
The pension provider invests according to a predetermined asset allocation
per age, a lifecycle. Participants can also choose to invest the contributions
themselves but in practice this rarely happens. In the following �gure an
example of a lifecycle consisting of three di�erent asset classes is given.

Figure 2: Example Lifecycle.

In this lifecycle the percentage invested in stocks remains 70% until the age
of 43. After this moment the allocation slowly shifts toward bonds. This can
be a linear transition, however in this case and often in practice this is not a
linear transition. The percentage invested in real estate remains 15% for the
whole period.This is just an example of how a lifecycle can look.
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2.2.1 Lifecycle Goals

The resulting pension capital depends on the amount of contributions and on
the investment return of the underlying assets. The risk lies with the partici-
pant. It is important that the allocation has an appropriate balance between
maximizing long-term growth and managing risk. Too much emphasis on
returns may cause the portfolio to be too volatile. Too much emphasis on
controlling swings may limit growth.

The goal is to obtain the �right� allocations based on theory of what risk tol-
erance would be. The allocations are typically determined through a model
optimization process. Another approach is to design allocations based on
investors' observed behaviour. This approach assumes that, on average, in-
vestors are able to choose appropriate portfolios, and that valid conclusions
about risk tolerance can be derived by observing their choices over time.

To determine which lifecycle type to include, plan sponsors �rst must un-
derstand the target audience for each type. Then sponsors must assess their
employee base to see which lifecycle type gives the better �t.

2.2.2 Lifecycle in practice

Pension providers o�er multiple lifecycles. However these lifecycles di�er
for every pension provider. Even the neutral/default lifecycles of di�erent
pension providers can have big di�erences. In the �gures below the neutral
lifecycles of Amersfoortse and Achmea are shown.

Figure 3: Neutral lifecycle Achmea Figure 4: Neutral lifecycle Amersfoortse

The two graphs show big di�erences. Achmea has a structural higher asset
allocation toward stocks and a more smooth transition. It also shows simi-
larities. They both have a similar asset allocation at pension date. They also
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start around 15 or 20 years before pension date with the transition toward
bonds. This agrees with the idea to lower risk as individuals get older. Both
these lifecycles are in the set of lifecycles that are analysed in this paper.

3 Literature Review

The main focus of this research is to �nd the optimal lifecycle within the
given set of lifecycles. Besides that, this paper aims to bring more insight
into the di�erences of di�erent lifecycles. This section will discuss relevant
literature and how this research contributes to this literature.

A very in�uential model in lifecycle literature is from Merton (1969). His
model assumes a two asset market, consisting of a risk free asset and a risky
asset. In this model an investor must choose how much to consume and how
he allocates his wealth between the two assets to maximize expected lifetime
utility. By using dynamic programming Merton (1969) derives closed form
solutions under the assumptions of log normal distributed risky assets and
Constant Relative Risk Aversion(CRRA), which implies that attitude toward
�nancial risk is independent of wealth level. The resulting lifecycle solutions
depend on human capital, �nancial wealth, on the expected rate of return,
volatility of risky asset returns and the relative risk aversion coe�cient. The
model by Merton (1969) has been an important building block for lifecycle
literature. It has been the starting point of a great number of papers. Bodie
et al. (1992) extended the model by adding expected bene�ts from human
capital. Then Teulings and de Vries (2006) and Bovenberg et al. (2007) ex-
tended the model by adding a more elaborate model for anticipated returns
on human capital and additional risk factors in �nancial markets.

This research will use the suggested extension to more assets from Merton
(1969) to �nd �Merton's optimal lifecycle�. This lifecycle will be used in the
comparison to �nd the optimal lifecycle. For full details about the model see
section 4.5

An interesting report that looks at di�erences between various lifecycles is
van Ling and van Soest (2016). They show that there are big di�erences be-
tween neutral lifecycles of di�erent pension providers. By using economical
simulation (with 1000 scenarios) on three di�erent neutral lifecycles, they
�nd di�erences rising to 9% in expected return. Moreover they �nd big dif-
ferences in how pension providers deal with their risk exposure.

This paper adds to the existing literature by the focus on real monthly pen-
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sion results. By looking at pension results instead of total wealth this paper
takes into account that pension is more expensive when interest is low and
that you can buy less with the same amount of money when in�ation is high.
This paper also uses other simulation techniques for the asset returns. This
is discussed in the next section.

3.1 Literature on Asset Returns

Correct model assumptions are crucial when forecasting asset returns over a
long horizon. There is tremendous literature regarding the predictability of
asset returns.

However the opinion about return predictability di�ers. Welch and Goyal
(2008) argue that there is very little stock predictability. They show that the
historical average excess return forecasts future stock returns better than
regressions of excess returns on predictor variables. However there is also
literature that suggests the opposite. Ang and Bekaert (2007) argue that
stock returns are predictable, but mainly on a short-horizon. Ju and Miao
(2012) argue that investors act di�erently in a recession state. They are more
pessimistic and have low continuation values causing the returns to be lower
during recession periods.

Guidolin and Timmermann (2006) estimate the optimal number of states for
predicting asset returns and �nds that a four state regime switching model
is optimal to capture the time variation in mean and volatility. They �nd
that the two model adequately captures periods with high volatility. For this
reason this paper investigates the state dependency of the data used.The
states used are expansion and recession, indicated by the CEPR.

The next step is to determine which assets to take into account for the asset
allocation. It is important to simplify the asset allocation to asset classes.
Otherwise too many variables are used in the simulation. Most literature
only focusses on stocks and bonds. This paper adds real estate. The reason
is that the best instruments for hedging against in�ation and maintaining
purchasing power are real estate. Bond and Seiler (1998), O'Donnell (2009)
and Lee et al. (2014). It is important to look at in�ation when investing
pension contributions. It is essential to not only look at the amount of
bene�ts people receive, more importantly people want to be able to maintain
a similar lifestyle. Another important thing to take into account is the height
of the interest rate at pension date, as pensions are more expensive when
interest rates are low.
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4 Methods and Data

In this section �rst the essential components for lifecycle analysis are dis-
cussed. Then there is a discussion and analysis about the data that is used.
Followed by a discussion about the simulation methods. And �nally the
ranking criteria are explained.

4.1 Lifecycle Construction

Lifecycle consist of a few components. These are:
The asset allocation in stocks, real estate and bonds over time, which can be
either over age or over time until reaching the pension age. In this research
the focus lies on a 25 year old starter who retires at the age of 67. The
results are displayed with a focus on age. The distinction between age or
time until pension does not matter here since the pension age and starting
age are �xed.
Then the lifecycle capital return distribution at pension age is determined by
the contributions, asset allocation and asset returns. This research assumes
that it is not possible to go short and that there are no transaction costs.
The capital return distribution is then transformed into a monthly pension,
taking into account the interest rate at that point of time.
Then the AOW is added to the monthly pension provided by the lifecycle.
The �nal step is to turn this monthly pension into a monthly real pension by
correcting the monthly pension for in�ation. By doing this the obtained real
monthly pension can be fairly compared across di�erent types of simulation
paths, as it says how much the pensioner is able to buy.

4.2 Historical Data

The �rst step is to determine the lifecycle capital return distribution. The
capital return distribution is based on the asset allocation over the asset
classes and the return of the asset classes. The asset classes this paper takes
into account are stocks, bonds and real estate. The focus is on Dutch pension
providers. Dutch pension providers allocate their capital over di�erent funds
that invest in each asset classes. The most comparable data are European
indices of stocks and real estate. For this reason European MSCI Indices are
used as proxies for the asset classes. The proxies that are used are:

The MSCI Europe Index for stocks and the MSCI Europe Real Estate index
for real estate. For the bond returns this papers uses a term structure model
with the Euribor as proxy for the short rate. This is done to adequately
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capture the relation between interest rates and bond yields with di�erent
maturities. Using this term structure the yield of a 20 year maturity bond is
estimated and used as bond returns. The historical in�ation levels are taken
from Centraal Bureau Statistiek (CBS).
Then the stock return, real estate return and in�ation level are simulated
using a Vector Auto Regressive (VAR) model, with the short rate and eco-
nomic state as exogenous variables.

Asset returns behave di�erently depending on the stage of the economy. In
times of recession stock return and real estate returns are lower than in times
of expansion Campbell and Cochrane (1999) and Ju and Miao (2012). The
next part shows the asset, interest and in�ation data with their summary
statistics and performance during di�erent stages of the economy in the pe-
riod April 2005 - April 2017, which is the longest period available.

4.2.1 Return statistics

In the following graphs and tables stock returns, real estate returns, short
rate and in�ation level can be found.

In the tables the mean, median and standard deviation(Std. Dev.) can be
found for the whole period, the expansion(Expan) and the recession(Reces)
periods. In the period from April 2005 until April 2017 there have been two
periods of economic recession in the European region. These periods were
from January 2008 until March 2009 and from August 2011 until March
2013 as indicated by the Centre for Economic Policy Research (CEPR). In
the graphs these recession periods are marked as grey areas.
The mean and standard deviation are then compared to determine whether
they are di�erent in expansion and recession periods. The tests used to
determine this are,

tscore =
(µexpan − µreces)√
σ2
expan

obsexpan
+ σ2

reces

obsreces

and Fscore =
σ2
expan

σ2
reces

, (1)

with

tscore ∼ t(obsexpan + obsreces − 2) and Fscore ∼ F (obsexpan, obsreces), (2)

where µreces and σreces are the average return and the std. dev. respectively
in all recession periods. obsreces is the number of recession periods.
The results of these tests can be found in the small table containing the
Student t-statistic and F-statistic, for the mean and volatility respectively.
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Stocks

This research uses the MSCI Europe Index as proxy for stocks. This data
is obtained from Bloomberg. The table shows that the stock returns are
signi�cantly higher in periods of expansion. It also shows that the volatility
is signi�cantly higher in periods of recession. This research assumes that
stock returns are dependent on the stage of the economy, which agrees with
most literature.

Figure 5: MSCI Europe Index returns

All Expan Reces
Mean 0.32 0.94 -1.64
Median 0.92 1.13 -0.30
Std. Dev. 4.18 3.50 5.44

Score prob.
Mean t-test 2.64 0.00
Volatility F-test 0.41 0.00

Table 1: MSCI Europe return Statistics

Real Estate

This research uses the MSCI Europe Real Estate Index as proxy for real
estate. This data is obtained from Bloomberg. The table shows that the real
estate returns are signi�cantly higher in periods of expansion. It also shows
that the volatility is signi�cantly higher in periods of recession. For these
reasons, this research assumes that real estate returns are dependent on the
stage of the economy.

Figure 6: MSCI Europe Real Estate returns

All Expan Reces
Mean 0.19 1.06 -2.55
Median 0.03 0.46 -1.41
Std. Dev. 5.77 5.17 6.73

Score prob.
Mean t-test 2.92 0.00
Std. Dev. F-test 0.59 0.02

Table 2: MSCI Europe Real Estate return
Statistics
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Short rate

This research uses the 1 month Euribor as proxy for the short rate. The data
shown is the annualized 1 month Euribor yield obtained from Bloomberg.
The �gure shows that the Euribor has periods of decrease during recessions.
However a simple t test on the mean in the two periods indicate the op-
posite, a higher short rate in periods of recession. The data seems to be
non-stationary. For this reason the one period growth of the Euribor should
be examined. These can be found in the appendix 8.1.1.

Figure 7: Monthly 1 month Euribor rates

All Expan Reces
Mean 0.11 0.09 0.15
Median 0.04 0.04 0.10
Std. Dev. 0.13 0.12 0.15

Score prob.
Mean t-test -2.25 0.01
Std. Dev. F-test 0.67 0.06

Table 3: 1 month Euribor Statistics

In�ation

This research uses the in�ation as stated by CBS. The �gure and table show
that in�ation has high volatility. There do not seem to be signi�cant di�er-
ences in between di�erent stages of the economy.

Figure 8: Monthly In�ation Levels

All Expan Reces
Mean 0.13 0.09 0.25
Median 0.09 0.06 0.26
Std. Dev. 0.48 0.47 0.48

Score prob.
Mean t-test -1.70 0.05
Std. Dev. F-test 0.99 0.47

Table 4: In�ation Statistics

For stocks and real estate the data shows that returns are signi�cantly lower
in recession periods and that the volatility is signi�cantly higher in recession
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periods. The data shows that the short rate has a signi�cant di�erence in
level and some doubtful results about the di�erence in volatility across the
two economic stages. This is mainly due to the fact that the time series
is non-stationary. For this reason the �rst di�erence is examined. These
show that the change in the short rate has signi�cant di�erences in the two
economic states. In Appendix 8.1.1 the full return statistics of the �rst dif-
ferences can be found.

4.2.2 Comparing Asset Classes and In�ation

In Table 5 a correlation matrix is shown, showing the correlation across
the di�erent time series. Observe that stocks and real estate are strongly
positively correlated, stocks and bonds are negatively correlated and real
estate and bonds have no signi�cant correlation. Furthermore, in�ation is
most correlated with real estate, as literature suggested, but the correlation
is small.

Stocks Real Estate Short Rate In�ation
Stocks 1.00 0.78 -0.23 0.06
Real Estate 0.78 1.00 -0.27 0.08
Short Rate -0.22 -0.27 1.00 0.02
In�ation 0.06 0.07 0.02 1.00

Table 5: Correlation Matrix Asset Returns and In�ation

Table 6 shows the di�erent correlation statistics per economic state. The
values within brackets are for the recession periods and the values without
brackets are for the expansion. The table shows that the correlations are in
all cases stronger during recessions. The short rate is in recessions strongly
negatively correlated with stocks and real estate whereas this is not the case
in expansions. Moreover the correlation between real estate and in�ation is
a lot more noteworthy in times of recessions. Even though these �ndings
might suggest state dependent regression coe�cients (possibly only for the
short rate), due to the limited sample size this research chooses not to do so.

Expansion(Recession) Stocks Real Estate Short Rate In�ation
Stocks 1.00 0.76 (0.78) -0.01 (-0.48) 0.11 (0.11)
Real Estate 0.76 (0.78) 1.00 -0.10 (-0.47) 0.06 (0.26)
Short Rate -0.01 (-0.48) -0.10 (-0.47) 1.00 0.01 (-0.07)
In�ation 0.11 (0.11) 0.06 (0.26) 0.01 (-0.07) 1.00

Table 6: Correlation Matrix Asset Returns and In�ation per economic state
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4.3 Simulation

To determine values of stocks, bonds and real estate this paper uses simu-
lation. The �rst step in simulating asset returns is determining the stage of
the economy. This is because the data shows dependence on the economic
stage. Then, with these simulation results, the di�erent time series can be
estimated and with these, lifecycle returns are calculated. This research does
the full simulation 10,000 times, the full simulation code can be found in the
Appendix 8.3.

4.3.1 Stage Of The Economy

For the simulation of the stages of the economy this paper uses a discrete
Markov model (Puterman, 2014). With two di�erent economic stages.
Expansion, when the economy is doing well and recession, when the economy
is performing poorly. The Markov transition matrix is given in table 7.

Expansion Recession
Expansion p 1-p
Recession 1-q q

Table 7: Markov transition states

To �nd steady state probabilities πexp and πrec one solves the following set
of equations,

πexp = pπexp + (1− q)πrec
πrec = (1− p)πexp + qπrec

πexp + πrec = 1.

(3)

By analysing the historic stages of the economy, stated by the Center for
Economic Policy Research (CEPR),
πrec = 75.9% and πexp = 24.1% are observed. These equations reduce to

p =
0.518

0.759
+

0.241

0.759
q. (4)

Then using the Matlab code found in Appendix 8.3.1 the optimal transition
probabilities are calculated, these can be found in Table 8 .

