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Abstract

Which macroeconomic factors drive household income growth and to what extend are these
driving forces heterogeneous across different subpopulations, were the central questions of this
research. To answer these questions, a latent class model has been estimated. Whereby new
parameter values in the maximization step of the expectation-maximization algorithm where
determined via the outlier robust generalized method of moments estimator of Lucas et al.
(1997). Households were generally segmented into one group with average and stable incomes
and one or two other groups with below average and volatile incomes. The effect of income
inequality was generally negative for the latter group, while it was positive for the first group.
Redistribution and gross domestic product growth usually had no significant effect. Hence,
redistribution is a good tool to lower inequality and therewith support overall income growth.

KEYWORDS: Household income growth, Income inequality, Redistribution, La-
tent class model, Robust generalized method of moments estimation
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1 Introduction

Which level of income inequality within a country would be optimal in the sense of social
acceptability and economic growth, has been a frequently asked question from the very
beginning of economic research onwards. Several economic models have been tried, ranging
from communism with total income equality as its aim, up to liberalism where one was
striving for a government as small as possible, which often resulted in a very high degree
income inequality. Though, there was one economic assumption that almost became common
belief for economic researchers in the past. This assumption stated that a higher level of
income inequality would lead to a higher level of economic growth. It was based upon the
idea that a higher inequality level gives more incentives to excellence and invest. Hence,
economic papers were written on the question which level of income inequality would give
an optimal trade-off between economic efficiency and social acceptability (Okun, 1975).

However, recent growth in data availability of macro-economic factors of most countries
gave economic researchers the possibility to empirically check this assumption. Results of
these empirical studies definitely put the assumption in doubt. A paper that has been
written on behalf of the Organisation for Economic Co-operation and Development (OECD)
concludes for example, 'drawing on harmonized data covering the OECD countries over the
past 30 years, the econometric analysis suggests that income inequality has a negative and
statistically significant impact on subsequent growth. In particular, what matters most is
the gap between low income households and the rest of the population’ (Cingano, 2014).
A more global empirical research led by the International Monetary Fund (IMF) comes to
similar conclusions, 'lower net inequality is robustly correlated with faster and more durable
growth, for a given level of redistribution.” (Ostry et al., 2014) Moreover, the researchers
also tried to answer the question if redistribution would be a good solution, which led to
the following conclusion. ’Redistribution appears generally benign in terms of its impact on
growth; only in extreme cases is there some evidence that it may have direct negative effects
on growth. Thus the combined direct and indirect effects of redistribution, including the

growth effects of the resulting lower inequality, are on average pro-growth.” (Ostry et al.,
2014)

As these empirical studies are on a macro-economic level, they can only answer the second
part of the question. "Which level of income inequality within a country would be optimal
in the sense of social acceptability and economic growth’. For example, what if we find an
optimal level of income inequality in terms long term sustainable economic growth, that has
a large negative effect on the household income growth of certain subpopulations. Prob-
ably, this level of income inequality cannot be seen as optimal from a social acceptability
perspective. Therefore, my aim is to extend the macroeconomic empirical literature to a mi-
croeconomic scale. Hence, instead of modeling the gross domestic product (GDP) growth of
a country, this research uses household level real disposable income growth as the dependent
variable. Because reliable microeconomic data of developing countries is hardly available, I
will focus on the household income trends of the industrialized world. Besides the level of
income inequality, it is also possible to investigate the effects of other macro-economic factors
and government policy related variables on household income growth within the proposed
modeling framework. For example, by adding GDP growth as explanatory variable, one has



the possibility to investigate which households have an income that is more vulnerable to
macro economic shocks.

Besides looking at the effect of income inequality on GDP growth, Ostry et al. (2014) also
investigated if redistribution by the government would be a good solution to lower inequality
and therewith establish a positive impact on subsequent GDP growth. Tools for redistribu-
tion might be direct transfers or using a progressive tax system. However, economists have
pointed towards the fact that (too) progressive tax systems lead to economic inefficiencies
and should therefore be avoided. On the other hand, some researchers doubt if the trade-
off between equality (due to progressive taxes) and efficiency is really inevitable (Roed and
Strom, 1999; van Ewijk et al., 2003). They point towards the fact that some common market
failures are (partly) solved by charging progressive taxes. Hence, in order to investigate this
issue empirically, I will also model the effect of the level of redistribution within a country
on household income growth.

The main advantage of modeling household level data is that households can be segmented
into subpopulations. Thereafter one can investigate if there are any significant differences in
the effects of macroeconomic variables on income growth of household from distinct subpop-
ulations. In contrast to most socio-economic literature, the segmentation of the households
will be data driven and thus will not be based on household characteristics. By doing so,
one is able to find optimal subpopulations. Optimal in the sense that the effects of the
macroeconomic factors on household income growth are as homogeneous as possible within
subpopulations and as heterogeneous as possible between subpopulations. To illustrate the
downside of the traditional segmentation method via household background variables for
this research. Suppose that there exist a subpopulation created via household character-
istics, for which half of the subpopulation experiences a significant positive effect of the
income inequality level within its country on its income growth, while the other half expe-
riences a significant negative effect. Segmentation based on household characteristics would
then probably yield an insignificant income inequality effect for this subpopulation. Which
in turn could lead to the inaccurate conclusion that a certain level of income inequality is
also optimal for this subpopulation from a social acceptability perspective.

Note that there are no country restrictions upon the data driven subpopulations. Hence, the
homogeneous subpopulations of households in terms of the response of their income growth
on macro economic factors, could be quite heterogeneous in terms of the countries in which
they live. This is a conscious choice, since often reported results of recent economic glob-
alization and automation are more heterogeneity between economic classes within countries
and the contrary of more homogeneity between similar economic classes of distinct countries
(Alderson and Nielsen, 2002; Kentor, 2001). From a labor income perspective, there is more
heterogeneity between economic classes within countries. As there is a highly educated class
who has benefited largely from these transformations, while low-skilled workers fear their
job is taken over by a cheaper foreigner or a computer. On the other hand, labor income
patterns of similar economic classes from different countries are getting more homogeneous
due to heightened international competition and an increase in migration. Continuing with
the second source of income for households, which are assets returns, we find a similar pat-
tern. Firstly, the French economist Thomas Piketty showed in his book 'Capital in the 21st
century’ that the distribution of capital is heading towards very unequal pre-world-war lev-



els in Western countries. Hence, asset returns are also getting more heterogeneous across
different subpopulations within a country. In contrast, globalization of the financial world
has led to a higher degree of interdependence of asset returns from households originated
in different countries. In conclusion, given the current state of the globalized economy, it
is in my opinion far more interesting to allow for international population segments. By
doing so, one is able to find global economic classes who respond similarly to changes in
macroeconomic factors.

In order to model the heterogeneous effects of the macroeconomic variables on household
income growth properly, I will make use of the finite mixture model, which will estimated by
means of the expectation-maximization algorithm (EM algorithm) (Dempster et al., 1977).
The maximization step of the EM algorithm will proven to be equal with estimating a
weighted dynamic linear panel model, whereby the weights correspond to the segment prob-
abilities for a certain household. This weighted dynamic linear panel model will be estimated
via a generalized method of moments (GMM) estimator that is robust against anomalous
observations. Besides heterogeneity in the estimated effects of the macroeconomic factors,
the latent class model allows for heterogeneous household income dynamics across different
subpopulations. In order to investigate global trends in the drivers of household income dy-
namics, data of the following five countries will be used, Germany, South-Korea, Switzerland,
the United Kingdom (UK) and the United States (US). This yearly household panel data
originally comes from national longitudinal household surveys. The corresponding household
surveys are respectively SOEP, KLIPS, SHP, BHPS and PSID. Note that the correspond-
ing full names of these abbreviated survey names are given in table 1. The data of all
distinct surveys is harmonized by the Cross-National Equivalent File (CNEF). Hence, the
eventual dataset contains equally defined variables that are based on previous research on
cross-national comparable measures.

To summarize this introduction, the aim of this research is to answer the following question.
Which macroeconomic factors drive household income growth, to what extend are these driv-
ing forces heterogeneous across different subpopulations and how are these subpopulations
best characterized? The main focus will be on investigating the effect of the level of income
inequality on household income dynamics. Next to this, I will examine if redistribution is a
good tool for governments to lower income inequality. The vulnerability of household income
to the general economic performance of a country will also be investigated by incorporating
GDP growth to the model. Lastly, the effects of certain household characteristics on income
growth will be investigated and these characteristics will be used to identify the different
subpopulations. This paper is organized as follows, in section 2, a review on the existing
literature of this topic will be given. Then the properties and quality of the CNEF data will
be discussed in further detail in section 3. Thereafter, I will give the required methodology
for answering the research questions in section 4. In the following section, results of the
latent class models will be presented. Lastly, the results will be summarized and discussed
in section 6 and 7.



2 Relevant Literature

While there has been put quite some effort into modeling labor income, the literature on
modeling household income dynamics directly is quite scarce. Though, there is quite some
literature on modeling measures derived from household income, such as income mobility
measures and income groups to model poverty dynamics. As noted by Stephen Jenkins in
his summary paper on household income dynamics, a reason could be that researchers fear
the impossibility to model all underlying forces of household income dynamics. Because in
labor earnings dynamics one can focus on homogeneous subgroups (e.g. prime age men),
which makes the assumption of a simple model structure more plausible. Moreover, in
earnings dynamics one models a single income source, so accounting for the combination
of different income sources and household composition changes is not necessary, while it is
for modeling household income (Jenkins, 2000). The issues addressed by Jenkins can be
split into two parts. Firstly, the impossibility to propose a model that is both parsimonious
and is capable of capturing all the underlying forces and heterogeneity of household income
dynamics. To overcome this issue, I will make use of robust estimation techniques to estimate
the parameters. By doing so, households with aberrant income dynamics, which cannot be
explained by the model, will be down weighted. A second reason for using a robust estimation
method is the stylized fact that the distribution of income growth is fat-tailed, even for labor
earnings of homogeneous subpopulations (Guvenen et al., 2015). Hence, observations with
inexplicable extreme changes in annual household income will have no or little influence
on the estimated parameters. Which is a good property in this setting, since the purpose
of this research is to find general effects of the explanatory macroeconomic variables on
the income shift of household segments. In contrast, when one would investigate poverty
dynamics, these extreme observations obviously cannot be ignored. The second issue is that
changes in household composition play a major role in household income dynamics. DiPrete
and McManus (1999) and DiPrete and McManus (2000) have put effort into modeling these
household composition changes explicitly. The underlying goal was to study the differences
in the average impact of a certain household composition change on household income in
different countries. A more advanced way of modeling was proposed by Burgess and Propper
(1998), as they used hazard models for the probability of a certain household composition
change. However, note that the variability of the impact of a household composition change,
such as a divorce, on household income is quite large. Moreover, the changes in income can
get quite extreme in case of a household composition change. Again, as the purpose is to
find general effects of macroeconomic variables, I will threat a household before and after a
household composition change as two separate households. Two exceptions to this rule are
when a child is born or leaves the house, since the impact on household income changes is
generally low in these cases. This topic will be further discussed in section 3.

As just has been mentioned, the number of academic papers where the income growth of
households is modeled is not large. Most of the papers for which income growth was modeled
focused on finding drivers of income mobility, which is defined as the ability of a family to
improve (or lower) their income. Fields et al. (2003) were one of the first to investigate the
relationship between household income growth and some household characteristics. They
estimated separate models for Indonesia, South Africa, Spain and Venezuela and compared
results across these countries. Woolard and Klasen (2005) and Aristei and Perugin (2015)



both use the same model specification that was proposed by Fields et al. (2003). Woolard
and Klasen (2005) extended the existing literature by looking at the differences in income
dynamics between rural and urban households. Aristei and Perugin (2015) used data of 25
European countries, which they classified into six capitalistic models, such that possible dif-
ferences in the drivers of income growth could be found across these capitalistic models. Next
to this, they added some job characteristics as covariates. However, these three papers are
less useful for this research, as they all make use of a cross-sectional model instead of a panel
model. Hence, they model the income growth of only one time-period. Aaberge et al. (2002)
used panel data of Scandinavian countries to find some potential drivers of income mobility
and eventually compared results with the US. Though, the dependent variable they use is
relative income change, which is slightly different. Next to this, the number of covariates
they investigate is quite low. Note that I could not find any paper which was focusing on het-
erogeneity in the drivers of household income growth across population segments, whereby
the populations segments are created by some cluster algorithm. However, cross-country
household panel datasets are used quite often for such research. For example, Clark et al.
(2005) use a finite mixture model to show that the effect of income on reported well-being is
quite heterogeneous across segments. Next to this, I was not able to find any paper that in-
vestigates the relationship between macroeconomic variables and household income growth.
Although the idea of investigating the vulnerability of households to macroeconomic shocks
by including GDP as explanatory variable was obtained from Glewwe and Hall (1998). These
researchers examined this vulnerability of households in Peru by modeling their consumption
growth instead of their income growth.

Two interesting papers have been written on the dynamics of household income level instead
of income growth. Jalan and Ravallion (2002) used panel data of rural China to show that the
dynamics of household income exhibit non-linearity. More precisely, there research revealed
that the first lag and its squared and cubed value were all significant explanatory variables.
Lokshin and Ravallion (2004) applied this non-linear approach to Hungarian and Russian
panel data during their economic transition in the nineties. They extended the literature by
using different type of estimators. Jalan and Ravallion (2002) estimated the dynamic linear
panel model via the regular first differenced GMM estimator proposed by Arellano and Bond
(1991). Lokshin and Ravallion (2004) on the other hand used the system GMM estimator
of Blundell et al. (2000). This estimator has the advantage that time-invariant covariates
can be added to the model, though some extra assumptions are required. However, there
main contribution was to estimate the dynamic linear panel model by means of the Semi-
Parametric Full Information Maximum Likelihood method (SPFIML). By doing so, they
were able account for possible attrition bias in the estimated parameters.

Sample attrition can be defined as: 'partial response in the sense of response in the initial
periods but nonresponse in later periods (incomplete participation)’ (Cameron and Trivedi,
2005). When this sample attrition is a non-random process, this could lead to biased param-
eter estimates, which is referred as attrition bias. A general example of non-random sample
attrition is that lower income households tend to have a higher probability of sample attrition
than households with a higher income. Several researchers have investigated the potential
problems of non-random sample attrition in the US dataset. This quote obtained from Lil-
lard and Panis (1998) summarizes the findings of all researchers pretty decently. "While we
found significant evidence of selective attrition, it appears that this nonrandom censoring



introduces only very mild biases in substantive results. No substantive conclusions regard-
ing the processes that generate household income, adult mortality, marriage formation and
marriage dissolution would change if attrition is ignored.” More recently, Fitzgerald (2011)
investigated the potential problem of attrition bias in intergenerational models of health and
found little-to-no evidence of biased estimates. For the German, UK and Swiss datasets, the
potential issue of attrition bias has been examined as well. Behr et al. (2005) find minimal
attrition effects for income regressions and income mobility analysis on the German and
British data. Lastly, Lipps (2007) was not able to find any significant attrition effects for
the Swiss data. Because none of these researchers could find any significant attrition bias, I
will not make use of the SPFIML method, which accounts for possible attrition bias in the
estimated parameters.

As was already mentioned in the introduction, the finite mixture model will be estimated by
means of the EM algorithm (Dempster et al., 1977). Because some but not all parameters are
segments specific, the finite mixture model will be non-linear. However, the big advantage of
using the EM algorithm is that the obtained model in maximization step is actually linear.
I will follow Jalan and Ravallion (2002) and Lokshin and Ravallion (2004) in the sense that
lagged values of household income growth will be included as explanatory variables. Hence,
the eventual model that needs to be estimated in the maximization step of the EM algorithm
will be a dynamic linear panel model. The most frequently used estimator for such models is
the first differenced GMM estimator of Arellano and Bond (1991). However, this estimation
method is not outlier robust, as was required.

By my knowledge, there are two outlier robust estimation methods for dynamic linear panel
models. Firstly, Lucas et al. (1997) extended the first differenced GMM estimator of Arellano
and Bond (1991) by including observation weights that account for outlying model errors as
well as outlying instrumental variables. These observation weights are estimated iteratively
with the other model parameters. Secondly, Dhaene and Zhu (2009) derived an outlier robust
estimation method based on a linear transformation of the median ratio of adjacent first-
differenced data pairs. Later on, the estimator of Dhaene and Zhu (2009) was extended for
better efficiency and robustness properties by Aquaro and Cizek (2013). From a robustness
perspective, it would be better to use the latter estimation method as it is globally robust,
while the estimator of Lucas et al. (1997) is only locally robust. However, three other major
downsides of the estimator of Dhaene and Zhu (2009) have led to decision to use the outlier
robust GMM estimator of Lucas et al. (1997) in this paper. Firstly, Dhaene and Zhu (2009)
only derived an estimator for the basic dynamic linear panel model with one lag. Extending
their estimator to higher order or non-linear dynamics (which is necessary according to
Jalan and Ravallion (2002)), is very difficult or may be even impossible. For certain, it is
not within the scope of this research to perform such an extension. Secondly, a necessary
assumption for this estimator is time-stationary of the sequence of income growth values
for each household. However, Dynan et al. (2012) show in their paper that the standard
deviation of income growth of US households rose with 25 percent between 1970 and 2000,
which violates this assumption. The last and probably most important reason is the fact
that the estimator of Dhaene and Zhu (2009) is asymptotically biased towards zero in case
of independent additive outliers and biased upward when there are patched additive outliers.
The major downside of the outlier robust GMM estimator of Lucas et al. (1997), which is
the lacking of global robustness properties, arises from the fact that the observations weights



and the model parameters are calculated iteratively. This makes the eventual parameter
estimates dependent on the chosen starting observation weights. In order to overcome this
issue, I will try multiple starting conditions and compare the resulting parameter estimates.

