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Abstract

This research evaluates the merit of the multivariate TGARCH-EVT-Copula model

in forecasting Value at Risk and Expected Shortfall of a portfolio of Exchange Traded

Funds by comparing the model with conventional benchmarks. The Value at Risk

forecasts are tested using the standard Kupiec and Christoffersen tests, whereas the

Expected Shortfall forecasts are tested using the state of the art testing method of

Du & Escanciano (2017). Models that pass these tests are pairwise tested using

the Diebold-Mariano framework with the comparative Fissler & Ziegel (2016) scoring

function. The results show that including time-varying volatility improves the perfor-

mance and that the multivariate TGARCH-EVT-Gaussian copula model is superior

to the other models. It is also shown that multivariate modeling in combination with

extreme value theory and TGARCH filtering improves the forecasting ability of ES.

Keywords : Value at Risk, Expected Shortfall, GARCH Filtering, Extreme Value

Theory, Copula, Backtesting
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1 Introduction

Financial institutions and other investors have to properly manage their exposure to risk

factors. The crisis of 2008 has left the impression that risk management is of great im-

portance. With the increasing number of financial products available in the investors

portfolios, it has become quite difficult to measure the magnitude of these risks. All these

trends have led to a demand for a portfolio-level quantitative measure, that measures the

market risk appropriately. The leading measure of this type is known as Value at Risk

(VaR), this is the loss level that will not be exceeded with a certain confidence level during

a certain period of time (Artzner et al., 1999). Another frequently used risk measure is

known as Expected Shortfall (ES), this is the expected loss beyond a given confidence

level (Acerbi et al., 2001).

The contribution of this research to the existing literature is to evaluate the merit of

multivariate TGARCH-EVT-Copula models over univariate models in VaR and ES esti-

mation of a portfolio of rather unknown financial instruments, namely Exchange Traded

Funds that track financial assets, such as the S&P 500 and NASDAQ. As this class of

instruments is increasingly popular in the current financial world it is worthwhile to ex-

amine the properties of VaR and ES in such portfolios. To test the correct specification

of the ES forecasts the state of the art testing methodology of Du & Escanciano (2017) is

implemented. Furthermore a pairwise comparison between models that passed all tests is

conducted using the Diebold & Mariano (1995) framework with the comparitive scoring

function of Fissler & Ziegel (2016).

This research considers a number of benchmark univariate models for the estimation of

VaR and ES like the Variance-Covariance model, the Historical Simulation model and the

Extreme Value Theory (EVT) model. A model that incorporates time-varying volatility

in the estimation is considered, this approach is known as Filtered Historical Simulation.

Also a univariate approach that combines EVT and GARCH filtering is implemented.

Time-varying volatility, EVT and copulas are combined in the multivariate TGARCH-

EVT-Copula model.

The results show that including time-varying volatility improves the forecasting abili-

tie. The results from the TGARCH(1,1) and TGARCH-EVT model gives strong evidence

for the use of these models in univariate forecasting of VaR and ES. From the multivariate

models the TGARCH-EVT-Gaussian model performs best overall, but also the Frank and

Student model perform well at the different significance levels. Furthermore it is shown

that multivariate modeling improves the forecasting ability of ES.

The focus of this research is on Expected Shortfall because the Basel Committee on

Banking Supervision decided in 2012 to chose ES as replacement for VaR. Until 2012 VaR

has been chosen by the Basel Committee on Banking Supervision as the benchmark of risk

measurement for capital requirements, unsurprisingly VaR has received a lot of negative

attention in the media with lots of attention to the weaknesses of this technique. VaR is
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not sub-additive, meaning that the risk of a certain portfolio of assets can be larger than

the sum of the individual risks of the assets when measured with VaR, as shown in Artzner

et al. (1999) and Rootzén & Klüppelberg (1999). Furthermore VaR does not account for

the tail risk, because VaR does not take into account the magnitude of the losses beyond

VaR. Because of these weaknesses the Basel Committee on Banking Supervision decided

in 2012 to chose ES as replacement for VaR. As pointed out by Yamai & Yoshiba (2002,

2005) the major challenge in the implementation of ES as the leading measure of market

risk is not the estimation techniques needed but the unavailability of simple tools to its

evaluation.

In the literature a wide range of models to estimate VaR and ES are available. All these

models are either parametric, semi-parametric or non-parametric. The most widely imple-

mented non-parametric model is known as Historical Simulation (HS), however Danielsson

& de Vries (2000) have shown that this model produces inaccurate VaR estimates. Scaillet

(2004) proposes a non-parametric kernel estimator for the estimation of VaR and ES. The

parametric models measure risk by fitting probability curves to data and inferring the VaR

and ES from the fitted curve. The major drawbacks from this approach are failure of the

non-normality and i.i.d. assumption as shown by Abad et al. (2014). To account for the

drawbacks Mittnik & Paolella (2000) consider GARCH specifications for the volatility,

whereas Fleming & Kirby (2003) used stochastic volatility and Giot & Laurent (2004)

used realized volatility.

Abad et al. (2014) argue that models with time-varying high-order conditional mo-

ments are better in forecasting VaR then models with constant high-order moments. The

FHS model that combines the benefits of HS with the flexibility of conditional volatility

models was proposed by Barone-Adesi et al. (1999). Engle & Manganelli (2004) proposed

a model for the estimation of VaR based on quantile estimation and Taylor (2008) used ex-

ponentially weighting quantile regressions to estimate VaR and ES. To properly account

for the tail risk Chan & Gray (2006) applied EVT in estimating VaR whereas Gilli &

Këllezi (2006) used threshold models in combination with EVT to estimate ES. McNeil &

Frey (2000) combined time-varying volatility and EVT in the GARCH-EVT model.

All these models do not use the dependence structure between the assets. To account

for this dependence a whole new class of models involving copulas was introduced. Cheru-

bini & Luciano (2001) are one of the first that applied Archimedean copulas to estimate

VaR, by using the historical empirical distribution in the estimation of the marginal dis-

tributions. Fortin & Kuzmics (2002) used copula theory in the estimation of VaR by

using linear convex combinations of copulas. Palaro & Hotta (2006) estimated VaR by

means of conditional copulas, whereas Fantazzini (2008) and Caillault & Guegan (2009))

use dynamic time-varying copulas to derive VaR and ES. Hotta et al. (2008) use copulas

and extreme value theory to estimate VaR. This research follows the work of Wang et al.

(2010) who combined the GARCH, extreme value and copula model in the GARCH-EVT-

Copula model for estimation of VaR.
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The remainder of the paper is organized as follows. Section 2 describes the data and

section 3 deals with the theoretical framework of VaR and ES. Section 4 describes the

methodology and section 5 gives the results. Section 6 concludes and gives directions for

further research.

2 Empirical Data

2.1 Data Description

The empirical analysis uses a portfolio consisting of a special kind of assets, namely Ex-

change Traded Funds (ETFs). An ETF can be described as an financial security that

tracks an index, a commodity, bonds or a basket of assets like an index fund. These ETFs

can be traded on the exchange like a normal stock. Four different ETFs are used to build

the portfolio. The first ETF is the Vanguard Total Stock Market ETF (VTI), which is

known for delivering promising returns. The second is based on index investing and tracks

the S&P 500, this ETF is called the SPDR S&P 500 ETF (SPY). The third is based on

commodity investing and especially gold, namely the SPDR Gold Shares ETF (GLD).

The last one is one of the most traded ETFs, the PowerShares QQQ ETF (QQQ), which

is based on a modified market cap weighted index of 100 NASDAQ listed stocks. This

ETF has a large tech exposure. Further on the abbreviations VTI, SPY, GLD and QQQ

will refer to this ETFs. The data sample ranges from November 18, 2004 to May 9, 2017

for a total of 3139 daily observations. The sample starts at November 18, 2004 because

on this date the GLD ETF was issued. Prices used in the analysis are closing prices on

the trading days, adjusted for dividends and splits. It is assumed that trading costs are

negligible. The portfolio is constructed with equal weighting. As indicated in Brooks

(2014) the analysis of log returns is preferred above the analysis of raw returns, because

of the time additive property of log returns. Therefore in this research returns refers to

log returns. The analysis in this paper uses the losses instead of the returns. Denote Rt

as the raw returns, then the raw returns can be transformed to percent log losses Lt by

using the following transformation

Lt = −100 log

(
Rt
Rt−1

)
. (1)

Due to the log transformation, one observation is lost, leaving a total of 3138 observations.

2.2 Descriptive statistics

From the plotted losses in Figure 1 it can be seen that quite some losses have a high

magnitude, especially in the time period ranging from 2008 till 2010, indicating a high

volatility at that time. In all cases around 95% of the losses fall below the 2%, with

outliers up to 10%. Table 1 shows the descriptive statistics of the four ETFs and the
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Table 1: Descriptive Statistics. Descriptive statistics of the four ETFs and the equally weighted
portfolio over the sample period November 19, 2004 till May 9, 2017.

VTI SPY GLD QQQ Portfolio

Mean -0.0242 -0.0224 -0.0306 -0.0401 -0.0293
Standard Deviation 1.2141 1.2079 1.2227 1.2790 0.9653
Skewness 0.2481 0.1074 0.3017 0.1134 0.1358
Kurtosis 14.0309 17.8549 8.7404 10.5801 12.7657
Minimum -12.0710 -13.5577 -10.6974 -11.4799 -8.9049
Maximum 9.8197 10.3637 9.1905 9.3824 8.1088
Jarque-Bera Test Statistic 15942 28860 4356 7519 12479

equally weighted portfolio. It can be seen that the means of the four ETFs and the

portfolio are of the same magnitude, whereas the standard deviations of the ETFs are also

of the same magnitude but the standard deviation of the portfolio is considerably smaller,

indicating that there are diversification benefits. The skewness is in all cases negative

indicating that there are mainly small profits and some extreme losses, as can be seen

from the figures. All ETFs have a high kurtosis, meaning that a substantial part of the

variation is caused by extreme values.

Table 2: Cross correlations. Cross correlations between the four ETFs over the sample period
November 19, 2004 till May 9, 2017.

VTI SPY GLD QQQ

VTI · 0.9881 0.0499 0.9187
SPY 0.9881 · 0.0375 0.9124
GLD 0.0499 0.0375 · 0.0069
QQQ 0.9187 0.9124 0.0069 ·

Table 2 shows the correlations between the ETFs. It is clearly seen that the VTI, SPY

and QQQ ETF are highly correlated with each other, whereas the correlations of the GLD

ETF with the other ETFs are quite small. Since there are high correlations between the

ETFs, one can possibly benefit from this by including the dependence structure in the

analysis.

