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Abstract

Recommender systems are a class of algorithms that help customers to
overcome their choice problem by recommending products that they are likely
to be interested in. Most recommender systems are developed for datasets
where users explicitly provide feedback in the form of ratings. In practice,
such datasets are often unavailable and companies have to resort to implicit
datasets, where feedback is distilled from different sorts of user’s behavior,
such as click through data or purchases. There exists some models that are
specifically suited for implicit datasets and that can be estimated with al-
ternating least squares (ALS) and stochastic gradient descent methods. The
main goal of this research is to develop convex spectral regularization algo-
rithms that are able to solve these implicit models. Until now, such algorithms
are only designed for explicit context and cannot be applied to solve implicit
models. The advantage of these algorithms is that they are computationally
very efficient and need fewer observations than their ALS counterparts. We
develop three algorithms that optimize three different implicit data models.
One of these models is newly developed and based on a squared hinge loss
function. All algorithms scale linearly in complexity with the size of the data.
From a simulation study, we find evidence that the algorithms perform well for
large datasets. We successfully apply the algorithms to an empirical dataset
of an e-commerce company and show that they compare favourably to com-
peting methods. We find no evidence for superior performance of our newly
developed one-sided squared hinge loss model.

Keywords: Spectral regularization, Implicit data, Matrix Factorization, Nu-
clear Norm

1 Introduction

The growing popularity of e-commerce can be explained by the ease of ordering and
their broad range of products. One of the major challenges, however, is to help
customers select the relevant products out of all these offers. Where offline stores
have the advantage of personnel that helps the customers, e-commerce companies
have to resort to other solutions. One approach to help customers with this choice
overload problem is to provide them with personalized recommendations. Since
recently, many variations of computer algorithms are developed to deal with this
problem. These so called ”recommender systems” select and display a group of
products that, hopefully, fit the customers’ wants and needs.

All recommender systems aim to relate products and users, but their strategies
differ. Roughly, there are two main strategies: content-based filtering and collabora-
tive filtering. Combinations of these two are also possible. In content-based filtering,
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attributes are assigned to either the user (customer) or the item (product) in or-
der to profile them. The profiles that are formed by these attributes are used to
associate users with matching products. For collaborative filtering algorithms, the
main focus of this research, the recommendations are based on past feedback from
customers and the creation of such an explicit profile is unnecessary. These systems
generally outperform pure content-based techniques (Koren et al., 2009).

Collaborative filtering algorithms can again be subdivided into neighborhood
methods and latent factor models. The first type aims to find users (or items) that
show strong similarity in terms of their ratings (the neighbors). It will then recom-
mend items based on the ratings of these neighbors. Latent factor models assume
that ratings are deeply influenced by a (relatively) small set of domain specific latent
factors. These latent factors together span a latent feature space. The method seeks
to find vectors for both the user and the item in this space. The entries of these
vectors will represent the score of the user or item on that specific factor and their
dot product will be an approximation of the rating. Interpretation of these factors is
generally not obvious since they are mathematically derived. For example, a latent
factor for movie recommendation could represent something like its genre, but also
a measure for the positive vibe in a movie or a combination of both.

Matrix Factorization (MF) techniques are a class of widely successful latent factor
models that aim to find low-rank approximations to the user-item matrix, a matrix
with all known interactions between users and items. These low rank approximations
will then consist of the user and item vectors.

MF models became widely popular since the Netflix Prize competition (Bennett
et al., 2007) and many authors have suggested algorithms that solve these models.
Even though there exists an abundance of research on this topic, almost all MF
recommender systems use high quality explicit feedback as input. Explicit feedback
consists of users’ ratings for items, for example with a 5 stars rating mechanism or a
thumb up / thumb down system. Explicit feedback is convenient as it incorporates
a lot of information. However, in practice, it is often unavailable and business
have to resort to implicit feedback. This type of feedback is distilled from user
behavior and indirectly reflects a users preferences. Examples of implicit feedback
include purchase history, mouse movements, search patterns and clicks on a website.
Because of the practical relevance, this research will focus on MF techniques for
implicit feedback.

Implicit feedback is fundamentally different from explicit feedback. Hu et al.
(2008) identify four main differences. First, there is no clear negative feedback;
having not clicked a product does not necessarily imply that a user does not like
the item, he could simply be unaware that this product is offered. Second, the data
is inherently noisy; having clicked a product does not necessarily imply positive
feedback. It could also be an accidental click. Third, the numerical value does not
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indicate the preference of a user. For instance, more purchases don’t necessarily
imply the user is more positive about the product. It could be that the user simply
needs repeat purchases for that product. The numerical value is, however, correlated
with the confidence we have in positive feedback. The final difference they note is
that implicit feedback calls for a different evaluation metric. We cannot compare
the predicted rating with the numerical value of implicit data and should therefore
resort to another, more appropriate, metric.