3 Data

3.1 General information

As was already mentioned in the introduction, the cross-national equivalent file (CNEF) has
harmonized yearly household panel data of distinct countries. In total, household surveys of
eight countries participated with this project. Hence, the data of three countries (Australia,
Canada and Russia) has not been used in this research. There are distinct underlying
causes, such as data quality issues or simply data access restrictions. The CNEF contains
harmonized demographical, employment, income and medical variables, whereby variables of
the first three categories are exploited in this research. Table 1 gives some general information
of the household panel data of all five countries that are used in this research. Frick et al.
(2007) have written a paper in which they discuss the CNEF data in further detail. Next
to this, extensive codebooks of each country can be found on the website of CNEF. In these
codebooks, one can find basic properties of each variable and which algorithm is used to
construct them from the original household panels.

Original household panel survey Period Households p. year
Germany Socio-Economic Panel (SOEP) 1983-2013 8501
South-Korea Korean Labor & Income Panel Study (KLIPS) 1997-2013 4679
Switzerland ~ Swiss Household Panel (SHP) 1998-2013 3605
UK British Household Panel Survey (BHPS) 1990-2014 9201
Us Panel Study of Income Dynamics (PSID) 1969-2012 6302

Table 1: General information of household panels of five countries

In order to use the data at hand optimally, four separate latent class models will be estimated.
First, I will only use all the American data, which already lasts for over half a century. Then,
it will be extended to a cross-country analysis by estimating a model for West-German and
US households for the period 1983-2012. In the third analysis, which runs from 1991 onwards,
East-German data can be added to the list due to the German reunification. Next to this,
the data of the United Kingdom will be included. Lastly, data of all five countries from
1999 until 2012 will be used in the fourth analysis. There are multiple reasons for analyzing
these four situations separately. The data at hand is used optimally in the sense that for
each country most of the data available is used in one of the four distinct cases. Next to
this, it is useful to estimate a model for one country separately. As it is then possible to
examine the differences between this model and the cross-country models. By investigating
these differences one could encounter if the underlying model is capable of capturing the
cross-country heterogeneities. Besides the fact that the US panel is the longest running
household panel of all five panels, the US is an interesting country to have a closer look at
in the sense that that the level of income inequality has grown drastically in the last few
decades. The second analysis also adds value due to some explanatory variables that are



3.1 General information

only available for the US and German dataset (e.g. education years and working hours).
Hence, incorporating this model makes it possible to analyze the effects of these variables
in a cross-country setting. Another reason for zooming in on Germany, UK and US before
looking at all five countries is the fact that the underlying household panel surveys (SOEP,
BHPS and PSID) are more reliable. For example, lots of previous research on household
panel data quality (e.g. panel attrition) has been based on one of these three household
panel surveys. Lastly, the estimation of four distinct models gives the possibility to compare
the discovered effects of the macroeconomic variables. Thereafter, one is able to give more
powerful conclusions if a certain effect is identified in multiple models. In the remainder of
this paper I will refer to these four distinct models via analysis 1, 2, 3 and 4. Whereby the
same order is used as above, so in each successive analysis the total number of countries will
be larger and the time frame will be shorter.

3.1.1 Macroeconomic variables

As was mentioned in the introduction, the effects of three distinct macroeconomic indica-
tors on household income growth will be investigated. The country averages per year of
these macroeconomic indicators are plotted in figure 1 up to figure 3. Because the CNEF
data also has a variable for the regions within a country where the households are living,
regional macroeconomic indicators will be used whenever possible. Regional macroeconomic
indicators are preferred, as these indicators give a better reflection of the current economical
environment for a certain household than nation-wide indicators would give. Especially for
large countries these indicators can be quite divergent among different regions. For example,
historical data of regional GDP growth rates collected by the US Bureau of Economic Anal-
ysis confirm this finding. The first two macro-economic indicators, which were the level of
income inequality and the level of redistribution within a certain region, are measured in a
similar fashion as Ostry et al. (2014) did in their paper. Hence, the level of income inequality
is determined via the Gini-coefficient of household post-government income. While the level
of redistribution is measured by taking the difference in Gini-coefficients of pre-government
and post-government income. As historical regional macro-economic data is not available for
most of the reviewed countries, the pre- and post goverment Gini-coefficients will be calcu-
lated via the Cross-National Equivalent file dataset. In order to ensure a sufficient number
of observations per year to calculate reliable Gini-coefficients, Germany, the UK and the
US have been divided into ultimately 5 different economical regions. Dividing Switzerland
into separate regions was unnecessary, given the size of the country. While information on
the province of residence was missing for the Korean data. Unfortunately, the income vari-
ables available in the CNEF data are not sufficient for calculating regional GDP-growths.
Therefore, national historical GDP-growth rates obtained from the Worldbank database will
be used. This is a bit unfortunate though, since it is expected that the variation in GDP-
growth levels between different regions within a country will be larger than the variation in
Gini-coefficients of these regions.

3.1.2 Microeconomic variables

The dependent variable of the latent class model will be constructed by first differencing the
logarithm of the CNEF variable Household Post-Government Income, taking inflation into
account. Summary statistics of the real income growth variable can be found in table 9,

10



3.2 Household weight and household identifier modification

while summary statistics of the other microeconomic variables are given per country in table
10 up to 14 of the appendix. The historical levels of inflation within a country are derived
from consumer price indexes, which in turn are also gathered from the Worldbank database.
A few households characteristics, or transformations of these characteristics will be added
to the model as explanatory variables. Please note that I will allow for a fixed household
specific effect in the eventual panel model. Hence, the effects of time-invariant household
characteristics will be subsumed by the fixed effect parameter and cannot be investigated.
As the main focus of this research is on the effects of the macroeconomic indicators, this is
not really an issue.

The time-varying household characteristics that will be included in the model are age, child
born dummy, child left dummy, education years, education level up dummy and income
growth due to working hours difference. Whereby the latter three variables are only included
in the first two models with US and German data. Except for the dummy variables of child
events, all these variables are originally on a personal level. Different algorithms are used
to transform these personal variables to household level variables, which will be explained
shortly. In general, the relative importance of each household member for the construction
of the eventual household level variable is determined by their labor income. The underlying
reasoning is that these characteristics mainly influence labor income growth, while their
influence on the growth of other income sources is rather limited. In the methodology section
this assumption will be discussed in further detail. In practice, it means that labor income
is used as weighting factor for creating the household level variables. The variables age and
education years are simply a weighted average over all household members. Whereby the
education years are first divided by the average of all working persons in the corresponding
country and time period, such that the variable is equivalent across countries and time. If
one of the household members who earns at least 15 percent of the total labor income reached
a higher educational degree, the variable educational level up dummy will be one for the next
two years. Lastly, the variable income growth due to working hours difference is constructed
in the following manner, whereby M equals the total number of household members. Note
that household members who either started working or ended working in the current period
do not contribute to this variable. Because their labor income might be replaced by some
governmental income source (e.g. public retirement income or public transfers).

S M (Awork hours,, /hourly wage;, ;)
total household labor income;_;

(1)

Alncome due to Awork hours, =

3.2 Household weight and household identifier modification

The first thing to note is that using correct household weights in the eventual estimation
procedure is of high importance in this case. In the US dataset for example, poorer house-
holds are oversampled, probably due to the oversampling of poorer neighborhoods, such that
researchers are better able to study poverty dynamics. Hence, an unweighted income growth
regression would lead to biased results. Next to this, each household needs three observations
to initialize the estimation procedure. This is because the data is first differenced twice, once
for the dependent variable and once for estimation. Additionally, one observation is required
as instrument for the GMM estimator, Due to this fact, households with more observations

11



3.3 Handling missing data

are relatively more influential than households with less observations. To illustrate this, take
for example a household with ten observations, eventually seven out of these ten observa-
tions will actually be modeled. This 70 percent is a lot more, compared to 25 percent of the
observations of another household with only four observations. Assuming that the eventual
number of observations of each household is uncorrelated with personal characteristics that
influence income growth is unsuitable in this case. For example, individuals who change
the composition of their household more often have less observations than individuals who
stay with the same partner. The individuals who stay with the same partner are probably
older in general, and age influences income growth almost certainly. Therefore, all household
weights will be inflated with the following household specific correction factor (cor;).

> household weights;
> household weights; excluding the 3 non-modeled observations

cor; = (2)
After adding this correction factor, the sum of the corrected household weights excluding the
three initialization observations will be equal to the sum of the original household weights
over all observations for each household, which solves the issue. The only problem that
remains is the fact that households with three or less observations will automatically be
discarded from the eventual model. Unfortunately, to my knowledge there does not exist
any approach to correct for the possible bias induced by the removal of households with less
than four observations. In order to do a proper cross-country analysis, all household weights
will be multiplied with a population factor after the inflation with the correction factor.
This population factor is determined for each year specifically by dividing the countries total
population at that time with the sum of the household weights of a country.

As has been explained in section 2, the impact of a household composition change on house-
hold income can be quite large and quite heterogeneous among different households. More-
over, the purpose of this research is to find the general effects of macroeconomic variables.
Therefore, I will define a household after a composition change as a new household. Whereby
a composition change due to the birth of a child or a child who left the house were two excep-
tions exceptions to this rule. Stated differently, if we remove the observations corresponding
to children from the sample, each adjusted household identifier (ID) correspond to a house-
hold that consists of the exact same persons over time. Note that this was not necessarily the
case for the original household ID’s. Due to this adjustment of the household ID variable,
the average number of observations per household will become less. Which is a downside of
this modification, as more households will have less than four observations and therefore be
discarded.

3.3 Handling missing data

There are two type of missing values that need to be imputed before estimating any statistical
model. Obviously, the missing variables within a wave due to item nonresponse should
be imputed. Next to this, it could be the case that a full wave of data is missing for a
respondent. A missing full wave is only imputed for a certain household if it is in-between,
or more precisely, if a household has participated in the panel before and after the missing
year. Hence, missing waves due to a later start or earlier dropout will not be imputed. Note
that in-between missing waves do not necessarily need to be imputed in all cases. However,
as already mentioned in section 2, I will use a robust version of the first-differenced GMM
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3.3 Handling missing data

estimator of Arellano and Bond (1991), which cannot be estimated if in-between waves are
missing. Next to this, the dependent variable income growth is based on fist-differencing as
well and can therefore not be determined if in-between waves are missing.

The missing values will be imputed by means of the k-Nearest-Neighbors algorithm (kNN).
The idea of kNN is to find k& households (donors) that are most similar to household i
and have an observed value for the current variable. Then estimate the missing value of
household 7 based on values of the donors. The interested reader is referred to Kowarik and
Templ (2016) for a more comprehensive explanation of the kNN algorithm. Before imputing
missing values via kNN, missing values of deterministic variables (e.g. age) will already be
imputed via simple logic whenever possible. There are two main reasons for choosing the
donor based kNN algorithm and not one of the model based imputation methods. Firstly, for
model based imputation one has to assume a certain model specification for each variable
that contains missing values. As I am not an expert in this field of research, the risk of
inaccurate imputations due to a model misspecification is too high. Next to this, it is
possible with kNN to impute only a certain part of the columns of the data matrix. Which
is very convenient in this case, since rolling windows of five years will be used to impute
the variables corresponding to the third year of the window. In contrast, for model based
imputation one has to impute all columns iteratively. Where after statistical models are
updated with the new information coming from the imputed values. Hence, imputed values
of earlier and later years influence the statistical models and therewith the imputed values of
interest (of the third year). This is another downside of model-based imputation compared
to kNN, as these imputed values of earlier and later years could be from households that did
not participate to the panel anymore at that point in time.

The imputation via kNN will be performed for each country separately to speed up the
imputation procedure. The eventual results will be very similar to imputing the full dataset,
since it seems plausible that enough good donors will be found within one country. Next to
this, rolling windows of five years of data will be used to impute the missing values for the
third year of the window. The basic idea behind these rolling windows is that the process
of finding the most similar households (donors) is only based on data of the surrounding
five years. The missing values of households that have a missing in-between wave at the
third year of the window should be based on reliable donors. Therefore, the requirement
have been set that these households should have data available in at least one of the two
preceding years and in at least one of the two succeeding years. This requirement is only
met for a certain household, if it has no more than two consecutive missing in-between
years. Hence, households with three or more consecutive missing years are split up into
two separate households before the kNN-algorithm is performed. To illustrate the procedure
more clearly, suppose there are H; households that either participated in year t or have a
missing in-between wave in year t and that there are k£ variables. Then, a H; x 5k wide-
format data matrix will be constructed, with all variables of the periods ¢t — 2,....,t + 2 as
columns. Distance calculation for finding the best donors will be based on all columns, while
only the values of the middle k& columns that match year ¢ will be imputed. Eventually,
this process will be executed for each year. Lastly, note that the CNEF data can be split
up into household level and personal level variables. The imputation via kNN will be done
separately for these two types of variables. The variables of persons that have a missing
wave at the current year of interest, will only be imputed if they correspond to a household

13



3.3 Handling missing data

that have a missing in-between wave in the current year.

To obtain standard errors of the model parameters that take into account the uncertainty
of the imputed values one has to make use of bootstrapping. Hence, the idea is to take
R bootstrap samples from the original (non-imputed) data, impute all these datasets via
kNN and then estimate the latent class model for each imputed dataset separately. Note
that a bootstrap sample of the households will be taken, such that the estimation process
remains feasible. The eventual model parameter estimates will be set equal to the mean
of the bootstrap replicates, while the standard errors of the model parameters are simply
determined by means of the standard errors of the bootstrap replicates. In order to do proper
significance testing, one has estimate a latent class model for at least a few hundred bootstrap
replicates. This is the major downside of using kNN compared to model based imputation.
Because model based imputation allows the researcher to perform multiple imputation for
obtaining correct standard errors, which requires a lot less replicates.

The last missing values that need to be imputed before any statistical analysis can be per-
formed are the uneven years of the US dataset from 1997 onwards. Because the PSID has
only conducted surveys for even years from 1996 onwards. Note that another possibility
would be to transform everything to a biennial setting instead of the annual setting that
is now used. The main problem of using biennial data is the fact that a lot of households
will be discarded from the model. As has been explained in section 3.2, households with
less than four observations cannot be modeled. Hence, if one would transform to a biennial
setting, all households with less than eight years of data would be discarded from the model.
Besides the high efficiency loss one would get from discarding all this data, it would give
more biased results compared to the annual setting as well.

Because columns of the US wide format data matrix corresponding to the uneven years from
1997 onwards are completely filled with missing values, it is not possible to perform kNN
to impute the missing values. Therefore, linear interpolation will be used to impute the
missing uneven years of the US dataset. If one would simply use the mean value of the
two surrounding even years, the volatility level of each variable would become much lower
after 1997, which is quite unrealistic. In order to ensure that the volatility levels are equally
high over all time periods, a random error term will be added to the linearly interpolated
values. Generating distinct random errors for each bootstrap sample will ensure that the
randomness of the imputed values will automatically be reflected in the standard errors of the
model parameters. Note that this random error term will not be added to the deterministic
variables, such as age. Next to this, most of the income variables of a particular source
are mixed in the sense that they are discrete at the value zero. The linear interpolation
algorithm of the mixed variables takes this feature into account.

The variable pre-government income is missing for the Korean data of 1999, 2000 and 2001
due to missing tax information. Next to this, post-government income values are missing
for UK households of 2006 and 2007. These post-government income values are imputed via
linear interpolation as well. For the Korean data this was not possible though, as 1999 is
the first year for which there is Korean data. Therefore, a model for the total amount of tax
that has to be paid is estimated, using labor income with different tax boxes and all other
income sources as explanatory variables. Then this model is used to predict the amount of
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tax paid for each household in 1999, 2000 and 2001, from which household pre-government
income can be deducted. Lastly, note that the Gini-coefficients will be calculated after
imputing the missing values. Because it has been regularly highlighted in the literature that
the probability of a missing value for an income variable is higher for households with a
low income. Hence, calculating the coefficients before imputing the missing income variables
would yield a biased result.

4 Methodology

4.1 Basic model

A finite mixture model will be estimated in order to find possible heterogeneity in the
macroeconomic drivers of household income growth. More precisely, the following model
will be estimated, whereby the set {1,2,..., S} are the segments of the mixture model.

A[ncit = W; + OésiA[nCit71 + x;t—lﬁsi + U;t—l)\ + i (3)
S

With s; € {1,2,..., 8} and P(S; = s) =p, for s =1,...,8 with » p, =1 (4)
s=1

where

Alnc;; = real growth in disposable income of household 7 at time ¢
(log(Incy) —log(Incy—1) — inflation,).

i = Household specific time-invariant fixed effect parameter.

Ti—1 = Macro-economic and government policy related variables that might be
heterogeneous across different segments.

vir—1 = Socio-economic and demographic characteristics of household i

Recall that the panel data set is unbalanced. Hence, the model given above runs from
i=1,..,N and t = TF ... TF with TF and T} respectively the first and last year for
which there is data available of household 7. Please notice that T} corresponds to the fourth
observation of household i in the original dataset. This is due to the fact that the first
three observations are required for calculating income growth (first differencing), including
one lag of income growth in the model and using a first differenced estimator. Furthermore,
note that a household specific fixed effect parameter is added to model. By adding this
parameter, one allows for an unexplainable part in the average income growth of a certain
household. Hence, this parameter could be seen as the average growth of ’skills’ of the
household members. Other fixed effects parameters that could have been added to this
multi level panel data model are a time specific effect vy, a country specific effect w; and
the cross-product terms p;v;, piw; and vw;. There are different reasons for leaving these
parameters out of the model. Firstly, the time and country specific effect parameters and
its cross-product term are already reflected by the variable GDP-growth. Since the viewed
households stay within one country over time, the cross-product p;w; is equivalent with
the household specific parameter p;. Hence, adding this cross-product would not give any
benefits to the model. Lastly, the cross-product p;v; does not make much sense for this model
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specification. Because adding this cross-product term means that one would assume that all
household specific fixed effect parameters experience an equal multiplicative transformation
at each point in time.