2.3 Normality and i.i.d. Assumption

In case that the distribution of the losses is normal or Student-t distributed, a simple

parametric approach can be employed to estimate the VaR and ES. To test visually for

normality one can make a so called Q-Q plot, which is a graphical method for comparing

distribution functions by plotting their quantiles against each other. If the data follows a

normal or Student-t distribution the points in the Q-Q plot should lie on the 45-degree

line, if the trend of the Q-Q plot is less steep than this line, one can conclude that the

distribution on the horizontal axis is more dispersed than the one plotted on the vertical
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(a) Log Losses of VTI (b) Log Losses of SPY

(c) Log Losses of GLD (d) Log Losses of QQQ

Figure 1: Log Losses of the ETFS. The plots show the log losses of the four ETFs over the
sample period November 19, 2004 till May 9, 2017.

axis. It can be seen from Figure 3a that the losses do not follow a normal distribution

because the tails are poorly covered, it actually indicates that a more heavy-tailed distri-

bution should be more suitable in this context.

A distribution that accounts for possible leptokurticy, is the student-t distribution. As

can be seen from Figure 3b this distribution approximates the distribution of the losses

much better in the tails but still does not cover all aspects of the distribution of the

losses. To formally test for normality of the distribution one can use the Jarque-Bera

test-statistic, which tests for normality of the log losses. As can be seen from table 1 the

Jarque-Bera test statistic is very large. This gives an indication that the distribution of

the log losses is not normal, as was expected from the other descriptive statistics and the

Q-Q plot.

In order to apply EVT appropriately, the losses should be identically and indepen-

dently distributed (i.i.d.). To graphically inspect this assumption, one can look at the

auto- correlation function of the log losses and the squared log losses. From Figure 3 it

can be seen that quite some auto-correlations of the log losses are significant and many

of the autocorrelations of the squared log losses are significant. This strongly indicates

that the losses are not i.i.d., but follow a conditional mean model with conditional het-
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(a) Q-Q plot Normal Distribution (b) Q-Q plot Student-t Distribution

Figure 2: Q-Q plots. The plots show the Q-Q plots of the data distribution versus a normal and
student-t distribution respectively

eroskedasticity. Ljung & Box (1978) and Engle (1982) tests confirm these findings.

(a) Auto-correlations of losses (b) Auto-correlations of squared losses

Figure 3: Auto-correlation. Auto-correlation plots of the portfolio losses and squared portfolio
losses up to 40 lags.

3 Theoretical Framework

For financial risks, no definition of risk is entirely satisfactory. Depending on the context

of the research one may arrive at different notions, in this research risk is defined as the

quantifiable likelihood of loss. There are many different ways in which one can measure

risk in one single number. In finance Value at Risk (VaR) and Expected Shortfall (ES)

are the most commonly used risk measures. Section 3.1 and 3.2 provides the theoretical

definitions of Value at Risk (VaR) and Expected Shortfall (ES). Section 3.3 describes the

theoretical properties of VaR and ES. Section 3.4 lists the main deficiencies of VaR and

in section 3.5 ES is proposed as alternative to VaR.
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3.1 Definition of Value at Risk

VaR is defined as the maximum possible loss over a given holding period with a certain

confidence level. In other words, VaR at the 100(1-α) percent confidence level can be

defined as the 100α percentile of the loss distribution, where α is the confidence level.

Given some confidence interval α ∈ (0,1), the VaR of the portfolio at the confidence level

α is given by the smallest number l such that the probability that the loss L exceeds l

is no larger than 1 − α. Denote Ωt−1 as the information set available at time t − 1 and

F (Lt,Ωt−1) as the conditional cumulative distribution of Lt given the information set at

time t− 1. Following the notation of Du & Escanciano (2017) and assuming a continuous

distribution function F the VaR can be defined as

V aRαt = inf(Lt ∈ R : F (Lt,Ωt−1) ≥ α). (2)

Figure 4 illustrates the concept of VaR.

Figure 4: Graphical illustration of VaR. The concept of VaR illustrated for an arbitrary
distribution of portfolio returns

3.2 Definition of Expected Shortfall

Artzner et al. (1997) proposed the use of ES, which is an extension of VaR. ES is the

conditional expectation of a loss given that the loss is beyond the VaR level. Given some

confidence interval α ∈ (0,1) the ES at the confidence level α can be calculated as follows

ESαt = E[Lt|Ωt−1, Lt ≥ V aRαt ]. (3)

Assuming a continuous distribution F for the losses Lt, this can be rewritten as

ESαt =
1

1− α

∫ 1

α
V aRut du (4)

Figure 5 illustrates the concept of ES.
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Figure 5: Graphical illustration of ES. The concept of ES illustrated for an arbitrary distribu-
tion of portfolio returns

3.3 Properties of Risk Measures

In the literature, several desirable properties for risk measures are examined. These prop-

erties have been proposed by Artzner et al. (1999) and Föllmer & Schied (2002). One of

the most important issues involved with risk measures is that it should be interpretable,

in the sense that the risk measure can be interpreted as the capital buffer needed to main-

tain the same level of risk. The mathematical properties of risk measures are important

in understanding the trade-off between VaR and ES. The most important properties are

monotonicity, positive homogeneity, translation invariance and subadditivity. See for a

detailed description of these properties Appendix A.

It can be shown that VaR satisfies the properties of monotonicity, positive homogene-

ity and translation invariance, but not the property of subadditivity. Hence, VaR is not a

coherent risk measure.

It can be verified that ES satisfies the properties of monotonicity, positive homogeneity,

translation invariance and subadditivity (Acerbi & Täsche, 2002). Hence, ES is a coherent

risk measure.

3.4 Criticism of VaR

In this section, the two main objections to use VaR are examined, first the failure in

capturing tail risk and second the lack of subadditivity.

3.4.1 Failure in Capturing Tail Risk

VaR actually indicates the threshold loss over a given time period that will not be exceeded

with a given level of confidence. For example, if the 99.9% 1-day VaR of a certain company

equals 1 million then it follows that one out of 1000 days the loss will exceed this 1 million.

This indicates that VaR only measures that with a certain probability the loss will exceed

8



some threshold, but does not account for the magnitude of the loss beyond the threshold.

This can be problematic, for example, if one day a firm faces a loss of 4000%, the firm

will likely go bankrupt but it still satisfies the VaR requirements of one violation out of

1000 days. This deficiency of VaR can cause serious problems, see for example Basak &

Shapiro (2001).

3.4.2 Lack of Subadditivity

It can be shown that VaR satisfies the properties of monotonicity, translation invariance

and positive homogeneity, but that it is not subadditive and hence that it is not a coherent

risk measure. This failure of subadditivity can cause that a combined portfolio can bear

higher risks than the sum of the risks of the individual sub-portfolios, this contradicts

the common belief that diversification lowers risk. An illustrative example of the lack of

subadditivity of VaR can be found in Acerbi et al. (2001).

3.5 Expected Shortfall as Alternative Risk Measure

The lack of subadditivity and the failure to capture tail risk gives rice to the new risk

measure ES. As can be seen from the definition of ES, it measures the expected loss in the

tail of the profit-loss distribution. This exact definition shows that ES takes into account

what happens in the tail of the distribution, overcoming the deficiency of VaR.

It has been pointed out in the literature that ES is a universal, complete and simple

risk measure. VaR is still by far the most important risk measure used in financial risk

management, but a change is expected. Based on the deficiencies of VaR, supervisors have

proposed to use 97.5 % ES as replacement for 99 % VaR as the official risk measure. The

reason behind this is that reality shows that tail risk matters and has to be incorporated

into the risk measure. The debate involving this issues can be found in the Fundamental

Review of the Trading Book by The Basel Committee (2013).

Due to the deficiencies of VaR, the academic and professional debate of VaR and the

virtually no additional computational effort of estimating ES in comparison with VaR, we

believe that using ES as a complementary risk measure to VaR is a smart move.

4 Methodology

This section describes the methodology of the paper. In section 4.1 standard univariate

estimation models for VaR and ES are examined. Section 4.2 introduces the necessary

theory for the multivariate copula framework. Thereafter, section 4.3 describes the multi-

variate TGARCH-EVT-Copula model. Section 4.4 and 4.5 describe the testing framework

for VaR and ES respectively, whereas section 4.6 deals with model selection. Section 4.7

shows the estimation and forecasting framework.
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4.1 Univariate Estimation models for VaR and ES

4.1.1 Variance-Covariance Model

If a parametric model with i.i.d. observations is assumed, exact formulas for VaR and ES

can be derived for certain distributions of the innovations. If the losses Lt are assumed to

belong to the Gaussian distribution, the formulas for VaR and ES are given as

V̂ aR
α

t = µ̂+ σ̂Φ−1(α) (5a)

ÊS
α

t = µ̂+ σ̂
φ(Φ−1(α))

1− α
(5b)

where µ is the mean of the losses and σ the standard deviation of the losses. φ denotes

the probability density function of the normal distribution and Φ−1 denotes the inverse

cumulative distribution function of the normal distribution. This model is referred to as

VC-N.

It is known that financial returns have fat tails, in the sense that extreme events

occur more often than expected when assuming a normal distribution. To account for this

possible leptokurticy, the losses Lt are assumed to belong to the Student-t distribution with

ν > 1 degrees of freedom. The loss distribution Lt ∼ t(ν, µ, σ) has moments E(Lt) = µ

and V ar(Lt) = νσ2

ν−2 . The formulas for VaR and ES can then be written as

V̂ aR
α

t = µ̂+ σ̂t−1ν̂ (α) (6a)

ÊS
α

t = µ̂+ σ̂
gν̂(t−1ν̂ (α))

1− α
·
ν̂ + (t−1ν̂ (α))2

ν̂ − 1
(6b)

where µ is equal to E(L) which is the mean of the losses. gν denotes the probability

density function of the Student’s t-distribution with ν degrees of freedom and t−1ν denotes

the inverse cumulative distribution function of the Student’s t-distribution. This model is

referred to as VC-S.

It is proven by McNeil et al. (2015) that for the normal distribution the shortfall-to-

quantile ratio equals ESαt /V aR
α
t = 1 when α → 1. Whereas for a t-distribution with

ν > 1 degrees of freedom the shortfall-to-quantile ratio equals ESαt /V aR
α
t = ν

ν−1 when

α → 1. This shows that for a heavy tailed distribution the difference between VaR and

ES is more pronounced than for the normal distribution, indicating that the choice of

distribution really matters.

4.1.2 Historical Simulation

The historical simulation model does not make any parametric assumption of the distri-

bution of losses and is therefore widely used in practice. The foundation underling the

historical simulation model is the empirical distribution function. Assume for a loss Lt,

i.i.d. observations, denoted as L1, ..., Ln. Then the empirical distribution function, that

10



takes the values L1, ..., Ln with probability 1
n can be written as

Fn(l) =
1

n

n∑
i=1

I(Li ≤ l), (7)

where I(·) denotes the indicator function. Using asymptotic properties and the strong law

of large numbers one can derive that Fn(l) is a good estimator of FL(l). Because VaR is

a quantile, the VaR can be estimated as F←n (α) = inf{x : F (x) ≥ α}. Rank the losses

L1, ..., Ln as L(1) ≤ L(2) ≤ ... ≤ L(n), such that L(i) are order statistics. Following the

reasoning of McNeil et al. (2015) F←n (α) can be estimated as Ldnαe. Combining all this

the VaR and ES can be calculated as

V̂ aR
α

t = Ldnαe (8a)

ÊS
α

t =
dnαe − nα
n(1− α)

L(dnαe) +
1

n(1− α)

n∑
i=dnαe+1

L(i) (8b)

where n is the number of observations. The d e symbol denotes the ceiling function. The

exact derivations and underlying assumptions can be found in McNeil et al. (2015). This

model is referred to as HS.