Expansion Recession
Expansion 0.9810 0.0190
Recession 0.0598 0.9402

Table 8: Markov transition states used in this Research
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4.3.2 Term Structure Model

This paper uses the term structure model by Cox et al. (1985a) to simulate
bond returns. In this model the short rate determines the development of all
interest rates. Further it assumes the short rate has mean reversion and that
interest rates are unable to become negative. Both assumptions are common
in interest rate literature. Even though negative interest rates seem more
and more plausible since the European Central Bank (ECB) has a negative
deposit rate since 2014, this paper assumes that the retail rates will remain
above zero. This is because banks are reluctant to use negative interest rates
as they believe that negative interest rates will scare customers away from
the use of �nancial institutions. A drawback of this model is that it doesn't
account for di�erent economic stages. To overcome this problem a single
jump factor is added to the model. The short rate dynamics can, following
Cox et al. (1985a), be expressed as:

dr = k(θ + βI(rec)− r)dt+ σ
√
rdzt, (5)

or the discrete time equivalent studied by Wood (1964):

r(t+ ∆t)− r(t) = k(θ + βI(rec)− r)∆t+ σ
√
r(t)∆tZ, (6)

where r is the short rate, k the adjustment rate, θ the long-term value, σ the
interest rate volatility, dt the change over time, dzt a Wiener process, Z a
random normal variable, β the jump factor and I(rec) an indicator function
that equals 1 in the case of a recession. For k and θ > 0 this corresponds to a
�rst order autoregressive process where the interest rate is elastically pulled
toward a long-term value, θ. k determines the speed of adjustment.

The price of bond at time t maturing at time T is given by

P (r, t, T ) = A(t, T )e−B(t,T )r, (7)

where

A(t, T ) = (
2γe(γ+k+λ)(T−t)/2

(γ + k + λ)(eγ(T−t) − 1) + 2γ
)2kθ/σ2

,

B(t, T ) =
2(eγ(T−t) − 1)

(γ + k + λ)(eγ(T−t) − 1) + 2γ
,

(8)

with
γ =

√
((k + λ)2 + 2σ2). (9)

From the price function it is observed that, bond prices are an increasing
function of time and a decreasing function of maturity. Bond prices also are



4 METHODS AND DATA 17

an increasing concave function of the price of market risk parameter λ. The
short rate variance σ2 and the speed of adjustment parameter k. At last
bond prices are a decreasing convex function of the short rate and long term
value θ.

The short rate together with the economic stage are used to simulate the
bond returns. The price of market risk parameter λ is dependent on the
economic stage because people are more risk averse in periods of recession.
Due to the lack of literature and data regarding European λ the paper from
Graham and Harvey (2016) is used to determine the price of market risk.
They use S&P500 return data to determine the market price of risk for each
period. This gives λ = 3.98% during recession periods and λ = 3.35% during
expansion periods. This research assumes that European recessions have a
similar e�ect on the market price of risk in Europe as U.S. recessions have
on the market price of risk in the U.S.

Knowing the price function we derive the yield at time t for a discount bond
maturing at T by

y(t, T ) =
− log(P (t, T ))

T − t
. (10)

Substituting previous P(t,T) gives

y(t, T ) =
log(A(t, T ))−B(t, T )rt)

T − t
(11)

Using Cox 1985 the probability density of the short rate at time t, conditional
on its value at time t - ∆t is given by:

f(r(t)|r(t−∆t)) = ce−u−v(
v

u
)q/2Iq(2(uv)1/2), (12)

where

c =
2k

σ2(1− e−k∆t)
,

u = cr(t−∆t)e−k∆t,

v = cr(t),

q =
2kθ

σ2
− 1,

(13)

and Iq(...) is the modi�ed Bessel function of the �rst kind of order q. The
distribution function is the noncentral chi-square, χ2[2cr(t); 2q+ 2, 2u], with
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2q+ 2 degrees of freedom and parameter of noncentrality 2u proportional to
the current short rate.

In order to estimate parameters k, θ, σMaximum Likelihood Estimation(MLE)
is used. MLE selects the set of values of the model parameters that maxi-
mizes the likelihood function.

(k, θ, σ) = arg max
k,θ,σ

log(L(k, θ, σ)), (14)

log(L(k, θ, σ)) = (N−1) log(c)+
N−1∑
i=1

[(−ui−vi)+
q

2
log(

vi+1

ui
)+log(Iq(2

√
uivi+1))].

(15)
The full derivations can be found in the Appendix 8.2.2 .

The Bessel function oscillates around zero, see Figure 22 in the Appendix.
This causes the optimization routines to rapidly approach minus in�nity as
log(0) = −∞. Since the Matlab optimization routines are not able to handle
this problem, Kladívko (2007) suggests to use a scaled version of the Bessel
function. This scales version transforms the function to

log(L(k, θ, σ)) = (N − 1) log(c) +
N−1∑
i=1

[(−ui − vi) +
q

2
log(

vi+1

ui
)+

log(I∗q (2
√
uivi+1) + 2

√
uivi+1)],

(16)

where I∗q (2
√
uivi+1) is the scaled version of the Bessel function, which does

not oscillate around zero. The starting points are crucial for the optimization.
Kladívko (2007) suggests to use Ordinary Least Squares (OLS) on the short
rate to obtain the starting points. The expression is then solved using a
Matlab code, which can be found in Appendix 8.3.5.

4.3.3 Asset Return Model

According to the data, the movements of the stock returns, real estate re-
turns and in�ation depend on each other. Moreover they also depend on the
economic state and the short rate. The model that captures these elements
the best way is a Vector Auto Regressive model with exogenous variables, a
VARX model. Comparing the Akaike Information Criterion (AIC) of one to
four lags shows that the optimal number of lags equals one. Therefore this
research uses the following VARX(1) model for the stock returns, real estate
returns and in�ation level,

Y (t) = α + AY (t− 1) +BX(t) + U(t), (17)
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where Y (T ) is a 3x1 vector containing stock return, real estate return and
in�ation level in period t, X(t) is the 2x1 vector containing the exogenous
variables economic period and the short rate, α is a 3x1 vector of intercepts,
A is a 3x3 matrix of coe�cients, B is a 3x2 matrix of coe�cients and U(t)
is 3x1 vector of multivariate random distributed errors ∼ MVN(0,Σ) with
Σ based on the error terms of the VAR regression. The model is estimated
using Eviews and the data mentioned in section 4.2. The regression results
can be found in Appendix 8.1.5.

4.4 Wealth

In order to determine investment capital two components need to be anal-
ysed. These are �nancial wealth and human capital, together they are seen
as an individual's wealth.

4.4.1 Salary Income

Both �nancial wealth and human capital depend on the income received at
starting age and future ages. In order to �nd a good estimate of the di�erent
income levels over age this paper uses data from Centraal Bureau Statistiek
(CBS) and Modaal-inkomen.nl. This paper uses the placeholder named Jan
Modaal1 as an example person.
The Assumptions used in this paper are:
-Jan Modaal is the median employee.
-Jan Modaal is not the mode of all men, women are also taken into account.
-Jan Modaal has a di�erent base income dependent on his age.
-Jan Modaal's base income increases yearly with a factor related to the in-
�ation, see Figure 24 in the Appendix.
-Jan Modaal's base income is based on Modaal-inkomen.nl. Since the aver-
age income is used from di�erent professions in 2013 and the mode income in
2017 is estimated to be e37000. This paper scales the income at the age of
40 to e37000 but keeping all yearly growth percentages the same. Looking
at the salary di�erences at each age, see Figure 23, it is observed that the
salary growth has an exponential function. This comes down to the following
Salary function:

S(a, t) = S(a− 1, t− 1) ∗ (1 + gt(t− 1)) ∗ (1 + ga(a− 1)), (18)

with
gt(t− 1) ∼ N(µ+ i(t− 1), σ2)

ga(a− 1) = b ∗ ga(a− 2)
(19)

1The Dutch version of Average Joe
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where S(a, t) is the Salary for an individual aged a in year t, gt(t − 1) and
ga(a − 1) are growth functions dependent on year and on age respectively,
i(t) is the in�ation in year t and b is a coe�cient. Using simulation and
age dependent salary statistics from CBS an optimal age dependent salary
function is generated. The function (only dependent on age) that optimally
�ts the CBS data points is

S(a) = S(a− 1) ∗ (1 + ga(a− 1))

= S(a− 1) ∗ (1 + 0.035 ∗ 0.926(a−25)).
(20)

Figure 9 shows how the function �ts the data points.

Figure 9: Salary generated by formula compared to the CBS mode datapoints.

The code used can be found in Appendix 8.3.2 .
The optimal growth function dependent on time is based on the real salary
growth over time, see Figure 25 in the Appendix, and can be represented as

gt(t− 1) ∼ N(0.26% + i(t− 1), 0.026%). (21)

This ultimately comes down to the following salary function

S(a, t) = S(a− 1, t− 1) ∗ (1 + 0.035 ∗ 0.926a−25) ∗ (1 + εt), (22)

where εt is Normal distributed with mean equal to the in�ation in period t
+ 0.26% and a variance of 0.026% (εt ∼ N(inflationt + 0.26%, 0.026%)).
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4.4.2 Contributions

A part of the salary is used to contribute in the pension plan. The height of
the contribution depends on four factors.
The �rst factor is the franchise, that is the part of the salary that is not
used to build up pension. This is because the pension bene�ts consist out
of a �rst pillar part (AOW) and a second pillar part (DC). The franchise is
the part that is expected to come from the �rst pillar. If the franchise rises
the contributions will decrease and the pension will be lower. In this paper
a franchise of e13,123.00 is used; this is the franchise for a single married
person according to the Belastingdienst (Dutch Tax and Customs Adminis-
tration). The average yearly increase of the franchise is taken into account.
From analysing the data from 2005 to 2017 an average yearly growth of 1.9%
is found and therefore this paper assumes a yearly franchise growth of 1.9%.
The second factor is the pensionable earnings, that is the salary minus the
franchise. It should be positive and besides that it is capped at e103,317.
This maximum value does change every year, but since the salary of an av-
erage/median employer does not come close to this value, the growth of the
pensionable earnings cap is disregarded in this research.
The third factor is the part-time factor, which is a factor of how many hours
someone works compared to a full time job. For example someone who works
28 hours at a company instead of the normal 40 hours, works for 70% which
means a part-time factor of 0.7. In this paper a full time working person
(part-time factor =1) is considered.
The �nal factor is the contribution percentage, this is the maximum percent-
age of the pensionable earnings that can be contributed to the pension plan.
Which is often the default, but depends on the pension provider. This factor
is dependent on the age of the contributor and the kind of pension. For a
table of contribution premiums see Table 16 in the Appendix.
In short, the pensionable earnings are salary minus franchise. Then multiply
this with the part-time factor and the contribution percentage. The result
will be that years contribution to the pension plan.

4.4.3 Financial Wealth and Human Capital

Financial wealth is the total value of assets in that year. In order to determine
�nancial wealth the asset allocation of the contributions over time must be
known. This asset allocation, the lifecycle, consists out of three di�erent
classes which all yield returns. With these returns the Financial wealth in
each period can be determined.
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This comes down to

F (t) = F (t− 1) ∗R(t− 1) + C(t), (23)

where R(t) is the weighted asset return and C(t) is the contribution in period
t.

Human capital is the present value of total future income. That is the sum
of all discounted future incomes,

H(t) =
T∑
i

Dsc(i)C(i) with t+ 1 < i < T − t, (24)

where Dsc(i) is the current value of e1 in year i, the discount rate and C(i)
is the expected contribution to pension in year i. Human capital is used to
determine the optimal lifecycle according to Merton (1969).

4.5 Lifecycles

In this research 13 di�erent lifecycles are compared. Part of them are simple
lifecycles that do not change over time, the other lifecycles do change time.
It is interesting to see how the simple lifecycles perform compared to the
more sophisticated lifecycles. Also it is interesting to see how the practical
lifecycles perform.
There are seven simple lifecycles that do not depend on anything and are con-
stant over time. These are, three di�erent lifecycles fully invested in one of
the three assets classes, Bonds (Lifecycle Bo), Stocks (Lifecycle St) and Real
Estate (Lifecycle RE). Three di�erent lifecycles constant over time consisting
for 50% out of two of the three assets and one lifecycle equally weighted over
the three di�erent lifecycles, Bonds and Stocks (Lifecycle StBo), Stocks and
Real Estate (Lifecycle StRE) and Bonds and Real Estate (Lifecycle REBo).

Next are the more interesting lifecycle. The �rst three are di�erent lifecycles
that depend on age and therefore change over time. The Example lifecy-
cle from section 2.2, (Lifecycle Ex), which is a self invented lifecycle used
to explain how lifecycles work. And two lifecycles that are used in practice
by Achmea and by Amersfoortse see section 2.2.2, (Lifecycle Ac and Lifecy-
cle Am respectively). Unfortunately I wasn't able to get accurate lifecycle
details from other pension providers. Finally this research considers three
di�erent implementations of Merton's Optimal lifecycle. The following �g-
ures give a visual representation of the models by Merton (1969). These
lifecycles depend on the investment return and are for that reason di�erent
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in every simulation path. Most lifecycles are the same in each scenario. The
exceptions are the di�erent versions of Merton's optimal lifecycle. These are
explained in the following parts.

4.5.1 Merton's Model

The optimal lifecycle following Merton (1969) shows that the optimal port-
folio is the same for all investors under the assumption of Constant Relative
Risk Aversion(CRRA). Following Merton, the fraction of wealth invested in
stocks and real estate is equal to

wt = Ω−1 µ

1− γt
, (25)

where wt is a 2x1 vector of weights, µ is a 2x1 vector of average asset returns,
Ω is the covariance matrix of asset returns and γt is the relative risk aversion
coe�cient. In Merton's original model γt is constant and one should invest in
the same manner whether it is an expansion or recession. γt coe�cient value
is 5 as this is common in most literature. As an addition to this model this
research also looks at the optimal lifecycle according to Merton taking into
account the economic stage, in this model γt is not constant. This additional
lifecycle is explained in Section 4.5.2.

Let w∗t be the sum of wt, the total fraction invested in stock and real estate.
Besides �nancial wealth, wealth also exists of human capital.
This comes down to W (t) = F (t) +H(t).
Since only �nancial wealth can be invested only the fraction of �nancial
wealth (wft ) that should be invested in each asset must be determined. Now
using,

∆W (t) = W (t)−W (t− 1)

= µ+W (t− 1)εw(t),
(26)

where ε is a shock term. The magnitude of the shock depends on W(t-1).
With the simpli�cation that human capital is risk free (εh(t) = 0), which is
not 100% correct but is the best approach since we are looking at the modal
employee.

∆W (t) = µ+W (t− 1)εf (t), (27)

the �uctuations in total wealth and �nancial wealth should be the same.
This means,

wtW (t− 1)ε = wft F (t− 1)ε, (28)
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using this equation it follows that

wft = wt
W (t− 1)

F (t− 1)
= Ω−1 µ

1− γt
W (t− 1)

F (t− 1)

= Ω−1 µ

1− γt
(1 +

H(t− 1)

F (t− 1)
).

(29)

With the requirement that the fraction can not be negative and must be
smaller than one, that is

0 ≤ wft ≤ 1. (30)

A big part of the future pension for a median Dutch employee is AOW.
Because Merton (1969) does not take the �rst pillar (AOW) into account it
can be argued that the lifecycle is not aggressive enough. Future research
should try to implement AOW in Merton's model.

4.5.2 Merton's optimal lifecycle improved

As an addition to Merton's optimal lifecycle this research also looks at the
optimal lifecycle when including economic state information. By making
the parameters state dependent this model aims to improve upon Merton's
model. Since the economic state is not known before investing, the economic
state of the previous period is used to determine the parameter values for
the mean and volatility.

The choice of γt is di�cult, this is because the relative risk aversion coe�cient
is also assumed to be di�erent depending on the economic stage. And there
is little research done on the dependence of the risk aversion on the economic
state. Papers as Bovenberg et al. (2007) and Gomes et al. (2008) use a risk
aversion coe�cient value of 5 for the average investor. Both argue how wrong
values of the coe�cient can lead to enormous welfare losses, especially too
low risk aversion coe�cient values (Bovenberg et al. (2007) shows that a false
risk aversion of 2 leads to a 30% welfare loss compared to the welfare in the
case of a true risk aversion of 5).