To estimate the model properly, first differences of the model equation will be used as input.
Hence, in order to simplify notation later on, it is convenient to replace Alnc; by vy, which
results in the following equation.

Yie = fi + Qs Yir—1 + Tyy_1 Be; + Vi A+ Eit (5)

In order to specify the covariance structure of the error terms, it is useful to stack the
observations of each household. Hence, y; = (y;rr, ..., Yipr), 3/;,71 = (YipF_1s - Yipr_1) and

/

X; = (x;pr_q, .y xypr_y), also the matrix V; and the vector g; are constructed in a similar
fashion. Lastly, u; is now a vector filled with the fixed household effect parameter. These
stacked observations lead to the following model equation.

Yi = Wy + s, Y; -1 + Xzﬁsl + ‘/z>\ +é&; with E; N(O, EZ) (6)

In order to estimate the model properly, the covariance matrix 3J; should be diagonal. Hence,
it is assumed that the errors within households are possibly heteroskedastic but serially un-
correlated. However, note that this heteroskedasticity is only modeled implicitly through
the down weighting process of observations with large residuals in the outlier robust esti-
mation method. Hence, only one overall volatility parameter o, per segment will be esti-
mated. In the remainder of this paper the distribution of the model errors will be written
as g; ~ N (0, ai I;), in order to simplify notation. Next to this, it is assumed that the model
errors between households are uncorrelated, so E(e;e;5) = 0 for all i # j and all ¢, s.

4.2 Building blocks of disposable income growth

The effects on household disposable income growth that will be estimated by the parameters
are not direct effects. These effects are not direct in the sense that the disposable income
of a household is build upon different income sources, which in turn are affected by the
explanatory variables. Despite the fact that the CNEF data divides household income into
six different sources, namely labor, asset, public and private retirement income and public
and private transfers. I will further elaborate upon the distinction between labor and non-
labor income. If we assume for simplicity that the proportion of paid tax is equal for both
income sources, then the following equality holds true.

ADisposable income;, = wyALabor income;; 4+ wy;; ANon-labor income;; (7)

Whereby weights w;; and ws;; are equal to the proportions of respectively labor and non-
labor income at time t — 1. Further note that the delta’s in the equation refer to income
growths instead of differences. If we plug the equality given above into the model equation,
we get the following model.

Yir = Wit (i + s, Yir—1 + x;tflﬂlsi + /U;t71)\1) (8)
+  woi(fo; + o5, Yir—1 + xlitﬂﬁzsi + U;tfl/\2) + it (9)
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4.3 Expectation-maximization algorithm

In order to deduce the proposed model equation given in equation 5 from the model equation
with a division in labor and non-labor income, one has to make a few extra assumptions.
Firstly, the weighting factors wq;; and wo;, since these are time specific, the eventual house-
hold specific fixed effect parameter wy;f41; + wayepio; Will become time specific. Which in turn
makes it impossible to and estimate the model via first-differencing. Therefore, household
specific labor income weights wq; and ws; will be used, which are obtained by calculating the
average weight over time. Next to this, one has to assume that wy;aqs + wo;ans = a5 and
wy;P1s + woifos = Bs. Note that without proper segmentation of the households, these two
equalities are very unlikely to hold. However, the fact that the eventual disposable income
of a certain household is built upon different shares of income sources, is one of the main
underlying reasons for choosing a latent class model with segment specific effects. Hence,
the idea is that the division of households will lead to homogeneous segments, in the sense
that the disposable income of households within a certain segment is mainly built upon
similar income sources. In that case the two equalities for the segment specific parameters
are more likely to hold. Lastly, one has to make a certain assumption for the non-segment
specific parameters A\; and As. Recall from the data section that the following household
characteristics correspond with these parameters: age, child born dummy, child left dummy;,
education years, education level up dummy and income growth due to working hours differ-
ence. In general these household characteristics are mainly used in the literature to explain
the level of labor income growth of a individual or household. On the other hand, one can
conclude via logical thinking that their influence on the other five income sources is proba-
bly small. An exception to this finding are the two education variables, which might have
a positive influence on asset income growth. Moreover, the child dummies might influence
the growth in public transfers, for example via governmental child benefits. Note that age
only influences public and private retirement income growth via a great peak at the point in
time when the retirement income starts. But beyond that, it will not have a major influence
on these income sources. Therefore it seems reasonable to assume that the non-segment
specific parameter vector for non-labor income (\y) is equal to zero. If we use these three
assumptions, the divided labor and non-labor income model equation will be simplified in
the following manner.

Yit = W11 + Wi lbo; + Qg Yig—1 + $;t—1/65i + wliU;t—l)‘l (10)

Now the only difference between the model equation given in 5 and the equation given above
is the labor income weight in front of v;_;. Hence, in the eventual model all household
characteristics (v;_1) are multiplied with a household specific weight, that reflects the av-
erage proportion of labor income from the total amount of income. The necessity of this
multiplication comes from the assumption that these household characteristics only have an
influence on disposable income growth via labor income growth.

4.3 Expectation-maximization algorithm

The finite mixture model will be estimated by means of the Expectation-Maximization al-
gorithm (EM algorithm), whereby an outlier robust GMM estimator will be used in the
maximization step. Firstly, I will discuss the EM algorithm and show that by performing
the expectation step, the resulting model is a dynamic linear panel model that is suitable for
the outlier robust GMM estimator. Thereafter, the outlier robust GMM estimation process
will be discussed in further detail.
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Before explaining the EM algorithm, it is convenient to rewrite the basic model into its first-
differences, as the estimator in the maximization step will be based on first differences. Let
us define the first difference operator matrix D;, which is a matrix that contains the values
{—1,0, 1} and transforms equation 6 to a first difference equation. Hence, the following two
equations are equivalent.

Vi — Vi1 = (Vi1 — Vi—2)as, + (X; — Xi 1) Bs, + (Vi = Vici) A+ e —ei1 (11)
Dy, = D;y; 10, + D Xi3s, + D;ViX + De; (12)

The likelihood function of the proposed finite mixture model in first differenced format is
then given by.

N S

L(0) = H Zps¢(Diyi; DiGs, 031;) (13)
i=1 s=1

with (s = asyi—1 + X85 + ViA (14)

Whereby &(D;y;; Di(;s, 021;) is equal to probability density level of observations D;y;, given
that they are multivariate normally distributed with mean D;(;s and covariance matrix o21;.
The logarithm of this likelihood function has multiple local maxima and is ill behaved in
general. Therefore, maximum likelihood estimation by means of numerical optimization does
not work smoothly and should be avoided. Instead, one should ease the maximization step by
making use of the EM algorithm. The EM algorithm consists of two steps which are repeated
iteratively until convergence. The two steps are the expectation and the maximization step
(E-step and M-step), which will both be discussed in further detail.

Let us denote the set of model parameters as 6 = {02, as, Bs,ps(s = 1,...,5),A}. In each
iteration, all model parameters are estimated in the maximization step. Denote the estimated
model parameters of the previous iteration as #,,_;. The idea of the E-step is to take the
expectation of the log complete data likelihood function with respect to s given y and the
current estimate 6,,_;. The complete data likelihood function and the log complete data
likelihood function are given by:

s
L.(0) = H H(ps¢(Diyi; Di(is, 02 1;)1 =) (15)
N < =1 s=1
(0) =Y I(si = s)(log(ps) + log(¢(Digi; Dicis, 0215))) (16)
i=1 s=1

The E-step requires us to calculate Ey(1.(0,,—1)|y). Note that the only stochastic components
in this expectation are s;(i = 1,..., N). Hence, by using the rules of conditional probabilities,
these probabilities can be rewritten as follows.

pis = E(I(si = s)|y:) = 1 x P(s; = slyi) + 0 x P(s; # sly;) = P(si = s|y;) (17)
e — g, = 1 Do 27,
P(Si — 3|yz) — f(y}é;) S) o f(y2|51 S)ps — ¢(Dzyu DzCzsa Uslz)ps (18)

s S
kE f(yi’Si = k)pk kZ: ¢(Diyi; Dk OEIi)pk
-1 =1
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Hence, given all model parameters ém_l, the conditional probabilities p;s can easily be cal-
culated for all households ¢ and all segments s. Thereafter, the expected value of the log
complete data likelihood function can be calculated as follows.

E,(l.(0)|y) = Z Zpis log(ps) + Z Zpis IOg(Qb(Dz‘yz'; D;Gss, aili))) (19)

i=1 s=1 i=1 s=1

This expected value should now be maximized by updating the model parameters in an
optimal manner. Hence, the M-step can be summarized as follows.

mé%X ( Z Zpis log(ps) + Z Zpis log (¢(Dz‘yz’; D; s, a?[l-)) )) (20)

i=1 s=1 i=1 s=1

Because there are no overlapping parameters in the first and second part of the optimization
function, these can be maximized separately. Maximizing the first part is straightforward
and gives the following updated parameters for p;.

1 N
= — 21
bs =5 ;1 p (21)

The maximization process of the second part has become much easier as well, as it now
disintegrates to the optimization of a dynamic linear panel model with N times S house-
holds’. Or stated differently, maximizing the second part of equation 20 is equivalent with
estimating the parameters of the following linear dynamic panel model via a first differenced
estimator.

Yi = i + asyi—1 + XiBs + Vid + g4 with e;5 ~ N(0,021) (22)

For s = 1,....,N and s = 1,..., 5. Whereby each observation should be weighted with the
square root of the probability of selection. This probability of selection is equal to the mul-
tiplication of the probability that household i belongs to segment s (p;s) and the household
weight of household i, which is given in the dataset. Note that these household weights are
not yet introduced into the model equation, since the model needs to be first differenced
later on for estimation. Hence, each first differenced time-period will then be weighted with
the average of the two corresponding household weights. In the remainder of this section,
I will use hy, for referring to this square root of the probability of selection of estimation
period At.

The GMM estimator that has been proposed by Arellano and Bond (1991) is frequently
used for estimating the type of model given in equation 22. Which is due to the fact that it
gives consistent and efficient estimates, even when the number of observations per household
is small. However, this estimator is not robust against anomalous observations, which are
almost certainly present in household income data according to the literature. Therefore, I
will make use of a GMM estimator that is robust against outliers in the maximization step,
which has been proposed by Lucas et al. (1997).

Please note that the EM-algorithm might converge to a local optimum of the likelihood
function. Therefore, one should use multiple random starting values for the EM algorithm.
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Because finding good starting values for the model parameters can be quite difficult, it is
convenient to start the algorithm by randomly drawing values for probability that household
1 belongs to segment s. For each household, these segment probabilities will be drawn
from a Dirichlet distribution with parameters «q,...,ag that are derived from a uniform
distribution. To be more precise, each parameter is derived as follows a; = exp(u,) with us ~
U(log(1/3),log(3)). The advantage of using a Dirichlet distribution is that the obtained
probabilities add up to one, so they can be used directly. Moreover, by varying the parameters
of the Dirichlet distribution over different households, one ensures a high variability level in
the obtained starting probabilities.

4.4 QOutlier robust generalized method of moments estimation

As has just been mentioned, the outlier robust GMM estimator of Lucas et al. (1997) fits the
estimation problem at hand perfectly. In this paper I will discuss the estimation process and
some other main findings of the researchers. Hence, the interested reader is referred to Lucas
et al. (1997) for more details (e.g. proves of the asymptotic properties of the estimator). The
starting point is the dynamic linear panel model given in equation 22. Rearranging some
terms in this equations leads to the following model.

Yi = pi + Zivs + ViX + €55 with g5 ~ N(0,021)) (23)
with Z; = (y;—1, X;)and 7; = (o, 5;) (24)

4.4.1 Instrument specification

The outlier robust GMM estimator will be computed by performing instrumental variable
(IV) estimation on the first differences of the model given in equation 23. Which has proven
to be the best solution for obtaining unbiased results in a linear dynamic panel setting. For
this reason it is convenient to define instrumental variable matrix W;. First, let us define T;
as the eventual number of model equations of household 4, so T} is equal to T — TF + 1.
To illustrate, if a household has data in the first 6 succeeding years, then T} = 4, TF = 6
and T; = 3. Stated differently, the income growth of the fourth, fifth and sixth year can
be modeled, which results in 7; = 3. Continuing with the matrix of instrumental variables
W, which is given in equation 25. One of the explanatory variables in the matrix D;Z; was
the lagged and first differenced income growth variable D;y; 1, which is obviously correlated
with the lagged error term €; ;. Therefore, one needs to resort to instrumental variable (IV)
estimation. Under the assumption that the income growth processes behave dynamically, in
other words E(a;) # 0 for s = 1,...,S. All previous values of the income growth variable
can be used as instruments for the endogenous explanatory variable Ay;; 1. Next to this,
one can use the other covariates X; and V; as instrumental variables. Which time periods
to use as instrumental variables depends upon the exogeneity assumptions of the covariates.
In general, one can assume three distinct cases for each variable, which are an endogenous,
a predetermined or a strictly exogenous covariate (Bond, 2002). For this three assumptions
respectively, one can use the covariates as instruments up to time t — 2, t — 1 or TF, so in
the latter case, one can use the values of all time periods as instruments. The assumption
that will be used for each variable will be based on previous literature or simply common
sense. For example, several papers have been written on the possible endogeneity of the
covariate education level when it is used to explain income. (Block et al., 2010; Blackburn
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and Neumark, 1993). On the other hand, common sense can be used to determine that the
variable age is strictly exogenous, since it is definitely deterministic. However, for certain
other variables, the choice of which assumption to use might be more difficult. Therefore,
the validity of the moment conditions will be tested afterwards and misspecified assumptions
will be changed accordingly. Now suppose that the number of covariates for which we have
assumed endogeneity, predetermined and strict exogeneity are respectively ki, ko and k3.
Then this gives a T; x M instrumental variable matrix W;, whereby the number of moment
conditions M is equal to (7+1)7/2+k; (7+1)7/24+ ko ((74+2)(7+1)/2—1)+k3(7(7+3)). With
7 the maximum possible value for T;, so 7 corresponds to the number of model equations of
a household that has data for all years that are viewed. The resulting instrumental variable
matrix W; is then defined as follows.

)

0Ft 4 0 ... 0 Ok o U o ... 0 0O
F_ F_
B L y b ... 0 ok oo o UFhT' ... 0 o
o ' R ' ot
0fu 0 0 ... oyt P ookw o 0 0 ... URT? ot

(25)

Whereby, 0711 and 0517 are zero vectors of length (T —3)(TF —4)/2 and (7 +1)7/2 — (T} —
2)(TF — 3)/2, which correspond with the missing years for household i at the beginning and
at the end respectively. Note that these vectors have both length equal to zero if household
i was part of the survey in all years, or stated differently if 7; = 7. Next to this, y! is defined
as (0, ..., 0, Y;pr_o, .., Yit), With TF — 4 number of zeros at the beginning of the vector, which
correspond to the number of beginning years for which data is missing for household 1.
Then, 072 and 0% are both zero vectors as well, that serve the same purpose as 0% and
0L, Lastly U! consists of all endogenous, predetermined and strictly exogenous covariates
up to time t — 2, t — 1 and T respectively. Furthermore, it is also filled with zeros at the
beginning, just as for yf. On top of this, there are zeros at the end of each exogenous variable,
which correspond to missing exogenous covariates in the ending years for which there is no
data of household 1.

4.4.2 Moment conditions

We are now able to set up the moment conditions that eventually will give us the outlier
robust GMM estimator. Let 79, and A\g denote the true parameter vectors for the first
differenced version of model 23. Define €),, = eus(v0s) = Ayir — Azl 1705 — Avi_1 Ao and
define w;; as the vector of instrumental variables to be used for time period ¢ of household
i. Which is equal to the r-th row of matrix W, if r is defined as r = ¢t — T" + 1. Then the

moment conditions for the outlier robust GMM estimator are defined as.

Tk
E( Z wit¢itshits€?ts> =0 (26)
t=TF
‘ 0 0 if e
where ¢ = o) o€/ 03)/ s, Cu 7& 0 (27)
v (Wi, otherwise
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In the definition given above, v;() and () are both real valued functions, which will be further
specified in the next paragraph. Note that the expected value of the moment conditions
given in equation 26 consist of two parts. Firstly, there is the regular GMM orthogonality
condition which imply that the instrumental variables w; should be uncorrelated with the
error terms €Y. Next to this, each observation has its own weight ¢, which makes the
estimator less sensitive to anomalous observations. From this point of view, it is easy to see
that the regular GMM estimator proposed by Arellano and Bond (1991) is a special case of
this outlier robust GMM estimator, which can be obtained by setting ¢, equal to one for
all observations. The function for the observation weights will now be discussed in further
detail. Firstly, it is convenient to rewrite the population function given in equation 27 into

an actual data format, which is defined as.

. Né A ) if e
gbits _ (o (wlt)o'sw(elts/o-s)/ezts; 1I €4¢5 % 0 (28)
v (Wi, otherwise

The weight factor ¢y, consists of two parts. The first part (v, (wy)) is used to reduce the effect
of divergent or persuasive observations in the space of the instrumental variables. While the
remainder of the function depends on the error terms and serves to shrink the weight of
anomalous observations with large residuals. The weighted median absolution deviation
(weighted MAD) will be used to estimate the segment specific volatility parameters, since it
is a consistent and outlier robust estimation method. It is defined as follows.