Some authors developed methods for recommender systems that are specifically
suited to the implicit data context (Hu et al., 2008; Johnson, 2014; Koren, 2008;
Lee et al., 2008; Pilászy et al., 2010). Their approaches are based on a variety
of different ideas such as the inclusion of temporal information or incorporating a
confidence measure in an effort to improve accuracy. For optimization, they often
use Gradient Descent or Alternating Least Squares methods. In Mazumder et al.
(2010), an attractive alternative is introduced to these optimization methods. The
authors develop the softImpute algorithm, which is very efficient in handling large
matrices. This convex spectral regularization algorithm introduced in Mazumder
et al. (2010) seems to be faster than the available Gradient Descent Methods and
from Jain et al. (2013), we know that convex minimization methods need fewer
observed data points than alternating least squares methods to arrive at the correct
solution.

Because the softImpute algorithm only works with explicit data, we aim to
extend it to the implicit data context. Hence, this research answers the following
main research question: Can we develop a convex spectral regularization algorithms
for recommender systems with large implicit datasets? In this research, we develop
three of such algorithms. For each of these algorithms, we also investigate how
well they perform in terms of speed, their ability to uncover the true underlying
preferences and how they compare to other methods. This paper does not aim to
evaluate the performance of existing methods since this is often very dependent on
the situation. Instead, we aim to provide new flexible efficient algorithms that can
be used in conjunction with existing methods.

In order to answer our research question, we organize this paper as follows. First,
we discuss the methods of dealing with implicit data. We review some literature and
examine the existing models that are designed for implicit feedback data. In addi-
tion, we develop a new one-sided squared hinge loss model. Second, the optimization
is discussed. We examine the algorithm of Mazumder et al. (2010) and develop three
algorithms for the implicit data case. In the third section, we design and conduct
a simulation study to investigate the performance of our algorithms. In the fourth
section, all algorithms are tested on an empirical dataset and we will illustrate that
the new algorithms show superior performance to current methods.
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2 Dealing with Implicit Data

2.1 Related Works

There is little research on dealing with implicit data in recommender systems. Since
Oard et al. (1998) laid out the groundwork on different strategies that researchers
could use to transform implicit feedback into predicted ratings, only few authors
have actually designed such systems.

Perhaps the most cited work is from Hu et al. (2008), who distinguishes two
parts that are embedded in a user’s implicit feedback data. Namely, the positive-
or no-feedback for the product and the confidence we have in this feedback. They
define positive- or no-feedback as a binary indicator and they suggest several ways to
transform the frequency of the implicit data into a confidence measure. They then
suggests to use these confidence measures as weights on the squared errors, assigning
a higher weight to the losses where we are more certain. Their proposed algorithm
solves the weighted problem by means of Alternating Least Squares (ALS).

Pan et al. (2008) has simultaneously designed a weighted ALS algorithm to deal
with implicit feedback. However, they argue that no-feedback should be treated as
negative feedback with varying but lower weights. They suggest, for example, that
if a user has already viewed many products, we can infer that he does not like the
products without feedback with a higher probability. Therefore we assign higher
weights to their negative feedback. Simultaneously, they treat all implicit feedback
as binary positive feedback with the same weights.

Other authors have suggested to incorporate even more information through
different weighting schemes. For example, Lee et al. (2008) use time dependent
weights in their nearest neighbor model in order to account for preferences that
change over time. Also, Johnson (2014) suggests that for a music streaming service,
streams with explicit clicks should be weighted higher than streams without clicks.
Finally, Fang and Si (2011) add weighting schemes that include user-item similarity
for situations in which there is rich information on both users as well as items.

Johnson (2014) extends the method of Hu et al. (2008) by exploiting the binary
structure of the positive feedback. He presents the Logistic Matrix Factorization
algorithm, where he follows a probabilistic approach to explain each matrix entry. He
uses the same weighting scheme as Hu et al. (2008) but then applied on the likelihood
contributions of each observation in order to estimate the model. The model is
estimated by a alternating gradient descent approach. His model outperforms Hu
et al. (2008) in terms of accuracy.

In summary, in dealing with implicit data, most authors aim to incorporate some
form of information in the model through weights in the cost function. Then they
proceed to estimate their model through either alternating least squares or gradient
descent methods.
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2.2 Notation and Problem Formulation

We build upon the strategy of Hu et al. (2008) of distinguishing a feedback and
confidence part in the data. By doing so, we can distinguish two cases:

Case 1: Feedback is provided. We assume that the user has a positive preference for
the item. These observations have, by definition, a larger weight than observations
for which no feedback is provided. The weights express the confidence we have in
this assumption and are correlated with the numerical value of the implicit feedback.

Case 2: Feedback is not provided. We typically do not know why a user has
not provided feedback for the item. Reasons include, but are not limited to, dis-
like, unawareness and no need for a product. We assume that the user has neutral
preference. We assign a relatively low weight to these observations. The low weight
reflects the low confidence we have in this assumption.

If we collect all the information on all interactions between users i = 1, . . . , n and
items j = 1, . . . , p, we can construct n × p matrix X whose entries xij denote the
feedback of user i on product j. For Implicit feedback, we set xij = 1 and xij = 0
for Case 1 and 2 respectively. It is typical for matrix X to be very sparse, since
most users only provide feedback for a few products.

It is our objective to explain matrix X with some AB′ where A is a n× k and
B is a p × k matrix, with k < min(n, p). Therefore AB′ has a lower rank than X
and we thus have that the true ratings are explained by a small set of latent factors.