Li (2007) argues that the relative risk aversion coe�cient should consist out of
a constant plus a countercyclical time varying market price of risk component.
But he leaves the estimation for future research. Appendix 8.2.3 shows my
interpretation of the suggestion by Li (2007) and how this is done. Using
the derivation in Appendix 8.2.3, which uses the market price of risk in each
economic state, the relative risk aversion coe�cient is estimated. This results
in γt equals 5.546 in case of a recession and 4.827 in case of an expansion.
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4.5.3 Merton's optimal lifecycle literature parameters

Another additional lifecycle used is Merton's optimal lifecycle in which the
parameters are chosen as values which are common in literature. It is com-
mon in literature to take parameters from government committees. The rea-
son is that pension providers have to take these parameters into account when
calculating their expected returns and pension bene�ts. The dutch commit-
tee that determines these parameters is the Advies Commissie Parameters.
From their documentation the parameters regarding expected returns (4%)
and standard deviation (20%) are obtained. However these parameters are
only available for stock returns. For this reason Merton's optimal lifecycle
with parameters from literature only invests in bonds or stocks. This turns
the fraction found in section 4.5.1 into

wft =
µ

γtσ2
(1 +

H(t− 1)

F (t− 1)
) =

1

γt
(1 +

H(t− 1)

F (t− 1)
). (31)

Because now µ
σ2 = 1 ,while in the dataset this was µdata

σ2
data

= 1
2
. In practice this

means that the asset allocation slowly turns towards 1
γt
. Which is a slightly

more agressive strategy than the model of Merton (1969) with parameters
from the data.

4.6 Lifecycle Criteria & Ranking

With the asset returns and the lifecycles the expected returns are determined,
together with the short rate and in�ation this will determine the pension
result. Analysing pension results from the simulations from each lifecycle will
show how each lifecycle performs in terms of expected pension and volatility.
This analysis gives a ranking. This part explains how the pension return
distributions are used to rank the lifecycles. This is based on expected utility
and pension at pension date together with the volatility in the pension resuls.
The criterias used are:
Expected utility, Sharpe Ratio, expected return, volatility, median, Value at
Risk, Expected Shortfall, the chance they have a monthly pension above 75%
of their average salary and chance of a monthly pension above 70% of their
�nal salary. The expected utility will determine the �nal ranking, but special
attention should also be paid to the chance of having a real income above
75% of their average salary, because this is the pension received in de�ned
bene�t pension plans and is a good indication on how the lifecycle performs
compared other pension plans.
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4.6.1 Capital to real monthly pension

This research looks at how much people can buy with their pensions. There-
fore the focus is on monthly real pension and not on capital. Therefore the
�rst step is to turn the pension capital into a monthly pension. This is done
using the function

Pm = (0.045901 ∗ r + 0.0033087) ∗M, (32)

where Pm stands for the monthly pension, r for the interest rate and M for
the initial total capital. Derived from 25 year long annuity o�ers of 15 Dutch
banks and Dutch insurance companies. For a more detailed explanation see
Appendix 8.1.7. Then the AOW is added and this nominal monthly pen-
sion is divided by the simulated in�ation factor, to obtain the real monthly
pension.

4.6.2 Expected Utility

The most important criterion to determine the optimal lifecycle in this re-
search is the expected utility. This is because it weights the resulting pensions
in such a way that it penalizes low pension results more than it rewards high
pension results. This causes more volatile lifecycles to have a lower rating
than lifecycles that are less volatile, when they both have a similar expected
pension. To do this, this paper assumes a power utility function which agrees
with the Constant Relative Risk Aversion (CRRA) as discussed in section
4.5.1. For the calculation of the expected utility, the power utility function
is integrated. This comes down to the following equation,∫ ∞

0

p(K)U(K)dK, (33)

which in this research is estimated by

1

N
∗

N∑
i=1

U(Ki), (34)

where N is the number of simulations, Ki is the monthly real pension capital
in simulation i, p(K) is the chance of ending on a real monthly pension of K
and U(K) is the power utility de�ned as,

U(K) =

{
K1−γ−1

1−γ γ 6= 1

ln(K) γ = 1,
(35)

where γ is a parameter measure of risk aversion.
This research does 10,000 simulations, each simulation is equally weighed to
determine the expected utility of each lifecycle.



5 RESULTS 27

4.6.3 Expected Return and Volatility criteria

Besides the expected utility, the expected return and volatility are impor-
tant and give more insight in the di�erences across lifecycles. One of the
most popular criteria in �nance which takes both the expected return as the
volatility into account is the Sharpe Ratio(SR). The Sharpe Ratio is de�ned
by

SR =
rlc − rf
σlc

, (36)

which is the lifecycle return rlc minus the risk free rate rf divided by the
lifecycle standard deviation σlc.

Another common criteria mostly used in risk management applications is the
Value at Risk (VaR) of α%. Which is the maximum pension you will receive
in the worst α% of the cases. Accompanied with the Expected Shortfall (ES)
of α% which gives the expected pension in the worst α% of the cases. These
two together give good insight in the worst case scenarios for the di�erent
lifecycles. In this research α% is chosen to be 5% which is common in most
literature.

4.6.4 Reaching average income or �nal pay

In de�ned bene�t pension systems the pension is often 70% of the �nal pay or
75% of the average salary. It is therefore important to compare the lifecycle
results with the traditional expected pensions, as most participants are still
expecting similar pensions. This research looks at both 70% of the �nal and
75% of the average pay as in the models used the expected 70% of the �nal
salary is more than 50% more than the expected 75% of the average salary.
As the di�erence is big and these two measures are common in practice, both
are shown in the results.

5 Results

This section discusses the simulated data and lifecycle returns. First the focus
will be on how well the simulated data compares to the historic data. This
is done by analysing the simulation statistics. Then the resulting lifecycles
are shown and the di�erences among lifecycles are discussed.
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5.1 Simulated Data

This section contains a discussion about the simulated economic state, short
rate, stock return, real estate return and in�ation after doing 10,000 simula-
tions.

5.1.1 Economic State

First the focus is on the simulated recession and expansion periods. These
are simulated using the Markov switching model described in section 4.3.1.
The following �gure shows the fraction of periods being recession periods in
each simulation run. Figure 10 shows the fraction of recession periods in the

Figure 10: Fraction of periods being recession periods.

�rst 1000 simulation paths. The fraction of recession periods di�ers quiet a
bit between the di�erent simulations. The biggest fraction of recessions is
0.67 and smallest fraction of recessions is 0, which happened only once. The
average number of recession periods is 23.5%, this is just a slight deviation
from the observed 24.1% number of recession periods that were present in
the data.

5.1.2 Short Rate

Second the model by Cox et al. (1985a) is used to forecast the short rate
and the yield curve. Section 4.3.2 and Appendix 8.2.2 explain the full model
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estimation. Among other parameters the model estimates a long term short
rate average, however this long term average was estimated to be a negative
value. This is most likely due to the decreasing interest rate in the past 12
years. Since the model assumes that the interest rates can not go negative,
the forecasts rarely changed from being 0%. But because this is unrealistic
this research chooses to overrule the estimate by replacing it with a yearly rate
of 2% which is a common long-term interest rate average in recent literature.
This resulted in more realistic and dynamic interest rates.
Of all 10,000 simulations of 504 months per simulation, the average monthly
short rate is 8.8∗10−4 with a standard deviation of 6.8∗10−4. This is a yearly
average short rate of 1.1%. The short rate is smaller than in the observed
dataset, however in recent years the interest rates have dropped to an all-
time low. And interest rates are expected to stay low for a long time. For
this reason the obtained interest rates are acceptable forecasts.

5.1.3 Stocks, Real Estate and In�ation

For the simulation of the stock returns, real estate returns and in�ation a
Vector Auto Regressive (VAR) model is used. Section 4.3.3 and Table 15 in
the Appendix give more model details. Table 9 and Table 10 show the re-
sulting simulation averages and standard deviation respectively. The values
between brackets show the empirical data averages and standard deviation.
The simulation averages show similar results as the empirical data and the
simulation standard deviation is almost identical to the empirical data stan-
dard deviation. Only in�ation has a signi�cant higher standard deviation
than empirically found. Excluding in�ation the model correctly captures
the empirical data statistics. Therefore the model forecasts are an adequate
representation of the data as the averages are within a 25% range of the
empirical data averages.

Mean Stock Returns Real Estate Returns In�ation
All 0.40 (0.32) 0.25 (0.19) 0.13 (0.11)
Expansion 1.00 (0.94) 1.04 (1.06) 0.08 (0.09)
Recession -1.56 (-1.64) -2.31 (-2.55) 0.26 (0.15)

Table 9: Average return statistics model (and historical data)

St. Dev. Stock Returns Real Estate Returns In�ation
All 4.19 (4.18) 5.71 (5.77) 0.49 (0.13)

Table 10: Average standard deviation model (and historical data)
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5.1.4 Salary

The simulation of the salaries is on a yearly basis and done by multiplying
previous year's salary with two functions; a function that is only dependent
on time and a function that depends on the in�ation in that period and also
contains a random part. See section 4.4.1 for the full description. Figure 11
contains 5 random salary paths and Figure 12 contains the salary paths of
the top 5%, bottom 5% and median salary, together with the average salary.
The �gures show that there is quiet some di�erence between the salaries in
the multiple cases. This is understandable as the accumulated in�ation (see
�gure 14) in top 5% of the cases is also around the factor 2 bigger than the
accumulated in�ation in the bottom 5%.

Figure 11: 5 monthly salaries over 42 years. Figure 12: Median, Mean, Top& Bottom 5%

5.1.5 How does e1 grow in the di�erent asset classes

In this section the grow of e1 is shown for four di�erent paths. The �rst
path is the 5% percentile, the second is the median, third the mean and the
last one is the 95% percentile. This gives an idea of the investment return of
investing e1 in each asset class.
Figure 13 shows the investment return on investing e1 for 42 years (504
months) in the short rate. Investing in the short rate seems a safe invest-
ment, with low returns but none are negative. The worst 5% gives a positive
investment return of 20%, which is a yearly return of 0.4%. However the top
5% only gives a return of 130%, which is a yearly return of only 2%. The
average investment return is 59%.
Figure 14 shows the investment return on investing e1 for 42 years (504
months) in a hypothetical tracker that perfectly follows the in�ation. The
in�ation shows a similar spread as the short rate. The top 5% shows an



5 RESULTS 31

Figure 13: e1 invested in the short rate Figure 14: e1 invested in a CPI tracker

146% increase and the bottom 5% a 45% increase, a 101% di�erence which
is similar to spread at the short rate. The average investment return is 91%.

Figure 15 shows the investment return on investing e1 for 42 years (504
months) in stocks. Investing in stocks is a risky investment, with huge dif-
ferences between the top and bottom percentiles. The worst 5% lost more
than half of their money and end up with an investment return of -66%. The
top 5% made a huge pro�t, their e1 became e56,70 an investment return
of 5570%. They averaged a yearly investment return of 10.1%. The median
return is 387% which comes down to a yearly investment return of 3.8%.
And the yearly average return is 6.6%.
Figure 16 shows the investment return on investing e1 for 42 years (504
months) in real estate. Investing in real estate is an even riskier investment,
with enormous di�erences between the top and bottom percentiles. The
worst 5% lost almost all of their money and end up with an investment re-
turn of -96%. The top 5% made a huge pro�t, their e1 became e43.25 an
investment return of 4225%. They averaged a yearly investment return of
9.4%. The median return is 58% which is a yearly investment return of 1.1%.
And the yearly average return is 5.8%. Table 11 summarizes these results.
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Figure 15: e1 invested in stocks Figure 16: e1 invested in real estate

Bottom 5% Median Mean Top 5%
Short rate 1.20 1.50 1.59 2.30
In�ation 1.45 1.88 1.91 2.46
Stocks 0.34 4.88 14.43 56.70

Real Estate 0.04 1.58 10.59 43.25

Table 11: The �nal worth of e1 invested in the di�erent classes

5.2 Lifecycle Results

This section contains the simulated lifecycle results in terms of tables, graphs
and a discussion. In the �rst section the estimated asset allocation over time
is discussed. The following sections contains an overview and discussion of
the resulting pension returns.

5.2.1 Merton's Lifecycles constructions

This section gives a visual representation of the various versions of Merton's
optimal lifecycle.

In the �gures below the lifecycles for the three Mertons models are shown for
a single simulation run. Appendix 8.1.8 shows the average Merton alloca-
tion for all simulation runs. The lifecycles show di�erent patterns. The �rst
model, Lifecycle M, uses the data to estimate the optimal fraction without
taking the economic state into account. This lifecycle invest fully in stocks
but quickly shifts towards bonds. It does not invest anything into Real Es-
tate.
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The second model, Lifecycle Me, does take the economic state into account.
After the �rst few years where the fraction is invested in stocks and real es-
tate, the lifecycle slowly shifts towards bonds. The graph shows how the asset
allocation is more invested in bonds than in Merton's lifecycle that doesn't
take economic state into account, but it does have sudden drops. This is due
to the change from an expansion state into a recession state. The di�erent
risk averseness in the states causes the asset allocation to make the jumps it
does.
The third model, Lifecycle Mp, uses parameters suggested by Advies Com-
missie Parameters. Besides that the model does not invest in real estate
per de�nition, but this does not make much of a di�erence as the other two
lifecycles make close to no investment in real estate as well.

Figure 17: Lifecycle M (�rst) Figure 18: Lifecycle Me (second)

Figure 19: Lifecycle Mp (third)
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5.2.2 Lifecycle results

This section contains an overview and discussion of the lifecycle results. The
results are in terms of monthly real pension, that is monthly pension cor-
rected for the in�ation rate. With the exception of the chance of reaching
75% of the average salary and the chance of reaching 70% of the �nal salary.
This is because these are common pension amounts in de�ned bene�t pen-
sion plans, where employees compare their future pension to their salary in
nominal terms. And for this reason the salary related criteria are based on
the nominal monthly pension. The monthly pension consists out two parts,
a part determined by the lifecycle returns and an AOW part. Both parts are
subject to risk. The AOW grows each year with a fraction closely related
but not similar to the in�ation. And the lifecycle returns are subject to in-
�ation risk, investment risk and interest risk. The lifecycle results in terms
of expected return and amount of risk can be displayed in various ways. The
following �gure contains a box plot to easily compare the return distribution
of the 13 used lifecycles.

Figure 20: Box plot of the 13 di�erent lifecycles, excluding the top 2.5%

Figure 20 contains the box plot of the 13 di�erent lifecycles, this box plot
excludes the top 2.5% in order to keep the �gure readable. For the box plot
containing all simulated data see Figure 30 in the Appendix. See section
5.2.1 for the abbreviations used for each lifecycle.
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The blue boxes in the box plot contain the middle 50% of the simulated
monthly real pensions. The red line stand for the median and the top and
bottom black line stand for the highest and lowest observed monthly pension.
The box plot shows relatively similar median lifecycle returns, but huge dif-
ferences in lifecycle spread. The top 2.5% of all lifecycle returns are excluded
from the box plot mostly due to a few extreme high pension returns. Most
coming from the lifecycle fully invested in Real Estate, Stocks and the com-
bination of these two. The box plot gives a good insight in the di�erences in
spread across the set of lifecycles. Together with the other lifecycle criteria
this gives a good understanding in the lifecycle performance.

Table 12, found on the following page, shows the ranking criteria statistics of
all ranking criteria mentioned in section 4.6 plus a few additional percentiles
for extra insight. The Expected Pension is the mean of the simulated monthly
real pension lifecycle returns. The lifecycles that perform best in the given
criteria are marked bolt for convenience.

Theory suggests that Merton's optimal lifecycle should yield optimal pension
results when looking at expected utility. This is not the case however, none
of Merton's three di�erent lifecycles make it into the top 5. Most likely due
to the fact that the monthly pension does not completely depend on the
lifecycle return but also on the AOW. Leaving more room for risk taking in
the part of the pension generated by the lifecycle. This idea agrees with the
construction of the top ranked lifecycles. When comparing Merton's model
that takes economic state into account we see that it scores better on every
criteria (except a slightly higher standard deviation). This shows that taking
economic state into account increases lifecycle performance. The best per-
forming lifecycles are the lifecycles St, Ac and StBo which are all lifecycles
that invest most in stocks. The lifecycle that fully invests in stocks, lifecycle
St, performs best in terms of expected real monthly pension, the 25%, 50%,
75% and 95% percentile and on the chance of reaching a pension higher than
75% of the average salary and 70% of the �nal salary.