05 = 1.4826 weighted median, ;|€;, — weighted median, ;(€;;)| (29)

The volatility parameters will be estimated iteratively with the parameter vector. In the
first iteration of the EM algorithm, this procedure will be started by using the instrumental
variable weights as starting weights, so ¢;s = v;(wy). In the subsequent iterations of the
EM algorithm, final weights of the previous round will be used as starting weights for this
procedure. After estimating the outlier robust GMM estimator, I will perform a sensitivity
analysis for these starting weights by reestimating the GMM estimator with all starting
weights equal to one and by using starting weights that are drawn from a uniform distribution
with minimum zero and maximum one. Next to this, the following starting weights will be
tried as well.

b {1, if my = 3di < g <y + 3k Vk (30)
0, otherwise

Whereby, ¢ = (Ayi, Azi—1, Avy—1) and my, and dj, are respectively the weighted median
and the weighted MAD of ¢, with ¢z = (q11%, .-, Gitk, ---» qnTy—1). Hence, an observation
gets a non-zero weight value assigned if it does not contain any univariate outlier in the
dependent variable or one of the regressors. By performing this sensitivity analysis, one can
investigate to which extend the locally robust GMM estimator is globally robust. However,
do note that it might be the case that the results of all four methods are affected by outliers
that receive a positive starting weight. Hence, from this sensitivity analysis one cannot
simply conclude global robustness of the eventual results. Therefore, it might be of interest
for further research to investigate more advanced methods for these starting weights. For
example, one could use starting weights drawn from a uniform distribution, whereby the
bandwidth depends upon g;.
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4.4 Outlier robust generalized method of moments estimation

4.4.3 Calculating outlier weights

In order to finalize the estimator, the functional forms of the weight functions () and vy()
need to be specified. Lucas et al. (1997) use a redescending function () which makes use
of a fifth degree polynomial ) (z) such that () is twice continuously differentiable. They
specify the weighting function as follows.

e, if le] < ¢
Yerex(€) = § sign(e)y(le]), if er <le] < e (31)
0, otherwise

Note that for given values of ¢; and co, there is exactly one fifth degree polynomial specifi-
cation such that () is twice continuously differentiable. Because a fifth degree polynomial
has six free parameters, while the condition of twice continuously differentiability gives us
6 restrictions in total. Hence, the parameters of the fifth degree polynomial can be found
by solving a linear system of equations. As it is assumed that the error terms are normally
distributed, I will usey/x; 2(0.975) and+/x; >(0.9975) as values for the breakpoints ¢; and ¢,
respectively. Hence, observations with an error value that occurs with probability less than
0.25 percent are discarded from the model. Note that the chosen borders of 0.975 and 0.9975
are a bit more conservative than the borders of 0.99 and 0.999 used by Lucas et al. (1997).
This choice is based upon the stylized fact that income data is heavy tailed, which has been
investigated by Guvenen et al. (2015). Therefore, I chose to follow many researchers in ro-
bust statistics and already start down weighting observations in the 2.5 percent outer part
of the distribution. Continuing with the specification of the vy () function, which should
down weight the instrumental variables that are far removed from most of the instrumen-
tal variables. For this reason, Lucas et al. (1997) propose to make use of the Mahalanobis
distance of the instrumental variables, which is defined as.

(it i, Vi) =) (i — meYVy (wye — my) (32)

Whereby, m; and V; are the location vector and covariance matrix of the instruments vectors
at time ¢, which obviously need to be estimated in a robust manner. Due to the fact
that the panel data is unbalanced, the estimation process of the Mahalanobis distances had
to be extended. For a given time period ¢, columns of the instrumental variable matrix
corresponding to the instrument values of the most recent period will be completely filled.
However, once we go back in time for k periods, the number of zero values will increase,
These zero values correspond to households who participated in the household panel at
time t, but did not yet participate at time ¢ — k. If one would estimate one covariance
matrix for each time period only, these zero values would be included in the estimation
process. As a result, households that have participated for a longer period have a higher
probability of receiving a zero weight due to outlying instruments. Moreover, the percentage
of zero instrument weights will become higher at later periods. Therefore, one has to iterate
through all time periods up to the current time period ¢. Then, for each time period (say
time period k), the Mahalanobis distance of the households for which the time period k is
their first period will be calculated. These Mahalanobis distances are based upon a mean
vector (my) and a covariance matrix (Vj;) that are estimated by only using the households
that already participated at time period k. Note that this estimation process only solves
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4.4 Outlier robust generalized method of moments estimation

the issues given above for endogenous or predetermined instrument variables. Which is not
an problem in this case, since there are no potentially exogenous instrument variables that
contain outlying values.

As was already noted by Lucas et al. (1997), it is important to use a computationally effec-
tive estimation method. Because one has to estimate multiple covariance matrices for each
time period and the total number of instruments can become quite large. Therefore they
propose to use a slight modification of the S-estimator, which makes use of the fact that the
instrumental variables for each time period are linear combinations of all observations for
a certain household. However, nowadays it is much more attractive from a computational
point of view to estimate the outlier robust Minimum Covariance Determinant (MCD) esti-
mator (Rousseeuw, 1985). This gain in attractiveness is due to the more recently proposed
Deterministic Algorithm (DetMCD) by Hubert et al. (2012), which estimates the MCD esti-
mator in a efficient manner. The only downside of this estimator is that it is not a fully affine
equivariant estimator, though it is very close to affine equivariant. However, note that the
modification of the S-estimator used by Lucas et al. (1997) also lost its affine equivariance
property, due to the usage of the linear combinations.

Continuing with the weight function for the instrumental variables, if we define o =
S(wig, Mgy, th), with 7 and Vi, robust estimates of my; and Vi;. Then the down weighting
function for the instrumental variables is defined as v;(wy) = @Z)t(gft) / 5221; if Oy # 0 and
viv (wy) = 1 otherwise. Whereby 1;() make use of the same fifth degree polynomial function
as defined in equation 31, but with tuning parameters c;; = X]jt2(0.99) and ¢y = X;tQ(O.999),

with p; = rank(th). Note that these tuning parameters are time specific, since the number
of valid instruments increases over time. Just as for the error terms, the down weighting
function for the instrumental variables is build upon the assumption that the instrumental
variables are multivariate normally distributed. For this reason not all instruments will be
used to calculate the instrument weighting factor. To be more precise, the three dummy
variables and the variables age and education years are obviously not normally distributed.
Because of this, the algorithm will down weight observations which should not be down
weighted. For example all households consisting of aged people would be seen as outlying
observations if the variable age would be included. Instead, the variables age and education
years can easily be checked for irregular patterns beforehand. During this inspection, I could
not find any irregular pattern for these variables. Lastly, the instruments corresponding to
the macro-economic variables are also not used for calculating the instrumental weighting
factors, as these variables are equal for all household within a certain region at each point in
time. Hence, the instruments corresponding to previous income growth and previous income
growth due to working hours difference values are eventually used as input for calculating
the instrumental weights.

4.4.4 Estimator and its asymptotic properties

Now that the moment conditions are fully specified, we can turn our interest to the actual
outlier robust GMM estimator. Because there are more moment conditions than parameters
to be estimated, we need to minimize the quadratic form of the moment conditions, which
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4.4 Outlier robust generalized method of moments estimation

is defined as follows.

Jy = min (( N Z Z W/ His Di(yi — Ziys — m))'AN (33)
=1 s=1
(5N Z Z Wi, Hys Di(y: — Ziys — m))) (34)
=1 s=1

Whereby ®;, and H;s are T; x T; diagonal matrices with ng‘ts and h;s as elements on the
diagonal respectively. Thus, ®;, is the weighting matrix that down weights outliers, while
H,, is the weighting matrix of the data, which is obtained by the multiplication of the segment
probability p;s and the household weights of household i. Next to this, Ay isa M x M positive
definite weighting matrix. Then it is convenient to write down this optimization problem in
matrix form. First I will define the vectors and matrices that correspond to one segment and
then I will extend these matrices to all segments. Hence, let us define W' = (W], ..., W})
and &, = diag(®Pys, ..., Pys). Then define the vector y and the matrices Z and V in a
similar fashion as the matrix W. Lastly, the matrices H and D are created in exactly the
same way as the matrix ®,. Because the matrices W, D and V' and the vector y are the
same over all segments, they can simply be replicated S times. Hence, W/ ,,, = (W', ..., W’),
Doty = diag(D, ..., D) and the matrix Vi, and the vector ¥, is created in a similar
fashion as Wi,a. Next, the segment dependent matrices ®yora1, Hiotar and Zioq are created
in the following manner, ®;,,; = diag(®y, ..., Ps) and Z;pq = diag(Z, ..., Z) and the matrix
H1q1 can be constructed similarly as ®;,,;. Note that the matrix Z;,, has to be a diagonal
matrix with elements Z due to fact that the corresponding parameters v, are segment specific.
Lastly, it is convenient to combine the explanatory variable matrices and parameter vectors.
Hence, let us define Ciotar = (Ziotats Viotar) and &' = (71, ..., 75, A'). Then basic linear algebra
can be used to show that the optimal parameter vector is equal to.

/
! !
(Wtotal (I)total Htotal Dtotal Ctotal ) AN (Wtotal (I)total Htotal Dtotal ytotal>

/
/ /
<Wtotal thotal Htotal Dtotal C1total> AN <Wtotal CI>t0tal Htotal Dtotal Ctotal)

~

RN =

(35)

Lucas et al. (1997) show in their paper that the outlier robust GMM estimator is consistent
and asymptotically normally distributed. More precisely, the estimator is distributed as
follows.

VNS (ky — ko) 2 N(0, (M{AOMl)’lM’AOMQAOMl(M’AOMl)’l) with  (36)

( Z W0 (Wi )1 zts/Us)hztsAC“> (37)

t=TF
TL
: /
= E(( Z oswirv (Wi )Y (e zts/as zts>< Z oswive (Wi )Y (e ?ts/ffs)hz‘ts> ) (38)
t=Tf t=TF

Whereby Ac;y = (Azi—1,Av;;—1). Hence, the optimal weighting matrix Ay from a effi-
ciency perspective is equal to M, '. Which in turn leads to the following asymptotic normal
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4.5 Model selection

distribution for the estimator
VNS (ky — ko) S N0, (MM, M;)™) (39)

The optimal robust GMM estimator can be estimated via the classical two-step approach. In
the first step, a consistent but not efficient estimator /%%) is estimated by using the identity
matrix as weighting matrix. Then, one can use these estimated parameters to calculate the

optimal weighting matrix (Mz(l))*1 and use this optimal weighting matrix to estimate the

most efficient estimator /%f,), which is distributed as follows.

AN~ N (0, 1/ (NS) (MM, ' M) ™) (40)
Whereby M, and M, are the sample analogues of M; and M respectively.

4.5 Model selection

When the model has been estimated for a several number of segments, one should find the
optimal number of segments via a model selection criterion. This has to be a robust model
selection criterion, since the model is estimated by means of the outlier robust GMM esti-
mator. As has already been noted by Ronchetti and Staudte (1994), robust model selection
criteria have not received much attention in the literature. Robust versions of the Akaike
information criterion and Mallows C,, statistic have been developed by Ronchetti (1985) and
Sommer and Staudte (1995) respectively. However, note that these robust model selection
criteria are only valid in case of a standard M, S or MM type regression. Hence, they can-
not be used as criterion for the outlier robust GMM results. Agostinelli (2002) derived a
robust model selection criterion via weighted likelihood. I will follow his approach in using
a weighted likelihood value as base for a Bayesian information criterion (BIC).

Let us denote this final set of model parameters as 7, and A Furthermore, the outlier robust
GMM estimation procedure will produce weights ¢;;s that bound the influence of anomalous
observations on the estimated parameters. Next to this define the household weights, which
are given in the data as hZ". Note that the average household weight should be equal to
one for calculating a proper BIC value. Using these parameters and weights in the original
likelihood function gives us the following likelihood and log-likelihood value.

L
N T S hh

Ls= H H (Zps (Cb(Ayit; Az 19s + Avit—lj‘)a 53))¢;it5>hit (41)

=1 ¢=TF  s=1

N TiL S 5
ls = Z Z iy log <Zps (O(Ayir; Azip—17s + Avi_1 N, ‘A’g))@m) “2)
i=1 t:TiF s=1

whereby S equals the total number of segments that have been used. Note that direct
comparison of log-likelihood values over different segments via BIC is not advisable. Because
this would give benefit to models that have a higher proportion of outlying observations with
dits equal to zero. However, one cannot take this issue into account directly. Which is due
to the fact that the outlier-weights ¢;s cannot be extracted from the logarithmic term, as
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4.6 Model specification tests

they are segment specific. To overcome this issue, the outlier-weights over all segments will
be merged into one outlying term ¢;; in the following manner.

S .
log (3 ps (6(Ayirs Az 15, + Avi14), 6%) ") = (43)
s=1
~ S A
Gie10g (3 pa(0(Ays Az 14, + Avy14),52)) (44)
s=1

The obtained ¢; values can be used to determine the following adjusted log-likelihood value.

N TF N TF
= (30 S ) /(303 ) 5
i=1 t=TF i=1 {=TF

As just has been mentioned, this adjusted log-likelihood value takes differences in the outlying
weight vectors into account, such that likelihood values can be compared over different
models. The eventual choice of the number of segments will thus be based on the BIC, which

is defined as BIC = log <Zf\i1 TZ> ks — 2l§dj . Whereby the total number of free parameters

ks equals k1S + ko, with k1 and ko the number of segment specific and non-segment specific
explanatory variables respectively.

4.6 Model specification tests

A first check for correct model specification is the standard GMM test of over identifying
restrictions, or Sargan test. Which says that the quadratic optimization criterion Jy times
the total number of households (/) and the number of segments (.S) follows a chi-squared
distribution with M — k degrees of freedom. Under the null hypothesis that all moment
conditions are valid. Whereby M equals the number of moment conditions and k the number
of parameters to be estimated. Note that the test is only valid when the optimal weighting
matrix (M) ™! is used for calculating the quadratic optimization criterion. Hence, if this test
is rejected, at least one of the moment conditions is invalid, which means that the model is
misspecified. Two frequently occurring model misspecifications that directly lead to invalid
moment conditions in the dynamic linear panel setting are original disturbances which are
serial correlated (so not the first differenced disturbances) and a too progressive choice for
the endogeneity level of one of the regressors.

If the assumed level of exogeneity of some of the covariates were too strong, this leads to a
the rejection of the Sargan-test. In order to test this, one should reestimate the model with
weaker exogeneity assumptions. Note that the instruments used under these weaker exogene-
ity assumptions are a subset of the instruments under the stronger exogeneity assumptions.
If we denote DS to be difference between the Sargan test statistics under the strong and
weak exogeneity assumptions. Then, under the null hypothesis that the additional moment
conditions are valid, it holds true that DS ~ x?(d). Whereby d equals the number of extra
moment conditions under the stronger exogeneity assumptions. Arellano and Bond (1991)
also derived a test statistic for checking the the presence of serial correlation in the original
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disturbances. However, this test statistic has only been derived for an unweighted first dif-
ferenced GMM-estimation and thus cannot be used in this case. In section 7, I will further
elaborate on this topic.

Another issue that may arise when estimating a dynamic linear panel model is the problem
of weak instruments. Hence, if the correlation between the explanatory variable Ay;;_; and
its lagged values becomes weak, the first differenced GMM estimator will give biased results.
There are two main underlying causes for this issue. Firstly, when the original time series
of income growth of a certain household is highly persistent. Hence, if « is getting close to
one in the following model y; = ay;—1 + (1 — ) + vy, the lagged values of y;; will become
weak instruments for Ay;;_1. Therefore, one should estimate these time-series models on a
household level beforehand, to check if the issue of persistent time-series might occur. The
second cause of weak instruments is a very large ratio var(u;)/var(v;). Hence, if the variation
in average income growth levels between households is much larger than the variation in
income growth levels within households. This can also easily be checked beforehand via
estimating the individual time-series given above. When the used instruments in the first
differenced GMM estimator are suspected to be weak, one can reduce the forthcoming finite
sample bias of the estimates by estimating the extended system GMM estimator, which was
proposed by Blundell and Bond (1998). For this extended system GMM estimator one has to
assume some extra properties, such as the stationarity assumption of the initial conditions.
These extra assumptions provide some extra moment conditions that are not specified in the
first differenced setting, but in the original level setting. Therefore they greatly reduce the
estimation bias in case of persistent time series.

5 Results

Before discussing the results of the four distinct analyzes, I have to point out a few adjust-
ments that have been carried out in order to make the estimation process feasible. Firstly,
the instrument matrix that have been used differs a bit from the instrument matrix intro-
duced in the methodology section. The well known GMM-estimator of Arellano and Bond
(1991) has been designed to estimate parameters in a typical micro-panel setting whereby
the number of time-periods is small. However, for the analysis with the American data
there are for example 41 periods in total. Including all previous values of all variables as
instruments would thus lead to a total of 8610 instruments, given that there are nine ex-
planatory variables in total. Besides the fact that the estimation process took very long,
the major problem was the estimation of the covariance matrix of the moment conditions.
Despite the large number of observations in the dataset, reliable estimation of this large
covariance matrix turned out to be impossible. As this covariance matrix is required for
the re weighting step of the GMM estimator, as well as for calculating the standard errors
of the parameters, its reliability is an essential requirement for proper estimation results.
Next to this, there is a risk of biased parameter estimates due to over-fitting if one uses
numerous instruments (Roodman, 2009). There are multiple solutions for the issue of too
many instruments. In this research the most common solution will be used, which is cutting
of at a certain lag instead of using all available lags as instruments. The main question of
this solution is at which lag one should cut off the instrumental variable matrix. For sake
of simplicity, I will choose one overall cutting point for all variables and all models. This
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decision should be based upon the trade-off between the information that is lost by cutting
off at a certain lag on one hand and the reduction of the total number of instruments on the
other hand. The relative amount of information that a certain lag gives is well represented
by the correlation between the first differenced values and the corresponding lagged values
of a certain variable. In table 2 the correlations of the first ten lags are given for the German
dataset. The patterns within the correlation levels of the other four countries are reasonably
well represented by the correlation levels of the German data. Given the size of these tables,
they have not been added to the paper. Lastly, note that the correlation values of the micro
economic variables are based upon an outlier robust covariance matrix, which has also been
estimated via the DetMCD estimator of Hubert et al. (2012). Next to this, the correlations
of the macroeconomic variables Inequality level and Redistribution are the averages over the
four distinct regions in which Germany has been divided.