4.1.3 Filtered Historical Simulation using GARCH Models

In order to account for empirical regularities in the portfolio losses, the losses are modelled

using the AR-(T)GARCH model with continuous innovations

Lt = µ+ φLt−1 + σtzt zt ∼ t(ν) (9)

where the zt are student-t distributed with ν degrees of freedom, mean zero and unit

variance. Denote εt = σtzt, which is the unpredictable component of the losses. To account

for specific dynamics in the variance the following two specifications are considered:

1. GARCH(p,q) specification of Bollerslev (1986).

σ2t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j (10)

2. TGARCH(p,q) specification of Glosten et al. (1993) and Rabemananjara & Zakoian

(1993).

σ2t = ω +

q∑
i=1

(αi + γiI(εt−i < 0))ε2t−i +

p∑
j=1

βjσ
2
t−j (11)

Note that the frequently used Risk Metrics approach of Morgan/Reuters (1996) is a special

case of equation (10), with the restrictions ω = 0, α1 + β1 = 1 and p = q = 1, further-
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more the parameter β1 is not estimated but set equal to 0.94. Since GARCH models

are incapable of separating out asymmetric information, the TGARCH model is included

which allows the effects of good and bad news to be different on the variance, through

the additional indicator term. For the sake of completeness, the optimal lag lengths will

be chosen along the Akaike Information Criterion with the restriction that the maximum

lag length may not exceed 5, in other words p, q ≤ 5, although in practical applications

almost always a (T)GARCH(1,1) specification suffices. The following steps are needed to

compute the values for VaR and ES in this setting.

First the GARCH parameters have to be estimated by optimizing the log likelihood

function, this log likelihood can be optimized using Quasi Maximum Likelihood Estima-

tion (QMLE). With the estimated parameters, the past variances σ̂2t for t ≤ n can be

estimated. After the estimation of the variances, the innovations of the GARCH process

can be estimated as

ε̂t =
Lt − µ̂− φ̂Lt−1

σ̂t
(12)

Then the VaR of the innovations can be calculated as the HS estimate of the empirical

distribution of ε̂t. Combining all this and following Gao & Song (2008) the VaR of the

FHS model can be calculated as

V̂ aR
α

t = µ̂+ φ̂Lt−1 + σ̂tε̂α (13)

where ε̂α is the HS estimator of VaR of the innovations. The ES of the FHS model can be

calculated as

ÊS
α

t = µ̂+ φ̂Lt−1 + σ̂tδ̂α (14)

where δα can be estimated as

δ̂α =

∑n
t=1 ε̂tI(ε̂t > ε̂α)∑n
t=1 I(ε̂t > ε̂α)

. (15)

Barone-Adesi et al. (1999, 2002) and Pritsker (2001) have shown that this type of historical

simulation performs rather well. These models are referred to as AR(1)-GARCH(p,q) and

AR(1)-TGARCH(p,q) respectively.

4.1.4 Extreme Value Theory

Extreme Value Theory can be applied to develop models to describe the extremal behavior

of financial risk factors. In fact, this kind of models is useful in modeling the tail of the

distribution of financial risk factors. Reality often shows that risk factors are heavy tailed

in comparison with normal distributions. The observations in the tail of the distribution

are of extreme importance because these are the ones of interest.

There are mainly two methods available for modeling extreme values. The first method

looks at the events in the data that exceeds a high threshold and fits a distribution on these

12



exceedances. It is shown by Balkema & de Haan (1974) that the limiting distribution over

the threshold is a Generalized Pareto Distribution (GPD). The second method divides

the data into consecutive blocks and focuses on the series of maxima/minima in these

blocks. The asymptotic distribution of these series of maxima/minima converges to the

Generalized Extreme Value Distribution as proven by Embrechts et al. (1997). McNeil

et al. (2015) argue that the threshold exceedance methods are preferable over the block

maxima/minima models because these models make more efficient use of the often limited

data on extreme outcomes. Based on this evidence in favor of threshold models, this

research proceeds with the so-called Peak-over-Threshold (POT) method in combination

with the GPD.

The POT method considers the distribution of exceedances over a certain threshold.

Because of the importance of extreme values it is important to estimate the distribution

function of values of x above a certain threshold u. Define L1, ..., Ln as a sequence of

i.i.d. random variables from some unknown distribution function F and define u as some

threshold. Define a sequence Y1, ..., Yn with Yi = Li − u, effectively meaning that the Y

measures the excess above the threshold. The excess distribution above the threshold u

can than be written as a conditional probability

Fu(y) = P (L− u|L > u) (16)

Fu(y) =


F (u+y)−F (u)

1−F (u) , if y ≥ 0,

0, if y < 0.
(17)

The largest proportion of the Li variables lie below u and therefore there should be no

problem while estimating F in this interval. However, the estimation of Fu can be rather

difficult because in general only a few observations belong to this area. For this purpose

EVT is extremely important, because it gives expressions for the conditional excess distri-

bution. For sufficiently large threshold u, Balkema & de Haan (1974) and Pickands (1975)

states that it is possible for a large class of distributions F to find a function H and κ

such that

lim
u→x0

sup
0≤y≤x0−u

|Fu(y)−Hξ,κ(y)| = 0 (18)

where x0 is the right endpoint of F and Hξ,κ denotes the GPD which can be written as

Hξ,κ(y) =

1− (1 + ξy
κ )
−1
ξ , if ξ 6= 0,

1− exp(− y
κ), if ξ = 0,

(19)

where it holds that y ≥ 0 for ξ ≥ 0. In other words the function Fu(y) is well approximated

by the function Hξ,κ. The shape of the distribution is determined by the parameter ξ and

the scale is determined by κ. The shape parameter ξ is also known as the tail index, which

indicates the heaviness of the tail. A larger ξ, indicates a heavier tail, only distributions
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with ξ ≥ 0 are suitable for modeling financial returns (Gilli & Këllezi, 2006).

From the theory it is known that the threshold u should be high, because the theorem

of Balkema & de Haan (1974) and Pickands (1975) holds for sufficiently large u, but on

the other hand if u gets too high, to few observations are left in the tail. So far there is no

optimal choice for the selection of this threshold u. Two graphical methods appear in the

literature, namely the sample mean excess plot and the Hill (1975) plot. However applying

these approaches at every time point is time consuming and not feasible. ? show using

Monte Carlo experiments that the parameter estimates are robust to the threshold value

if this threshold is between 5% and 13%. Carol (2008) states that using a threshold value

of 10% leaves enough observations in the tail to accurately estimate the parameters of the

GPD using Maximum Likelihood Estimation (MLE). Following their lead a threshold of

10% is used, therefore u is then equal to the 90% order statistic.

Several methods can be used to estimate the parameters of the GPD, namely MLE,

Method of Moments, Method of Probability-Weighted Moments and the Elemental Per-

centile Method. For an extensive overview and discussion of these methods see Hosking &

Wallis (1987), Grimshaw (1993) and Castillo & Hadi (1997). This research uses the MLE

approach in the same way as is done in Gilli & Këllezi (2006). The log-likelihood function

can be written as

L(ξ, v|y) =

−n log(κ)− (1ξ + 1)
∑n

i=1 log(1 + ξ
κyi) if ξ 6= 0,

−n log(κ)− 1
κ

∑n
i=1 yi if ξ = 0.

(20)

Maximizing the log-likelihood with respect to the parameters results in estimated param-

eter values. Using this estimated parameters we find the following analytical expressions

for VaR and ES

V̂ aR
α

t = u+
κ̂

ξ̂

(
(
n

Nu
(1− α))−ξ̂ − 1

)
(21a)

ÊS
α

t =
V̂ aR

α

t

1− ξ̂
+
κ̂− ξ̂u
1− ξ̂

(21b)

where n is the total number of observations and Nu the number of observations above the

threshold u. See for a detailed derivation of these formulas Gilli & Këllezi (2006). This

model is referred to as EVT.

4.1.5 TGARCH-EVT Model

The use of normal distributions for the losses results in underestimated tails and disregards

excess kurtosis and skewness. The benchmark models assume constant volatility over time,

which is obviously not true given the empirical evidence of volatility clustering. VaR and

ES estimates deal only with the tail of the distribution and the afore mentioned EVT

approach focuses on these tails. However, applying EVT on the tails requires that the
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observations are i.i.d., which is obviously not the case given the volatility clustering. To

overcome these shortcomings McNeil & Frey (2000) propose a model that first estimates

a GARCH model and then uses the framework of EVT on the filtered residuals. These

filtered residuals are approximately i.i.d., when the GARCH specification is valid. In this

research this approach is implemented using an AR(1)-TGARCH(1,1) model to capture

the serial dependence of the losses and using a GPD distribution for the tails of the filtered

residuals of the AR(1)-TGARCH(1,1) model. The estimation algorithm can be found in

appendix B.

4.2 Copulas

In practical portfolio applications the dependence structure between the different assets

is assumed to be linear. The dependence is mostly measured by means of correlation, but

Embrechts et al. (1999) proves that correlation on its own is not sufficient to describe the

dependence structure when distributions are not normal or elliptical. A better approach to

deal with the dependence structure is the use of copulas. A copula can be described as the

function that forms multivariate distribution functions from one-dimensional distribution

functions. Copulas express dependence on a so-called quantile scale, which is extremely

usefull for describing the dependence of extreme outcomes.

Another advantage of the use of copulas is that it is flexible in the sense that it allows

to focus on two different levels. The first focus is on fitting marginal distributions to

each asset and the second focus is on fitting the dependence distribution of the marginal

distributions. This copula model provides a much more flexible framework in describing

the dependence structure.

In this research, five possible copulas are considered, namely the Clayton, Frank, Gum-

bel, Gaussian and Student copula. It is the goal of the research to choose the copula that

delivers the best VaR and ES forecasts, rather than choosing the copula that best fits

the data. Therefore no goodness of fit tests as in Genest et al. (2009) and Hofert et al.

(2012b) are performed to select the best copula. The fit of the copula is assessed using the

backtests for VaR and ES. In this research time-varying marginals are used in combination

with conditional copulas.

This section begins with describing the basic concepts of copulas and proceeds with

five special cases of copulas. The section concludes with the estimation algorithms for the

copulas and a general note on sampling from the copulas.