Due to the fact that the upward risk is greater than the downward risk in all
lifecycles, the standard deviation and Sharpe Ratio are misleading criteria in
this context. It is more informative to look at the lower percentiles and Ex-
pected Shortfall. For example when comparing Lifecycle Am (Amersfoortse)
with Lifecycle Mp (Merton's with parameters from literature), observe that
Lifecycle Am performs worse in terms of standard deviation and Sharpe Ra-
tio. However Lifecycle Am has higher monthly real pension results for all
percentiles. And naturally should be considered as the better lifecycle.
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When looking at lifecycle performance in worst case scenarios, Lifecycle
Me (Merton's model that takes economic state into account) performs best.
It has the highest expected shortfall and 5% percentile. Merton's lifecycle
can therefore be the optimal lifecycle for an employee who is more risk averse.

Looking at the lifecycles we can sort them into four di�erent groups. The
minimum risk group, with the Merton lifecycles and Bond lifecycle(Bo, M,
Me and Mp). These are characterized by having an expected monthly real
pension of around e1785, the lowest standard deviations, the highest Sharpe
Ratios and the highest 5% percentile monthly real pensions.
The average risk group, with the mixed bond lifecycles (StBo and ReBo),
the Example lifecycle (Ex) and lifecycle Amersfoortse (Am) This group is
characterized by somewhat higher returns by taking some extra risk. Their
expected monthly real pensions is around e1950. And they perform best in
the mid-low percentiles (between 5 and 25%).
Then we can categorize the above average risk group containing Lifecycle
Achmea (Ac) and the Equally weighted lifecycle (Eq). These lifecycles take
on a little additional risk which results in additional higher real monthly
pension results. Their expected monthly real pension is around e2020.
The �nal group would be the extreme risk group, containing the three lifecy-
cles that invest 100% in either stocks or real estate (St, RE and StRE). The
lifecycles in this groups have the highest standard deviation. In these lifecy-
cles the allocation toward stocks and real estate does not change when coming
close to retiring. And since the pension capital is generally the highest in the
�nal years of contributing, this results in huge jumps in the expected pension
just before retiring. Therefore this group can yield the highest and the low-
est pensions. This can be seen when looking at the Expected Shortfall and
the 95% percentile. The lifecycles in this group have the lowest Expected
Shortfal and the highest 95% percentile. The lowest Expected Shortfal of
all lifecycles is that of the lifecycle RE which is a monthly real pension of
e1243. However the lifecycle RE also has one of the highest 95% percentile,
a monthly real pension of e4562. But even if we look at the average and
median results these lifecycles are performing best. It pays o� to take a more
risky lifecycle!

Table 12 shows a huge gap in terms of standard deviation between the above
average risk group and the extreme risk group. The lifecycles within the ex-
treme risk group have standard deviations 1320-1660 which are a factor 2 to
3.5 higher than the above average risk group 480-580. This comes from the
relative high allocation towards stocks and real estate in lifecycle Eq and the
relative small allocation towards stocks and real estate in the last 10 years
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in lifecycle Ac. For future research it would be good to look at lifecycles
with standard deviation in between the standard deviations of these groups.
As currently there is a large gap between the most risky lifecycles and the
above average risk group, these lifecycles should be analysed as they might
give better results than the lifecycles currently analysed.

This research looks at the real monthly pension based on the �nal period. It
might also be interesting to add restrictions, or alter the ranking criteria to
stimulate lifecycles that take the preferences of the contributors into account.
For example people do not want their expected pension to change much in
the last 5 or 10 years before retiring and people might want to avert risk
when a certain expected monthly pension is reached. This could mean that
the practical lifecycles rank higher, as these take less risk in the last years
before retiring.

When comparing the two practical lifecycles of Achmea (Ac) and Amers-
foortse (Am) only a small di�erence of 3.4% in expected pension is found.
This di�erence is approximately 10% when comparing the accumulated pen-
sion capital which is similar to the �ndings of van Ling and van Soest (2016).
The di�erence between these two pension capitals comes from Achmea's life-
cycle being more o�ensive. That the di�erence in pension capital and ex-
pected pensions has such a big di�erence is due to the in�uence the AOW
has on the monthly pension. For people with higher income the AOW part
is less signi�cant and di�erent results could be found.

The best performing lifecycle is lifecycle St, that fully invests in stocks for
the entire career. It has the highest Expected Utility and the highest chance
of reaching a monthly pension of 75% of the average salary received over the
employees working life.
The second best performing lifecycle is lifecycle Achmea, lifecycle Achmea is
slightly more conservative. It has a slightly lower 25% percentile, but higher
5% percentile and Expected Shortfall compared to the lifecycle St. This in-
dicates higher pensions in the lesser scenarios, while also having high pension
results in good scenarios and just a slightly lower chance of reaching 75% of
the average salary compared to lifecycle St.

The reason that o�ensive lifecycles perform best is most likely related to the
fact that a big part of the monthly pension comes from the almost risk free
AOW. Since this part of the pension contains little risk, more risk can be
taken in the pension part generated by the lifecycle.
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6 Conclusion

This paper looks at the asset allocation of pension contributions in de�ned
contribution (DC) pension plans over the asset classes stocks, bonds and real
estate. This paper �nds that the optimal lifecycle within the set of analysed
lifecycles, for someone following the lifepath of Jan Modaal, in terms of ex-
pected utility is to follow a lifecycle that invests fully in stocks for the whole
contribution period. It pays o� to take a risky lifecycle.

The factors that impact on the lifecycle results in this research are the eco-
nomic state, interest rate, investment return, in�ation and salary develop-
ment. Factors as life expectancy are out the scope of this research and are
left for future research. For the economic state a Markov switching model
is used. The interest rates, bond returns and term structure are estimated
following CIR model Cox et al. (1985b). The in�ation, stock and real estate
return are estimated with a VARX model. And the salary development is
simulated with an exponential model with a random term. 13 di�erent life-
cycles are analysed, including lifecycles that are constant over time, lifecycles
seen in practice and a few versions of the theoretic optimal lifecycle by Mer-
ton (1969).

The optimal lifecycle within the set of analysed lifecycles according to this
research in terms of expected utility, expected pension, median Pension and
chance to reach a pension of at least 75% of the average work life salary is to
fully invest in stocks. This does not agree with the theory by Merton (1969)
and also does not fully agree with the lifecycles observed in practice. This
research shows that lifecycles should be more allocated to stocks than they
currently do.
The reason that the optimal lifecycle does not agree with the optimal life-
cycle suggested by Merton (1969) could be related to the fact that pension
exists out of a part determined by the AOW. And that for this reason more
risk should be taken, since the AOW part does not contain that much risk.
This could be di�erent for people who earn more, have a shorter contribution
period or come in with a signi�cant starting pension capital (from another
pension plan for example). This should be further investigated in future re-
search.
Another reason could be that the lifecycles by Merton (1969) in fact are
optimal but that the employees are more risk averse than estimated by the
models used in this research. More risk averse employees would also mean
that the lifecycle by Achmea, that currently is ranked second best, would be
ranked higher compared to the lifecycle purely invested in stocks. Achmea's
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lifecycle and Merton's(taking economic state into account) lifecycle perform
better in the worst case scenarios of the simulation results. This could mean
that the practical lifecycles are in fact more optimal than purely investing
in stocks. More research in this area is bene�cial for improving the lifecycles
and for determining the optimal lifecycle.

The optimal lifecycle strongly depends on the data and model assumptions.
In this research MSCI Indices and 1 Month Euribor of the period April 2005
until April 2017 are used in combination with the CIR model and a VARX
model. This period contains the �nancial crisis followed by recovering pe-
riod containing all time low interest rates. The �nancial crisis and the shift
to extremely low and even negative interest rates could a�ect the research.
Moreover the estimation uncertainty and the slight deviation of the average
return statistics of the assets compared to the historical data could a�ect
the research. Therefore longer or other horizon data, with the possibility of
negative interest rates could be investigated in future research.

This research focusses on people contributing their whole working life. An
addition to this research would be to look at people coming in at a later age
or with a starting pension capital. It might be more bene�cial to reduce the
risk when a certain amount of pension capital is reached. Furthermore since
2016 September the �rst, the law "Wet voor verbeterde premieregeling" came
in force. With this law it is possible to keep investing a part of the pension
capital when receiving the pension. This means that even at pension age
the received monthly pension can be dependent on the investment returns.
This introduces investment risk for the pensioner. The impact of this law
to lifecycle investing in de�ned contribution plans should be investigated in
future research.
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8 Appendix

The Appendix contains some extra descriptive information about the data,
functions and models used, the full derivation of models and estimation meth-
ods and the Matlab codes that are used to conduct this research.

8.1 Descriptive

This section contains some additional tables and �gures for a better under-
standing of the methods and models used in this paper.

8.1.1 Change in Euribor

The �gure shows the change in Euribor 1 month interest compared to the
previous month. The table and �gure clearly show signi�cant di�erences in
recession and expansion periods. All values shown are percentages.

Figure 21: Absolute change; 1 month Euri-
bor rates

All Expan Reces
Mean -0.14 0.15 -1.05
Median -0.02 0.00 -0.12
Std. Dev. 1.54 0.97 2.41

Score prob.
Mean t-test 2.86 0.00
Std. Dev. F-test 0.16 0.00

Table 13: 1 month Euribor growth Statistics

8.1.2 Excess Stock Return

In the table below the excess stock return statistics are shown. All values
shown are percentages.

All Expansion Recession
Mean 0.22 0.75 -1.44
Median 0.93 1.14 -0.47
Std. Dev. 4.21 3.29 6.06

Table 14: Stock returns minus the 1 month Euribor
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8.1.3 Functions

Figure 22: Bessel function Jq(x) for q =0, 1 and 2.

This Figure shows the oscillating characteristic of the Bessel functions
that makes it impossible for the fminsearch function to reach an optimum.

8.1.4 Salary

Figure 23: Salary growth over age shows a exponential trend

The salary function is best estimated with an age dependent exponential
function.
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Figure 24: In�ation shows a similar pattern as mode salary growth

This Figure shows that the salary growth follows a similar path as the
in�ation. This is data obtained from CBS.

Figure 25: Salary growth minus in�ation. Period 1993-2013(µ = 0.26% and s = 1.61%)

The salary growth excess on the in�ation, the real salary growth, has a
mean of 0.26% with a standard deviation of 1.61%.
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8.1.5 VAR Estimation Output

R_Stocks R_RE In�ation
R_Stocks(-1) -0.002 -0.086 -0.009

(0.128) (0.174) (0.015)
R_RE(-1) 0.103 0.169 0.014

(0.093) (0.127) (0.011)
In�ation(-1) -0.320 -1.319 0.251

(0.707) (0.962) (0.082)
C 0.931 1.076 0.057

(0.468) (0.637) (0.054)
Euribor 1Month -0.394 -0.721 0.000

(0.216) (0.294) (0.025)
Recession Dummy -2.195 -2.831 0.162

(0.830) (-1.131) (0.096)

Table 15: VAR coe�cients matrix (values between brackets are standard errors)

This table shows the regression output of the VAR model in section 4.3.3.
The regression period is April 2005 until April 2017. R_RE stands for return
Real Estate and (-1) indicates the previous period.

8.1.6 Contribution Percentages

Ages OP
OP and delayed
e�ective accrued PP

OP and immediately
e�ective accrued PP

OP and immediate
obtainable PP

15 until 19 5.7 6.9 7.8 8
20 until 24 6.3 7.7 8.6 9.1
25 until 29 7.3 8.9 10 10.5
30 until 34 8.5 10.3 11.5 12
35 until 39 9.8 12 13.2 13.8
40 until 44 11.4 13.9 15.3 15.9
45 until 49 13.3 16.2 17.6 18.4
50 until 54 15.5 18.9 20.4 21.2
55 until 59 18.2 22.3 23.5 24.5
60 until 64 21.6 26.4 27.3 28
65 until 67 24.9 30.5 30.9 31.1

Table 16: Percentages of pensionable income used to build up pension
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This table shows the contribution percentages for the age 15 until 67. OP
stands for Old age Pension and PP stands for Partner Pension. This research
bases the pension contributions on OP pension (the �rst column). The in-
formation from this table is obtained from Belastingdienstpensioensite.

8.1.7 Interest rate and Pension

This sections reviews the e�ect di�erent interest rates have on the monthly
pension. Using the webpage http://www.bank-sparen.nu/banksparen/

vergelijken/ I �nd the monthly pension based on di�erent interest rates.
These rates are from 15 Dutch banks and/or Dutch insurance companies.2

The pensions are based on a pay out period of 25 years, a constant monthly
payout, when the initial total capital is e100,000. The following �gure shows
the monthly pension for the di�erent interest rates.

Figure 26: Pension and Interest follow a linear function

Using this information we can determine a function which generates the
monthly pension given interest rate and initial capital. Given the initial
capital we have a linear function given by

Pm = (0.045901 ∗ r + 0.0033087) ∗ C, (37)

where Pm stands for the monthly pension, r for the interest rate and C for
the initial total capital.

2The providers are: Centraal Beheer Achmea, Nationale Nederlanden Bank, BLG Wo-
nen, Delta Lloyd Bank, Regio Bank, OHRA Bank, SNS Bank, Rabobank, ASR Bank,
AEGON Bank, Reaal Levensverzekeringen, ABN AMRO Bank, AEGON Verzekeringen,
Allianz Nederland Bank en Delta Lloyd Verzekeringen

http://www.bank-sparen.nu/banksparen/vergelijken/
http://www.bank-sparen.nu/banksparen/vergelijken/
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8.1.8 Average Merton Allocation

In the �gures below the average allocation of the Merton models in the 10,000
simulations are shown.

Figure 27: The average allocation of Merton's lifecycle

Figure 28: The average allocation of Merton's lifecycle taking economic stage into account

Figure 29: The average allocation of Merton's lifecycle using parameters from literature
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8.1.9 Additional Lifecycle Result statistics

This Figure shows the boxplot of all 13 lifecycles including all simulation
results.

Figure 30: Boxplot of the 13 di�erent lifecycles
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8.2 Derivations

This sections contains additional derivations and explanation of models and
parameter values that are used.

8.2.1 Markov states

The equations

πexp = pπexp + (1− q)πrec
πrec = (1− p)πexp + qπrec

πexp + πrec = 1,

(38)

with πrec = 75.9% and πexp = 24.1% reduce to

p =
0.518

0.759
+

0.241

0.759
q or q =

−0.518

0.241
+

0.759

0.241
p. (39)

These equations are used to determine optimal values for p and q. The code
used to �nd these optima are in Appendix 8.3.1 .

By analysing the historic stages of the economy, stated by the CEPR3, the
transition probabilities from table 17 are observed.

Expansion Recession
Expansion 0.9725 0.0275
Recession 0.0571 0.9429

Table 17: Markov transition states empirically found

These transition probabilities result in steady state probabilities of 67.5%
for expansion and 32.5% for recession. Which is quiet di�erent from the
observed 75.9% and 24.1%. For this reason it is better to use the transition
probabilities of table 18.

Expansion Recession
Expansion 0.98 0.02
Recession 0.06 0.94

Table 18: Markov transition states better to be used

These transition probabilities result in steady state probabilities of 75.0%
and 25.0% for Expansion and Recession respectively.

3Center for Economic Policy Research
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8.2.2 Maximum Likelihood

In this part the derivation of the Likelihood function of the short rate is
shown. The likelihood function is

L(k, θ, σ) =
N−1∏
i=1

f(ri+1(t)|ri(t−∆t)), (40)

with N the total number of observations. In order to simplify the calculations
the natural log is taken, the reason is that taking a natural log does not
change the arguments for the maximum value. The log-likelihood is given by

log(L(k, θ, σ)) =
N−1∑
i=1

f(ri+1(t)|ri(t−∆t)). (41)

Using that

f(ri+1(t)|ri(t−∆t)) = ce−u−v(
v

u
)q/2Iq(2(uv)1/2), (42)

we get the following formulae,

log(L(k, θ, σ)) =
N−1∑
i=1

(log(ce−ui−vi+1(
vi+1

ui
)q/2Iq(2(uivi+1)1/2))

=
N−1∑
i=1

log(c) +
N−1∑
i=1

[(−ui − vi+1) +
q

2
log(

vi+1

ui
) + log(Iq(2

√
uivi+1))]

= (N − 1) log(c) +
N−1∑
i=1

[(−ui − vi) +
q

2
log(

vi+1

ui
) + log(Iq(2

√
uivi+1))].