1 2 3 4 5 6 7 8 9 10
Real income growth -0.81 0.15 0.01 0.00 -0.01 0.01 0.00 -0.01 0.00 0.01
Inequality level -0.22 -0.05 -0.10 -0.08 -0.18 -0.20 -0.11 0.00 -0.07 0.04
Redistribution -0.45 -0.48 -0.42 -0.23 -0.03 0.08 0.14 0.03 -0.17 -0.16
GDP growth -0.72 -0.34 0.28 0.21 -0.09 0.12 -0.14 -0.32 0.09 0.30
Age 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87
Education years -0.39 -0.43 -0.44 -0.43 -0.42 -0.42 -0.42 -0.39 -0.37 -0.33

Work hours growth  0.14 0.01 -0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Table 2: Correlation between first differenced data and the first ten lagged values for the German
data

The correlations of real income growth are close to zero from the third lag onwards, while
it is already from the second lag for the variable Work hours growth. In contrast, the other
two microeconomic variables Age and Education years seem to have a constant correlation
factor over time. Which is logical, given that these variables are close to deterministic. For
the macroeconomic variable Inequality level, only small correlation values up to 0.2 can be
found until the sixth lag. Redistribution seems to have a significant negative correlation for
the first four lags. While GDP growth starts with two negative correlations, followed by two
positive ones and then also correlation values close to zero. Combining these findings with
the findings of the other four countries led to cutting off at the fifth lag. As this cutting
point seems to strike a reasonable balance between the amount of information that is lost
and the reduction of the number of instruments. Some researchers might find this cutting
point decision a bit subjective. Therefore two other solutions for the issue of too many
instruments will be discussed in section 7, which can be of interest for further research.

Next to the reduction of the number instruments, the three dummy variables (education level
up, child born and child left) had to be discarded from the model. It turned out that these
events were such rare that the outlier robust GMM estimator regularly converged to a state
in which the corresponding parameter of a certain dummy variable could not be estimated.
Because all observations with a value one for a certain dummy had an outlying weight value
of zero in this converged state.
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5.1 Persistence properties of household income growth

5.1 Persistence properties of household income growth

In table 3 summary results of the individual time-series models for the income growth process
per household are given. These individual time-series models should be estimated before-
hand, such that the persistence properties of the income growth variable can be checked.
In the first three rows of table 3 one can find the relative number of households with an
absolute a parameter value larger than a certain threshold. Note that these percentages
are based upon households with at least five income growth values. Because estimating an
individual model for households with less than five observations would give very volatile pa-
rameter estimates, from which one cannot properly derive time-series properties. For all five
countries, the share of households with an estimated « value larger than 0.8 is quite small.
Next to this, the variance of the model errors is at least twice as large as the variance of
the household specific fixed-effect parameters for all countries. Therefore, one can conclude
that the income growth time-series are in general not highly persistent. However, the share
of a parameter values above 0.5 is substantial. A simulation study performed by Blundell
and Bond (1998) revealed that the first differenced GMM estimator already gives a small
downward bias when the individual time-series are simulated with an « parameter of 0.5.
Therefore, it can be of interest to estimate the extended system GMM estimator of Blundell
and Bond (1998) as well, and compare results with the first differenced GMM estimator.
However, this comparison falls outside the scope of this research. Because it is expected that
the lagged values of the income growth variables will in general not be weak instruments, as
the share of highly persistent individual time-series is small.

Germany Korea Switzerland UK US

a >1 0.021 0.019 0.023 0.031 0.013
a >0.8 0.050 0.041 0.060 0.072 0.034
a >0.5 0.279 0.296 0.354 0.335 0.190
Relative variance 0.184 0.115 0.134 0.438 0.119

Table 3: Percentages of households with an absolute o value larger than a certain threshold given
per country. These o values are obtained by estimating the following model for each household
Yit = a¥ir—1+ pi(1—a)+vi. Next to this the relative variance is given of the fixed effect parameters
compared to the time-series model errors (var(u;)/var(v;t))

5.2 Choosing the number of segments

In table 4 one can find the Bayesian information criterion values for different choices of
the total number of segments. Note that these BIC values are based upon models that are
estimated with a random subsample of ten percent of the households, as the estimation
process is computationally quite exhaustive. As a first note, the boxes associated with four
segments are empty for analysis 1, 2 and 4. This is due to the fact that the EM-algorithm
mostly converged to a state in which one of the four segments was empty. For five or more
segments, this was always the case. Comparing the BIC values across different segments
reveals that the BIC values are the lowest for two segments. Actually, the adjusted likelihood
value, from which the BIC is derived, attained the highest value for two segments. If one
would use a non-robust estimation process in the maximization step of the EM algorithm,
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5.3 Convergence of the expectation-maximization algorithm

then adding extra segments would always lead to an higher likelihood value. However, for
the likelihood value that is adjusted for the number of outlying observations in the robust
estimation procedure, this property does not hold. The underlying reason is that the extra
third segment is used to explicitly model the group of households with the most volatile
income growth process. Hence, in the two segment setting, the EM-algorithm converged to
a state wherein both segments had a relatively small volatility parameter o,. Because of
this, most of the households with volatile income growth process were threated as outlying
observations. Therefore they had no influence on the eventual adjusted likelihood value. In
contrast, if one allows for a third segment, then this (smallest) third segment generally had
a much larger volatility parameter. Hence, the third segment was used to explicitly model
the households with the most volatile income processes. The likelihood values of this high
volatility segment are on average lower than the likelihood values of the other two segments.
Due to this fact, the eventual adjusted likelihood value will be lower for the three segment
case, compared to the two segment case.

2 segments 3 segments 4 segments

Analysis 1 28020.1 32915.5
Analysis 2 21970.2 25865.1 25879.0
Analysis 3 15821.3 17887.7
Analysis 4 14696.8 20299.4

Table 4: Bayesian information criterion values for each analysis and different number of segments.

For further research, it might be of interest to investigate the addition of a penalty term
to the adjusted likelihood value. Whereby the penalty term is based upon the share of
observations that are viewed as outlier. For this research, I will simply estimate a model
with two segments and a model with three segments for all four distinct analyses. Because
the allowance for a smaller third segment, in which the most volatile income processes can
be explicitly modeled, might give interesting results. Moreover, it gives the possibility to
compare results obtained for two and three segments. Such that eventual conclusions on the
effects of macro economic indicators on household income growth are stronger.

5.3 Convergence of the expectation-maximization algorithm

For each of the four distinct analyses, a model with two and a model with three segments
have been estimated, using all data available. In the appendix, table 15 up to table 34
summarize the results of the eventual eight models. In subsection 5.5, I will explain how
one can interpret these tables. The eventual results are based upon choosing the best local
optimum out of five local optima obtained via different random starting points of the EM-
algorithm. In order to find the global optimum with a high probability one should probably
use more random starting points. However, as noted earlier, the estimation process was
computationally quite exhaustive, which made it infeasible to use more than five random
starting points. To illustrate, the estimation process of one random starting point generally
took around two to five hours. The main reason for this long computation time is the fact
that the outlier robust GMM estimator in the M-step of the EM algorithm is also estimated
iteratively, just as the EM-algorithm. Within each iteration one has to perform the matrix
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multiplication given in equation 35 to find optimal parameter values, given the current
outlying weights. This matrix multiplication obviously takes quite some computation time
given the sizes of the instrumental variable matrix (W) and the explanatory variable
matrix (Ciya). For the models that had no ’close to convergence’ issues, which will be
explained in the next paragraph, a large part of the five local optima were actually equal
to the global optimum of these five optima. Therefore, the total number of local optima
seems to be small for these mixture models. Hence, if one is able to do further research with
more computational power, I would suggest to use around twenty random starts for the EM
algorithm.

In general, around twenty to thirty iterations were needed for the outlier robust GMM es-
timator to converge. However, the EM-algortitm is known for getting close to an optimum
within a few iterations, but the eventual convergence rate is generally low. In this case, the
EM algorithm was only getting close to convergence for some of the models. Close to con-
vergence in the sense that after 50 iterations of the EM algorithm, the segment probabilities
stayed within a certain small range over the subsequent iterations, but never really converged
to a stable optimum. Therefore, I decided to use a maximum of 70 iterations. Eventually,
if the EM algorithm did not converge within 70 iterations, the iteration with the highest
corresponding adjusted likelihood value would be used as output. To give an indication for
which of the eight models the issue of non-convergence of the EM algorithm existed, I have
added the value ’s.d. seg. prob.” to each coefficient table. For all eight models, multi-
ple starting points eventually converged or close to converged to the same local optimum.
Hence, standard deviations of the segment probabilities over different starting points that
converged to the same local optimum give a good indication for level of convergence of the
EM-algorithm. The value ’s.d. seg. prob.” is equal to the average of these standard devi-
ations over all segments. Values of this summary statistic are all close to zero for the four
models with two segments, so the EM-algorithm converged well for these models. However,
the summary statistic indicates that the models with three segments had more converging
issues, especially for the latter three analyses. In section 7, I will further elaborate upon a
possible cause of the convergence issue of the EM-algorithm and give some suggestions for
further research to solve this issue.

5.4 Bootstrapping households for standard errors of parameters

As has already been mentioned in section 3, in order to incorporate the uncertainty associated
with the missing values in the CNEF data, one should estimate models for multiple bootstrap
samples of all households. To get reliable probability value (p-value) estimates one should
use a few hundred bootstrap replicates. Given the very large computation time of the
estimator, this is unfortunately infeasible. Moreover, this procedure of bootstrapping should
be performed for each model separately. Hence, if one accepts the drop in reliability of the
p-values and estimate models for e.g. 10 bootstrap replicates, one still has to estimate 80
models in total. As it can take up to a full day estimate one model, this option is still
infeasible. Therefore, a bootstrapping procedure with seven replicates in total has been
performed for one of the eight models and the obtained results are also used in the other
seven models. To be more precise, bootstrapping the households of the fourth analysis, gave
new standard errors for the parameters of the model with two segments. These new standard
errors are then divided by the 'normal’ model standard errors, for which the uncertainty of
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the missing values is not incorporated. This procedure will give an uncertainty inflation
factor through the missing values for each parameter. Taking the mean value over these
uncertainty inflation factors gives an inflation factor value of 3.16, which best summarizes
the extra uncertainty level that is caused by the missing values. Therefore, the standard
errors of all eight models will be multiplied with this average uncertainty inflation factor.
By doing so, these new standard errors should incorporate the uncertainty caused by the
missing values as good as possible, given the in feasibility of the normal bootstrapping
procedure.

There are two reasons for choosing the fourth analysis for obtaining standard errors via
bootstrapping. Firstly, all five countries are incorporated in this analysis. Next to this, the
relative amount of missing values is the highest in this analysis. Hence, it is expected that
the uncertainty inflation factor will be lower for the other three analyses. Thus, if one can
conclude that a certain parameter value of one of the first three analyses is still significant
after using the uncertainty inflation factor of 3.16. It is likely to be significant as well if
one would have obtained standard errors via the regular bootstrapping procedure. Then the
model with two segments was preferred for bootstrapping over the model with three segments
since it is computationally less exhaustive. Moreover, as just has been noted, convergence
properties of the EM-algorithm were much better for the models with two segments. Hence,
if one would use the model with three segments, it remains unclear if the extra uncertainty
obtained via estimating multiple bootstrap replicates comes from the missing values or from
the convergence issues of the EM-algorithm. I am aware of the fact that using this general
uncertainty inflation factor has not much to do with proper statistical analysis. However, it
was the only solution that I could think of which was both computationally feasible and still
quite reliable. Quite reliable in the sense that the standard errors are probably overestimated
and therewith statistical significance is probably not concluded for insignificant variables.
Moreover, in the remainder of this paper I will be careful with concluding significance for
borderline cases with a p-value between 0.01 and 0.05.

5.5 Table explanations

Before giving an interpretation of the obtained results, which are summarized in table 15
up to table 34 in the appendix, I will give a short description of these tables. Note that
the main findings of these tables are highlighted within this results section in table 5 up to
table 8. The first eight result tables in the appendix (table 15 up to 22) give the coefficients,
standardized errors and p-values of the eight distinct models. The standardized errors shown
in these tables are the regular standard errors obtained via the asymptotic property given
in equation 40. Next to this, two p-values are given in each table (p-value and boot p-
value). As the names already suggest, the first p-value is obtained via the regular standard
errors, while for the latter all standard errors are multiplied with the uncertainty inflation
factor caused by missing values of 3.16. The latter one will obviously always be used for
determining significance. Then, each number at the end of a segment specific explanatory
variable corresponds to its segment number, whereby the segments are ordered according to
their size. Lastly, some summary statistics are given on the right side of each table. Two of
these summary statistics are "% outlier 0" and % outlier < 1’, which give the percentages
of the observations that have received an outlier weight value ¢; of respectively zero and
smaller than one.
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In table 23 up to table 26 one can find the segment probability of each segment together
with some segment probabilities of subgroups. To be more precise, subgroups are created by
splitting all households according to their value for a certain variable (e.g. age or average
disposable income). Eventually, subgroup segment probabilities are calculated by taking the
mean over the segment probabilities of all households within that subgroup. Before con-
tinuing with a further specification of some of the subgroups, I will first discuss a general
transformation of the income variables that is used throughout the remainder of this sec-
tion. The income variables, which are post-government income, pre-government income and
labor income should be comparable over time and the different countries. Therefore, each
income variable will be divided by the median value of the corresponding country and year.
The subgroup mainly non labor income consists of households for which the share of labor
income from their total pre-government income is less than ten percent, given that their
pre-government income is higher than fifty percent of the median income. Hence, this sub-
group includes all households with a significant amount of asset or private retirement income
and hardly any labor income. The subgroups mainly labor income and mainly government
income are created in a similar fashion. The subgroups lowest income and highest income
consist of ten percent of the households with respectively the lowest and the highest average
post-government income. The subgroups volatile and stable are created by taking thirty
percent of the households with respectively the highest and the lowest standard deviation of
their income growth time-series. Lastly, the group of households with very volatile income
process is segmented into three subgroups according to their average disposable income.
Note that some other subgroups, such as households with children, have been created as
well. Since the segment probabilities of these subgroups did not significantly differ from the
overall segment probabilities they are omitted from the tables.

This subsection is concluded by explaining table 27 up to 34, which contain weighted quantile
values for household averages of some variables over the different segments. Hence, the
second row of this table contains the segment numbers for which the weighted quantiles are
determined. These weighted quantile values are calculated by using the segment probability
multiplied with the number of observations of a certain household as weight. In other words,
the idea of this table is to give a summary of the shape of the distribution of a certain
variable for a certain segment. Once again, the transformed values of pre-government, post-
government and labor income are used for calculating household averages, such that a cross-
time and cross-country comparison is possible. In the remainder of this chapter I will refer
to these three groups of tables as coefficient tables, segmentation tables and quantile tables.

5.6 Parameter analysis

Before actually analyzing the segment specific parameters, it is convenient to have a closer
look at the segmentation tables, such that some general segmentation patterns can be found.
One striking pattern that is present in all eight latent class models, is the segmentation of
households with an average or stable income into one segment and households with a below
average or volatile income in one or two of the other segments. In table 5 one can find the
segment probabilities of the associated subgroups for the third and fourth analyses, but note
that similar patterns can be found for the first two analyses. Hence, if we turn our interest
to the segmentation tables of the models with two segments, so the left part of table. One
can see that there is one segment with segment probabilities for the unemployed, lowest
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income and volatile subgroups higher than the overall segment probability. Moreover, the
subgroup of stable incomes is underrepresented in these segments, which seems logical, given
that the subgroup of volatile incomes are overrepresented. However, do note that these
subgroups with relatively more low income households, do not necessarily have relatively
less high income households. In general, a similar segmentation can be found for the latent
class models with three segments. Though, in this case there is one segment with above
average stable incomes and thus below average volatile incomes and less households with a
low income or no job. Then, the other two segments have the exact opposite, so relatively
less stable incomes for the third analysis. While for the fourth analysis, there is one segment
with the exact opposite and one segment with segment probabilities for the stable, volatile,
no job and lowest income subgroups that are close to the overall segment probability.

group 1 group 2 group 1 group 2 group 3
segment probability  0.598 0.402 0.615 0.327 0.058
no job 0.464 0.536 0.433 0.429 0.139
lowest income 0.442 0.558 0.425 0.413 0.162
volatile 0.283 0.717 0.201 0.594 0.205
stable 0.837 0.163 0.913 0.085 0.002
segment probability  0.686 0.314 0.580 0.368 0.052
no job 0.512 0.488 0.717 0.228 0.054
lowest income 0.482 0.518 0.706 0.239 0.056
volatile 0.220 0.780 0.877 0.082 0.041
stable 0.950 0.050 0.209 0.672 0.118

Table 5: Overall segment probabilities and segment probabilities of certain subgroups. Results of
the third analysis are given above and results of the fourth analysis are given below.