4.2.1 Basic Concepts

A d-dimensional copula is the distribution function C on [0, 1]d with standard uniform

marginal distributions. Denote C(u) = C(u1, ..., ud) as the multivariate distributions func-

tions that are copulas. The dependence between real-valued random variables X1, ..., Xd
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can be completely described by their joint distribution function as follows

F (x1, ..., xd|Ωt−1) = P [X1 ≤ x1, ..., Xd ≤ xd|Ωt−1]. (22)

Splitting F into a part that describes the dependence structure and a part that describes

the marginal behaviour, has led to the use of copulas. The joint distribution function C

of (F1(X1|Ωt−1), ..., Fd(Xd|Ωt−1))
′ is called the copula of the random vector (X1, ..., Xd)

′

or the multivariate distribution F . The multivariate distribution F can then be written

as

F (x1, ..., xd|Ωt−1) = P [X1 ≤ x1, ..., Xd ≤ xd|Ωt−1]

= P [F−11 (U1|Ωt−1) ≤ x1, ..., F−1d (Ud|Ωt−1) ≤ xd|Ωt−1]

= P [U1 ≤ F1(x1|Ωt−1), ..., Ud ≤ Fd(xd|Ωt−1)|Ωt−1]

= C(F1(x1|Ωt−1), ..., Fd(xd|Ωt−1)) (23)

Equation (23) can be derived from the Sklar (1959) theorem. It can be seen as the

representation of the joint distribution function F in terms of the copula C and the

marginal distributions F1, ..., Fd. The density function c(u1, ..., ud|Ωt−1) of the copula

C(u1, ..., ud|Ωt−1) can be denoted as

c(u1, ..., ud|Ωt−1) =
∂C(u1, ..., ud|Ωt−1)

∂u1 . . . ud
(24)

Following Cherubini et al. (2004) the relation between the copula and the density function

of F , denoted by f is given by the canonical copula representation. The canonical copula

representation can be written as

f(x1, ..., xd|Ωt−1) = c(F1(x1|Ωt−1), ..., Fd(xd|Ωt−1))

d∏
j=1

fj(xj |Ωt−1) (25)

where fj are the marginal densities, which can be derived as

fj =
dFj(xj |Ωt−1)

dxj
. (26)

In the next two sections some specific types of copulas are listed and explained.

4.2.2 Archimedean Copulas

A d-variate Archimedean copula can be defined as the following copula function

C(u1, ..., ud) = ϕ−1(ϕ(u1) + ...+ ϕ(ud)) (27)
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where ϕ(u) is known as the generator function of the copula. The generator should be twice

differentiable, strictly decreasing and convex. The inverse generator function denoted by

ϕ−1 should be monotonic on the interval zero to infinity. In this research three different

one-parameter Archimedean copulas are considered, namely Clayton, Frank and Gumbel.

1. The Clayton Copula

The generator function of the Clayton copula is ϕ(t) = (1 + θt)
−1
θ , which results in

the following Clayton d-dimensional copula

CCθ = (u−θ1 + ...+ u−θd + 1− d)
−1
θ . (28)

2. The Frank Copula

The generator function of the Frank copula is given by

ϕ(t) = log

(
e−θt − 1

e−θ − 1

)
. (29)

Using the generator the Frank d-dimensional copula can be written as

CFθ = −1

θ
log

(
1 +

∏d
i=1(e

θui − 1)

(e−θ − 1)d−1

)
. (30)

It can be proven that this only holds for d ≥ 3.

3. The Gumbel Copula

The generator function of the Gumbel copula can be written as ϕ(t) = e−t
1/θ

. Using

this generator the d-dimensional Gumbel copula can be written as

CGθ = exp[−(− log(u1)
θ + ...+− log(ud)

θ)1/θ]. (31)

4.2.3 Non-Archimedean Copulas

1. The Gaussian Copula

The Gaussian copula, denoted as CdR, of a d-dimensional multivariate normal distri-

bution with correlation matrix RG can be written as

CGAR = Φd
R(Φ−1(u1), ...,Φ

−1(ud)) (32)

where Φd
R denotes the joint distribution of the d-variate standard normal distribution

with correlation matrix R and Φ−1 denotes its inverse.

2. The Student-t Copula

The Student-t copula of a d-variate t-distribution with ν degrees of freedom and
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correlation matrix RS can be written as

Ctν,R = tdν,R(t−1ν (u1), ..., t
−1
ν (ud)) (33)

where tdν,R denotes the joint distribution of the d-variate student-t distributions and

t−1 its inverse.

4.2.4 Estimation Framework

Estimation of the copulas can be done using Maximum Likelihood estimation (MLE),

Inference for Margins (IFM) or Canonical Maximum Likelihood (CML). The MLE method

estimates jointly the parameters of the marginal distributions and the copula, whereas IFM

estimates first the parameters of the univariate marginal distributions and thereafter the

parameters of the copula. The CML method uses the idea that the copula parameters can

be estimated without specifying the marginal distributions, the marginal distributions in

this method are calculated using the empirical distribution function. Exact details on these

methods can be found in Bouye et al. (2000) and Romano (2002). In the framework of this

thesis, the marginals are estimated using kernel estimation and extreme value theory, this

leads to the choice of MLE for only the copulas in this framework. With the estimated

θ̂1, containing the parameters of the marginals, the parameters of the copula denoted by

θ2 can be estimated by solving

θ̂2 = arg max
θ2

n∑
t=1

log c(F1(L1,t|Ωt−1), ..., Fd(Ld,t|Ωt−1); θ2, θ̂1). (34)

For the estimation of high dimensional Archimedean copulas see for example Hofert et al.

(2012a).

Once the parameters are estimated, sampling from the copula can be easily done using

the conditional sampling method. In the case of the Archimedean copulas, this can be

computationally intensive in high dimensional cases, to remedy this issue one can use

the sampling method of Cherubini et al. (2004). However, as the dimensionality in this

research is limited, the conditional sampling method suffices.

4.3 TGARCH-EVT-Copula Model

The use of normal distributions for the losses results in underestimated tails and disre-

gards excess kurtosis and skewness. VaR and ES estimates deal only with the tail of

the distribution and the afore mentioned EVT approach focuses on these tails. However,

applying EVT on the tails requires that the observations are i.i.d., which is obviously not

the case given the volatility clustering. To overcome these shortcomings McNeil & Frey

(2000) propose a model that first estimates a GARCH model and then use the framework

of EVT on the filtered residuals. It is shown in the literature that to describe the de-
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pendence structure of financial assets only using correlation as a dependence measure is

not enough. To remedy this issue, the use of copulas was proposed. In this extension of

existing models, the AR(1)-TGARCH(1,1) model and EVT approach are combined with

copulas, in order to capture the dependence structure between the assets appropriately.

This approach consists of the following steps.

1. Estimate an AR(1)-TGARCH(1,1) model for each ETF separately

Lt,j = µj + φLt−1,j + σt,jεt,j εt,j ∼ t(ν) (35a)

σ2t,j = ω + (α1 + γ1I(εt−1,j < 0))ε2t−1,j + β1σ
2
t−1,j (35b)

2. With the estimated parameters filter out the standardized residuals

ε̂t,j =
Lt,j − µ̂j − φ̂Lt−1,j

σ̂t,j
(36)

3. Estimate the marginal distributions of the standardized residuals εt,j of the ETFs

using a semi parametric approach. It is known that the majority of the observations

lie in the center, therefore the estimation of the center should not be too hard. The

estimation of the tails of the distribution can be problematic as a limited number

of observations lie in the tail. Therefore the interior of the marginal distributions is

estimated using a Gaussian kernel function and the tails are estimated using extreme

value theory by means of the GPD. Denote ε1,j , ..., εn,j as an i.i.d. random sample

for a continuous density function f . Then the kernel density estimator of f can be

defined as

f̂j(x;h) =
1

n

n∑
i=1

1√
2πh

e
−(x−εi,j)

2

2h2 . (37)

4. Transform the obtained standardized residuals εj to uniform variables by plugging

them in their respective marginal distributions Fj . The continuity of the piecewise

marginals is ensured by using interpolation to combine the tails with the center, this

results in approximate piecewise continuous marginals. The uniform variables are of

the form Uj = Fj(εj) for 1 ≤ j ≤ 4.

5. Fit a copula using the MLE estimation method on the transformed marginal distri-

butions Uj for 1 ≤ j ≤ 4.

6. Using the estimated parameters of the copula, one can simulate from the copula. In

this multivariate setting N simulations are performed, resulting in a Nx4 matrix M

of simulated marginal values. Denote column j as Mj for 1 ≤ j ≤ 4 which contains

the simulated marginal uniform values for the losses of ETF j.

7. The simulated values are on a uniform scale, to rescale them to the original scale
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one can use the inverse marginal functions F−1j , this results in Wj = F−1j (Mj) for

1 ≤ j ≤ 4.

8. To reintroduce this autocorrelation and heteroskedasticity, transform the simulated

values Wj to log losses using the AR(1)-TGARCH(1,1) specification as in equation

(35a) and (35b). This results in the following simulated log losses, denoted as Rit,j

Rit,j = µ̂j + φ̂Rit−1,j + σ̂t,jW
i
t,j (38)

9. The simulated log losses of the ETFS are denoted by Rij for 1 ≤ j ≤ 4. To transform

them to portfolio losses of an equally weighted portfolio, use the transformation
1
4

∑4
j=1R

i
t,j for 1 ≤ i ≤ N . Denote these portfolio losses as Lit+1.

10. The VaR and ES estimates of the TGARCH-EVT-Copula approach can be calculated

as

V̂ aR
α

t = L
dNαe
t+1 (39a)

ÊS
α

t =
dNαe −Nα
N(1− α)

L
(dNαe)
t+1 +

1

N(1− α)

N∑
i=dNαe+1

L
(i)
t+1 (39b)

where L
(i)
t+1 are order statistics and the d e symbol denotes the ceiling function.

4.4 Model Evaluation VaR

To test if the prediction of future risks is accurate, one should backtest the forecasts.

The proportion of exceptions should match the confidence level, backtesting tests of this

type are known as tests of unconditional coverage. For a good VaR model not only the

proportion of exceptions should match the confidence level but at the same time, the

exceptions should be evenly spread over time, in the sense that they are independent

of each other. Clustering of exceptions indicates that the model does not accurately

capture changes in market conditions, like volatility and correlations. Backtesting tests

of this type are conditional coverage tests. The unconditional coverage is tested using the

Kupiec (1995) proportion of failures test and the conditional coverage is tested using the

Christoffersen (1998) independence test. For notational convenience denote 1− α as α̃.

4.4.1 Unconditional Coverage Test

Define the following indicator function which measures the exceptions

hαt = I(Lt+1 > V aRαt ). (40)

In an ideal situation, the VaR model produces a number of exceptions in line with the used

confidence level. If the number of exceptions is less than the confidence level, the risk is
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overestimated. On the other hand, if the number of exceptions is more than the confidence

level, the risk is underestimated. Define T as the total number of observations, T1 =∑T
t=1 h

α
t as the number of exceptions and T0 = T − T1 as the number of non-exceptions.

Assuming independent exceptions, Kupiec’s test can be used to determine whether the

number of exceptions is consistent with the confidence level. The null hypothesis can be

written as

H0 : E[hαt ] = α̃

The likelihood ratio test of correct unconditional coverage can be computed as

LRuc = −2 log

(
(α̃)T0(1− α̃)T1

(π̃)T0(1− π̃)T1

)
∼ χ2(1) (41)

where π̃ is the maximum likelihood estimate of the proportion. This test statistic is

asymptotically χ2 distributed with one degree of freedom. If LRuc is greater than the

critical value, H0 is rejected and the model is classified as inaccurate. Note that this

test corresponds to testing that the sequence {hαt − α̃}Tt=1 has zero mean in the Du &

Escanciano (2017) framework.