(43)

Maximizing this log-likelihood yields the optimum parameter values
(k, θ, σ) = argmaxk,θ,σ and is done with aid of the Matlab function fmin-
search which is incorporated in the code found in
Appendix 8.3.5.

8.2.3 Risk Aversion Parameter Estimation

This section contains the derivation of the γ parameters in each economic
stage. Li (2007) argued that γ should be dependent on a constant and
negatively with the time varying market price of risk. Using Graham and
Harvey (2016) I found a market price of risk that depends on the economic
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stage, λ equals 3.98% in expansions and 3.35% in recessions. Combining this
information I get the formula

γt = a+ b ∗ λt, (44)

where a is a positive constant, b a negative coe�cient and λt the market price
of risk. As it is common on literature to use a γ value of 5 for the average
investor and as Bovenberg et al. (2007) states that wrong values for γ can
have enormous impact on the welfare loss. I choose to have the expected γ
using the steady state probabilities to be equal to 5. This comes down to

0.241 ∗ γrec + 0.759 ∗ γexp = 5, (45)

γrec =
5

0.241
− 0.759

0.241
∗ γexp. (46)

Now inserting the �rst equation results in

a+ b ∗ 0.0398 =
5

0.241
− 0.759

0.241
∗ (a+ b ∗ 0.0335), (47)

Solving for a gives

a+
0.759

0.241
∗ a =

5

0.241
− 0.759

0.241
∗ b ∗ 0.0335− b ∗ 0.0398, (48)

a

0.241
=

5

0.241
− b

0.241
∗ (0.759 ∗ 0.0335 + 0.0398 ∗ 0.241), (49)

a = 5− b ∗ (0.759 ∗ 0.0335 + 0.0398 ∗ 0.241), (50)

�nally this comes down to

a = 5− 0.0350b (51)

and
b = 142.7825− 28.5565a. (52)

Trying out multiple a between 0 and 5 results in γrec values between 5 and
5.68 and γexp values between 4.78 and 5. The range is small and the smaller
a the bigger the di�erence, for this reason I choose a equal to 1 which results
in γrec = 5.5462 and γexp = 4.8266.
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8.3 Matlab Codes

This section contains the most important Matlab codes that were used in
this research.

8.3.1 Markov transition probabilities

This section contains the code for the determination of the markov transition
probabilities.

%Code for determining the optimal values for p and q.

%initialising possible vectors
p = zeros(1,100);
q = zeros(1,100);
x = [0.01:0.01:1];
y = [0.01:0.01:1];

%calculating p and q when the other is between 0 and 1
p = 0.518/0.759 + 0.241/0.759*x; %values for p when q equals x
q = -0.518/0.241 + 0.759/0.241*y; %values for q when p equals y

%determining optimal p and q

%calculating p when q is between 0.9 and 1
x2 = [0.9001:0.0001:1];
p2 = 0.518/0.759 + 0.241/0.759 ∗ x2;

%calculating errors compared to emperical transition probabilities
%p=0.9725 and q=0.9429
c2 = [(x2− 0.9429).2; (p2− 0.9725).2]; %quadratic error function
c3 = [abs(x2− 0.9429); abs(p2− 0.9725)]; %absolute error function
d2 = sum(c2,1);
d3 = sum(c3,1);

%determining the smallest error
[loc level] = min(d2);
[loc2 level2] = min(d3);

q_optimal = 0.900 + level/10000
p_optima] = p2(level)
%q2 = −0.518/0.241 + 0.759/0.241 ∗ y2;
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8.3.2 Salary function

This section contains the code for the determination of the salary function.

%%�nding an optimal salary function dependent on age
%It was already found that salary could best be estimated using an
%exponential function. Optimally �t a line through data points with
%restrictions that at age 42 salary = 37000 and salary growth = 1.1%

%emperical salary per age
good27 = 28000;
good32 = 32100;
good37 = 35000;
good42 = 37000;
good47 = 38000;
good52 = 39500;
good57 = 39500;
good = [good27 good32 good37 good42 good47 good52 good57];

%initializing error vectors
error = zeros(2,1000);
error2 = zeros(2,1000);
temp = zeros(1000,31);
temp2 = zeros(1000,30);
goodtemp = 0;

%starting simulation with 1000 di�erent growth of salary growth factors
for i=1:1000
error(1,i) = i;
error(1,i) = i;
temp(i,16) = 37000; %mode salary at age 42
temp2(i,16) = 1.1; %mode salary growth at age 42

for j=17:30
temp2(i,j) = temp2(i,j-1)*(1/(1+(i/10000))); %salary growth
end
for j=1:15
temp2(i,16-j) = temp2(i,16-j+1)/(1/(1+(i/10000)));
end

for j=1:15
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temp(i,16-j) = temp(i,16-j+1) / (1+temp2(i,16-j+1)/100); %salary age>42
end

for j=17:31
temp(i,j) = temp(i,j-1) * (1+temp2(i,j-1)/100); %salary age<42
end
goodtemp = [temp(i,1) temp(i,6) temp(i,11) temp(i,16) temp(i,21) temp(i,26)
temp(i,31)];

%calculating errors for each growth of salary growth factor
error(2,i) = sum(abs(goodtemp-good)); %absolute error term
error2(2,i) = sum((goodtemp− good).2); %quadratic error term
end

%optimal growth of salary growth factor
[error_value error_point] = min(error2(2,:));
growth_rate_opt = 1/(1 + error_point/10000);

%for visualisation
plot1 = zeros(7,2);
plot2 = zeros(7,2);

plot1(:,1) = 27:5:57;
plot2(:,1) = 27:5:57;

for i=1:7
plot1(i,2) = good(i);
plot2(i,2) = temp(error_point, (1+(5*(i-1))));
end

�gure
hold on
plot(plot1(:,1),plot1(:,2),′+′)
plot(plot2(:,1),plot2(:,2))
xlabel('Age')
ylabel('Salary')
hold o�

8.3.3 Simulation

The following sections contain the di�erent scripts and functions used to run
the whole simulation.



8 APPENDIX 57

%%%Input Parameters

StartAge = 25; %must be smaller than 42 for this version

PensionAge = 67; %must be between 44 and 69 for this version

Franchise = 13123;

FranchiseGrowth = 1.019;

Conperc = zeros(67,1); %Contribution percentages based on OP(1 to 67)

Conperc(15:19,1) = 5.7;

Conperc(20:24,1) = 6.3;

Conperc(25:29,1) = 7.3;

Conperc(30:34,1) = 8.5;

Conperc(35:39,1) = 9.8;

Conperc(40:44,1) = 11.4;

Conperc(45:49,1) = 13.3;

Conperc(50:54,1) = 15.5;

Conperc(55:59,1) = 18.2;

Conperc(60:64,1) = 21.6;

Conperc(65:67,1) = 24.9;

Workfactor = 1; %fulltime = 1, not working = 0, parttime = <0,1>

lambdaexp = 0.0335; %market price of risk in an expansion

lambdarec = 0.0398; %market price of risk in a recession

%%%Initializing Variables

Years = PensionAge - StartAge; %number of years

T = 12 * (Years) + 1; %number of periods (months)

Age = zeros(T,4); %matrix with two columns

Age(:,1) = 25:(1/12):67; %age with partial months (25.083)

Age(:,2) = floor(Age(:,1)); %integer value of age (25)

Year = Age(:,2)-24; %vector of years (1-42)

Month = (mod(Age(:,1),1)+(1/12))*12; %vector of months (1-12)

Age(:,3) = Month;

Age(:,4) = 1:T;

Yeary = 1:(Years+1);
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Agey = 25:67;

AOW = (Franchise * FranchiseGrowth^Years)/12; %monthly expected AOW

%%%Loads Asset data (just 3 files)

%input: -

%output: S_R, RE_R, I_R

LoadAssetData;

%%%Estimate short rate parameters

%input: -

%output: k,k2,theta,theta2,sigma,sigma2,b2

EstimateShortPara;

%%%The Simulation

RealSimulation;

%% Simulation results

Statistics; %simulation statistics

StatisticsLC; %lifecycle simulation statistics

%%%The Ranking

Ranking;

8.3.4 LoadAssetData

%%%Retrieving Asset Data 2005m4- 2017m4

S_R = xlsread('returns.xls',1,'B125:B269');

RE_R = xlsread('returns.xls',1,'C125:C269');

I_R = xlsread('cpi_increase.xls',1,'B125:B269');

8.3.5 EstimateShortPara

This section contains the code for the Maximum Likelihood Estimation.

%%%Script for Short Rate Parameter estimation

%Maximum Likelihood

%Following Kladivko instructions

%input: -

%output: k,k2,theta,theta2,sigma,sigma2,b2
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%%%Initiation

Ebo1 = xlsread('matlabeuribor.xls',1,'A1:A147'); % Euribor 2005m4 until 2017m6

Ebo2 = ((1+ Ebo1/100).^(1/12)-1); %annualized 1month euribor to monthly

Ebo = Ebo2(1:145); % Euribor 2005m4 2017m4

Ebo5 = Ebo;

Ebo3 = Ebo(2:145);

Ebo4 = Ebo3;

Nebo = length(Ebo);

Recdum1 = xlsread('matlabeuribor.xls',1,'C1:C147');

Recdum = Recdum1(1:145); %2005m4 - 2017m4

Recdum4 = Recdum(2:145); %2005m5 - 2017m4 (same length as diff vector)

if Ebo(1) <= 0

Ebo5(1) = 0.000000001;

end

for i=1:Nebo-1

if Ebo3(i) <= 0

Ebo4(i) = 0.000000001; % replace negative interest to 10^-7

Ebo5(i+1) = Ebo4(i);

end

end

%%%Starting values for MLE

dEbo1 = diff(Ebo5); %calculates grow in each period

dEbo = dEbo1./Ebo4.^0.5;

%without stage of economy

dt = 1/12;

x = [dt./Ebo4.^0.5, dt*Ebo4.^0.5]; % x * B = dEbo

B = x\dEbo;

resi = x*B - dEbo;

k = -B(2);

theta = -B(1)/B(2);

sigma = sqrt(var(resi,1)/dt);

param = [k theta sigma];
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%with stage of economy

x2 = [dt./Ebo4.^0.5, dt*Ebo4.^0.5, Recdum4./Ebo4.^0.5]; %add dummy stage

B2 = x2\dEbo;

resi2 = x2*B2 - dEbo;

k2 = -B2(2);

theta2 = -B2(1)/B2(2);

b2 = B2(3);

sigma2 = sqrt(var(resi2,1)/dt);

param2 = [k2 theta2 sigma2 b2];

%%%Finding optimal k theta sigma using MLE

%no economic stage

paramstart = param;

paramstart(paramstart<=0)=1/1000000;

opt_para = fminsearch(@(B) LL_COX(dt,Ebo5,B), paramstart);

LL = LL_COX(dt,Ebo5,opt_para);

k = opt_para(1);

theta = opt_para(2);

sigma = opt_para(3);

%%%Finding optimal k theta sigma beta using MLE

%with economic stage

paramstart2 = param2;

paramstart2(paramstart2<=0)=1/1000000;

opt_para2 = fminsearch(@(B) LL_COX(dt,Ebo5,B), paramstart2);

LL2 = LL_COX(dt,Ebo5,opt_para2);

k2 = opt_para2(1);

theta2 = opt_para2(2);

b2 = opt_para2(4);

sigma2 = opt_para2(3);

%temporary overrule estimates

theta2 = 0.0017; %0.0017 => 0.02 on yearly base

theta = theta2;

8.3.6 LLCOX

function [LL] = LL_COX(dt,Ebo5,param)

%returns the likelihood value given the parameters
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if size(param,2) == 3 %no economic state

%parameters

k = param(1);

theta = param(2);

sigma = param(3);

%calculate loglikelihood

n = length(Ebo5);

c = (2*k)/((sigma^2)*(1-exp(-k*dt)));

u = c * Ebo5(1:n-1).*exp(-k*dt);

v = c * Ebo5(2:n);

q = (2*k*theta/sigma^2)-1;

w = 2.*(u.*v).^0.5;

L = -u-v + (q/2).*log(v./u) + log(besseli(q,w,1)) + w;

L2 = log((besseli(q,w,1)));

if k<0 || theta<0 || sigma<0

LL = 1000^100;

else

LL2 = (n-1)*log(c) + sum(L);

LL = -LL2;

end

else %=4 => with economic state

%parameters

k = param(1);

theta = param(2);

sigma = param(3);

beta = param(4);

%calculate loglikelihood

n = length(Ebo5);

c = (2*k)/((sigma^2)*(1-exp(-k*dt)));

u = c * Ebo5(1:n-1).*exp(-k*dt);

v = c * Ebo5(2:n);

q = (2*k*theta/sigma^2)-1;

w = 2.*(u.*v).^0.5;

L = -u-v + (q/2).*log(v./u) + log(besseli(q,w,1)) + w;

if k<0 || theta<0 || sigma<0
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LL = 1000^100;

else

LL2 = (n-1)*log(c) + sum(L);

LL = -LL2;

end

end

end

8.3.7 RealSimulation

%%Script for Simulating Nsim number of runs

Nsim = 200; % number of simulations

% initializing variables for storing all important variables

ALL_S_dumrec = zeros(T,Nsim);

ALL_S_shortrates = zeros(T,Nsim);

ALL_S_Stock = zeros(T,Nsim);

ALL_S_RE = zeros(T,Nsim);

ALL_S_Inflation = zeros(T,Nsim);

ALL_S_Salary = zeros(T,Nsim);

% all different lifecycles nominal and corrected for inflation

ALL_LC_R_Ac = zeros(T,Nsim);

ALL_LC_N_Ac = zeros(T,Nsim);

ALL_LC_R_Am = zeros(T,Nsim);

ALL_LC_N_Am = zeros(T,Nsim);

ALL_LC_R_Bo = zeros(T,Nsim);

ALL_LC_N_Bo = zeros(T,Nsim);

ALL_LC_R_Eq = zeros(T,Nsim);

ALL_LC_N_Eq = zeros(T,Nsim);

ALL_LC_R_Ex = zeros(T,Nsim);

ALL_LC_N_Ex = zeros(T,Nsim);

ALL_LC_R_M = zeros(T,Nsim);

ALL_LC_N_M = zeros(T,Nsim);

ALL_LC_R_Mer = zeros(T,Nsim);

ALL_LC_N_Mer = zeros(T,Nsim);

ALL_LC_R_RE = zeros(T,Nsim);

ALL_LC_N_RE = zeros(T,Nsim);

ALL_LC_R_REBo = zeros(T,Nsim);

ALL_LC_N_REBo = zeros(T,Nsim);

ALL_LC_R_St = zeros(T,Nsim);
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ALL_LC_N_St = zeros(T,Nsim);

ALL_LC_R_StBo = zeros(T,Nsim);

ALL_LC_N_StBo = zeros(T,Nsim);

ALL_LC_R_StRE = zeros(T,Nsim);

ALL_LC_N_StRE = zeros(T,Nsim);

%[start for loop]

for i=1:Nsim

% Generating Recession and Expansion states

%input: Age, Year, lambdaexp, lambdarec, T

%output: dumrec, lambda, inrec

[dumrec, lambda, inrec] = ...

genrecessionstates(Age, Year, lambdaexp, lambdarec, T);

% Estimate short rate and bond prices

%input: Ebo, T, Nebo, k2, theta2, sigma2, dt, dumrec, lambda

%output: shortrate, fP, fY, fA, fB, yield

[shortrate, fP, fY, fA, fB, yield] = ShortRateSimulation(Ebo, T, Nebo, ...

k2, theta2, sigma2, dt, b2, dumrec, lambda);

% VAR Estimate Stock returns, Real Estate returns and Inflation

%input: S_R, RE_R, I_R, ...