The fact that lower incomes and more volatile incomes can be found in one subgroup is not
surprising, given the positive correlation between these two variables. This positive correla-
tion simply arises from the fact that income growth is calculated relative to your previous
income. Therefore, the households with the most volatile incomes have been segmented into
three separate groups according to their income level. By doing so, one can see that the
volatile middle incomes and volatile high incomes are also overrepresented in the segments
with a relatively high amount of low incomes. Hence, the households in these segments are
best characterized as households with either a low or a volatile income (or both) and having
a higher risk of being unemployed. Lastly, persons that have no job more often, obviously
also have a more unstable income growth process, so it is also not surprising that these
subgroups follow the same tendency in the segmentation process.

If we turn our interest to the quantile tables, one more interesting pattern can be found. The
post-government income quantile values of the segments with a relatively large amount of
households with low incomes are obviously lower in general than the corresponding quantile
values of the other segments. However, at either the 90 percent or 99 percent quantile,
the order of the quantile values is reversed. Hence, the subgroup of the richest 1 percent
of all households is also overrepresented in the segment with a relatively large amount of
households with low or volatile incomes. A similar reversion in the order of the quantile
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values at the 90 or 99 percent quantile can also be found at the pre-government and labor
income quantiles. A possible explanation for this finding might be that these very high
income households generally have a more volatile income. Because part of there yearly wage
is a bonus or they are more dependent on asset income, which is more volatile. Note that
this finding only holds true for the two models corresponding to analysis one, three and four.

5.6.1 Lagged income growth parameters

For the analyses with three segments in total, a general pattern is present for the segment
specific parameters corresponding to the explanatory variable lagged income growth. This
pattern is a significant positive parameter value for the segments with mainly stable incomes
and a significant negative value for the other two segments. This finding seems logical, given
that an autoregressive process with one lag and a negative parameter is automatically more
volatile as it oscillates around the mean value. Exceptions to this finding are the stable
segment (segment 1) of analysis 2, which has a weakly significant negative parameter and
the more volatile segments 2 of analysis 2 and 3, which have a positive parameter value.
There does not seem to be any explanation for these exceptions.

However, the reliability of all parameter values corresponding to the lagged income growth
variables can be questioned due to multiple reasons. Firstly, for the analyses with two seg-
ments, there is no visible pattern in the signs of the lagged income growth parameter values.
Secondly, some of the lagged income growth parameters have an absolute value close to one
or even greater than one. This is a bit surprising, given that there were hardly any house-
holds who had an highly persistent individual income growth time-series with an absolute
lagged income parameter value larger than 0.8. This finding is very well illustrated by the
parameter values of analysis 1 with three segments. In table 16 one can find parameter values
of respectively 1.13 and -1.08 for the lagged income growth variable of the first and third
segment. Whereas the percentage of households with an absolute lagged income parameter
value larger than 0.8 is 3.4 percent for the US, which is the lowest of all countries. The
last and most important reason pulling reliability of the lagged income growth parameters
in doubt are the Sargan-test statistics. These test statistics are equal to one for all eight
latent class models. The two main causes for the rejection of the Sargan-test are serially
correlated disturbances and a too progressive choice for the endogeneity level of the regres-
sors. As has been explained in the beginning of this section, only the previous five values
are used as instruments for each variable. Hence, the latter of the two causes cannot be the
problem. Serially correlated models disturbances arise when the proposed model is not able
to capture the underlying dynamics of the dependent variable. It sounds reasonable that the
chosen dynamic latent class model with one (linear) lag is indeed not capable of capturing
the underlying dynamics of household income growth. Because the parameter values for the
lagged income growth parameters exhibit indescribable patterns. Moreover, previous litera-
ture has demonstrated that the dynamics in income levels of households from other countries
exhibit non-linearity (see for example Lokshin and Ravallion (2004)). As has already been
pointed out in section 4, the test statistic of no second-order autocorrelation proposed by
Arellano and Bond (1991) cannot be used to test if this really is the underlying cause of
the rejection of the Sargan-test. Hence, there is no straight forward approach for solving
this issue. Therefore, any re-estimation of the models with higher order dynamics included
have not been performed, also because of the very long computation time of the estimator.
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In section 7, this issue will be discussed in more detail. Note that the parameter values of
the other variables in the latent class model are probably also biased, if the proposed latent
class model is not capable of capturing the underlying dynamics of the household income
growth process. However, it seems reasonable to assume that the biases for the parameters
of the other segment specific explanatory variables are much smaller than the biases of the
lagged income growth parameters. Because these other macro-economic variables are not
directly linked to the internal household income dynamics, Therefore, in the remainder of
this section I will still try to answer the research questions by analyzing the results of the
other parameters. However, due to these possible biases, I will generally only interpret the
signs of the parameters and not the magnitudes.

5.6.2 Inequality level parameters

In table 6 one can find the coefficients and corresponding bootstrapped p-values of the
Inequality level parameters. For the latent class models with two segments there is a very
clear pattern visible for the parameters in all four analyses. The effect of this variable is
namely always positive for the underlined segment with a relatively high amount of stable
incomes, while the effect is negative for the other segment with mainly low and volatile
incomes. In addition, results of the second analysis also suggests that older households,
households with a high average income level and households with non-labor income as main
income source generally benefit from a higher level of income inequality, as these households
are overrepresented in the first segment.

Analysis 1 Analysis 2 Analysis 3 Analysis 4
coef. p-vlalue coef. p-vlalue coef. p-vlalue coef. p-vlalue

segment 1 -5.234  0.000 1.369 0.019 1.967 0.000 1.009 0.061
segment 2 4.483 0.002  -15.138 0.000 -4.225 0.000 -3.713  0.003

segment 1 0.836 0.535 -1.669 0.045 2.345 0.258  -2.416  0.000
segment 2 -0.287  0.883 3.715 0.080 -6.867  0.483 2.043 0.014
segment 3 -4.793  0.188 -0.925 0.879 1.045 1.486 0.532 0.665

Table 6: Coefficients of the macroeconomic variable inequality level with associated bootstrapped
p-values. The segments with a relative large amount of stable and middle and high incomes are
underlined.

Results of the latent class models with three segments are less clear-cut as the results for
the two segment models were. However, a similar pattern for the parameters of inequality
level can be found in the third and fourth analysis. In the first two analyses, all parameters
associated with the level of inequality are insignificant. If one would convert the found
pattern to these two analyses, then the third segments with a relative high amount of low and
volatile incomes should experience a negative effect. A possible reason for the insignificance
of the parameter in the third segment of the first analysis might be the increase in the
parameter standard error due to a higher segment standard deviation (o3). The higher
segment standard deviation indicates that the households with volatile incomes are actually
modeled in this case. Whereas they are seen as outliers in the first segment of the two
class model. Hence, from this finding one may conclude for the first analysis that the effect
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of inequality is significantly negative for households with a low income, while it might be
insignificant for households with a volatile income.

From the values in the segmentation and the quantile tables one can derive that the first
segments of the first two analyses are similarly structured as the second and first segment of
respectively the first and the second analysis of two class models. Therefore, one would also
expect a significant positive effect for these segments. For the first analysis, it might be the
case that effects of inequality level and redistribution have switched due to non-stationarity
of the corresponding time-series. In table 15 one can see that parameter values are equal to
4.48 and 0.42 for the second segment of the two class model, while they are equal to 0.84 and
6.52 for the first segment of the three class model. As can be seen in figure 1 and figure 2,
both the income inequality level as well as the level of redistribution increased over time for
the United States. Due to this similarity, it might be the case that the effects of inequality
level and redistribution on income growth have interchanged for the first segment of the three
class analysis. Note that the stationarity properties of the inequality level, redistribution
and GDP-growths have not been studied for this paper, as these three variables are in the
long term all theoretically stationary. However, for a shorter time-span, they might become
empirically non-stationary. Therefore, it can be of interest for further research to deeper
investigate this issue.

Another aspect of the first two analyses with three segments are the segment probabilities
of the subgroups volatile low income, volatile middle income and volatile high income. As
one can see in the segmentation tables, these segment probabilities are inclining for the
second segment, while they are strongly declining for the third segment. On the other
hand, the segment probabilities of the subgroups no job, lowest income, volatile and stable
are relative to their overall segment probabilities roughly equal for the second and third
segment, especially in the second analysis. Due to this setting, one is able to derive if there
are any differences in the effect of inequality level on the income growth levels of households
from these three subgroups. In both analyses, the parameter value of the third segment is
lower than the parameter value of the second segment. Which suggests that the subgroup
volatile low income experiences a greater negative effect from the level of inequality than the
subgroups volatile middle income and volatile high income. Lastly, the income inequality
coefficients of the third and fourth analyses with three segments. These coefficients are
almost completely in line with the earlier described pattern. The only exception to this
finding is the insignificant coefficient for the third segment of the third analysis. Because
low and volatile incomes are over represented in this segment, one would expect a significant
negative parameter value.

A last interesting feature of the inequality level parameters can be found in the segment
probabilities of the participating countries. The general pattern is that the segment prob-
abilities of Germany and Switzerland are the highest of all participating countries for the
segments with a significant positive parameter for the inequality level. In contrast, the seg-
ments with a significant negative parameter have higher segment probabilities for the other
three countries. The only exception to this rule is in the fourth analysis with two segments.
As the segment probability of Switzerland is slightly higher than the segment probability of
the US for the segment with a negative parameter. In figure 1 one can see that the level
of inequality is significantly lower for Germany and Switzerland, compared to the South-
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Korea and the US. Moreover, the weighted average of the income inequality coefficients with
the overall segment probabilities as weights is generally negative. From these findings one
may conclude that the overall impact of the inequality level on household income growth is
negative. Which is in line with the conclusions of Ostry et al. (2014). Furthermore, if one
assumes that the higher inequality level within South-Korea and the US is partly due to a
larger income gap between low income households and the other households. Which seems
reasonable, as both South-Korean and US households as well as the ten percent relative low-
est income households are always over represented in the segments with a negative income
growth parameter. Then, results of these latent class models are in line with the conclusion
of Cingano (2014) that the gap between low income households and the rest of the popula-
tion matters most for subsequent growth. Regarding the conclusions of this paragraph, two
remarks have to be made. Firstly, the UK does not follow the general pattern as described
above. Because UK households are over represented in the same segments as South-Korean
and US households, while the level of inequality within the UK is close to those of Germany
and Switzerland. The lower level of income mobility in the UK might be the reason for the
fact that UK households are also over represented in the segments with a negative impact.
For example, the intergenerational earnings elasticity is equal to 0.5 in the UK, while it
is 0.32 in Germany (Corak, 2006). Secondly, the conclusions drawn in this paragraph are
partly based upon the magnitude of the income inequality parameters. Therefore, one has
to bear in mind that these conclusions might be partly incorrect due to the possible bias in
the parameters.

To summarize the findings given above, households with lower incomes generally experience a
negative impact of a higher inequality level on their income growth. Next to this, households
with the most volatile income processes seem to experience a negative effect of a higher
inequality level. Though, it has to be noted that the first two analyses with three segments
put the significance of this relation in doubt, especially for the middle and high income
groups with volatile incomes. In contrast, households with a stable middle or high income
generally benefit from a higher inequality level. In practice these results suggest that the
level of inequality within a country is a self-generating system that lead towards very high
inequality levels if the government does not intervene via redistribution. Self-generating in
the sense that a high level of inequality has a negative impact on the income growth level
of poor households, while it has a positive effect on stable middle and high incomes. Then
through these effects, the level of inequality will grow in the future, which in turn has its
effects on the income growth levels of the households, and so on.

5.6.3 Level of redistribution parameters

For the latent class models with two segments all parameters corresponding to the variable
redistribution are insignificant, which can be seen in table 7. This finding is in line with the
findings of Ostry et al. (2014), who concluded that redistribution generally had no direct
effect on GDP-growth. However, only half of the coefficients associated with redistribution
in the three segment models are insignificant. Because insignificance of the redistribution
parameter seems to be the most logical outcome, given the results of the two segment analyses
and the results of Ostry et al. (2014). I will try to give possible explanations for all of the
significant redistribution coefficients in the remainder of this section.
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Analysis 1 Analysis 2 Analysis 3 Analysis 4
coef.  p-vlalue coef. p-vlalue coef. p-vlalue coef. p-vlalue

segment 1 -0.079 0.962 1.281 0.164 0.238 0.680 1.640 0.079
segment 2 0.420 0.820  -4.580 0.420 -0.134 0.888 -1.780 0.364

segment 1  6.523 0.000  -0.513 0.726 -0.065 0.933 0.833 0.322
segment 2 -10.540  0.003 2.021 0.588 4.516 0.017 3.663 0.010
segment 3 12.402 0.006  10.679  0.361 -11.650  0.219  -11.177  0.016

Table 7: Coeflicients of the macroeconomic variable redistribution with associated bootstrapped
p-values.

In the first analysis the coefficient of redistribution is positive for the first and third segment.
On a first sight, this positive coefficient seems to be more logical for the third segment, as
this segment has a relative large number of poor and unemployed households. The intuition
behind this statement is that poor households may benefit from a higher level of redistribu-
tion through more progressive taxes, while unemployed people can benefit through a higher
level of government transfers. The positive coefficient of the first segment might be explained
by the interchange with the inequality level parameter of this segment, as has been explained
in the previous section. Lastly, there is a significant negative effect of redistribution on the
households of the second segment. From the segmentation table it become clear that this
segment is overrepresented with households of the subgroups with volatile middle incomes
and volatile high incomes. For these two subgroups, a higher level of tax might indeed lead
towards less intent to work. As these households probably do not have a permanent job with
fixed working hours, given their high income volatility. Moreover, they do not necessarily
always need to work, given their higher income.

In the third analysis, the parameter of redistribution is weakly positive significant for the
second segment. As this segment mainly consists of low income and unemployed households,
this finding is not very surprising. The coefficient of the second segment of the fourth analysis
is also weakly positive significant. A possible explanation for this finding can be found in the
quantile table. The 10 percent quantile of pre-government income is the lowest for the second
segment, while this segment relatively has the least number of unemployed households. From
these two findings one may conclude that this segment has a very large proportion of retired
households with hardly any private retirement income. These households can have large
benefits from a higher redistributions level through higher public retirement incomes. Lastly,
the coefficient of the third segment in the fourth analysis is negative. From the quantile table
it becomes clear that the households with high incomes in this segment mainly have high
labor incomes. Moreover, these high incomes are taxed more heavily than the incomes of
the high income households of the other two segments. This finding is derived from the fact
that the 75, 90 and 99 percent labor income quantiles are the highest for third segment,
while the 75, 90 and 99 percent post-government income quantiles are the lowest for the
third segment. Hence, through this relatively large tax on labor income, it might be that
the effect of redistribution is negative for this segment.
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5.6.4 Gross domestic product growth parameters

In table 8 one can see that the GPD growth parameters are generally insignificant for all
segments in all eight models. Hence, the general conclusion for this variable is that the
income growth of households does generally not depend significantly on the economical well-
being of their country. This result is a bit counterintuitive, especially for the segments with
more volatile incomes. A possible reason might be the fact that GDP-growths on a country
level are used as proxy for the state of the economy. Whereas regional GDP-growths can
differ significantly within large countries, such as the US. Hence, for further research, it might
be of interest to study the effect of regional GDP-growths on household income growth. In
the remainder of this section, the parameters corresponding to GDP-growth that actually
were significant will be discussed.

Analysis 1 Analysis 2 Analysis 3 Analysis 4
coef. p-vlalue coef. p-vlalue coef. p-vlalue coef. p-vlalue

segment 1 -0.178  0.791  -0.094 0.699 -0.627  0.001 0.226 0.235
segment 2 1.380 0.163 1.653 0.329 1.855 0.000  -1.148  0.120

segment 1 -2.333  0.099 -0463 0.351 -0.264 0.354 -0.877  0.047
segment 2 5.149 0.000 4.280 0.003 0.900 0.359 1.117 0.001
segment 3 -3.875  0.059 -3.644  0.375 3.974 0.484  -0.347  0.796

Table 8: Coefficients of the macroeconomic variable GDP-growth with associated bootstrapped
p-values.

For the models with two segments, only the parameters of the third analysis are significant.
The positive parameter value for the second segment seems quite intuitive, as this segment
has a relatively large degree of households with volatile incomes and unemployed households.
The negative effect of the first segment is a bit counter-intuitive though. As one can see in
the segmentation table, this segment has a relative large degree of German households that
have labor income as their main income source. Moreover, this segment has a relative large
fraction of very stable incomes, given that the volatility parameter of this segment is the
lowest of all segments over all eight models. Hence, a possible explanation of the negative
coefficient might be that the wages in Germany usually rise after a period of high economical
growth, when the economical growth itself is already in a downward cycle.

The second segment of the first, second and fourth analyses has a significant positive pa-
rameter value in the three class model. As noted earlier, the second segment of the first and
second analyses has a relative large amount of households from the subgroups volatile middle
income and volatile high income. A significant positive dependency of these subgroups upon
the general well-being of the economy seems reasonable, given that a large part of these
subgroups are probably freelancers. However, the significant positive effect for the second
segment of the fourth analysis is less logical, as this group mainly consists of households with
stable incomes.
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Next to the segment specific macroeconomic variables, three household level variables were
used as explanatory variables. These variables were age, education years and income growth
due to working hours difference, whereby the latter two could only be estimated in the first
two analyses due to data availability. The parameters of the variable age show the same
pattern across the two types of models (2 and 3 segments). They are significantly negative
for the first three analyses and insignificant for the fourth analyses. The fact that age
generally has a negative impact on income growth is off course very intuitive. The number
of education years is generally insignificant. Which might be explained by the fact that
the starting salary of higher educated people is already higher, causing the income growth
to be not significantly higher. However, the significant negative value for this variable at
the first analysis with two segments is a bit counter-intuitive. Especially since the US is
well-known for the large income-gap between lower and higher educated people. Lastly, the
variable income growth due to working hours difference for which one would expect a positive
effect. This has also been estimated for the second analysis with three segments. However,
the parameters are significantly negative for the first two analyses with two segments. Any
sensible explanation for this finding could not be given.