4.4.2 Conditional Coverage Test

Good VaR estimates should have independence, in the sense that VaR exceptions should

be spread out over the sample and not come in clusters. This boils down to testing the

following null hypothesis

H0 : E[hαt |Ωt−1] = E[hαt ].

Independence is tested against the specific alternative of a first-order Markov chain for

hαt , with transition probability matrix

Π1 =

[
1− π01 π01

1− π11 π11

]
(42)

where πij = P [hαt = j|hαt−1 = i]. The null hypothesis of independence implies that

π01 = π11 = π2. Define Tij as the number of observations such that hαt = j and hαt−1 = i.

The likelihood ratio test of independence can be computed as

LRind = −2 log

(
(1− π2)T00+T11(π2)

T01+T11

(1− π01)T00(π01)T01(1− π11)T10(π11)T11

)
∼ χ2(1) (43)

where π01, π11 can be calculated using maximum likelihood. The maximum likelihood

estimate of π2 is equal to (T01 +T11)/T . The test statistic is asymptotically χ2 distributed

with one degree of freedom. If LRind is greater than the critical value, H0 is rejected and

the model is classified as inaccurate. Note that this test corresponds to testing that the

21



sequence {hαt }Tt=1 is uncorrelated in the Du & Escanciano (2017) framework.

4.4.3 Joint Conditional and Unconditional Coverage Test

Good VaR estimates should not only are independent but also have good coverage. The

null hypothesis for this joint test can be written as

H0 : E[hαt |Ωt−1] = E[hαt ] = α̃

The likelihood ratio test statistic can be written as

LRcc = LRuc + LRind ∼ χ2(2) (44)

which is asymptotically χ2 distributed with two degrees of freedom. Exact derivations

and underlying assumptions of this test can be found in Christoffersen (1998). Note that

this test corresponds to testing that the sequence {hαt − α̃}Tt=1 is uncorrelated in the Du

& Escanciano (2017) framework.

4.5 Model Evaluation ES

To test if the prediction of future risks is accurate, one should backtest the forecasts.

Whereas the testing of VaR is straightforward, testing ES appears to be rather difficult.

Gneiting (2011) showed that ES on its own lacks a mathematical property called elicitabil-

ity which makes it difficult to backtest using scoring functions. Fissler & Ziegel (2016)

showed that ES is jointly elicitable with VaR, but their approach was aimed on model

selection and not on testing correct specification. Following this work, many researchers

and professionals were convinced that it was not possible to properly backtest ES at all.

However recent research conducted by Du & Escanciano (2017) shows that backtesting

ES does not necessarily depend on elicitability. They show that testing can be done using

the property that cumulative violations form a class of Martingale Difference Sequences.

This cumulative violation process accumulates all violations in the right tail, just like the

ES accumulates the VaR in the right tail. Du & Escanciano (2017) propose unconditional

and conditional tests based on this cumulative violation process, these tests for ES are

comparable with the ones proposed in section 4.4 for VaR.

4.5.1 Unconditional Backtest

Unlike VaR, which only contains information on one quantile level, ES contains information

from the whole right tail, by integrating all VaRs from α to 1. This results in the following

equation for ES

ESαt =
1

α̃

∫ 1

α
V aRut du. (45)
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Following Du & Escanciano (2017) the correct specification of ES can be tested by using the

integral of the indicator function of violations ht, in the literature known as the cumulative

violation process, by replacing V aRαt with hαt in equation (45)

Hα
t =

1

α̃

∫ 1

α
hut du. (46)

Since this hαt has mean u, it can be derived using Fubini’s theorem that Hα
t has mean

α̃/2. Following the notation of Du & Escanciano (2017) ut can be defined as some function

Ft(Lt,Ωt−1). Using the fact that hut = I(ut ≤ u) the following can be derived

Hα
t =

1

α̃

∫ 1

α
I(ut ≤ u)du (47a)

=
1

α̃
(α̃− ut)I(ut ≤ α̃). (47b)

Like violations, cumulative violations are distribution free, in the sense that the sequence

{ut}Tt=1 consists of independent and identically distributed U [0, 1] variables, see for ex-

ample Rosenblat (1952) and Berkowitz (2001) for further details. As pointed out by Du

& Escanciano (2017) cumulative violations contain information about the tail risk in the

sense that when a violation occurs, the cumulative violation measures how far the actual

value of Lt lies from its quantile through the term α̃ − ut. The variables {ut}Tt=1 are

generally unknown since the distribution of Ft is unknown. In practice often a parametric

conditional distribution Ft(·,Ωt−1, θ) is specified, where θ is estimated before estimating

VaR and ES. With this estimated parameters the percentiles ut can be calculated

ût = Ft(Lt, Ω̂t−1, θ̂). (48)

This ût can be obtained be simulatingM times from the conditional predictive distribution,

ranking this generated random variates in ascending order and calculating the number of

observations larger than the actual observed loss. Denote this number as S then the term

ût can be approximated by 1 − S/M . The estimated cumulative violations can then be

calculated as

Ĥα
t =

1

α̃
(α̃− ût)I(ût ≤ α̃). (49)

Testing for correct unconditional specification of ES can be done by testing whether the

sequence {Hα
t − α̃/2}Tt=1 has zero mean, this boils down to testing the following null

hypothesis

H0 : E(Hα
t ) = α̃/2. (50)
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Straightforward calculations show that the variance of Hα
t is equal to α̃(1/3− α̃/4), there-

fore a simple t-test statistic is as follows

UES =

√
T (H̄α − α̃/2)√
α̃(1/3− α̃/4)

∼ N(0, 1) (51)

where H̄α = 1
T

∑T
t=1 Ĥ

α
t . Following the reasoning of Du & Escanciano (2017) the limiting

distribution of UES converges to a standard normal distribution when T/n → 0, T → ∞
and n→∞.

4.5.2 Conditional Backtest

Define the lag-j autocovariance and autocorrelation of Hα
t for j ≥ 0 as

γj = Cov(Hα
t , H

α
t−j) and ρj =

γj
γ0
. (52)

In this framework {Hα
t }Tt=1 is unobservable therefore the estimated Ĥα

t is used instead of

Hα
t , resulting in the following equations

γ̂Tj =
1

T − j

T∑
t=1+j

(Ĥα
t − α̃/2)(Ĥα

t−j − α̃/2) and ρ̂Tj =
γ̂Tj
γ̂T0

. (53)

Testing for correct conditional specification can be done by testing whether the sequence

{Hα
t − α̃/2}Tt=1 is uncorrelated. This boils down to testing the following null hypothesis

H0 : E(Hα
t − α̃/2|Ωt−1) = 0. (54)

Under H0 all ρj for j ≥ 1 should be zero. This can be tested using the Box-Pierce test

statistic

CmES = T

m∑
j=1

ρ̂2Tj ∼ χ2(m) (55)

Following the reasoning of Du & Escanciano (2017) the limiting distribution of CmES con-

verges to a chi-squared distribution with m degrees of freedom when T/n → 0, T → ∞
and n→∞.

4.6 Model Selection

The choice of an appropriate risk measure for risk management that is easily backtestable

appears to be difficult. In light of this debate, Weber (2006) and Gneiting (2011) have

shown that ES on its own is not elicitable. Especially this means that there is no strictly

consistent scoring function S such that for any random variable Lt with finite mean the

following holds

ESαt (L) = arg minE[SE,t(et, Lt)]. (56)
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Note that V and E denote VaR and ES respectively whereas et and vt denote a realization

of VaR and ES respectively. It can been verified that such strictly consistent scoring

functions for VaR can be constructed and are of the form

SV,t = (hαt − α̃)(G(Lt)−G(vt)) (57)

where G is a strictly increasing function. However it is shown by Fissler & Ziegel (2016)

that ES is elicitable of higher order in the sense that the pair (V aRαt , ES
α
t ) is jointly

elicitable. This leads to the use of comparative tests. This implies that there exists a

scoring function such that the following holds

(V aRαt (Lt), ES
α
t (Lt)) = arg minE[SV,E,t(vt, et, Lt)]. (58)

Fissler & Ziegel (2016) propose the following choice of SV,E,t

SV,E,t(vt, et, Lt) = (hαt −α̃)(G1(Lt)−G1(vt))+
1

α̃
G2(et)h

α
t (Lt−vt)+G2(et)(et−vt)−G2(et)

(59)

with G1 and G2 strictly increasing continuously differentiable functions and G′2 = G2. The

first part of the equation shows that VaR on itself is elicitable and the second part shows

that the remaining part cannot be split in a part only depending on e and a part only

depending on v, this illustrates the statement that ES is not elicitable on its own. Fissler

et al. (2015) propose the choice for G1 and G2 as G1(v) = v and G2(e) = exp(e). Define

the loss differential Dt as follows

Dt = SiV,E,t − S
j
V,E,t (60)

where SiV,E,t and SjV,E,t denote the scoring function for model i and j respectively. Fissler

& Ziegel (2016) state that for model verification elicitability is not necessary, but that it is

extremely important for model ranking. Because the strictly consistent scoring functions

allow for comparison between models. In the special case of model selection one wants to

do a pairwise comparison between model i and model j. This leads to the following null

hypothesis

H0 : E[SiV,E,t]− E[SjV,E,t] = 0 (61)

where E[SiV,E,t] and E[SjV,E,t] are approximated with their sample means, which are equal

to S̄iV,E = 1
T

∑T
t=1 S

i
V,E,t(vt, et, Lt) and S̄jV,E = 1

T

∑T
t=1 S

j
V,E,t(vt, et, Lt) respectively. This

leads to the following alternative hypothesis

Ha : E[SiV,E,t]− E[SjV,E,t] < 0. (62)

All possible pairs i, j are tested to avoid a selection bias, in the sense that selecting the best

model beforehand is unfair towards other models. Using the scoring function in equation
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(59) one can derive the following Diebold & Mariano (1995) based statistic

DM =
S̄iV,E − S̄

j
V,E√

σ̃2
D
T

∼ N(0, 1) (63)

where σ̃2D is the Newey-West estimate of the asymptotic variance. Diebold & Mariano

(1995) show that the test statistic under the null hypothesis is asymptotically standard

normal when T →∞ and n→∞.

4.7 Forecasting Framework

For the empirical application of this paper, a number of m = 100 in sample observations

is used for the HS and CV models. For all other models a number of m = 2500 in sample

observations is used. The size of the backtesting sample is in both cases equal to T = 638.

The paper is based on a moving window estimation scheme with m observations. The

focus of this paper is on estimating one-day ahead VaR and ES. This framework results

in 638 estimated values for VaR and ES. The statistical significance of the VaR and ES

estimates is assessed with the tests described in the previous sections.