In the estimation process, we fit the low-rank matrix AB′ to X by minimizing
some objective function. The confidence we have in each observation is included in
the model by putting weights on each observation’s contribution to the objective
function. These weights are collected in n × p matrix W . We will elaborate more
on the structure and choice of W in Section 2.4.

The general format of the objective function is given by:

L(A,B|X,W ) = C(A,B|X,W ) + λR(A,B|W ), (1)

where C(·) is a loss function that measures how well our estimate AB′ reflects the
true data matrix X, R(·) is a regularization term that promotes a low rank solution
and λ ∈ R+ controls the importance of the regularization term. In general, λ needs
to be selected through cross-validation.

Suppose Â and B̂ are associated with the minimum of (1). Let the rows of

Â and B̂ be denoted by column vectors âi and b̂j; these are the user and item

vectors in the latent feature space. Now, each entry of ÂB
′
will be given by the dot

product â′ib̂j. The value of this dot-product is assumed to represent the underlying
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preference of a user for an item. These preferences eventually express themselves
in X, the binary implicit feedback matrix. From the predicted preferences, we can
construct our recommendations.

The notations introduced in this section will be used throughout the paper and,
where necessary, additional notation will be provided. In order to facilitate notation,
we assume throughout this paper that n ≥ p, even though the results hold for the
case that n < p as well.

2.3 Implicit Feedback Models

There are many possible choices for the cost function C(·) and regularization R(·),
but not all are equally well suited to the implicit feedback context. For explicit feed-
back, the predominant cost function in literature is the quadratic loss function over
the observed entries of the matrix. As a regularization term for convex optimization
methods, any candidate that is a convex relaxation of the rank constraint can be
used. In literature, the Nuclear Norm (NN, also known as trace norm and Ky Fan
norm) is often used as regularization term since this the ”best” convex approxima-
tion of the rank (Candes and Recht, 2008; Fazel, 2002; Mazumder et al., 2010). The
NN is defined as the sum of singular values and the rationale behind its use is that
its minimum is likely to be obtained if many of the singular values are set to zero,
thus resulting in a low rank solution. Let Ω := {(i, j) : xij is observed} denote the
set of observed entries. The model to be minimized then becomes (Mazumder et al.,
2010):

minimize
A,B

fλ(A,B) =
1

2

∑
(i,j)∈Ω

(xij − a′ibj)2 + λ||AB′||∗. (2)

where ||·||∗ denotes the NN.
For Implicit feedback models, we cannot follow the approach of only including

observed values in the analysis. Namely, we need to include the information of all
the data points (Case 1 and Case 2, see Section 2.2) in our model. In addition,
we need to include the confidence we have in the observation through weights. A
simple modification of (2) that suits the implicit feedback case is to change the cost
function into weighted squared loss (Hu et al., 2008):

minimize
A,B

fλ(A,B) =
1

2

[∑
i,j

wij(xij − a′ibj)2

]
+ λ||AB′||∗. (3)

Note that (2) can be seen as a special case of this function, where we have set wij = 1
for xij ∈ Ω and zero elsewhere.

In Section 3.3 we will illustrate that the optimization of (3) can be slow in the
presence of extreme weights. In Section 3.4 this problem is solved by substituting
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the NN for the Weighted Nuclear Norm (WNN). The WNN is also a convex reg-
ularization term and it is defined in Appendix A.1. We leave the motivation for
this model to Section 3.4 since it requires in-depth knowledge on the optimization
procedure.

Figure 1: Quadratic loss functions for xij =
1 and xij = 0. The dashed line indicates a loss
function for xij = 1 with lower weight.

Figure 2: One-sided squared hinge loss func-
tions for xij = 1 and xij = 0. The dashed line
indicates a loss function for xij = 1 with lower
weight.

In Figure 1, we see the quadratic loss function penalizes over- and underestima-
tions equally hard. The weights determine the steepness of the curves. We argue
that quadratic loss is not the most appropriate cost function for implicit data and
a one-sided squared hinge loss function, as in Figure 2 is more appropriate.

If the numerical value of â′ib̂j reveals the underlying preference of a person,
we do not want to push estimates towards xij = 1 if a higher predicted estimate
is more appropriate. That is, assume that the preference follows a linear scale.
Let us associate negative values with negative preferences, a zero value with neutral
preferences and a positive value with positive preferences. Then, if we have observed
feedback (Case 1), we want to promote higher values, which do not necessarily need
to be equal to 1. We still want to apply a squared loss for values if xij = 0. This
holds since we are unaware of the underlying reason, i.e. we do not know whether
it is unobserved because of dislike or because the user was simply unaware of the
product. If we translate these losses in our objective function, we have:

minimize
A,B

fλ(A,B) =
1

2
[
∑

(i,j)∈Ω

wij max(0, 1− a′ibj)2

+
∑

(i,j)6∈Ω

wij(a
′
ibj)

2] + λR(A,B|W ) (4)
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2.4 Incorporating Information by Weighting Matrix W

The weights in the loss function express the confidence we have in the observation
and they incorporate all sorts of information into the model, e.g. temporal informa-
tion or information on the customer segment.

As mentioned in Section 2.2, we want to have a (relatively) large positive weight
for observations in case 1 and a small positive weight for observations in case 2.
Therefore, we restrict our weights as:

wij =

{
1 + ψij if xij = 1
1 if xij = 0

, (5)

where ψij is required to be positive and depends on the numerical value of the
implicit feedback.