5.6.6 Starting weight sensitivity

The outlier robust GMM-estimator is estimated iteratively, whereby the process is started
by choosing some starting outlier weights. The parameters that just have been analyzed are
obtained by using the instrumental outliers as starting weights. In order to investigate the
sensitivity of the eventual results to this starting criterion, three other starting weights have
been tried, which are explained in section 4. The sensitivity analysis has been performed for
one of the eight latent class models, as the estimation process is quite time-consuming. Just
as for the bootstrapping procedure, the two segment latent class model of analysis 4 has
been used for the sensitivity analysis. This model was chosen since data of all five countries
is included and the EM-algorithm converged well for this model. The eventual results were
equal to the original parameter estimates for all three starting criteria. The insensitivity
of the eventual estimator for these distinct starting criteria can be explained by the fact
that the outlier robust GMM-estimator is used within the EM-algorithm. Recall that the
starting outlying weights are only used in the first iteration of the EM-algorithm, as the
outlying weights of the previous iteration are employed in the other iterations. Moreover,
multiple starting segment probabilities are used to find a global optimum out of several local
optima. Therefore, the probability of finding the same global optimum for different starting
outlying weights will rise with the chosen number of starts of the EM-algorithm.

6 Conclusion

The aim of this research was to investigate which macroeconomic factors drive household
income growth, to what extend these driving forces were heterogeneous across different
subpopulations and how these subpopulations were best characterized. To answer these
questions, a latent class model has been estimated with the harmonized household panel
data of the Cross-National Equivalent File. The EM-algorithm has been used to estimate the
latent class model, whereby new parameter values in the maximization step where determined
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via the outlier robust GMM-estimator of Lucas et al. (1997). In order to fit the data at hand
and to draw stronger conclusions, four datasets have been modeled with a varying number
of countries and time-frames. It turned out that latent class models with two and three
segments were the best options in all cases. Hence, eight distinct latent class models were
estimated in total.

The sargan test was strongly rejected for all eight models. The most likely underlying reason
for these rejections was the incapability to capture the underlying dynamics of the income
growth processes of the households through the chosen model. However, this could not be
formally tested, as the corresponding test of no serial-autocorrelation from Arellano and
Bond (1991) did not fit the latent class framework. The latent class models were not re
estimated as the estimation process was computationally very exhaustive. Moreover, the
expected bias in the model parameters associated with the macroeconomic variables was
relatively small. Nevertheless, conclusions on the effects are generally based on significance
of the parameters, not on their magnitude, as a result of this possible bias.

One striking pattern that is present in all eight latent class models, is the segmentation of
households with an average or stable income into one segment and households with a below
average or volatile income in one or two of the other segments. Next to this, the relative
number of unemployed is always higher in the segment with below average and volatile
incomes. Generally the segments with average and stable incomes experience a positive
effect of the income inequality level within a country. Whereas this effect is negative for the
segments with a below average or volatile income. Though, this negative relation is not very
strong for the middle and high income groups with volatile incomes. Moreover, the findings
of Ostry et al. (2014) and Cingano (2014) are confirmed by the estimated models. Hence,
income inequality has a negative impact on the overall income growth and what matters
most is the income gap between low income households and the rest of the population.
However, do note that the conclusion for the overall impact on income growth might be
partly incorrect due to the possible bias in the parameters. The parameters corresponding
to the level of redistribution and GDP-growth were generally insignificant. Redistribution
occasionally had a positive effect on segments with a relative high degree of poor households,
unemployed households or retired households with no private retirement income. In contrast,
households of the subgroups volatile middle and volatile high income seem to experience a
negative effect of redistribution, while the effect of GDP-growth is generally positive for these
subgroups.

The obtained results suggest that the level of inequality within a country is a self-generating
system in the sense that high income inequality levels lead to even higher inequality levels
in the future. Interestingly, a similar result has been found by Thomas Piketty for capital
inequality. The underlying reason for the self-generating system of capital inequality is the
general law that returns on equity are higher than the economic growth. Hence, for further
research it can be interesting to inspect if this vicious cycle is indeed also present for income
inequality and what might be the underlying cause of this vicious cycle. Luckily govern-
ments have a very powerful tool to cope with this self-generating system, as redistribution
generally has no significant direct impact on household income growth. Hence, a higher level
of redistribution will generally have a positive overall effect on household income growth,
which is in line with the findings of Ostry et al. (2014). Whereby the overall effect is the
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insignificant direct effect combined with the indirect positive effect via lowering the level of
income inequality.

7 Discussion

This section is built up as follows, first the convergence issues of the EM-algorithm will be
discussed in greater detail. Then the probable underlying cause of the Sargan-test rejections
will be reviewed. Lastly, some other solutions for the issue of too many instruments and
small extensions to improve the model will be given.

As was already noted in section 5.3, the EM-algorithm did not always converge perfectly,
especially for the latent class models with three segments. No perfect convergence in the
sense that segment probabilities converged to a certain range of ultimately five percent, but
then never really converged to a steady state afterwards. Note that I have checked the va-
lidity of the algorithm and the self-programmed R-code via estimating a latent class model
on a simulated dataset. When there was no noise added to the data, convergence of the
EM-algorithm was generally very fast. However, after adding an extra random error term
for ten percent of the simulated households, the same issue of slow or sometimes even only
close to convergence of the EM-algorithm arose. Luckily, the estimated parameter estimates
were still within range of the simulated parameters. A possible underlying reason for the fact
that the EM-algorithm does not always perfectly converge might be the observations that
have a model error outlying weight between zero and one. Recall that absolute standard-
ized model errors between \/x;2(0.975) and+/x72(0.9975) were down weighted via a fifth
degree polynomial. Hence, this fifth degree polynomial is quite steep, or stated differently,
a small change in the absolute standardized model error can result in quite a large change
of the eventual model error outlying weight. Moreover, the observations within this range
of standardized error values have a large impact on the eventual parameter estimates due to
this large model error. Therefore, it might be the case that very small adjustments of the
standardized model errors of these close to outlying observations over subsequent iterations
of the EM-algorithm, lead to the fact that the EM-algorithm does not perfectly converge.
If this really is the underlying cause of the issue, one could try to use a less steep down
weighting function to solve the problem. Another solution that might be of interest for
further research is to use one of the several acceleration methods for faster convergence of
the EM-algorithm, such as the acceleration method by means of Quasi-Newton methods
(Jamshidian and Jennrich, 1997). However, if the issue of no perfect convergence still arises
with these acceleration methods, one could also opt for another estimation technique of the
latent class model, such as a Bayesian analysis (Titterington et al., 1985).

The Sargan tests were strongly rejected for all eight models. A plausible cause for these
rejections is the fact that the chosen model specification is not able to capture the underlying
dynamics of the household income growth processes. As a result, the original disturbances
(so not the first-differenced) will be serially correlated, which in turn will lead to a rejection
of the Sargan test. In order to check if the original disturbances are serially correlated, one
can test for no second-order serial correlation in the first-differenced residuals. Under the
null hypothesis of no second-order serial correlation, Arellano and Bond (1991) define the
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associated test statistic as follows.

~ ~

e ,eé
\/a
Whereby é_, are the twice lagged disturbances per household, é all disturbances per house-
hold except for the first two and+/é, a scaling term. Further details of this scaling term can
be found in Arellano and Bond (1991). The problem of using this test statistic in the current
setting is that all observations are equally weighted. However, the model errors correspond-
ing to a segment for which the segment probability is very small for a certain household,
will generally be large and serially correlated. Therefore, it is essential to down weight these
model errors with the household segment probability. Unfortunately, plugging in these seg-
ment probability weights into the test statistic is not straightforward (as the scaling term
is quite comprehensive), neither is the derivation of the eventual asymptotic distribution.
Therefore, the derivation and the usage of this test statistic falls outside the scope of this
research. Another option to solve the issue is by means of trial and error. Hence, one could
for example first extend the model by allowing for non-linearity in the dynamics of the in-
come growth process, as was also done by Lokshin and Ravallion (2004). When the Sargan
test is still rejected, one could also add higher order lags to the model. However, one cannot
be sure that the incapability of capturing the underlying dynamics of the income growth
process actually is the cause of rejection of the Sargan test. Hence, given the computational
intensity of the estimator, I decided not to follow this trial and error procedure.

4 N(0,1) (46)

mo =

In this paper the total number of instruments has been reduced via cutting off at a certain lag.
However, the chosen cutting off point might be seen as a bit subjective by other researchers.
Therefore two other interesting methods will be given, which may be used in further research
on this topic. Firstly, Roodman (2009) gives a pretty straightforward method to reduce the
number of instruments. In place of the standard first-differenced GMM moment conditions
(E(yi+—1A¢€;) = 0 for each t > 3 and [ > 2), one imposes E(y;+—Ae;r) = 0 for each [ > 2.
Hence, these moment conditions are based upon the same orthogonality conditions, but the
empirical moments are only minimized over [, instead of [ and ¢. By doing so, one may reduce
the number of columns of the instrument variable matrix via placing all lagged values of the
same order into one column. Hence, the first column will consists of y;1, ¥i2, ¥i3..., which are
the first order lags associated with respectively Ayio, Ayisz, Ayy... The advantage of this
method is that more information is potentially retained, as no lags are actually dropped.
Another more advanced method, has been proposed by Mehrhoff (2009). His idea is to
reduce the number of instruments via principal component analysis. This method seems
very suitable for this issue, as the objective of principal component analysis is to reduce
the dimensionality with a minimal amount of information loss. However, do note that the
stronger assumption of independence of ¥;;_; and Ae; is required for using the principal
components within the moment conditions of the GMM-estimator.

Next to the variables that are used in these latent class models, one could think of other vari-
ables that might have a significant influence on household income growth. A good example
are tax-reforms, which obviously directly influence the post-government income of house-
holds. Therefore, it could be of interest for further research to look at major tax reforms
and include these as dummies to the model. However, do note that these tax reform event
dummies are also rare events. Therefore they might experience the same issue of being seen
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as outlying observations. As this was also the case for the three dummy variables that were
initially added these models. For this reason, investigation of major tax reforms was left out
of this research.
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A Tables

A.1 Summary statistics

Germany Korea Switzerland UK US
mean 0.009 0.087 0.010 0.041  0.013
median 0.004 0.024 0.005 0.023  0.012
standard deviation 0.358 1.220 0.945 0.853  0.588
MAD 0.143 0.353 0.196 0.239  0.232
skewness 0.789 1.426 1.051 0.626  -0.077
kurtosis 208.557  23.656 94.469 83.873 73.301
outer 2.5% 0.152 0.148 0.175 0.153  0.125

Table 9: Summary statistics of household real income growth

mean median stan. dev. MAD % missing
number of children 0.53 0.00 0.89 0.00 1.02
post-gov. income 27649.76 23526.17 22362.01 14350.33 1.02
labor income (house) 26728.55 20400.00 32658.37 30245.04 1.02
pre-gov. income 29204.71 22231.00 38945.73 30839.56 1.02
age 49.33 48.00 17.70 19.27 1.33
labor income (person) 18205.64 12570.10 23320.45 18636.44 1.01
education level 1.98 2.00 0.63 0.00 3.51
education years 11.62 11.00 2.53 1.48 5.02
working hours 1197.16 1182.00 1092.40 1713.89 1.31

Table 10: Summary statistics of German data, income values are in euros

mean median stan. dev. MAD % missing
number of children 1.30 1.00 1.03 1.48 2.29
post-gov. income 3197.84 2480.00 3253.70 1971.86 2.29
labor income (house) 2754.33 2340.00 2692.67 2134.94 2.29
pre-gov. income 3526.84 2829.00 3591.75 2400.33 17.63
age 46.65 45.00 14.64 14.83 2.13
labor income (person) 1878.14 1440.00 2478.08 1423.30 5.65

Table 11: Summary statistics of Korean data, income values are in 10.000 Korean won
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A.2 Coeflicient tables

mean median stan. dev. MAD % missing
number of children 0.74 0.00 1.05 0.00 3.28
post-gov. income 80921.56 72151.53 63670.22 41414.15 3.28
labor income (house) 90287.38 83200.00 99925.96 88659.48 3.28
pre-gov. income 96321.17 86800.00 112129.73 85528.29 3.28
age 47.18 46.00 16.35 16.31 3.06
labor income (person) 54354.20 46456.00 71770.73 58337.34 3.06

Table 12: Summary statistics of Swiss data, income values are in Swiss francs

mean median stan. dev. MAD % missing
number of children 0.72 0.00 1.05 0.00 4.21
post-gov. income 24462.42 18941.75 85946.96 13109.46 18.11
labor income (house) 18685.09 12009.24 23957.32 17804.90 5.80
pre-gov. income 25300.18 19815.24 85351.75 20419.56 14.17
age 48.46 47.00 18.29 19.27 4.01
labor income (person) 11939.52 7890.07 15985.18 11697.82 7.38

Table 13: Summary statistics of UK data, income values are in pounds

mean median stan. dev. MAD % missing
number of children 0.88 0.00 1.24 0.00 18.42
post-gov. income 30569.98 20313.30 44474.66 17586.07 18.61
labor income (house) 31560.64 17500.00 61144.46 25631.19 18.61
pre-gov. income 36705.47 21400.00 66679.43 23532.98 18.62
age 43.60 42.00 18.01 19.27 17.58
labor income (person) 19349.68 9500.00 44839.57 14084.70 17.70
education level 2.16 2.00 0.79 1.48 18.36
education years 12.59 12.00 2.78 2.97 21.39
working hours 1432.28 1715.00 1131.77 1065.99 17.68

Table 14: Summary statistics of US data, income values are in dollars

A.2 Coefficient tables

The coefficient tables give the coefficients, standardized errors and p-values of the eight
distinct models. The standardized errors shown in these tables are the regular standard
errors obtained via the asymptotic property given in equation 40. Next to this, two p-values
are given in each table (p-value and boot p-value). As the names already suggest, the first
p-value is obtained via the regular standard errors, while for the latter all standard errors
are multiplied with the uncertainty inflation factor caused by missing values of 3.16. Then,
each number at the end of a segment specific explanatory variable corresponds to its segment
number, whereby the segments are ordered according to their size. Lastly, some summary
statistics are given on the right side of each table.
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A.2 Coeflicient tables

coef. std. error p-value boot p-val.

A Income;_1 1 -0.604 0.007 0.000 0.000 Adj. likelihood -84370.9
GDP growth 1 -0.178 0.214 0.404 0.791 s.d. seg. prob. 0.000
Inequality level 1 -5.234 0.349 0.000 0.000 Sargan test 1.000
Redistribution 1 -0.079 0.526 0.881 0.962 % Outlier 0 0.189
A Income; 1 2 0.690 0.019 0.000 0.000 % Outlier < 1 0.294
GDP growth 2 1.380 0.313 0.000 0.163
Inequality level 2 4.483 0.458 0.000 0.002 o1 0.427
Redistribution 2 0.420 0.587 0.474 0.820 o9 0.412
Age -0.015 0.001 0.000 0.000
Education years -0.842 0.089 0.000 0.003
Work hours growth -0.379 0.013 0.000 0.000
Table 15: Coeflicient table of analysis 1 with 2 segments
coef.  std. error p-value boot p-val.
A Income;_1 1 1.131 0.014 0.000 0.000 Adj. likelihood -105082.7
GDP growth 1 -2.333 0.448 0.000 0.099 s.d. seg. prob. 0.007
Inequality level 1 0.836 0.427 0.050 0.535 Sargan test 1.000
Redistribution 1 6.523 0.235 0.000 0.000 % Outlier 0 0.171
A Income; 1 2 -0.505 0.016 0.000 0.000 % Outlier < 1 0.266
GDP growth 2 5.149 0.365 0.000 0.000
Inequality level 2 -0.287 0.621 0.643 0.883 o1 0.504
Redistribution 2 -10.540 1.116 0.000 0.003 09 0.385
A Income;_q 3 -1.076 0.029 0.000 0.000 o3 0.704
GDP growth 3 -3.875 0.650 0.000 0.059
Inequality level 3 -4.793 1.154 0.000 0.188
Redistribution 3 12.402 1.431 0.000 0.006
Age -0.005 0.001 0.000 0.006
Education years 0.023 0.108 0.830 0.946
Work hours growth  0.000 0.006 0.969 0.990

Table 16: Coefficient table of analysis 1 with 3 segments
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A.2 Coeflicient tables

coef.  std. error p-value boot p-val.
A Income;_1 1 -0.385 0.007 0.000 0.000 Adj. likelihood -57439.3
GDP growth 1 -0.094 0.077 0.223 0.699 s.d. seg. prob. 0.001
Inequality level 1 1.369 0.186 0.000 0.019 Sargan test 1.000
Redistribution 1 1.281 0.291 0.000 0.164 % Outlier 0 0.148
A Income;_1 2 0.798 0.029 0.000 0.000 % Outlier < 1 0.235
GDP growth 2 1.653 0.537 0.002 0.329
Inequality level 2 -15.138 1.136 0.000 0.000 o1 0.277
Redistribution 2 -4.580 1.800 0.011 0.420 09 0.851
Age -0.010 0.001 0.000 0.000
Education years -0.213 0.116 0.066 0.560
Work hours growth -0.213 0.012 0.000 0.000
Table 17: Coeflicient table of analysis 2 with 2 segments
coef.  std. error p-value boot p-val.
A Income;_1 1 -0.087 0.012 0.000 0.026 Adj. likelihood -63427.1
GDP growth 1 -0.463 0.157 0.003 0.351 s.d. seg. prob. 0.029
Inequality level 1 -1.669 0.264 0.000 0.045 Sargan test 1.000
Redistribution 1 -0.513 0.463 0.269 0.726 % Outlier 0 0.146
A Income;_q1 2 0.264 0.014 0.000 0.000 % Outlier < 1 0.220
GDP growth 2 4.280 0.462 0.000 0.003
Inequality level 2 3.715 0.673 0.000 0.080 o1 0.265
Redistribution 2 2.021 1.182 0.087 0.588 09 0.535
A Income;_1 3 -0.369 0.033 0.000 0.000 o3 0.548
GDP growth 3 -3.644 1.301 0.005 0.375
Inequality level 3 -0.925 1.931 0.632 0.879
Redistribution 3 10.679 3.706 0.004 0.361
Age -0.008 0.001 0.000 0.001
Education years 0.176 0.110 0.110 0.612
Work hours growth  0.133 0.011 0.000 0.000
Table 18: Coefficient table of analysis 2 with 3 segments
coef. std. error p-value boot p-val.
A Income;_1 1 -0.311 0.013 0.000 0.000 Adj. likelihood -53992.7
GDP growth 1 -0.627 0.060 0.000 0.001 s.d. seg. prob. 0.000
Inequality level 1 1.967 0.142 0.000 0.000 Sargan test 1.000
Redistribution 1 0.238 0.183 0.194 0.680 % Outlier 0 0.163
A Income;_1 2 -0.102 0.013 0.000 0.014 % Outlier < 1 0.261
GDP growth 2 1.855 0.151 0.000 0.000
Inequality level 2 -4.225 0.236 0.000 0.000 o1 0.239
Redistribution 2 -0.134 0.302 0.657 0.888 09 0.443
Age -0.008 0.001 0.000 0.000