Ebo, Recdum, shortrate, dumrec, Nebo, T, Years

%output: Y_new, Z, Inflation

[Y_new, Z, Inflation] = EstimateAssets(S_R, RE_R, I_R, Ebo, Recdum, ...

shortrate, dumrec, Nebo, T, Years);

% Calculate Salary and Human Capital

%input: Years, StartAge, Inflation, Conperc, fY, T, shortrate

%output: Salary3, Contribution, ContributionT, ContributionT2, ...

Human Capital, HumanCapitalT

[Salary, Contribution, ContributionT, ContributionT2, ...

HumanCapital, HumanCapitalT] = SalaryandHumanCapital(Years, StartAge, ...

Inflation, Conperc, fY, T,shortrate );

% Lifecycle Returns

%input: fY, T, ContributionT2, Y_new, shortrate, Age, PensionAge,

%HumanCapitalT, dumrec

%output: LC_St, LC_RE, LC_Bo, LC_Eq, LC_StRE, LC_StBo, LC_REBo, LC_Ex,
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%LC_M, LC_Mer, LC_Ac, LC_Am, LC_Mp

[LC_St, LC_RE, LC_Bo, LC_Eq, LC_StRE, LC_StBo, LC_REBo, LC_Ex, ...

LC_M, LC_Mer, LC_Ac, LC_Am, LC_Mp] = Lifecycles(fY, T, ContributionT2, Y_new, ...

shortrate, Age, PensionAge, HumanCapitalT, dumrec);

%filling in results

ALL_S_dumrec(:,i) = dumrec(:,4);

ALL_S_shortrates(:,i) = shortrate;

ALL_S_Stock(:,i) = Y_new(:,1);

ALL_S_RE(:,i) = Y_new(:,2);

ALL_S_Inflation(:,i) = Y_new(:,3);

ALL_S_Salary(:,i) = Salary;

ALL_S_yield1(:,i) = yield(:,4);

ALL_S_yield2(:,i) = yield(:,5);

ALL_S_Contribution(:,i) = ContributionT2;

ALL_S_InflCPI(:,i) = Z(:,3);

ALL_S_StockZ(:,i) = Z(:,1);

ALL_S_REZ(:,i) = Z(:,2);

% all different lifecycles nominal and corrected for inflation

ALL_LC_R_Ac(:,i) = LC_Ac./Z(:,3);

ALL_LC_N_Ac(:,i) = LC_Ac;

ALL_LC_R_Am(:,i) = LC_Am./Z(:,3);

ALL_LC_N_Am(:,i) = LC_Am;

ALL_LC_R_Bo(:,i) = LC_Bo./Z(:,3);

ALL_LC_N_Bo(:,i) = LC_Bo;

ALL_LC_R_Eq(:,i) = LC_Eq./Z(:,3);

ALL_LC_N_Eq(:,i) = LC_Eq;

ALL_LC_R_Ex(:,i) = LC_Ex./Z(:,3);

ALL_LC_N_Ex(:,i) = LC_Ex;

ALL_LC_R_M(:,i) = LC_M./Z(:,3);

ALL_LC_N_M(:,i) = LC_M;

ALL_LC_R_Mer(:,i) = LC_Mer./Z(:,3);

ALL_LC_N_Mer(:,i) = LC_Mer;

ALL_LC_R_RE(:,i) = LC_RE./Z(:,3);

ALL_LC_N_RE(:,i) = LC_RE;

ALL_LC_R_REBo(:,i) = LC_REBo./Z(:,3);

ALL_LC_N_REBo(:,i) = LC_REBo;
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ALL_LC_R_St(:,i) = LC_St./Z(:,3);

ALL_LC_N_St(:,i) = LC_St;

ALL_LC_R_StBo(:,i) = LC_StBo./Z(:,3);

ALL_LC_N_StBo(:,i) = LC_StBo;

ALL_LC_R_StRE(:,i) = LC_StRE./Z(:,3);

ALL_LC_N_StRE(:,i) = LC_StRE;

ALL_LC_R_Mp(:,i) = LC_Mp./Z(:,3);

ALL_LC_N_Mp(:,i) = LC_Mp;

end

%%monthly pension (nominal and real monthly lifecycle + AOW)

%nominal

ALL_LC_mn_Ac = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_Ac(T,:);

ALL_LC_mn_Am = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_Am(T,:);

ALL_LC_mn_Bo = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_Bo(T,:);

ALL_LC_mn_Eq = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_Eq(T,:);

ALL_LC_mn_Ex = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_Ex(T,:);

ALL_LC_mn_M = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_M(T,:);

ALL_LC_mn_Mer = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_Mer(T,:);

ALL_LC_mn_RE = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_RE(T,:);

ALL_LC_mn_REBo = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_REBo(T,:);

ALL_LC_mn_St = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_St(T,:);

ALL_LC_mn_StBo = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_StBo(T,:);

ALL_LC_mn_StRE = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_StRE(T,:);

ALL_LC_mn_Mp = AOW + (0.045901.*ALL_S_shortrates(T,:) + ...

0.0033087) .*ALL_LC_N_Mp(T,:);

%real

ALL_LC_m_Ac = AOW./ALL_S_InflCPI(T,:) + ...
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(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_Ac(T,:);

ALL_LC_m_Am = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_Am(T,:);

ALL_LC_m_Bo = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_Bo(T,:);

ALL_LC_m_Eq = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_Eq(T,:);

ALL_LC_m_Ex = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_Ex(T,:);

ALL_LC_m_M = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_M(T,:);

ALL_LC_m_Mer = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_Mer(T,:);

ALL_LC_m_RE = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_RE(T,:);

ALL_LC_m_REBo = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_REBo(T,:);

ALL_LC_m_St = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_St(T,:);

ALL_LC_m_StBo = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_StBo(T,:);

ALL_LC_m_StRE = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_StRE(T,:);

ALL_LC_m_Mp = AOW./ALL_S_InflCPI(T,:) + ...

(0.045901*ALL_S_shortrates(T,:) + 0.0033087) .*ALL_LC_R_Mp(T,:);

8.3.8 genrecessionstates

function [dumrec lambda inrec] = ...

genrecessionstates(Age, Year, lambdaexp, lambdarec, T)

%This function generates recession and expansion periods.

%input: Age, Year, lambdaexp, lambdarec

%output: dumrec, lambda, inrec

prec = 0.9402; %probability from recession to recession

pexp = 0.0190; %probability from expansion to recession

dumrec = zeros(T,4);

dumrec(:,1) = Year; %year indicator 1:untill pension age reached

dumrec(:,2) = Age(:,1); %age indicator startage until pension age

dumrec(:,3) = Age(:,4); %recession indicator 0 or 1
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lambda = ones(T,1);

lambda = lambdaexp*lambda;

temp = zeros(T,2);

%compare random draw from uniform distribution[0,1], if below prec in case

%previous period was recession or below pexp if previous period was

%expansion => next stage is recession.

for i=1:T-1 %choosing the right probability

temp(i,1) = pexp^(abs(dumrec(i,4)-1)) *(prec^(dumrec(i,4)));

temp(i,2) = rand(1); %taking random value from uniform(0,1)

if temp(i,2) < temp(i,1) %if smaller next state is recession

dumrec(i+1,4) = 1;

lambda(i,1) = lambdarec;

end

end

inrec = mean(dumrec(:,4)); % percentage periods in recession

end

8.3.9 ShortRateSimulation

function [shortrate, fP, fY] = ShortRateSimulation(Ebo, T, Nebo, ...

k2, theta2, sigma2, dt, b2, dumrec, lambda)

%This function generates Shortrates and the functions to price bonds

%input: Ebo, T, Nebo, k2, theta2, sigma2, dt, b2, dumrec, lambda

%output: shortrate, fP, fY

Nss = 1; %Number of Short rate Simulations

shortrate = zeros(T,Nss);

shortrate(1,:) = Ebo(Nebo);

Shocks = randn(T,Nss);

for i=2:T

shortrate(i-1,:) = max(0,shortrate(i-1,:));

shortrate(i,:) = max(0, shortrate(i-1,:) + k2*(theta2-shortrate(i-1,:)) *dt ...

+ (sigma2 * sqrt(shortrate(i-1,:).*dt)).* Shocks(i,:) + b2*dumrec(i,4));

end
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%function for gamma, A and B

fgamma = @(tt)(sqrt((k2+lambda(tt))^2 + 2*sigma2^2));

fA = @(tt,TT) (((2*fgamma(tt)*exp((fgamma(tt)+k2+lambda(tt))*(TT-tt)/2))/ ...

((fgamma(tt)+k2+lambda(tt))*(exp(fgamma(tt)*(TT-tt))-1)+2*fgamma(tt)))^...

(2*k2*theta2/sigma2^2)) ;

fB = @(tt,TT) ((2*(exp(fgamma(tt)*(TT-tt))-1))/ ...

((fgamma(tt)+k2+lambda(tt))*(exp(fgamma(tt)*(TT-tt))-1)+2*fgamma(tt)));

%Price function of a bond and the yield function

fP = @(shortr,tt,TT) (fA(tt,TT) * exp(-fB(tt,TT)*shortr));

fY = @(shortr,tt,TT) ((-log(fP(shortr,tt,TT)))/(TT-tt));

yield = zeros(T-1,6);

for i=1:T-1

yield(i,2) = fA(1,i+1);

yield(i,3) = fB(1,i+1);

yield(i,4) = fP(shortrate(100,1),1,i+1);

yield(i,5) = fY(shortrate(100,1),1,i+1);

yield(i,6) = yield(i,2) - yield(i,3)*shortrate(100,1);

yield(i,1) = ((yield(i,5)+1)^12)-1;

end

end

8.3.10 EstimateAssets

function [Y_new, Z, Inflation] = EstimateAssets(S_R, RE_R, I_R, Ebo, ...

Recdum, shortrate, dumrec, Nebo, T, Years )

%This function does the estimation of the Stock and Real Estate returns

%together with the estimation of the inflation.

%This estimation is done with an VAR model.

%input: S_R, RE_R, I_R, Ebo, Recdum, shortrate, dumrec, Nebo, T, Years

%output: Y_new, Z, Inflation

%%Matlab2015 unable to perform VARX regression use Matlab2017 or Eviews

% Spec = vgxset('n',3,'nAR',1,'nMA',0,'nX',2,'Constant',true);

% %3 times series, 1 auto regressive term, 0 moving average terms, 2

% %exogenous variables, and with a constant

% Spec2 = vgxset('n',1,'nAR',1,'nMA',0,'nX',1,'Constant',true);

% ESTmodel = vgxvarx(Spec,Y_old,X_old);
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%%Model Y(t) = A + Y(t-1)*B + X(t)*C + E

% Y(t) = [Stock_returns Real_Estate_returns Inflation] in period t

% X(t) = [Shortrate Recession_dummy] in period t

% E = Residuals normal distributed N(0,Cov), Cov is estimated from model

% A[1x3], B[3x3], C[2x3] are constants

Y_old = [S_R RE_R I_R];

X_old = [Ebo Recdum];

X_new = [shortrate(:,1) dumrec(:,4)];

Y_new = zeros(T,3);

Z = zeros(T,3);

% initiate coefficients from Eviews VAR regression results

VAR_A = [1.33 1.88 0.06];

VAR_B = [0.00 -0.09 -0.01;0.10 0.17 0.01;-0.32 -1.32 0.25];

VAR_C = [-0.39 -0.72 0;-1.90 -2.53 0.16];

% error terms based on statistics of error terms from Eviews VAR regression

VAR_mu1 = [0 0 0];

VAR_Sigma = [15.4 15.8 0.19;15.8 28.5 0.34;0.19 0.34 0.21];

VAR_E = mvnrnd(VAR_mu1,VAR_Sigma);

Y_new(1,:) = VAR_A + Y_old(Nebo,:)*VAR_B + X_new(1,:)*VAR_C + VAR_E;

Z(1,:) = ones(1,3);

for i=2:T

VAR_E = mvnrnd(VAR_mu1,VAR_Sigma);

Y_new(i,:) = VAR_A + Y_new(i-1,:)*VAR_B + X_new(i,:)*VAR_C + VAR_E;

Z(i,1) = Z(i-1,1)*(1+Y_new(i,1)/100); %growth of 1 euro invested Stocks

Z(i,2) = Z(i-1,2)*(1+Y_new(i,2)/100); %invested in Real Estate

Z(i,3) = Z(i-1,3)*(1+Y_new(i,3)/100); %invested in Inflation

end

Inflation = zeros(Years,1);

for i=1:Years

Inflation(i) = (Z(1+i*12,3) - Z(1+(i-1)*12,3))/Z(1+(i-1)*12,3);

end

end
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8.3.11 SalaryandHumanCapital

function [Salary3, Contribution, ContributionT, ContributionT2, ...

HumanCapital, HumanCapitalT] = SalaryandHumanCapital(Years, StartAge, ...

Inflation, Conperc, fY, T, shortrate)

%this function returns the Contributions for each period, the salary for

%each period and the amount of Human Capital in each period.

%% Calculate Salary and Human Capital

%input: Years, StartAge, Inflation, Conperc, fY, T, shortrate

%output: Salary3, Contribution, ContributionT, ContributionT2,

%HumanCapital, HumanCapitalT

Salary = zeros(Years,1);

Saltemp = 42-StartAge+1;

Salary(Saltemp) = 37000; %42-25+1 = 18

Franchise = 13123;

FranchiseGrowth = 1.019;

FranchiseM = zeros(T,1);

%Salary based purely on age

for j=1:Saltemp-1 %salary age<42

Salary(Saltemp-j) = Salary(Saltemp-j+1)/(1+0.035*0.926^(Saltemp-j-1));

end

for j=Saltemp+1:Years+1 %salary age>42

Salary(j) = Salary(j-1) * (1+0.035*0.926^(j-1));

end

% inflation correction and time correction

Salary2 = zeros(Years,1);

Salary3 = zeros(T,1);

Salary2(1) = Salary(1);

Saltemp3 = ones(12,1);

Salary3(1:12) = (Salary(1)*Saltemp3)/12;

for i=2:Years

Saltemp2 = normrnd(Inflation(i-1)+0.0026,0.00026);

Salary2(i)= Salary2(i-1) * (1+0.035*0.926^(i-1)) * (1+Saltemp2);

Salary3(1+(i-1)*12:i*12) = (Salary2(i)*Saltemp3)/12;

end

% Franchise growth
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for i =1:T

FranchiseM(i,1) = Franchise * FranchiseGrowth^(floor((i-1)/12)+1);

end

% Human Capital

SalExp = zeros(Years,1);

SalExp(1) = Salary(1);

Contribution = zeros(Years+1,1);

Contribution3 = zeros(Years+1,1);

Contribution(1) = (SalExp(1)-FranchiseM(1)) * (Conperc(StartAge)/100);

Contribution3(1) = (Salary2(1)-FranchiseM(1)) * (Conperc(StartAge)/100);

for i=2:Years

% previous salary * growth factor * (average expected inflation +

% excess salary growth)

SalExp(i) = SalExp(i-1)* (1+0.035*0.926^(i-1)) * (1.0155 + 0.0026);

Contribution(i) = (Conperc(StartAge-1+i)/100) * (SalExp(i)-FranchiseM(i*12));

Contribution3(i) = (Conperc(StartAge-1+i)/100) * (Salary2(i)-FranchiseM(i*12));

end

HumanCapital = zeros(Years+1,1);

%HumanCapital2 = zeros(Years,1);

Humantemp = zeros(Years,1);

Humantemp(Years) = Contribution(Years);

for i=1:Years-1

%expected sum of nominal future incomes

Humantemp(Years-i) = Humantemp(Years+1-i) + Contribution(Years-i);

end

for i=1:Years

HumanCapital(i) = Humantemp(i)/((1+fY(shortrate(1+(12*(i-1)),1),1,Years*12))^(Years*12));

end

ContributionT = zeros(T,1);

for i=2:T

if mod((i-1),12) == 0

ContributionT(i-12) = Contribution((i-1)/12);

end

end

ContributionT3 = zeros(T,1);
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ContributionT2 = zeros(T,1);

HumanCapitalT = zeros(T,1);

for i=1:T

ContributionT2(i) = Contribution(floor(i/12)+1)/12;

HumanCapitalT(i) = HumanCapital(floor(i/12)+1);

ContributionT3(i) = Contribution3(floor(i/12)+1)/12;

end

8.3.12 Lifecycles

function [LC_St, LC_RE, LC_Bo, LC_Eq, LC_StRE, LC_StBo, LC_REBo, LC_Ex, ...