This structure of the weighting matrix is still very flexible and allows us to
incorporate many forms of information in the model. Note that W = J + Ψ, if ψij
are the elements of n× p matrix Ψ, with the same sparsity structure as X and J is
a n× p matrix of ones. By including weights for xij = 0, we also prevent the trivial

low-rank solution of ÂB
′
= J = 1(n×1)1

′
(p×1), where 1 is a vector of ones.

Let us define the input data as τijt ∈ R+, where partial observations are allowed
(for example: half-played music streams) and t denotes the time-stamp correspond-
ing to the observation. Let Tij denote the set of time-stamps corresponding to user
i and item j. Also, let α denote a scaling that can be set by the researcher.

The choice of a proper weighting scheme is very dependent on the context in
which the recommender is used. In Table 1, we provide four examples and the
selection of the final scheme should be done on the basis of managerial input as well
as testing. In this process, two aspects need to be considered.

As a first aspect, one needs to decide how the feedback is translated into the
weights. For example, the researcher must decide whether a constant or decreasing
marginal effect of feedback on the weight is more appropriate in the context (i.e.
simple sum or logarithmic weighing scheme). In addition, the researcher could incor-
porate other contextual information in the model through weights on the feedback
points (i.e. the time decay - weighted scheme, which is motivated by the assumption
that taste changes over time). Another option would be to normalize the weights,
this has the effect of reducing the variance among users, however, it could also lead
to over/underestimation of the confidence we have in a observation.

A second aspect that needs to be considered is the scaling parameter (α). The
researcher needs to tune this parameter to an appropriate value. The optimal value
strongly depends on the selected weighing scheme, the distribution of the data and
the type of input data. One should look over a grid of values of α and select the
value for which the model shows the best out-of-sample performance.
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Table 1: Some examples of allowed weighting schemes

Weighting Scheme Illustration Explanation

Simple sum

ψij = α
∑
t∈Tij

τijt

This is a simple weighing
scheme where the importance
increases by α with the nu-
merical value of the feed-
back. ψij actually expresses
the confidence we have in the
positive feedback.

Logarithmic

ψij = αlog(1 +
∑
t∈Tij

τijt)

The weights increase log-
arithmically, which reduces
the relative effect of extreme
weights.

Time decay - weighted

ψij = α
∑
t∈Tij

δtτijt

Here, we can use a time-decay
function that, for instance,
puts lower importance on the
older feedback points within
a simple sum through δt.

Product Normalized

ψij = α

∑
t∈Tij

τijt

meanj∈J

(∑
t∈Tij

τijt
)

Normalized weights help to
reduce the effect of extreme
weights and center the aver-
age weight on 1. The weight
is dependent on the average
feedback from a user.
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3 Optimization

3.1 softImpute Algorithm

Almost all algorithms mentioned in Section 2.1 use either alternating least squares
(ALS) or stochastic gradient descent (SGD) techniques to optimize their respective
loss function. These methods can be seen as the industry standard, they tend to
show good performance and are widely applied for both implicit as well as explicit
feedback models.

Mazumder et al. (2010) designed an efficient convex spectral regularization al-
gorithm to optimize (2). Their softImpute algorithm outperforms state-of-the-art
SGD techniques in terms of speed. softImpute not necessarily outperforms ALS
type algorithms in terms of speed (Hastie et al., 2015), but convex optimization
methods typically require less observations then ALS (Jain et al., 2013). There-
fore, the softImpute algorithm seems like an attractive alternative to the existing
methods.

However, until now, the method only works in the context of explicit feedback.
Mazumder et al. (2010) cleverly exploits the problem structure for explicit feedback.
From (2) we see that they only include the observed values in their analysis. Because
of this, they can efficiently compute the solution. Let W ? be a weighting matrix
with 1 if xij ∈ Ω and 0 elsewhere and let � denote element-wise multiplication,
then Mazumder et al. (2010) show that their algorithm needs to iterate between two
steps:

1. Replace the missing values inX with the corresponding values from the current

estimate ÂB′:

X̂ ← [W ? �X −W ? � (ÂB
′
)] + ÂB

′
. (6)

2. Update ÂB
′

by means of a soft-thresholded Singular Value Decomposition
(SVD) of X̂:.

X̂ = UDV ′ (7)

ÂB
′
← USλ(D)V ′, (8)

where the soft-thresholding operator, Sλ(·), is an element-wise operator that
replaces each element on the diagonal of D with max(dii − λ, 0).

The SVD that needs to be calculated in (7) provides a computational bottleneck,
especially if we scale it to large matrices. Fortunately, Mazumder et al. (2010) are
able to overcome this bottleneck by exploiting the sparse-plus-low-rank structure
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of X̂, which is a result of only including observations in Ω. Sparse-plus-low-rank
matrices are inexpensive to store and compute.

In addition, they compute a reduced rank SVD at each step to speed up the cal-
culations even further. At the time of writing the article, there were already methods
available that can do this while exploiting the sparse plus low rank structure. How-
ever, the same authors developed a new alternating subspace type algorithm in
Hastie et al. (2015), that achieves even a bigger speed up because it exploits warm
starts.