Table 19: Coefficient table of analysis 3 with 2 segments
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A.2 Coeflicient tables

coef.  std. error p-value boot p-val.
A Income; 1 1 0.025 0.024 0.308 0.747 Adj. likelihood -118080.3
GDP growth 1 -0.264 0.090 0.003 0.354 s.d. seg. prob. 0.036
Inequality level 1 2.345 0.258 0.000 0.004 Sargan test 1.000
Redistribution 1 -0.065 0.245 0.791 0.933 % Outlier 0 0.148
A Income; 1 2 0.191 0.021 0.000 0.004 % Outlier < 1 0.249
GDP growth 2 0.900 0.310 0.004 0.359
Inequality level 2 -6.867 0.483 0.000 0.000 o1 0.279
Redistribution 2 4.516 0.600 0.000 0.017 09 0.527
A Income;_1 3 -1.582 0.035 0.000 0.000 o3 1.599
GDP growth 3 3.974 1.801 0.027 0.484
Inequality level 3 1.045 1.486 0.482 0.824
Redistribution 3 -11.650 3.002 0.000 0.219
Age -0.012 0.001 0.000 0.000

Table 20: Coeflicient table of analysis 3 with 3 segments

coef. std. error p-value boot p-val.
A Income; 1 1 0.302 0.029 0.000 0.001 Adj. likelihood -170154.8
GDP growth 1 0.226 0.060 0.000 0.235 s.d. seg. prob. 0.001
Inequality level 1 1.009 0.171 0.000 0.061 Sargan test 1.000
Redistribution 1 1.640 0.296 0.000 0.079 % Outlier 0 0.174
A Income;_q1 2 -1.150 0.027 0.000 0.000 % Outlier < 1 0.270
GDP growth 2 -1.148 0.234 0.000 0.120
Inequality level 2 -3.713 0.400 0.000 0.003 o1 0.365
Redistribution 2 -1.780 0.621 0.004 0.364 09 0.973
Age -0.005 0.001 0.000 0.130

Table 21: Coefficient table of analysis 4 with 2 segments

coef.  std. error p-value boot p-val.
A Income; 1 1 -0.401 0.016 0.000 0.000 Adj. likelihood -105995.8
GDP growth 1 -0.877 0.140 0.000 0.047 s.d. seg. prob. 0.049
Inequality level 1 -2.416 0.214 0.000 0.000 Sargan test 1.000
Redistribution 1 0.833 0.267 0.002 0.322 % Outlier 0 0.199
A Income; 1 2 0.452 0.054 0.000 0.009 % Outlier < 1 0.321
GDP growth 2 1.117 0.110 0.000 0.001
Inequality level 2 2.043 0.264 0.000 0.014 o1 0.436
Redistribution 2 3.663 0.450 0.000 0.010 o9 0.342
A Income;_1 3 -0.224 0.154 0.144 0.644 o3 0.298
GDP growth 3 -0.347 0.425 0.414 0.796
Inequality level 3 0.532 0.390 0.172 0.665
Redistribution 3  -11.177 1.474 0.000 0.016
Age -0.004 0.001 0.000 0.071

Table 22: Coeflicient table of analysis 4 with 3 segments
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A.3 Segmentation tables

A.3 Segmentation tables

The segmentation tables give the segment probability of each segment together with some
segment probabilities of subgroups. To be more precise, subgroups are created by splitting
all households according to their value for a certain variable (e.g. age or average disposable
income). Eventually, subgroup segment probabilities are calculated by taking the mean over
the segment probabilities of all households within that subgroup.

group 1 group 2 group 1 group 2 group 3
segment probability 0.573 0.427 0.473 0.359 0.168
mainly labor income 0.552 0.448 0.519 0.358 0.123
mainly non labor income 0.567 0.433 0.508 0.370 0.121
mainly government income  0.629 0.371 0.412 0.365 0.223
no job 0.688 0.312 0.343 0.380 0.277
young (<35) 0.604 0.396 0.443 0.370 0.187
middle (35-65) 0.592 0.408 0.473 0.371 0.156
old (>65) 0.556 0.444 0.505 0.370 0.125
lowest income 0.680 0.320 0.331 0.324 0.344
highest income 0.507 0.493 0.565 0.351 0.084
volatile 0.848 0.152 0.122 0.446 0.432
volatile low income 0.848 0.152 0.114 0.398 0.488
volatile middle income 0.850 0.150 0.130 0.493 0.378
volatile high income 0.849 0.151 0.139 0.539 0.321
stable 0.309 0.691 0.779 0.192 0.029
USA 0.573 0.427 0.473 0.359 0.168

Table 23: Segmentation table of analysis 1, results of the model with two segments are in the two
left-hand columns and results of the model with three segments are in the three right hand columns
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A.3 Segmentation tables

group 1 group 2 group 1 group 2 group 3
segment probability 0.831 0.169 0.645 0.285 0.070
mainly labor income 0.843 0.157 0.666 0.273 0.061
mainly non labor income 0.900 0.100 0.652 0.312 0.036
mainly government income  (0.885 0.115 0.677 0.263 0.060
no job 0.800 0.200 0.523 0.366 0.111
young (<35) 0.775 0.225 0.591 0.314 0.096
middle (35-65) 0.830 0.170 0.632 0.295 0.073
old (>65) 0.927 0.073 0.724 0.246 0.030
lowest income 0.714 0.286 0.497 0.340 0.163
highest income 0.884 0.116 0.703 0.257 0.040
volatile 0.676 0.324 0.309 0.530 0.161
volatile low income 0.615 0.385 0.284 0.502 0.214
volatile middle income 0.719 0.281 0.326 0.553 0.120
volatile high income 0.761 0.239 0.345 0.558 0.097
stable 0.932 0.068 0.872 0.106 0.022
USA 0.797 0.203 0.608 0.302 0.090
Germany 0.865 0.135 0.666 0.281 0.054

Table 24: Segmentation table of analysis 2, results of the model with two segments are in the two
left-hand columns and results of the model with three segments are in the three right hand columns

group 1 group 2 group 1 group 2 group 3
segment probability 0.598 0.402 0.615 0.327 0.058
mainly labor income 0.667 0.333 0.688 0.273 0.040
mainly non labor income 0.558 0.442 0.520 0.402 0.078
mainly government income  0.603 0.397 0.588 0.326 0.085
no job 0.464 0.536 0.433 0.429 0.139
young (<35) 0.593 0.407 0.601 0.347 0.053
middle (35-65) 0.622 0.378 0.627 0.315 0.058
old (>65) 0.656 0.344 0.643 0.299 0.058
lowest income 0.442 0.558 0.425 0.413 0.162
highest income 0.612 0.388 0.623 0.311 0.066
volatile 0.283 0.717 0.201 0.594 0.205
volatile low income 0.229 0.771 0.154 0.578 0.269
volatile middle income 0.315 0.685 0.231 0.607 0.162
volatile high income 0.305 0.695 0.215 0.591 0.194
stable 0.837 0.163 0.913 0.085 0.002
USA 0.532 0.468 0.538 0.402 0.060
Germany 0.767 0.233 0.758 0.219 0.023
UK 0.543 0.457 0.555 0.357 0.088

Table 25: Segmentation table of analysis 3, results of the model with two segments are in the two
left-hand columns and results of the model with three segments are in the three right hand columns
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A.4 Quantile tables

group 1 group 2 group 1 group 2 group 3
segment probability 0.686 0.314 0.580 0.368 0.052
mainly labor income 0.755 0.245 0.527 0.420 0.054
mainly non labor income 0.613 0.387 0.671 0.267 0.062
mainly government income  0.669 0.331 0.577 0.367 0.056
no job 0.512 0.488 0.717 0.228 0.054
young (<35) 0.684 0.316 0.605 0.338 0.057
middle (35-65) 0.699 0.301 0.581 0.375 0.044
old (>65) 0.698 0.302 0.575 0.375 0.050
lowest income 0.482 0.518 0.706 0.239 0.056
highest income 0.693 0.307 0.553 0.384 0.063
volatile 0.220 0.780 0.877 0.082 0.041
volatile low income 0.171 0.829 0.901 0.061 0.038
volatile middle income 0.253 0.747 0.862 0.096 0.043
volatile high income 0.227 0.773 0.872 0.087 0.042
stable 0.950 0.050 0.209 0.672 0.118
USA 0.756 0.244 0.600 0.373 0.027
Germany 0.859 0.141 0.379 0.579 0.042
UK 0.632 0.368 0.654 0.258 0.088
Korea 0.432 0.568 0.811 0.166 0.023
Switzerland 0.703 0.297 0.570 0.397 0.033

Table 26: Segmentation table of analysis 4, results of the model with two segments are in the two
left-hand columns and results of the model with three segments are in the three right hand columns

A.4 Quantile tables

The quantile tables contain weighted quantile values for household averages of some vari-
ables over the different segments. Hence, the second row of this table contains the segment
numbers for which the weighted quantiles are determined. These weighted quantile values
are calculated by using the segment probability multiplied with the number of observations
of a certain household as weight. In other words, the idea of this table is to give a summary
of the shape of the distribution of a certain variable for a certain segment.

1% 10% 25%  50% 5%  90%  99%

0.146 0.331 0.562 0978 1.502 2.108 4.284
0.208 0.420 0.727 1.210 1.729 2.256 3.894
0.007 0.149 0.443 0.966 1.670 2.521 5.824
0.003 0.182 0.642 1.288 1.982 2.722 5.044
0.000 0.079 0.381 0.960 1.693 2.551 5.584
0.000 0.035 0.579 1.323 2.066 2.854 5.098
-0.397 -0.069 -0.026 0.005 0.041 0.101 0.385
-0.199 -0.050 -0.017 0.011 0.043 0.092 0.312

post-government income
pre-government income
labor income

1
2
1
2
1
2
income growth 1
2

Table 27: Quantile table of analysis 1 with 2 segments
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A.4 Quantile tables

1% 10% 25%  50% 5%  90%  99%

post-government income 1 0.209 0.439 0.751 1.231 1.738 2.287 3.932
2 0184 0373 0.624 1.032 1.556 2.157 4.298

3 008 0.240 0.393 0.705 1.198 1.717 4.190

pre-government income 1 0.003 0.194 0.681 1.323 2.011 2.764 5.254
2 0.009 0.177 0.499 1.028 1.723 2.602 5.824

3 0.003 0.112 0.285 0.653 1.257 2.001 5.704

labor income 1 0.000 0.039 0.624 1.357 2.088 2873 5.178
2 0.000 0.085 0.432 1.025 1.743 2.602 5.724

3 0.000 0.070 0.262 0.622 1.258 2.004 4.943

income growth 1 -0.178 -0.048 -0.016 0.011 0.042 0.087 0.267
2 -0.282 -0.063 -0.024 0.006 0.042 0.103 0.359

3 -0.838 -0.117 -0.037 0.003 0.044 0.121 0.773

Table 28: Quantile table of analysis 1 with 3 segments

1% 10% 25%  50% 5% 90%  99%

post-government income 1 0.204 0.427 0.694 1.086 1.542 2.114 4.074
2 0.117 0308 0.508 0.866 1.304 1.886 3.725

pre-government income 1 0.001 0.091 0.495 1.108 1.766 2.592 5.488
2 0.009 0.173 0.414 0.858 1.457 2.222 4.917

labor income 1 0.000 0.001 0.398 1.112 1.810 2.660 5.305
2 0.000 0.149 0.395 0.852 1.468 2.245 4.902

income growth 1 -0.190 -0.050 -0.018 0.009 0.038 0.082 0.283
2 -0.670 -0.078 -0.023 0.010 0.052 0.132 0.691

Table 29: Quantile table of analysis 2 with 2 segments

1% 10% 25%  50% 5%  90%  99%

post-government income 1 0.218 0.457 0.726 1.116 1.570 2.138 4.055
2 0161 0361 0.598 0.958 1.424 2.029 4.082

3 0084 0.248 0.410 0.769 1.237 1.786 3.765

pre-government income 1 0.001 0.084 0.526 1.157 1.808 2.639 5.458
2 0.003 0.144 0.451 0.944 1.581 2.408 5.546

3 0005 0.136 0.327 0.755 1.338 2.080 4.700

labor income 1 0.000 0.000 0433 1.172 1.865 2.714 5.275
2 0.000 0.056 0.384 0.922 1.583 2.397 5.393

3 0.000 0.117 0.312 0.755 1.361 2.121 4.185

income growth 1 -0.175 -0.044 -0.015 0.010 0.038 0.081 0.280
2 -0.361 -0.070 -0.025 0.007 0.042 0.100 0.392

3 -0.973 -0.078 -0.024 0.010 0.050 0.125 0.705

Table 30: Quantile table of analysis 2 with 3 segments
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A.4 Quantile tables

1% 10% 25%  50% 5%  90%  99%

post-government income 1 0.264 0.520 0.754 1.102 1.505 2.006 3.522
2 0.159 0387 0.600 0.953 1.365 1.969 4.530

pre-government income 1 0.000 0.071 0.449 1.169 1.902 2.726 5.173
2 0.000 0.088 0.343 0916 1.699 2.660 6.395

labor income 1 0.000 0.000 0.273 1.201 2.054 3.025 5.702
2 0.000 0.000 0.201 0.887 1.842 2.927 6.620

income growth 1 -0.190 -0.045 -0.014 0.013 0.044 0.090 0.276
2 -0.608 -0.096 -0.030 0.015 0.068 0.158 0.806

Table 31: Quantile table of analysis 3 with 2 segments

1% 10% 25%  50% 5% 90%  99%

post-government income 1 0.270 0.527 0.760 1.105 1.498 1.992 3.477
2 0.187 0.407 0.625 0.970 1.395 1.993 4.272

3 0076 0.258 0.435 0.756 1.246 2.012 5.668

pre-government income 1 0.000 0.074 0.478 1.188 1.906 2.719 5.152
2 0.000 0.093 0.345 0.908 1.700 2.658 6.119

3 0.000 0.043 0.204 0.675 1.553 2.788 8.180

labor income 1 0.000 0.000 0.314 1.234 2.075 3.028 5.672
2 0.000 0.000 0.206 0.859 1.811 2.901 6.603

3 0.000 0.000 0.066 0.567 1.638 3.013 7.421

income growth 1 -0.192 -0.046 -0.014 0.012 0.043 0.084 0.239
2 -0.399 -0.085 -0.027 0.017 0.072 0.161 0.541

3 -2.510 -0.224 -0.042 0.022 0.095 0.316 2.978

Table 32: Quantile table of analysis 3 with 3 segments

1% 10% 25%  50% 5%  90%  99%

post-government income 1 0.244 0.509 0.746 1.096 1.505 2.022 3.644
2 0121 0337 0.555 0.910 1.333 1.979 4.587

pre-government income 1 0.000 0.066 0.458 1.164 1.883 2.720 5.287
2 0.000 0.088 0.327 0.851 1.575 2.541 6.254

labor income 1 0.000 0.000 0.292 1.195 2.026 3.016 5.841
2 0.000 0.000 0.177 0.787 1.610 2.715 6.474

income growth 1 -0.205 -0.058 -0.019 0.011 0.048 0.095 0.262
2 -0.861 -0.131 -0.043 0.020 0.092 0.252 2.039

Table 33: Quantile table of analysis 4 with 2 segments
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Gini coefficient after redistribution

1% 10% 25%  50% 5%  90%  99%

1 0147 0.401 0.637 0.993 1416 1987 4.179
2 0257 0522 0.765 1.118 1.533 2.059 3.619
3 0228 0492 0.700 1.022 1.392 1.870 3.527
1 0.000 0.093 0376 0967 1.699 2587 5.736
2 0.000 0.046 0476 1.221 1.941 2.773 5.269
3 0.000 0.063 0.375 1.072 1.884 2.846 5.642
1
2
3
1
2

post-government income

pre-government income

0.000 0.000 0.219 0.937 1.787 2.826 6.106
0.000 0.000 0.313 1.262 2.071 3.045 5.828
0.000 0.000 0.144 1.110 2.150 3.402 6.652
-0.488 -0.093 -0.030 0.018 0.072 0.160 1.169
-0.191 -0.050 -0.018 0.008 0.039 0.081 0.245
3 -0.645 -0.104 -0.030 0.017 0.067 0.134 0.390

labor income

income growth

Table 34: Quantile table of analysis 4 with 3 segments
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