LC_M, LC_Mer, LC_Ac, LC_Am, LC_Mp] = Lifecycles(fY, T, ContributionT2, Y_new,...

shortrate, Age, PensionAge, HumanCapitalT, dumrec)

%This function returns all the lifecycles paths

%%Lifecycles Return

%input: fY, T, ContributionT2, Y_new, shortrate, Age, PensionAge,

%HumanCapitalT, dumrec

%output: LC_St, LC_RE, LC_Bo, LC_Eq, LC_StRE, LC_StBo, LC_REBo, LC_Ex,

%LC_M, LC_Mer, LC_Ac, LC_Am, LC_Mp

%%Pure lifecycles

LC_St = zeros(T,1); %Purely Stocks Lifecycle

LC_RE = zeros(T,1) ; %Purely Real Estate Lifecycle

LC_Bo = zeros(T,1) ; %Purely Bonds Lifecycle

LC_St(1) = ContributionT2(1);

LC_RE(1) = ContributionT2(1);

LC_Bo(1) = ContributionT2(1);

for i=2:T

LC_St(i) = LC_St(i-1)*(1+Y_new(i-1,1)/100) + ContributionT2(i);

LC_RE(i) = LC_RE(i-1)*(1+Y_new(i-1,2)/100) + ContributionT2(i);

LC_Bo(i) = LC_Bo(i-1)*(1+fY(shortrate(i,1),i,i+240)) + ContributionT2(i);

end

%%Constant mixed lifecycles

%Equally weighted (1/3 in each Stocks, Real Estate and Bonds) Lifecycle

LC_Eq = zeros(T,1);
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%Equally weighted (1/2 in each Stocks and Real Estate) Lifecycle

LC_StRE = zeros(T,1);

%Equally weighted (1/2 in each Stocks and Bonds) Lifecycle

LC_StBo = zeros(T,1);

%Equally weighted (1/2 in each Real Estate and Bonds) Lifecycle

LC_REBo = zeros(T,1);

LC_Eq(1) = ContributionT2(1);

LC_StRE(1) = ContributionT2(1);

LC_StBo(1) = ContributionT2(1);

LC_REBo(1) = ContributionT2(1);

for i=2:T

LC_Eq(i) = LC_Eq(i-1)*((1/3)*((1+Y_new(i-1,1)/100) + ...

(1+Y_new(i-1,2)/100) + (1+fY(shortrate(i,1),i,i+240)))) + ...

ContributionT2(i);

LC_StRE(i) = LC_StRE(i-1)*((1/2)*((1+Y_new(i-1,1)/100) + ...

(1+Y_new(i-1,2)/100))) + ContributionT2(i);

LC_StBo(i) = LC_StBo(i-1)*((1/2)*((1+Y_new(i-1,1)/100) + ...

(1+fY(shortrate(i,1),i,i+240)))) + ContributionT2(i);

LC_REBo(i) = LC_REBo(i-1)*((1/2)*((1+Y_new(i-1,2)/100) + ...

(1+fY(shortrate(i,1),i,i+240)))) + ContributionT2(i);

end

%%Example lifecycle

%example only works for startage = 25 and pensionage = 67

LC_Ex = zeros(T,1); %example lifecycle

LC_Ex(1) = ContributionT2(1);

temp_Ex= zeros(T,3);

temp_Ex(:,2) = 0.15;

for i=1:T

if i < 218

temp_Ex(i,1) = 0.7;

end

if i > 217 && i < 278

temp_Ex(i,1) = 0.7 - (i-217)*(0.02/12);

end

if i > 277 && i < 338
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temp_Ex(i,1) = 0.6 - (i-277)*(0.05/12);

end

if i > 337

temp_Ex(i,1) = 0.35 - (i-337)*(0.025/12);

end

temp_Ex(i,3) = 1 - temp_Ex(i,1) - temp_Ex(i,2);

end

for i=2:T

LC_Ex(i) = LC_Ex(i-1)*(temp_Ex(i,1)*(1+Y_new(i-1,1)/100) + ...

temp_Ex(i,2)*(1+Y_new(i-1,2)/100) + ...

temp_Ex(i,3)*(1+fY(shortrate(i,1),i,i+240))) + ContributionT2(i);

end

%%Lifecycles in practice

LC_Ac = zeros(T,1); %Achmea lifecycle

LC_Am = zeros(T,1); %Amersfoortse lifecycle

LC_Ac(1) = ContributionT2(1);

LC_Am(1) = ContributionT2(1);

temp_Am= zeros(T,3);

temp_Am(:,1) = 0.7;

temp_Am(:,2) = 0.15;

temp_Am(:,3) = 0.15;

for i=1:T

if Age(i,1) > 52 && Age(i,1)<= 60

temp_Am(i,1) = 0.4;

temp_Am(i,2) = 0.05;

end

if Age(i,1)<= 52

temp_Am(i,1) = 0.55;

temp_Am(i,2) = 0.1;

end

if Age(i,1) > 60 && Age(i,1)< 65

temp_Am(i,1) = 0.3;

temp_Am(i,2) = 0.05;

end

if Age(i,1) >= 65 && Age(i,1)<= 66

temp_Am(i,1) = 0.2;
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temp_Am(i,2) = 0.05;

end

if Age(i,1) > 66 && Age(i,1)<= 67

temp_Am(i,1) = 0.1;

temp_Am(i,2) = 0.05;

end

temp_Am(i,3) = 1 - temp_Am(i,2) - temp_Am(i,1);

end

temp_Ac= zeros(T,3);

for i=1:T

if PensionAge - Age(i,1) >= 20

temp_Ac(i,1) = 0.68;

temp_Ac(i,2) = 0.15;

end

if PensionAge - Age(i,1) < 20

temp_Ac(i,1) = temp_Ac(i-1,1)-(0.46/240);

temp_Ac(i,2) = temp_Ac(i-1,2)-(0.095/240);

end

temp_Ac(i,3) = 1 - temp_Ac(i,2) - temp_Ac(i,1);

end

for i=2:T

LC_Ac(i) = LC_Ac(i-1)*(temp_Ac(i,1)*(1+Y_new(i-1,1)/100) + ...

temp_Ac(i,2)*(1+Y_new(i-1,2)/100) + ...

temp_Ac(i,3)*(1+fY(shortrate(i,1),i,i+240))) + ContributionT2(i);

LC_Am(i) = LC_Am(i-1)*(temp_Am(i,1)*(1+Y_new(i-1,1)/100) + ...

temp_Am(i,2)*(1+Y_new(i-1,2)/100) + ...

temp_Am(i,3)*(1+fY(shortrate(i,1),i,i+240))) + ContributionT2(i);

end

%%Merton's optimal lifecycle

%parameter values are from eviews

Covar_M = [17.4 18.7;18.7 33.1];

Mu_M = [0.32 0.19];

Gamma_M = 5;

w_M = zeros(T,2);

LC_M = zeros(T,1);



8 APPENDIX 76

LC_M(1) = ContributionT2(1);

temp_M = (Covar_M\(Mu_M'/Gamma_M * (1+HumanCapitalT(1)/LC_M(1))))';

temp_M = max(temp_M,0);

temp_M = min(temp_M,1);

w_M(1,:) = temp_M;

for i=2:T

LC_M(i) = (w_M(i-1,1)*(1+Y_new(i-1,1)/100) + ...

w_M(i-1,2) * (1+Y_new(i-1,2)/100) + ...

(1-sum(w_M(i-1,:))) * (1+fY(shortrate(i,1),i,i+240))) * LC_M(i-1) + ...

ContributionT2(i);

temp_M = (Covar_M\(Mu_M'/Gamma_M * (1+HumanCapitalT(i,1)/LC_M(i))))';

temp_M = max(temp_M,0);

temp_M = min(temp_M,1);

w_M(i,:) = temp_M;

end

%%Merton improved lifecycle

%parameter values are from eviews

Covar_Me = [12.1 13.5;13.5 26.5];

Mu_Me = [0.95 1.06];

Gamma_Me = 4.827;

Covar_Mr = [28.8 27.6;27.6 44.0];

Mu_Mr = [-1.64 -2.55];

Gamma_Mr = 5.546;

w_Mer = zeros(T,2);

w_Mer1 = zeros(T,2);

LC_Mer = zeros(T,1);

LC_Mer(1) = ContributionT2(1);

temp_Mer = (Covar_Me\(Mu_Me'/Gamma_Me * (1+HumanCapitalT(1)/LC_Mer(1))))';

temp_Mer = max(temp_Mer,0);

temp_Mer = min(temp_Mer,1);

w_Mer1(1,:) = temp_Mer;

w_Mer(1,:) = w_Mer1(1,:)/sum(w_Mer1(1,:));
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for i=2:T

LC_Mer(i) = (w_Mer(i-1,1)*(1+Y_new(i-1,1)/100) + ...

w_Mer(i-1,2) * (1+Y_new(i-1,2)/100) + ...

(1-sum(w_Mer(i-1,:))) * (1+fY(shortrate(i,1),i,i+240))) * LC_Mer(i-1) ...

+ ContributionT2(i);

if dumrec(i,4) == 1

temp_Mer = (Covar_Mr\(Mu_Mr'/Gamma_Mr * ...

(1+HumanCapitalT(i,1)/LC_Mer(i))))';

else

temp_Mer = (Covar_Me\(Mu_Me'/Gamma_Me * ...

(1+HumanCapitalT(i,1)/LC_Mer(i))))';

end

temp_Mer = max(temp_Mer,0);

temp_Mer = min(temp_Mer,1);

w_Mer1(i,:) = temp_Mer;

if sum(w_Mer1(i,:)) >1

w_Mer(i,:) = w_Mer1(i,:)/sum(w_Mer1(i,:));

else

w_Mer(i,:) = w_Mer1(i,:);

end

end

%merton based on Advies Commissie Parameters

%st dev stock return 20% per year, rra = 5, mean equity premium 4%

%=> 20% of wealth invested in risky stocks

w_Mp = zeros(T,1);

LC_Mp = zeros(T,1);

LC_Mp(1) = ContributionT2(1);

temp_Mp = (1/Gamma_Me) * (1+HumanCapitalT(1)/LC_Mer(1))';

temp_Mp = max(temp_Mp,0);

temp_Mp = min(temp_Mp,1);

w_Mp(1) = temp_Mp;

for i=2:T

LC_Mp(i) = (w_Mp(i-1)*(1+Y_new(i-1,1)/100) + (1-w_Mp(i-1) * ...

(1+fY(shortrate(i,1),i,i+240)))) * LC_Mp(i-1) + ContributionT2(i);

if dumrec(i,4) == 1

temp_Mp = (1/Gamma_Mr) * (1+HumanCapitalT(i,1)/LC_Mp(i))';

else
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temp_Mp = (1/Gamma_Me) * (1+HumanCapitalT(i,1)/LC_Mp(i))';

end

temp_Mp = max(temp_Mp,0);

temp_Mp = min(temp_Mp,1);

w_Mp(i) = temp_Mp;

end

end

8.3.13 Statistics

%%Simulation Statistics

%(S is matrix, V is vector, X is scalar, U is factor(scalar))

%Recession/Expansion

ALL_S_dumexp = abs(ALL_S_dumrec-1); %determine expansion periods

%Vectors for each simulation run results

ALL_V_count_rec = sum(ALL_S_dumrec); %number of recession periods

ALL_V_count_exp = sum(ALL_S_dumexp); %number of expansion periods

ALL_V_avg_rec = mean(ALL_S_dumrec); %fraction of reces periods

%Average over all simulation run results

ALL_U_avg_rec = mean(ALL_V_avg_rec); %fraction of reces periods

%shortrate

ALL_V_avg_short = mean(ALL_S_shortrates); %vector average per run

ALL_X_avg_short = mean(ALL_V_avg_short); %overal average

ALL_V_std_short = std(ALL_S_shortrates); %vector st dev per run

ALL_X_std_short = mean(ALL_V_std_short); %average st dev

temp_RE = ALL_S_shortrates.*ALL_S_dumrec; %recession returns

temp_RE2 = sum(temp_RE);

ALL_X_avg_short_rec = mean(temp_RE2./ALL_V_count_rec); %in recession

temp_RE = ALL_S_shortrates.*ALL_S_dumexp; %expansion returns

temp_RE2 = sum(temp_RE);

ALL_X_avg_short_exp = mean(temp_RE2./ALL_V_count_exp); %in expansion

%Stock and Real Estate

%average Stock and Real Estate return per month (in percentages)

ALL_V_avg_S = mean(ALL_S_Stock); %vector average per run

ALL_X_avg_S = mean(ALL_V_avg_S); %overal average
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ALL_V_std_S = std(ALL_S_Stock); %vector st dev per run

ALL_X_std_S = mean(ALL_V_std_S); %average st dev

ALL_V_avg_RE = mean(ALL_S_RE); %vector average per run

ALL_X_avg_RE = mean(ALL_V_avg_RE); %overal average

ALL_V_std_RE = std(ALL_S_RE); %vector st dev per run

ALL_X_std_RE = mean(ALL_V_std_RE); %average st dev

%average Stock and Real Estate return in recessions (percentages)

temp_RE = ALL_S_Stock.*ALL_S_dumrec;

temp_RE2 = sum(temp_RE);

ALL_X_avg_S_rec = mean(temp_RE2./ALL_V_count_rec); %in recession

temp_RE = ALL_S_Stock.*ALL_S_dumexp;

temp_RE2 = sum(temp_RE);

ALL_X_avg_S_exp = mean(temp_RE2./ALL_V_count_exp); %in expansion

temp_RE = ALL_S_RE.*ALL_S_dumrec;

temp_RE2 = sum(temp_RE);

ALL_X_avg_RE_rec = mean(temp_RE2./ALL_V_count_rec); %in recession

temp_RE = ALL_S_RE.*ALL_S_dumexp;

temp_RE2 = sum(temp_RE);

ALL_X_avg_RE_exp = mean(temp_RE2./ALL_V_count_exp); %in expansion

%inflation

ALL_V_avg_infl = mean(ALL_S_Inflation); %vector average per run

ALL_X_avg_infl = mean(ALL_V_avg_infl); %overal average

ALL_V_std_infl = std(ALL_S_Inflation); %vector st dev per run

ALL_X_std_infl = mean(ALL_V_std_infl); %average st dev

temp_RE = ALL_S_Inflation.*ALL_S_dumrec;

temp_RE2 = sum(temp_RE);

ALL_X_avg_infl_rec = mean(temp_RE2./ALL_V_count_rec); %in recession

temp_RE = ALL_S_Inflation.*ALL_S_dumexp;

temp_RE2 = sum(temp_RE);

ALL_X_avg_infl_exp = mean(temp_RE2./ALL_V_count_exp); %in expansion
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%percentilegraphs

ALL_Q_InflCPI = zeros(T-1,4);

temp_RE = sortrows(ALL_S_InflCPI(1:T-1,:)',T-1);

temp_RE = temp_RE';

ALL_Q_InflCPI(:,1) = temp_RE(:,floor(0.05*Nsim));

ALL_Q_InflCPI(:,2) = temp_RE(:,floor(0.5*Nsim));

ALL_Q_InflCPI(:,3) = temp_RE(:,floor(0.95*Nsim));

ALL_Q_InflCPI(:,4) = mean(temp_RE,2);

ALL_Q_RE = zeros(T-1,4);

temp_RE = sortrows(ALL_S_REZ(1:T-1,:)',T-1);

temp_RE = temp_RE';

ALL_Q_RE(:,1) = temp_RE(:,floor(0.05*Nsim));

ALL_Q_RE(:,2) = temp_RE(:,floor(0.5*Nsim));

ALL_Q_RE(:,3) = temp_RE(:,floor(0.95*Nsim));

ALL_Q_RE(:,4) = mean(temp_RE,2);