These warm starts can be exploited because the algorithm uses a regularization
path of λ’s. In order find the value for λ for which it performs best, it first uses large
λ’s that cause the eventual solution to be of low rank. These low-rank solutions can
be used as warm starts for the next run of the algorithm with a lower λ.

It is because of these two tricks that the softImpute algorithm is very efficient
for large datasets and shows superior performance to state-of-the-art SGD and ALS
techniques. In Mazumder et al. (2010), they show that the algorithm can estimate
the Netflix dataset in under 4 hours. The possibility to apply the algorithm in batch
on such big datasets is one of the most attractive properties of the algorithm.

At first glance, one might expect that we cannot use these tricks in our implicit
case. From Section 2.3, we know that we need to include all data points in our
analysis. Nonetheless, we are able to combine the sparsity in X together with the
structure of W as defined in (5) in order to apply a similar trick as Mazumder et al.
(2010) in our algorithms. In the next sections, we will show this by constructing
three algorithms from the ground up by Minimization by Majorization.

3.2 Minimization by Majorization (MM)

Minimization by majorization algorithms exploit the convex structure of an objective
function in order to guarantee the descent in each iteration. This type of algorithm
is generally known as MM-algorithm and its origins can be traced back to 1970
(Ortega and Rheinboldt, 1970).
When we have a convex objective function f(θ) that we want to minimize, the MM-
algorithms work by finding a surrogate function, the majorizing function g(θ|θ(o)),
that satisfies:

1. f(θ(o)) = g(θ(o)|θ(o)),

2. f(θ) ≤ g(θ|θ(o)),

where θ(o) denotes the current estimate for parameter θ. Hence, g(θ|θ(o)) touches
f(θ) in θ(o) and lies above or on the function for other values of θ. The algorithm
works by minimizing g(θ|θ(o)) instead of f(θ). Note that it is therefore convenient
to have g(θ|θ(o)) in a simple form, since its minimum θmin will be easy to find.
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It is easy to show that descent is guaranteed at each iteration. Since for θmin =
argmin g(θ|θ(o)), we must have that f(θmin) ≤ g(θmin|θ(o)) ≤ g(θ(o)|θ(o)) = f(θ(o)).
Hence, each update improves f until convergence.

In the next three sections, we will derive the closed form expressions of the
updates for three different objective functions. Afterwards, we will elaborate on
the estimation procedure and computational complexity of all three algorithms. All
three algorithms are able to efficiently complete big matrices with implicit data by
applying the similar tricks as in Mazumder et al. (2010).

3.3 Algorithm 1: Weighted-softImpute (WSI)

We first aim to optimize the first implicit data model from Section 2.3. Recall that
this model is given by:

L1(A,B) =
1

2

[∑
i,j

wij(xij − a′ibj)2

]
+ λ||AB′||∗. (9)

Let v = Vec(AB′) be the vectorization of AB′. Here v is a column vector with
vij = a′ibj. Similarly, let x = Vec(X). Let DW = diag(Vec(W )) be a matrix with
the weights on the diagonal.

If m is the maximum of these weights, we must have that DW −mI is negative
semi-definite. We can use this fact in the derivation of our majorizing function:

(v − v(o))′(DW −mI)(v − v(o)) ≤ 0,

v′DWv ≤ mv′v − 2mv′
[
v(o) −m−1DWv

(o)
]

+mv(o)′v(o) − v(o)′DWv
(o) (10)

Plugging (10) in (9), yields our majorizing function:

L1(A,B) =
1

2
[x′DWx− 2v′DWx+ v′DWv] + λ||AB′||∗

≤ 1

2
[x′DWx+mv′v − 2mv′(v(o) −m−1DWv

(o) +m−1dDWx)

+mv(o)′v(o) − v(o)′DWv
(o)] + λ||AB′||∗

=
1

2

∑
i,j

(
mv2

ij − 2mvijrij +mr2
ij

)
+ c+ λ||AB′||∗

=
m

2
tr(R−AB′)′(R−AB′) + c+ λ||AB′||∗

= g1(A,B|A(o),B(o)), (11)
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where
rij =

wij
m
xij −

wij
m
v

(o)
ij + v

(o)
ij (12)

and c = 1
2

∑
i,j(wijx

2
ij −mr2

ij +mv
(o)2
ij − wijv

(o)2
ij ).

In order to updateAB′ we need to find an analytical expression for the minimum
of (11). Lets define the SVD’s R = PΦQ′ and AB′ = UΣV ′. We now need to
minimize the function with respect to U , Σ and V . By substituting R and AB′,
we can rewrite (11) as:

m

2

(
tr(Φ2)− 2tr(QΦP ′UΣV ′) + tr(Σ2)

)
+ λ||Σ||∗+c. (13)

For updating U and V , it suffices to minimize −2tr(QΦP ′UΣV ′), or, similarly,
maximize tr(QΦP ′UΣV ′). A maximum of this trace function is given by the Kristof
upper bound (Kristof, 1970):

tr(QΦP ′UΣV ′) = tr(Φ(P ′U)Σ(V ′Q))

≤ tr(ΦIΣI) (14)