5 Empirical Results

This section discusses the empirical results of the paper. In section 5.1 the results of the

univariate estimation models are given. Section 5.2 describes the empirical findings for

the multivariate TGARCH-EVT-Copula model. Section 5.3 concludes with ranking the

models that passed all tests.

5.1 Univariate Estimation models

All benchmark models are univariate, indicating that at the beginning of the analysis the

losses of the four ETFs are converted to portfolio losses by means of an equally weighted

portfolio. Hence for the univariate models, the dependence structure between the ETFs is

not important, since an equally weighted portfolio is used. In this section with benchmark

models, all models are first used separately and in the following section the models are

combined in the TGARCH-EVT-Copula model.

5.1.1 Benchmark Models

It can be seen from Figure 6 that the VaR forecasts of the CV model for a normal and t-

distribution are almost the same, although the forecasts of the t-distribution are somewhat

higher. The differences between the ES forecasts are more visible, it can be seen that the

forecasts from the t-distribution model are higher, this is not surprising because this

distribution accounts for fat tails and this is exactly what ES is about, the tail of the
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distribution. The fluctuating line is not surprising because the CV model only uses the

first two moments of the distributions. These moments are estimated using 100 in-sample

observations with a moving window, therefore these estimates of the moments do vary

over time. These models take into account the current state of the financial world, for

example around July, 2015 when a high loss enters the estimation sample, the estimates

of VaR and ES become higher!

(a) VaR Variance-Covariance model (b) ES Variance-Covariance model

Figure 6: VaR and ES plots of CV Model. The plots show the 97.5% VaR and ES of the
Variance-Covariance Model.

In Figure 7 the VaR and ES forecasts of the HS and EVT model are shown. It can be

seen that the forecasts for both VaR and ES of the EVT model are rather constant. This

is not surprising because this model considers the tail of the distribution and hence when

no additional large loss occurs the tail remains unaltered. Although the other i.i.d. models

in this research are estimated with m = 100 in sample observations, the EVT model uses

m = 2500 observations, because of the fact that approximately 200 observations should lie

in the tail (McNeil & Frey, 2000). The estimated tail index parameter is equal to 0.1550

and therefore positive as can be expected for financial heavy tailed data and the estimated

scale factor is also positive and equal to 0.6949.

After the high peak around July 2015 the HS forecasts of the VaR and ES increase,

this is obviously caused by the change of the tail in the sense that extreme observations are

added. The HS forecasts tend to follow the the direction of the portfolio losses, although

the forecasts are clearly discontinuous as can be seen in Figure 7.

5.1.2 Time-varying Volatility Models

As can be seen from the losses in Figure 7 the volatility seems to change over time, therefore

this research considers the AR(1)-GARCH(p,q) and AR(1)-TGARCH(p,q) specification to

deal with the time-varying volatility. To select the order of lags in the specifications, the

AIC and BIC values are compared to each other. Using these values as a measure, the

optimal lag lengths are chosen to be p = q = 1. Consequently, this research considers an

AR(1)-GARCH(1,1) and AR(1)-TGARCH(1,1) model.
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(a) VaR HS and EVT model (b) ES HS and EVT model

Figure 7: VaR and ES plots of HS and EVT model. The plots show the 97.5% VaR and ES
of the HS and EVT models.

The average parameters, average standard errors and average t statistics of these mod-

els over the 638 models can be found in Table 3. It may appear a bit strange that the

estimated mean µ is negative, but this is due to the fact that losses are considered instead

of returns. The parameters of the AR(1) model are in both cases quite similar to each

other, which indicates that the mean difference between the two models lies in the vari-

ance specification, which of course was expected. Also, the estimated β1 and the estimated

degrees of freedom are comparable for the two specifications.

The difference lies in the parameters α1 and γ1, which measures the effects of shocks

to the variance. Although the AR(1)-TGARCH(1,1) model allows the effects of positive

and negative shocks to be different, the average impact α1 + γ1
2 of shocks is roughly the

same. All parameters in both models are significant except of the φ parameter, which has

a remarkably high standard error in comparison with the parameter values.

Table 3: Estimated parameters. Estimated parameters of the GARCH and TGARCH model.
The models are estimated using a moving window with 2500 observations, this results in 638
estimated models. The shown values are the average parameters in the top row, the average
standard errors between brackets and the average t-statistics of the 638 estimated models in the
bottom row.

µ φ ω α1 β1 γ1 ν

-0.0767 -0.0416 0.0150 0.1055 0.8827 · 6.2917
GARCH(1,1) (0.0142) (0.0214) (0.0044) (0.0154) (0.0149) · (0.8006)

-5.3826 -1.9480 3.4255 6.8699 59.2612 · 7.8588

0.0573 -0.0401 0.0168 0.1684 0.8919 -0.1656 6.5429
TGARCH(1,1) (0.0143) (0.0211) (0.0037) (0.0136) (0.0210) (0.0241) (0.8466)

-4.0067 -1.9002 4.5822 12.3821 42.5662 -6.8775 7.7286

Both models are on average covariance stationary, note that the necessary condition for

this is α1 +β1 < 1 for the GARCH(1,1) model and α1 +β1 + γ1
2 < 1 for the TGARCH(1,1)

model. To show the effect of time-varying volatility, recall that the unconditional vari-

ance of a GARCH(1,1) model is equal to ω
1−α1−β1 and the unconditional variance of a

28



TGARCH(1,1) model is equal to ω
1−α1−β1− γ12

. The resulting volatilities estimated over

the first 2500 observations are shown in Figure 8. It can be seen that the estimated

volatilities are not constant over time but fluctuate around the unconditional volatility.

As the Great Depression hits the financial market around 2008 a large volatility shock

is observed in both models. Both volatility series show the same behavior, although the

TGARCH(1,1) volatilities are larger for negative shocks due to the asymmetric shock

component in its specification.

(a) Volatility GARCH(1,1) Model (b) Volatility TGARCH(1,1) Model

Figure 8: Volatility plots of the GARCH(1,1) and TGARCH(1,1) models. The plots
show the estimated and unconditional volatilities of the GARCH(1,1) and TGARCH(1,1) model
over the sample period November 19, 2004 till October 24, 2014.

The plots of the estimated VaR and ES of the GARCH(1,1) and TGARCH(1,1) model

can be found in Figure 9. Where the other models deliver forecasts that are actually quite

constant, the GARCH(1,1) and TGARCH(1,1) models deliver forecasts that move in the

direction of the portfolio losses. Large shocks in losses are reflected in large shocks to

the estimates of VaR and ES. The estimates of ES are higher then the estimates of VaR

which is not surprising because ES accounts for the average loss in the tail. It can be

seen that the estimates of ES and VaR of the GARCH(1,1) and TGARCH(1,1) model are

quite similar, however at some dates the TGARCH(1,1) estimates are higher due to the

asymmetric news component.

To apply EVT correctly, EVT and GARCH are combined in the TGARCH-EVT model.

Using this model also time-varying volatility can be introduced in the model. The resulting

VaR and ES estimates are shown in Figure 10. It is clearly seen that introducing time-

varying volatility and GARCH filtering improved the estimates of VaR and ES. Where

the estimated VaR and ES of the normal GPD are nearly constant, the estimates of the

TGARCH-EVT model fluctuate in the direction of the portfolio losses.

5.1.3 Statistical Results

In order to do statistical interference on the models the tests as described in section 4.4

and 4.5 are conducted. The summary statistics for these tests for α = 97.5% and α = 99%
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(a) VaR and ES forecasts GARCH(1,1) (b) VaR and ES forecasts TGARCH(1,1)

Figure 9: VaR and ES plots of the GARCH(1,1) and TGARCH(1,1) models. The plots
show the estimated 97.5% VaR and ES of the GARCH(1,1) and TGARCH(1,1) models over the
sample period November 19, 2014 till May 9, 2017.

Figure 10: VaR and ES plot of the TGARCH-EVT model. The plots show the estimated
97.5% VaR and ES of the TGARCH-EVT model over the sample period November 19, 2004 till
May 9, 2017.

can be found in Table 4 and Table 5 respectively.

It can be seen that the number of violations of the EVT model is much lower than

expected. The p-value for the LRIND statistic in the case of α = 99% for the EVT seems

somewhat high, but this is due to the fact that there is only one violation. Therefore the

violations are not correlated over time and hence the p-value approaches one.

Lower exceptions then expected indicate that the models overestimate the risk asso-

ciated with this portfolio. Hence the corresponding VaR forecasts are too high and the

actual losses are lower than the VaR forecasts. One can argue that this outcome is prefer-

able because the risk is limited in this case. However, in risk management, VaR determines

the amount of capital that is needed as buffer to back losses. If the risk is overestimated,

too much capital is reserved as a buffer and hence firms loose possible profits, that could

result from investing the capital.

The test of correct unconditional coverage of VaR is passed by four models at signifi-
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Table 4: Backtesting results for α = 97.5%. The table shows the estimated proportion of
exceptions and the respective p-values belonging to the test statistics. Test statistics for ES are
obtained by simulating M = 10000 times from the predictive distribution and by setting m = 5 as
in Du & Escanciano (2017). Tests are conducted on a 5% significance level.

VC-N VC-S HS GARCH(1,1) TGARCH(1,1) EVT TGARCH-EVT

π̂ 3.61% 3.29% 2.35% 3.92% 3.29% 0.63% 1.72%
LRUC 0.0932 0.2216 0.8078 0.0338 0.2216 0.0003 0.0128
LRIND 0.0135 0.0534 0.0043 0.0310 0.4154 0.0150 0.0128
LRCC 0.0116 0.0733 0.0165 0.0103 0.3401 0.0000 0.0186
UES 0.0142 0.0036 0.1979 0.1645 0.0692 0.0005 0.0159
C5
ES 0.0001 0.0000 0.0000 0.0370 0.5932 0.0000 0.9271

Table 5: Backtesting results for α = 99%. The table shows the estimated proportion of
exceptions and the respective p-values belonging to the test statistics. Test statistics for ES are
obtained by simulating M = 10000 times from the predictive distribution and by setting m = 5 as
in Du & Escanciano (2017). Tests are conducted on a 5% significance level.

VC-N VC-S HS GARCH(1,1) TGARCH(1,1) EVT TGARCH-EVT

π̂ 1.72% 1.25% 1.41% 1.72% 2.04% 0.16% 0.63%
LRUC 0.0956 0.5352 0.3262 0.0956 0.0209 0.0077 0.3092
LRIND 0.0004 0.0908 0.1246 0.0128 0.0295 0.9987 0.9899
LRCC 0.0005 0.1975 0.1899 0.0112 0.0065 0.0287 0.5963
UES 0.0079 0.0307 0.0211 0.3492 0.1840 0.0281 0.0703
C5
ES 0.0000 0.0000 0.0049 1.0000 0.9999 0.0000 0.7623

cance level 97.5% and five models at the 99% significance level. The test of independence

of the VaR violations is passed by the VC-S and TGARCH(1,1) model at the 97.5% sig-

nificance level and by the VC-S, HS and TGARCH-EVT model at the 99% level while

ignoring the high p-values for the EVT model. The test of correct conditional coverage is

only passed by the VC-S and TGARCH(1,1) model at 97.5% level and the VC-S, HS and

TGARCH-EVT model at 99% level.