ALL_Q_Salary = zeros(T-1,4);

temp_RE = sortrows(ALL_S_Salary(1:T-1,:)',T-1);

temp_RE = temp_RE';

ALL_Q_Salary(:,1) = temp_RE(:,floor(0.05*Nsim));

ALL_Q_Salary(:,2) = temp_RE(:,floor(0.5*Nsim));

ALL_Q_Salary(:,3) = temp_RE(:,floor(0.95*Nsim));

ALL_Q_Salary(:,4) = mean(temp_RE,2);

% ALL_Q_shortrates = zeros(T-1,4);

% temp_RE = sortrows(ALL_S_shortrates(1:T-1,:)',T-1);

% temp_RE = temp_RE';

% ALL_Q_shortrates(:,1) = temp_RE(:,floor(0.05*Nsim));

% ALL_Q_shortrates(:,2) = temp_RE(:,floor(0.5*Nsim));

% ALL_Q_shortrates(:,3) = temp_RE(:,floor(0.95*Nsim));

% ALL_Q_shortrates(:,4) = mean(temp_RE,2);

ALL_Q_Stock = zeros(T-1,4);

temp_RE = sortrows(ALL_S_StockZ(1:T-1,:)',T-1);

temp_RE = temp_RE';

ALL_Q_Stock(:,1) = temp_RE(:,floor(0.05*Nsim));

ALL_Q_Stock(:,2) = temp_RE(:,floor(0.5*Nsim));

ALL_Q_Stock(:,3) = temp_RE(:,floor(0.95*Nsim));
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ALL_Q_Stock(:,4) = mean(temp_RE,2);

8.3.14 StatisticsLC

%%Lifecycle Statistics

%expected utility, mean, variance, sharpe ratio,

%max, top 5%, top 25% ,median, bottom 25% ,bottom 5%, min,

%Expected shortfall 5%, chance income above 75% average, above 70% final

%initialize

A_LC_Ac = zeros(14,1);

A_LC_Am = zeros(14,1);

A_LC_Bo = zeros(14,1);

A_LC_Eq = zeros(14,1);

A_LC_Ex = zeros(14,1);

A_LC_M = zeros(14,1);

A_LC_Mer = zeros(14,1);

A_LC_RE = zeros(14,1);

A_LC_REBo = zeros(14,1);

A_LC_St = zeros(14,1);

A_LC_StBo = zeros(14,1);

A_LC_StRE = zeros(14,1);

A_LC_Mp = zeros(14,1);

%expected utility

A_LC_Ac(1) = mean(((ALL_LC_m_Ac/1000).^(1-5)-1)/(1-5));

A_LC_Am(1) = mean(((ALL_LC_m_Am/1000).^(1-5)-1)/(1-5));

A_LC_Bo(1) = mean(((ALL_LC_m_Bo/1000).^(1-5)-1)/(1-5));

A_LC_Eq(1) = mean(((ALL_LC_m_Eq/1000).^(1-5)-1)/(1-5));

A_LC_Ex(1) = mean(((ALL_LC_m_Ex/1000).^(1-5)-1)/(1-5));

A_LC_M(1) = mean(((ALL_LC_m_M/1000).^(1-5)-1)/(1-5));

A_LC_Mer(1) = mean(((ALL_LC_m_Mer/1000).^(1-5)-1)/(1-5));

A_LC_RE(1) = mean(((ALL_LC_m_RE/1000).^(1-5)-1)/(1-5));

A_LC_REBo(1) = mean(((ALL_LC_m_REBo/1000).^(1-5)-1)/(1-5));

A_LC_St(1) = mean(((ALL_LC_m_St/1000).^(1-5)-1)/(1-5));

A_LC_StBo(1) = mean(((ALL_LC_m_StBo/1000).^(1-5)-1)/(1-5));

A_LC_StRE(1) = mean(((ALL_LC_m_StRE/1000).^(1-5)-1)/(1-5));

A_LC_Mp(1) = mean(((ALL_LC_m_Mp/1000).^(1-5)-1)/(1-5));

%mean
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A_LC_Ac(2) = mean(ALL_LC_m_Ac);

A_LC_Am(2) = mean(ALL_LC_m_Am);

A_LC_Bo(2) = mean(ALL_LC_m_Bo);

A_LC_Eq(2) = mean(ALL_LC_m_Eq);

A_LC_Ex(2) = mean(ALL_LC_m_Ex);

A_LC_M(2) = mean(ALL_LC_m_M);

A_LC_Mer(2) = mean(ALL_LC_m_Mer);

A_LC_RE(2) = mean(ALL_LC_m_RE);

A_LC_REBo(2) = mean(ALL_LC_m_REBo);

A_LC_St(2) = mean(ALL_LC_m_St);

A_LC_StBo(2) = mean(ALL_LC_m_StBo);

A_LC_StRE(2) = mean(ALL_LC_m_StRE);

A_LC_Mp(2) = mean(ALL_LC_m_Mp);

%st dev

A_LC_Ac(3) = std(ALL_LC_m_Ac);

A_LC_Am(3) = std(ALL_LC_m_Am);

A_LC_Bo(3) = std(ALL_LC_m_Bo);

A_LC_Eq(3) = std(ALL_LC_m_Eq);

A_LC_Ex(3) = std(ALL_LC_m_Ex);

A_LC_M(3) = std(ALL_LC_m_M);

A_LC_Mer(3) = std(ALL_LC_m_Mer);

A_LC_RE(3) = std(ALL_LC_m_RE);

A_LC_REBo(3) = std(ALL_LC_m_REBo);

A_LC_St(3) = std(ALL_LC_m_St);

A_LC_StBo(3) = std(ALL_LC_m_StBo);

A_LC_StRE(3) = std(ALL_LC_m_StRE);

A_LC_Mp(3) = std(ALL_LC_m_Mp);

%sharpe ratio

A_LC_Ac(4) = A_LC_Ac(2)/A_LC_Ac(3);

A_LC_Am(4) = A_LC_Am(2)/A_LC_Am(3);

A_LC_Bo(4) = A_LC_Bo(2)/A_LC_Bo(3);

A_LC_Eq(4) = A_LC_Eq(2)/A_LC_Eq(3);

A_LC_Ex(4) = A_LC_Ex(2)/A_LC_Ex(3);

A_LC_M(4) = A_LC_M(2)/A_LC_M(3);

A_LC_Mer(4) = A_LC_Mer(2)/A_LC_Mer(3);

A_LC_RE(4) = A_LC_RE(2)/A_LC_RE(3);

A_LC_REBo(4) = A_LC_REBo(2)/A_LC_REBo(3);

A_LC_St(4) = A_LC_St(2)/A_LC_St(3);

A_LC_StBo(4) = A_LC_StBo(2)/A_LC_StBo(3);
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A_LC_StRE(4) = A_LC_StRE(2)/A_LC_StRE(3);

A_LC_Mp(4) = A_LC_Mp(2)/A_LC_Mp(3);

%max

A_LC_Ac(5) = max(ALL_LC_m_Ac);

A_LC_Am(5) = max(ALL_LC_m_Am);

A_LC_Bo(5) = max(ALL_LC_m_Bo);

A_LC_Eq(5) = max(ALL_LC_m_Eq);

A_LC_Ex(5) = max(ALL_LC_m_Ex);

A_LC_M(5) = max(ALL_LC_m_M);

A_LC_Mer(5) = max(ALL_LC_m_Mer);

A_LC_RE(5) = max(ALL_LC_m_RE);

A_LC_REBo(5) = max(ALL_LC_m_REBo);

A_LC_St(5) = max(ALL_LC_m_St);

A_LC_StBo(5) = max(ALL_LC_m_StBo);

A_LC_StRE(5) = max(ALL_LC_m_StRE);

A_LC_Mp(5) = max(ALL_LC_m_Mp);

%top 5%, %bottom 5%,

temp_RE = sort(ALL_LC_m_Ac);

A_LC_Ac(6) = temp_RE(0.95*Nsim);

A_LC_Ac(7) = temp_RE(0.75*Nsim);

A_LC_Ac(9) = temp_RE(0.25*Nsim);

A_LC_Ac(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = temp_RE';

temp_RE = sort(ALL_LC_m_Am);

A_LC_Am(6) = temp_RE(0.95*Nsim);

A_LC_Am(7) = temp_RE(0.75*Nsim);

A_LC_Am(9) = temp_RE(0.25*Nsim);

A_LC_Am(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_Bo);

A_LC_Bo(6) = temp_RE(0.95*Nsim);

A_LC_Bo(7) = temp_RE(0.75*Nsim);

A_LC_Bo(9) = temp_RE(0.25*Nsim);

A_LC_Bo(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_Eq);

A_LC_Eq(6) = temp_RE(0.95*Nsim);

A_LC_Eq(7) = temp_RE(0.75*Nsim);

A_LC_Eq(9) = temp_RE(0.25*Nsim);
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A_LC_Eq(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_Ex);

A_LC_Ex(6) = temp_RE(0.95*Nsim);

A_LC_Ex(7) = temp_RE(0.75*Nsim);

A_LC_Ex(9) = temp_RE(0.25*Nsim);

A_LC_Ex(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_M);

A_LC_M(6) = temp_RE(0.95*Nsim);

A_LC_M(7) = temp_RE(0.75*Nsim);

A_LC_M(9) = temp_RE(0.25*Nsim);

A_LC_M(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_Mer);

A_LC_Mer(6) = temp_RE(0.95*Nsim);

A_LC_Mer(7) = temp_RE(0.75*Nsim);

A_LC_Mer(9) = temp_RE(0.25*Nsim);

A_LC_Mer(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_RE);

A_LC_RE(6) = temp_RE(0.95*Nsim);

A_LC_RE(7) = temp_RE(0.75*Nsim);

A_LC_RE(9) = temp_RE(0.25*Nsim);

A_LC_RE(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_REBo);

A_LC_REBo(6) = temp_RE(0.95*Nsim);

A_LC_REBo(7) = temp_RE(0.75*Nsim);

A_LC_REBo(9) = temp_RE(0.25*Nsim);

A_LC_REBo(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_St);

A_LC_St(6) = temp_RE(0.95*Nsim);

A_LC_St(7) = temp_RE(0.75*Nsim);

A_LC_St(9) = temp_RE(0.25*Nsim);

A_LC_St(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_StBo);

A_LC_StBo(6) = temp_RE(0.95*Nsim);

A_LC_StBo(7) = temp_RE(0.75*Nsim);
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A_LC_StBo(9) = temp_RE(0.25*Nsim);

A_LC_StBo(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_StRE);

A_LC_StRE(6) = temp_RE(0.95*Nsim);

A_LC_StRE(7) = temp_RE(0.75*Nsim);

A_LC_StRE(9) = temp_RE(0.25*Nsim);

A_LC_StRE(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

temp_RE = sort(ALL_LC_m_Mp);

A_LC_Mp(6) = temp_RE(0.95*Nsim);

A_LC_Mp(7) = temp_RE(0.75*Nsim);

A_LC_Mp(9) = temp_RE(0.25*Nsim);

A_LC_Mp(10) = temp_RE(0.05*Nsim);

A_LC__Sorted = [A_LC__Sorted temp_RE'];

%median,

A_LC_Ac(8) = median(ALL_LC_m_Ac);

A_LC_Am(8) = median(ALL_LC_m_Am);

A_LC_Bo(8) = median(ALL_LC_m_Bo);

A_LC_Eq(8) = median(ALL_LC_m_Eq);

A_LC_Ex(8) = median(ALL_LC_m_Ex);

A_LC_M(8) = median(ALL_LC_m_M);

A_LC_Mer(8) = median(ALL_LC_m_Mer);

A_LC_RE(8) = median(ALL_LC_m_RE);

A_LC_REBo(8) = median(ALL_LC_m_REBo);

A_LC_St(8) = median(ALL_LC_m_St);

A_LC_StBo(8) = median(ALL_LC_m_StBo);

A_LC_StRE(8) = median(ALL_LC_m_StRE);

A_LC_Mp(8) = median(ALL_LC_m_Mp);

%min,

A_LC_Ac(11) = min(ALL_LC_m_Ac);

A_LC_Am(11) = min(ALL_LC_m_Am);

A_LC_Bo(11) = min(ALL_LC_m_Bo);

A_LC_Eq(11) = min(ALL_LC_m_Eq);

A_LC_Ex(11) = min(ALL_LC_m_Ex);

A_LC_M(11) = min(ALL_LC_m_M);

A_LC_Mer(11) = min(ALL_LC_m_Mer);

A_LC_RE(11) = min(ALL_LC_m_RE);

A_LC_REBo(11) = min(ALL_LC_m_REBo);
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A_LC_St(11) = min(ALL_LC_m_St);

A_LC_StBo(11) = min(ALL_LC_m_StBo);

A_LC_StRE(11) = min(ALL_LC_m_StRE);

A_LC_Mp(11) = min(ALL_LC_m_Mp);

%Expected shortfall 5%,

temp_RE = mean(A_LC__Sorted(1:(0.05*Nsim),:));

A_LC_Ac(12) = temp_RE(1);

A_LC_Am(12) = temp_RE(2);

A_LC_Bo(12) = temp_RE(3);

A_LC_Eq(12) = temp_RE(4);

A_LC_Ex(12) = temp_RE(5);

A_LC_M(12) = temp_RE(6);

A_LC_Mer(12) = temp_RE(7);

A_LC_RE(12) = temp_RE(8);

A_LC_REBo(12) = temp_RE(9);

A_LC_St(12) = temp_RE(10);

A_LC_StBo(12) = temp_RE(11);

A_LC_StRE(12) = temp_RE(12);

A_LC_Mp(12) = temp_RE(13);

%chance income above 75% average,

temp_RE = sum(ALL_LC_mn_Ac>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_Ac(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Am>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_Am(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Bo>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_Bo(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Eq>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_Eq(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Ex>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_Ex(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_M>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_M(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Mer>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_Mer(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_RE>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_RE(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_REBo>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_REBo(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_St>0.75*(mean(ALL_S_Salary(1:T-1,:))));
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A_LC_St(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_StBo>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_StBo(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_StRE>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_StRE(13) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Mp>0.75*(mean(ALL_S_Salary(1:T-1,:))));

A_LC_Mp(13) = temp_RE*100/Nsim;

%above 70% final

temp_RE = sum(ALL_LC_mn_Ac>0.7*ALL_S_Salary(T-1,:));

A_LC_Ac(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Am>0.7*ALL_S_Salary(T-1,:));

A_LC_Am(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Bo>0.7*ALL_S_Salary(T-1,:));

A_LC_Bo(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Eq>0.7*ALL_S_Salary(T-1,:));

A_LC_Eq(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Ex>0.7*ALL_S_Salary(T-1,:));

A_LC_Ex(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_M>0.7*ALL_S_Salary(T-1,:));

A_LC_M(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Mer>0.7*ALL_S_Salary(T-1,:));

A_LC_Mer(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_RE>0.7*ALL_S_Salary(T-1,:));

A_LC_RE(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_REBo>0.7*ALL_S_Salary(T-1,:));

A_LC_REBo(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_St>0.7*ALL_S_Salary(T-1,:));

A_LC_St(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_StBo>0.7*ALL_S_Salary(T-1,:));

A_LC_StBo(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_StRE>0.7*ALL_S_Salary(T-1,:));

A_LC_StRE(14) = temp_RE*100/Nsim;

temp_RE = sum(ALL_LC_mn_Mp>0.7*ALL_S_Salary(T-1,:));

A_LC_Mp(14) = temp_RE*100/Nsim;

%summary

A_LC__Summary = [A_LC_Ac A_LC_Am A_LC_Bo A_LC_Eq A_LC_Ex A_LC_M ...

A_LC_Mer A_LC_RE A_LC_REBo A_LC_St A_LC_StBo A_LC_StRE A_LC_Mp];

A_LC__Sumnames = {'EU' ; 'mean'; 'std'; 'SR'; 'max'; '95'; '75'; ...

'median'; '25'; '5'; 'min'; 'ES5'; '0.75avg'; '0.7end'};
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A_LC__Summary2 = dataset(A_LC__Sumnames, A_LC__Summary);

boxplot(A_LC__Sorted(1:950,:),'Whisker',5)
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