Hence, a maximum is attained if U = P and V = Q.
In order to update Σ, we rewrite (13) with these values plugged in:

m

2

[
p∑
j=1

φ2
jj +

p∑
j=1

σ2
jj − 2

p∑
j=1

φjjσjj

]
+ λ

p∑
j=1

σjj

=

p∑
j=1

[m
2

(φjj − σjj)2 + λσjj

]
. (15)

By definition, we must have that σjj ≥ 0. Therefore the updates are givenby:

σjj = max(0, φjj −
λ

m
), (16)

for each j = 1, . . . , p. Or, put differently, Σ = Sλ/m(Φ), where Sλ/m(·) is a threshold
operator that applies (16) element-wise to Φ. Hence, the total update for each
iteration is:

AB′ = PSλ/m(Φ)Q′. (17)

For each update, we thus need to first calculate a thresholded singular value
decomposition of R. This is the most computationally intensive part of the calcu-
lation. We aim to overcome this bottleneck by exploiting the same sparse-plus-low-
rank structure as in Mazumder et al. (2010). Let us rewrite (12) in matrix form
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as:

R = [m−1W �X −m−1W � (A(o)B(o)′)] +A(o)B(o)′

= [m−1(J + Ψ)�X −m−1(J + Ψ)� (A(o)B(o)′)] +A(o)B(o)′

= [m−1(J + Ψ)�X −m−1Ψ� (A(o)B(o)′)] +
m− 1

m
A(o)B(o)′. (18)

Because we have that the entries of X are zero if the entries of Ψ are zero as well,
we have that the part in brackets on the left is sparse. Since the part on the right is
low rank, we can store R as a sparse-plus-low-rank matrix and apply the methods
developed in Hastie et al. (2015) to efficiently calculate the thresholded singular
value decomposition.

This algorithm tries to fit AB′ as close to R′ as possible. But, if wij � m, we
can see from (12) that R consists mostly of the old estimate and only for

wij

m
of

the true data. As a result, AB′ will be fitted for a large part to the old estimate.
This leads to slow convergence if there is a lot of deviation between the largest wij
and the other weights. In the next section we will try to overcome this problem and
allow for better convergence.

3.4 Algorithm 2: Row-weighted-softImpute (RWSI)

In Groenen et al. (2003), the authors propose several majorization algorithms that
optimize a weighted least squares loss function without a regularization term. They
propose to majorize each row separately with its row maximum in order to reduce
the effect found in the previous section. Their study shows a significant speed up as
well as more accurate results. In this section, we try to adopt their approach in our
regularized case.

The optimization of the majorizing function in Groenen et al. (2003) involves
a Generalized Singular Value Decomposition (GSVD) (Greenacre, 1984; Groenen
et al., 2003; Takane and Shibayama, 1991). Because of this, we encounter a problem
with the Nuclear Norm. That is, the GSVD involves generalized singular values,
but the NN is defined as the sum of the regular singular values. Ultimately, this
implies that in the equivalent of (15) there will be both singular values as well as
generalized singular values of AB′. Hence, we cannot find the optimal value of our
estimate.

We solve this problem by substituting the NN by the Weighted Nuclear Norm
(WNN) as defined in Angst et al. (2011), where they call it the Generalized Trace
Norm. For a comprehensive definition, we refer to their paper and Appendix A.1.

Let Dr and Dc be positive semi-definite matrices of sizes n × n and p × p. If
we write Dr = VrΛrVr and Dc = VcΛcVc to be the eigen-decompositions, then the
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WNN (||·||∗(Dr,Dc)) can be related to the NN as:

||X||∗(Dr,Dc)= ||VrΛ1/2
r XΛ1/2

c V ′c ||∗= ||CrXC
′
c||∗, (19)

where Cr = VrΛ
1/2
r and Cc = VcΛ

1/2
c (See Appendix A.1). The advantages of this

norm will become clear during the derivation of our second algorithm.
Using this WNN, we have a new loss function:

L2(A,B) =
1

2

[∑
i,j

wij(xij − a′ibj)2

]
+ λ||AB′||∗(Dm,I), (20)

where mi = maxj wij and Dm is defined as a diagonal matrix with the mi’s on the
diagonal, hence it is a n× n positive definite matrix.

Let the rows of our estimate be given in column vector vi = Bai, let the row’s
of X be denoted by column vector xi and let DWi

be defined as a diagonal matrix
with the weights corresponding to xi. Now, following the idea from Groenen et al.
(2003), we change majorizing formula (10) to:

(vi − v(o)
i )′(DWi

−miI)(vi − v(o)
i ) ≤ 0

v′iDWi
vi ≤ miv

′
ivi − 2miv

′
i

[
v

(o)
i −m−1

i DWi
v

(o)
i

]
+miv

(o)′
i v

(o)
i − v

(o)′
i DWi

v
(o)
i . (21)

We can use this to majorize loss function (20) as:

L2(A,B) =
1

2

∑
i

[x′iDWi
xi − 2v′iDWi

xi + v′iDWi
vi] + λ||AB′||∗(Dm,I)

≤ 1

2

∑
i

mi

∑
j

(
v2
ij − 2vijrij + r2

ij

)
+ c+ λ||AB′||∗(Dm,I)

=
1

2
tr(R−AB′)′Dm(R−AB′) + c+ λ||AB′||∗(Dm,I)