The unconditional test of ES is only passed by three models at the 97.5% level and

by three at the 99% level. The test of uncorrelated ES forecasts is only passed by the

TGARCH(1,1) model and the TGARCH-EVT model at the 97.5% level. On the 99% level

only the GARCH based models pass the test. The results suggest that the VC-S and HS

model are a good fit for forecasting VaR but are poor in ES forecasting.

When including time-varying volatility in the models the forecasting ability of ES

increases, in the sense that from the GARCH based models only the TGARCH-EVT

model at the 97.5% does not pass the test of correct unconditional coverage. This re-

sults show that by including the current financial state in the analysis, the models are

more capable to incorporate the tail behavior. It can be seen that the GARCH(1,1) and

TGARCH(1,1) model slightly underestimate the risk, however, the GARCH based models

are most promising according to these results.

Overall it can be concluded that by including time-varying volatility in the models, the
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forecasting ability increases. As the Basel Committee recommends to change from V aR99%

as risk measure towards ES97.5%, the results from the TGARCH(1,1) and TGARCH-EVT

model gives strong evidence for the use of these models in univariate forecasting of VaR

and ES. These unconditional and conditional backtests only judge the forecasting abilities

of the models individually, but cannot be used for model comparison. Pairwise model

comparison can be done using the Diebold & Mariano (1995) framework with the Fissler

& Ziegel (2016) scoring function and will be done in section 5.3.

5.2 TGARCH-EVT-Copula Model

5.2.1 Marginal Distribution Modeling

The aforementioned models are all univariate models in the sense that the analysis is

done on the portfolio losses rather than on the ETF losses separately. This section deals

with the multivariate copula model that takes the dependence structure of the ETFs into

account. Therefore for each ETF separately an AR(1)-TGARCH(1,1) model is estimated.

The resulting average parameters, average standard errors and average t statistics can be

found in Table 6.

Table 6: Estimated parameters. Estimated parameters of the AR(1)-TGARCH(1,1) model for
each ETF separately. The models are estimated using a moving window with 2500 observations,
this results in 638 estimated models. The shown values are the average parameters in the top
row, the average standard errors between brackets and the average t-statistics of the 638 estimated
models in the bottom row.

µ φ ω α1 β1 γ1 ν

-0.0587 -0.0267 0.0223 0.2170 0.8727 -0.2170 6.5669
VTI (0.0160) (0.0219) (0.0044) (0.0155) (0.0262) (0.0284) (0.9384)

-3.6651 -1.2183 5.0109 14.0378 33.2672 -7.6320 6.9980

-0.0585 -0.0425 0.0217 0.2255 0.8698 -0.2255 6.1506
SPY (0.0153) (0.0217) (0.0043) (0.0152) (0.0269) (0.0293) (0.8418)

-3.8123 -1.9559 5.0568 14.8118 32.2951 -7.7022 7.3063

-0.0560 -0.0403 0.0100 0.0291 0.9535 0.0281 4.9986
GLD (0.0199) (0.0197) (0.0045) (0.0084) (0.0078) 0.0128 (0.5264)

-2.8080 -2.0401 2.2285 3.4749 122.7416 2.1974 9.4951

-0.0832 -0.0109 0.0369 0.2097 0.8700 -0.2097 7.0392
QQQ (0.0190) (0.0217) (0.0074) (0.0161) (0.0264) 0.0283 (1.1711)

-4.3876 -0.5017 5.0164 13.0318 32.9081 -7.4088 6.0109

The resulting parameters are quite normal for financial returns, the term α1+β1+ γ1
2 is

close to one for such returns and all models are covariance stationary. The AR parameters

of the four ETFs separately are of the same magnitude as the AR parameters of the

portfolio. In both cases the φ parameter is not significant, although the parameter of the

GLD ETF is significant. It can be seen that there is large estimation error in forecasting

this particular AR parameter.

The parameters of the TGARCH specification for each ETF correspond closely to
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the ones obtained for the portfolio, except for the GLD ETF. The estimated α1 and γ1

are substantially smaller than the ones of the other ETFs and the portfolio, this gives

an indication that the news component is not important for the variance of this ETF,

whereas it was important for the portfolio. The higher estimated β1 for the GLD ETF

indicates that the variance of this ETF can be mostly explained by the previous period

variance. For the other parameters of the ETFs the same behavior as the portfolio is

observed, the average effect of news shocks is approximately the same. The resulting

standardized residuals from the AR(1)-TGARCH(1,1) models are then used as input for

the GPD model.

A crucial part of copula theory is the identification of the marginal distribution of

the assets. This research uses a semi-parametric approach for this purpose. The resulting

semi-parametric marginal distributions over the first 2500 observations are shown in Figure

11, the three separate parts of the marginals are clearly visible. It can be seen that 10%

of the observations is reserved for the upper and lower tail respectively. Because the focus

is on losses we are interested in the upper tail, it can be seen that indeed all ETFs are

heavily tailed.

(a) Marginal Distribution VTI (b) Marginal Distribution SPY

(c) Marginal Distribution GLD (d) Marginal Distribution QQQ

Figure 11: Semi-Parametric Marginals. The plots show the marginal distributions of the four
ETFs over the sample period November 19, 2004 till October 24, 2014.
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5.2.2 Dependence Structure Modeling

The second step in the copula framework is the choice of a certain type of copula. The fit

of the copula is assessed using the backtests for VaR and ES. The estimated parameters

of these copulas are shown in Table 7. It can be seen from the estimated correlation

matrices that the ETFs are in fact heavily correlated. For example, VTI and GLD have a

correlation of 0.9848 and VTI and QQQ have also a high correlation of 0.8955, this shows

clearly that there is a dependence structure between these ETFs.

Table 7: Estimated Copula parameters. Estimated parameters of the copulas. The θ corre-
sponds to the parameter in the Archimedean copulas. The RG and RS are the correlation matrices
of the Gaussian and Student copula respectively. The ν corresponds to the degree of freedom of
the Student copula. The copulas are estimated using a moving window with 2500 observations,
this results in 638 estimated models. The shown parameters are the average parameters of the 638
estimated models.

Clayton Frank Gumbel Gaussian Student

θ 0.7977 3.4506 1.4699 · ·
R · · · RG RS
ν · · · · 4.8217

RG =


· 0.9848 0.0962 0.8955

0.9848 · 0.0854 0.8905

0.0962 0.0854 · 0.0483

0.8955 0.8905 0.0483 ·

 RS =


· 0.9895 0.0868 0.8990

0.9895 · 0.0771 0.8932

0.0868 0.0771 · 0.0480

0.8990 0.8932 0.0480 ·



The estimated correlation matrices correspond closely to the sample correlations in

Table 2, although these correlations are somewhat higher. The difference in correlations

is the largest for the GLD ETF. The results show that the imposed dependence structure

by means of copulas, results in a higher correlation. Therefore the univariate models

disregard this dependence structure by using equally weighting beforehand.

The Frank copula has the highest degree of dependence and the Clayton the lowest

degree of dependence. The lowest degree of dependence of the Clayton copula was expected

because this copula exhibits lower tail dependence, but the focus in this case is on the

upper tail, therefore the estimated strength of dependence is lower. On the other hand

the Gumbel copula exhibits right tail dependence and therefore the estimated strength of

dependence is larger. The Frank copula exhibits neither left nor right tail dependence and

is therefore symmetric. The estimated degree of freedom of the Student copula is of the

expected magnitude, a degree of freedom of around 5 is expected for such financial data.

The plots of the VaR and ES of the five copulas are shown in Figure 12. From Figure

12a is clearly seen that the Gumbel model delivers the highest forecasts of VaR and that

the Clayton model delivers the lowest forecasts of VaR. For the forecasts of ES essentially

the same pattern is observed, the Gumbel model has the highest forecasts and the Clayton
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the lowest. This can be explained from the insight that the Clayton copula exhibits lower

tail dependence, therefore dependence in the upper tail is less emphasized, this results in

lower estimated ES and VaR.

On the other hand the Gumbel copula exhibits upper tail dependence and therefore the

upper tail is more emphasized, this results in higher forecasts. The Gaussian and Frank

copula have neither lower nor upper tail dependence and lie therefore in between the

other models. There seems to be some kind of ranking between the models, the forecasts

of Frank, Gaussian and Student lie between the forecasts of Clayton and Gumbel. Loosely

speaking it can be concluded that the Clayton model underestimates the risk, whereas

the Gumbel model overestimates the risk, however this is just arguing from intuition. For

statistical inference on the performance the backtests are used.

(a) VaR forecasts (b) ES forecasts

Figure 12: VaR and ES plots of the five TGARCH-EVT-Copula models. The plots show
the 97.5% VaR and ES over the sample period November 19, 2014 till October May 9, 2017.

5.2.3 Statistical Results

The expected number of exceptions is around 16 at the 97.5% significance level and around

6 at the 99% significance level. It can be clearly seen that the Clayton model under

estimates the risk as it has for both significance levels to many exceptions. On the other

hand, the Gumbel model seems to over estimate the risk as there are to few exceptions.

From the firms perspective neither of the two is desirable because if the risk is under

estimated the firm is at risk, but on the other hand, if the risk is over estimated too much

capital is needed to retain the capital buffer. This immediately leads to missed profits,

therefore over- and underestimation of risk are both dangerous.

The tests of correct conditional and unconditional coverage are passed by three models

at the 97.5% level and by two models at the 99% level. Out of the ten estimated models,

only two do not pass the test of correct conditional coverage, this clearly indicates that

including the dependence structure in the estimation improves the independence of the

violations in the sense that the violations are now evenly spread over the sample.

Three models at the 97.5% level and four models at the 99% level pass the tests of
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Table 8: Copula Backtesting Results for α = 97.5%. The table shows the estimated proportion
of exceptions and the respective p-values belonging to the test statistics. Test statistics for ES are
obtained by simulating M = 10000 times from the predictive distribution and by setting m = 5 as
in Du & Escanciano (2017). Tests are conducted on a 5% significance level.

Clayton Frank Gumbel Gaussian Student

π̂ 3.45% 1.72% 0.78% 1.41% 1.41%
LRUC 0.1465 0.1840 0.0012 0.0552 0.0552
LRIND 0.5994 0.0128 0.9859 0.9658 0.9658
LRCC 0.3035 0.0186 0.0053 0.1589 0.1589
UES 0.0464 0.3304 0.0103 0.3304 0.1840
C5
ES 0.0195 0.7885 0.6466 1.0000 0.9999

Table 9: Copula Backtesting Results for α = 99%. The table shows the estimated proportion
of exceptions and the respective p-values belonging to the test statistics. Test statistics for ES are
obtained by simulating M = 10000 times from the predictive distribution and by setting m = 5 as
in Du & Escanciano (2017). Tests are conducted on a 5% significance level.