= g2(A,B|A(o),B(o)), (22)

where c = 1
2

∑
i,j

(
wijx

2
ij −mir

2
ij +miv

(o)2
ij − wijv

(o)2
ij

)
. Also, we have:

rij =
wij
mi

xij + v
(o)
ij −

wij
mi

v
(o)
ij , (23)

from which we can deduce that the problem of possible slow convergence is likely to
be reduced because of the row-weights.
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In order to optimize this function, let D
1/2
m R = QΦP ′ be a regular SVD, then

we set R = Q̃Φ̃P̃ ′ as the GSVD where Q̃ = D
−1/2
m Q, Φ̃ = Φ and P̃ = P . We

have Q̃′DmQ̃ = I and P̃ ′P̃ = I. Let AB′ = ŨΣ̃Ṽ ′ be another GSVD with
Ũ ′DmŨ = I and Ṽ ′Ṽ = I. Using this, we can rewrite (22):

g2(A,B|A(o),B(o)) =
1

2
tr(D1/2

m R−D1/2
m AB′)′(D1/2

m R−D1/2
m AB′)

+ c+ λ||AB′||∗(Dm,I)

=
1

2
[tr(Φ̃2)− 2tr(P̃ Φ̃Q̃′DmŨΣ̃Ṽ ′) + tr(Σ̃)] + c+ λ||AB′||∗(Dm,I)

=
1

2
[tr(Φ̃2)− 2tr(P̃ Φ̃Q̃′DmŨΣ̃Ṽ ′) + tr(Σ̃)]

+ c+ λ||D1/2
m ŨΣ̃Ṽ ′||∗, (24)

where the last step follows from the fact that Dm is a positive definite diagonal
matrix, and hence we have that Cr = D

1/2
m in (19).

We can rewrite the nuclear norm as:

||D1/2
m ŨΣ̃Ṽ ′||∗ = tr([Ṽ Σ̃Ũ ′DmŨΣ̃Ṽ ′]1/2)

= tr([Ṽ Σ̃2Ṽ ′]1/2)

= tr([(Ṽ Σ̃Ṽ ′)2]1/2) = ||Σ̃||∗. (25)

Thus, we must minimize

g2(A,B|A(o),B(o)) =
1

2
[tr(Φ̃2)− 2tr(P̃ Φ̃Q̃′DmŨΣ̃Ṽ ′) + tr(Σ̃)] + c+ ||Σ̃||∗ (26)

In order to find updates for Ũ and Ṽ , we proceed as in Section 3.3 and maximize
the term tr(P̃ Φ̃Q̃′DmŨΣ̃Ṽ ′). Again, using the logic of the Kristof upper bound
of a trace function (Kristof, 1970), we get:

tr(P̃ Φ̃Q̃′DmŨΣ̃Ṽ ′) = tr(Φ̃(Q̃′DmŨ)Σ̃(Ṽ ′P̃ ))

≤ tr(Φ̃IΣ̃I) (27)

Hence, a minimum for the function is attained if Ũ = Q̃ = D
−1/2
m Q and V̂ = P̃ =

P . In order to update Σ̂, we rewrite (26) with these values plugged in:

p∑
j=1

[
1

2
(φ̃jj − σ̃jj)2 + λσ̃jj

]
, (28)

with σ̃jj ≥ 0. Hence, we have a minimum at:

σ̃pp = max(0, φ̃pp − λ), (29)
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for each j = 1, . . . , p. Or, put differently Σ̃ = Sλ(Φ̃) = Sλ(Φ) where Sλ(·) is

an operator that applies (29) element-wise to Φ̃ and the second equality holds by

definition of Φ̃. The total update for each iteration is:

AB′ = D−1/2
m QSλ(Φ)P ′. (30)

Because we need to calculate a thresholded singular value decomposition of
D

1/2
m R for each update, we need to be able to do it efficiently. Let us rewrite:

D1/2
m R = D1/2

m

(
[D−1

mW �X −D−1
mW � (A(o)B(o)′)] +A(o)B(o)′)

= [D−1/2
m (J + Ψ)�X −D−1/2

m (J + Ψ)� (A(o)B(o)′)] +D1/2
m A(o)B(o)′

= [D−1/2
m (J + Ψ)�X −D−1/2

m (Ψ)� (A(o)B(o)′)]

+ (D1/2
m −D−1/2

m )A(o)B(o)′, (31)

where we see that we can exploit the sparse-plus-low-rank structure.

3.5 Algorithm 3: Hinge-Row-Weighted-softImpute (HRWSI)

Finally, we aim to optimize the last implicit data model from Section 2.3. Recall
that this model is given by:

L3(A,B) =
1

2

 ∑
(i,j)∈Ω

wij max(0, 1− vij)2 +
∑

(i,j)6∈Ω

wij(vij)
2

+ λ||AB′||∗(Dm,I),

(32)
where we inserted the WNN instead of the NN because we will use the improved
row-weighted majorization step from Section 3.4 in this algorithm as well.