Clayton Frank Gumbel Gaussian Student

π̂ 1.88% 0.78% 0.16% 0.47% 0.31%
LRUC 0.0463 0.5862 0.0077 0.1336 0.0416
LRIND 0.0197 0.9859 0.9987 0.9935 0.9964
LRCC 0.0091 0.8496 0.0287 0.3245 0.1255
UES 0.0389 0.7515 0.0746 0.3149 0.1980
C5
ES 0.8251 0.9999 0.8712 1.0000 1.0000

unconditional and conditional coverage of ES. This clearly indicates that including the

dependence structure by means of copulas improved the forecasts of ES. The Clayton

model is the only model that does not pass the backtests for ES at the 97.5% level and

only passes the unconditional backtest at the 99% level.

Judging from these results the Gaussian and Student models deliver the best forecasts

at the 97.5% level and the Frank and Gaussian model deliver the best forecasts at the

99% level. Overall the Gaussian copula seems a good choice for estimating the VaR and

ES of these ETFs.

When comparing the results of the multivariate models with the univariate models it

can be seen that the multivariate models are better suited for forecasting VaR then the

univariate benchmark models. However the GARCH based univariate models perform

also well in forecasting VaR. The multivariate models are better suited for forecasting ES

then the univariate models, this can be seen from the fact that almost all multivariate

models pass both the unconditional and conditional backtest, whereas this is certainly

not the case for the univariate models. Clearly the combination of including time-varying

volatility and including the dependence structure improved the forecasting ability of ES.
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5.3 Model selection

In this section, the univariate models that passed the unconditional and conditional back-

tests of VaR and ES are ranked with the multivariate models that passed those tests using

the Diebold & Mariano (1995) framework with the Fissler & Ziegel (2016) scoring func-

tion. This way of testing prohibits bad models to be chosen over good models (Sarma et

al., 2003).

For example when a model structurally delivers too high values of VaR and ES, the

model selection procedure will be unfair because the score of this model will be too low.

This can be seen from the fact that with little exceptions, the part in equation (59) with

hαt cancels out most of the times, therefore the score of the model is biased downwards.

To avoid this biasness this two stage selection procedure is used.

From the univariate models only the TGARCH(1,1) model passes all tests and from

the multivariate models only the Gaussian and Student models passed all tests at the

97.5% level. Further, from the univariate models, only the TGARCH-EVT model passes

all tests and from the multivariate models, only the Frank and Gaussian model at the 99%

level. The results of these rankings can be found in Table 10 and 11.

It is interesting to see that the models that exhibit lower or upper tail dependence

are not among the models that passed all backtests. This indicates that in this particular

application with ETFs there is no gain in the heavier weights in the tails. This effect

may stem from the fact that the model with lower tail dependence tends to underestimate

the risk whereas the model with upper tail dependence tends to overestimate the risk. It

appears that models that are symmetric find a kind of balance in this and deliver therefore

better VaR and ES forecasts.

Table 10: Model selection means and p-values for α = 97.5%. The table shows the means
of the loss differential of the Diebold-Mariano test statistic for model i (left column) versus model
j (upper row) and their respective p-values. Only univariate and multivariate models that passed
all backtests are considered. Tests are conducted on a 5% significance level.

TGARCH(1,1) Gaussian Student

TGARCH(1,1) · 1.2605 (0.9996) 0.7779 (0.9577)
Gaussian -1.2605 (0.0004) · -0.4826 (0.0011)
Student -0.7779 (0.0423) 0.4826 (0.9989) ·

Table 11: Model selection means and p-values for α = 99%. The table shows the means of
the loss differential of the Diebold-Mariano test statistic for model i (left column) versus model j
(upper row) and their respective p-values. Only univariate and multivariate models that passed
all backtests are considered. Tests are conducted on a 5% significance level.

TGARCH-EVT Frank Gaussian

TGARCH-EVT · 3.6453 (0.9782) 2.4166 (1.0000)
Frank -3.6453 (0.0218) · -1.2287 (0.1811)

Gaussian -2.4166 (0.0000) 1.2287 (0.8189) ·
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At the 97.5% level both the Student and the Gaussian model have a significantly

lower mean score, indicating that they both outperform the TGARCH(1,1) model. This

clearly indicates that multivariate modeling in combination with EVT and TGARCH

filtering significantly improves the forecasting ability of the models. It can be seen that

the Gaussian model outperforms the Student model, because of the significant negative

mean score. This clearly indicates that the multivariate models perform better and that

of the multivariate models the Gaussian model outperforms the Student model. Following

the results of the other backtests and the high estimated correlation matrix in the copula

model, we deem the Gaussian model as the best performing model at the 97.5% significance

level.

At the 99% significance level both the Frank and the Gaussian model outperform the

TGARCH-EVT model, as can be seen from the negative significant means in the test

results. The difference in means between the two multivariate models is not significant

and therefore these models have equal forecasting ability. This may be due to the fact

that both models have neither lower nor upper tail dependence.

Overall it is clearly shown that by including an a-symmetric news component the

forecasting ability improves. Summarizing at the 97.5% significance it seems that the

Gaussian model performs the best, whereas at the 99% significance level both the Frank

and Gaussian model are the best.

6 Conclusion

The vast majority of firms use Value at Risk (VaR) as the risk measure for their risk

management. This paper highlights that VaR is not a coherent risk measure because of

its lack of subadditivity. Furthermore, it is also mentioned that VaR does not account for

tail risk. Therefore Expected Shortfall (ES) is proposed as the replacement for VaR. The

losses of four ETFs are used to demonstrate the value of ES over VaR.

The research starts with reviewing univariate estimation models like the Variance-

Covariance (VC) model, the Historical Simulation (HS) model, the Filtered Historical

Simulation (FHS) model and the Extreme Value Theory (EVT) model. Furthermore, the

FHS and EVT are combined in a new approach, the TGARCH-EVT model. It is shown

using the standard tests of Kupiec (1995) and Christoffersen (1998) for VaR and the state

of the art testing method of Du & Escanciano (2017) for ES that the VC, HS and EVT

approaches are outperformed by the univariate GARCH based models. It is clearly shown

that including time-varying volatility in the estimation improves the forecasting abilities

of the models.

Because of the lack of a dependence structure in the univariate models, a model based

on GARCH filtering, EVT and copulas is implemented, the so called TGARCH-EVT-

Copula model. It is clearly shown that multivariate modeling improves the forecasting

abilities for both VaR and ES, however, the effect for VaR is smaller than for ES. The
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Gaussian TGARCH-EVT-Copula model delivers the best results over the two significance

levels. Whereas in the past testing ES appeared to be a major challenge, the testing

framework of Du & Escanciano (2017) shows that these tests can be done using the cumu-

lative violations process. The results prove that the multivariate models are better suited

to forecast ES.

The backtests can only be used for testing model specification and not for model se-

lection. Therefore, based on the result that VaR and ES are jointly elicitable the models

that passed all backtests are ranked using the Diebold & Mariano (1995) framework with

the Fissler & Ziegel (2016) scoring function. It is shown that the Gaussian TGARCH-

EVT-Copula model perform best at the 97.5% significance level. The Frank and Gaussian

TGARCH-EVT-Copula model have equal predictive ability at the 99% significance level,

but both outperform the univariate TGARCH-EVT model.

Based on the recommendation of the Basel Committee on Banking Supervision to

substitute ES97.5% as alternative for V aR99%, we conclude that the Gaussian TGARCH-

EVT-Copula is the best choice in forecasting VaR and ES because this is the only model

that passed all tests at both significance levels.

In this research, only four assets are used to demonstrate the superiority of the multi-

variate models and to argue that ES can be estimated without additional computational

effort. A suggestion for future research could be to extend the models to the high dimen-

sional cases and see if the results still hold.

Furthermore, in this research simplifying assumptions are made to make the analysis

feasible in the sense that it was assumed that trading costs are negligible and that the

firms are buy-and-hold investors. It could be interesting for future research to include also

dynamic investing and short/long investing.

Another suggestion for further research is to model the dependence structure of the

assets using dynamic copulas instead of static copulas and see if the results still hold.
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Appendix

In this section the appendix is given. In the report references will be made to the subsec-

tions below.

A Properties of Risk Measures

Define L as the loss returns of the portfolio, l and λ as two deterministic quantities and

denote %(L) as the risk measure of the portfolio losses L. The following gives a brief

description of the six properties that a risk measure should have in order to quantify as a

sufficient risk measure.

- Monotonicity

L1 ≤ L2, implies that %(L1) ≤ %(L2)

This means that positions that lead to higher losses in every state of the world

require more risk capital. Positions with %(L) ≤ 0 do not require any capital.

- Translation Invariance

%(L+ l) = %(L) + l

This property states that by adding or subtracting a deterministic quantity l to a

position leading to the loss L, the capital requirements change with exactly the same

amount.

- Positive Homogeneity

%(λL) = λ%(L) for every λ > 0

This means that multiplying the capital with a scalar, the risk also multiplies with

the same scalar.

- Subadditivity

%(L1 + L2) ≤ %(L1) + %(L2)

This means that diversification must actually matter, in the sense that two portfolios

combined may not be riskier than the sum of the risks of the portfolios individually.

- Convexity

%(λL1 + (1− λ)L2) ≤ λ%(L1) + (1− λ)%(L2) if λ ∈ [0, 1]
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This property indicates that investing in different assets and diversification may

never increase the risk, but it is possible that it reduces the risk.

- Normalization

%(0) = 0

This obviously means that having no position immediately means having no risk.

When a risk measure is monotonic, translation invariant, positive homogeneous and sub-

additive it is characterized as a coherent risk measure. As proven in the literature, it is

desired for a risk measure to be coherent, to qualify as decent risk measure. Subadditivity

together with positive homogeneity implies convexity of the risk measure.
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B Estimation Algorithm TGARCH-EVT Model

1. Estimate an AR(1)-TGARCH(1,1) model

Lt = µ+ φLt−1 + σtεt εt ∼ t(ν) (64a)

σ2t = ω + (α1 + γ1I(εt−1 < 0))ε2t−1 + β1σ
2
t−1 (64b)

2. With the estimated parameters filter out the standardized residuals

ε̂t =
Lt − µ̂− φ̂Lt−1

σ̂t
(65)

3. Define y as the excesses above the threshold of the residuals, where the threshold

can be chosen using the mean excess and Hill plot. Estimate the following GPD

distribution on these excesses

Hξ,κ(y) =

1− (1 + ξy
κ )
−1
ξ , if ξ 6= 0,

1− exp(− y
κ), if ξ = 0,

(66)

4. Calculate the VaR and ES using the following GPD expressions for VaR and ES

V̂ aR
α

t = u+
κ̂

ξ̂

(
(
n

Nu
(1− α))−ξ̂ − 1

)
(67a)

ÊS
α

t =
V̂ aR

α

t

1− ξ̂
+
κ̂− ξ̂u
1− ξ̂

(67b)

5. The VaR and ES estimates can be calculated using these expressions in equations

(13) and (14) of the FHS approach, where the HS estimates in those formulas are

replaced with the formulas in equation (67a) and (67b) respectively.
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