We proceed to majorize the first term between brackets by using the approach
introduced in Groenen et al. (2008). That is, we notice that h(vij) = max(0, 1−vij)2

coincides with (1− vij)2 if v
(o)
ij ≤ 1. Hence, we can use this to majorize the first part

of h(vij). Then for v
(o)
ij > 1, we want to find a function that has the same curvature

as (1− vij)2, but touches at v
(o)
ij . This holds for function (vij − v(o)

ij )2. Now, we can

express our majorizing function as: g(ai, bj|a(o)
i , b

(o)
j ) = v2

ij − 2βijvij + γij, where:

βij =

{
1 if v

(o)
ij ≤ 1

v
(o)
ij if v

(o)
ij > 1

(33)

γij =

{
1 if v

(o)
ij ≤ 1

(v
(o)
ij )2 if v

(o)
ij > 1

(34)
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We can use this majorization step to rewrite our model as follows:

L3(A,B) =
1

2

 ∑
(i,j)∈Ω

wij max(0, 1− vij)2 +
∑

(i,j)6∈Ω

wijv
2
ij

+ λ||AB′||∗(Dm,I)

≤ 1

2

∑
i,j

wij
[
xij(v

2
ij − 2βijvij + γij) + (1− xij)v2

ij

]
+ λ||AB′||∗(Dm,I)

=
1

2

∑
i,j

wij(hij − vij)2 + c1 + λ||AB′||∗(Dm,I), (35)

where hij = xijβij and c1 = 1
2

∑
ij h

2
ij + γijxij.

We notice that (35) is the same as (20). The only difference is the constant term
c1, which is irrelevant for minimization. Hence, we can majorize and eventually solve
it using the RWSI algorithm:

L3(A,B) ≤ 1

2

∑
ij

wij(hij − γij)2 + c1 + λ||AB′||∗(Dm,I)

≤ 1

2
tr(D1/2

m R−D1/2
m AB′)′(D1/2

m R−D1/2
m AB′)

+ c2 + λ||AB′||∗(Dm,I)

= g3(A,B|A(o),B(o)), (36)

where c2 = 1
2

∑
ij

(
h2
ij + γijxij + wijh

2
ij −mirij +miv

(o)2
ij − wijv

(o)2
ij

)
and

rij =

[
1− wij

mi

]
v

(o)
ij +

wij
mi

hij

=

[
1− 1

mi

]
v

(o)
ij + xij

(
wij
mi

βij −
ψij
mi

v
(o)
ij

)
. (37)

Note that the left part of this equation is low-rank and the right part is sparse,
hence we can again exploit the sparse plus low rank nature of matrix R. We refer
to Section 3.4 for a detailed derivation of the updates.

3.6 Estimation procedure

Even though the three algorithms solve different loss functions, the underlying prin-
ciples of the softImpute algorithm apply for all of them. This section will carefully
explain the estimation procedure for all algorithms.

As mentioned in Section 3.1, the algorithms follow a regularization path of λ’s and
this allows them to exploit warm starts. This regularization path starts at the largest
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(generalized) singular value of matrix R or D
1/2
m R, depending on the algorithm.

This largest lambda can be efficiently calculated by doing a rank-restricted SVD.
Then, the regularization path of length Λ, follows an exponential path starting at
this value, going towards 1. Armed with this sequence of λ’s we can construct the
outline of the procedure for our three algorithms.

Outline 1: Algorithm outline for WSI, RWSI and HRWSI algorithms

input : Matrices X and W and sequence of λ’s

output: Estimates ÂB
′
λ1
, ÂB

′
λ2
, . . . , ÂB

′
λK

1 begin
2 A(n)B(n)′ ←− 0;
3 for λ1 > λ2 > . . . > λK do

4 while Lq(A(o),B(o))−Lq(A(n),B(n))

Lq(A(n),B(n))
< ε, with q ∈ {1, 2, 3}. do

5 set A(o)B(o)′ = A(n)B(n)′ ;
6 Compute (18), (31) or (37) depending on the algorithm. ;

7 Calculate the updates A(n)B(n)′ according to (17) or (30). ;

8 ÂB
′
λk
←− A(n)B(n)′

In Outline 1, the procedure for all algorithms is displayed. In line 4, we see
that the stopping criterion is different for each algorithm and that it is based on
the change in value of the loss function. This implies that for steeper objective
functions, the stopping criterion could be triggered later than for flatter objective
functions. The algorithms only differ in line 4, 6, 7, and in their sequence of λ’s. The
sequence of estimates that is returned can be used for evaluation. Eventually, we will
select a λ and corresponding rank for which the estimate has the best out-of-sample
performance.

3.7 Computational Complexity

In order to gain some understanding on the expected performance in terms of speed,
we investigate the computational complexity of the three algorithms. Let |Ω| be the
amount of elements in the sparse part of our sparse-plus-low-rank matrices. We will
construct and compare the complexity of all three algorithms. Recall that A is a
n× k and B is an p× k matrix.

In line 4, we need to evaluate different objective functions for each iteration. A
quick evaluation off (9) and (20) shows us that the WSI and RWSI have the same
computational costs. For the HRWSI algorithm, we need to evaluate all 1 − a′ibj
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that fall in the sparse part, which costs an additional O(|Ω|), while the rest of the
objective function is the same in terms of computational costs.

In line 6, the matrix to be decomposed needs to be constructed. In (18), ma-
trix ((m − 1)/m)A(o) needs to be explicitly formed, which requires O(nk) flops
since (m − 1)/m is already known. In addition, the sparse part of the matrix
needs to be explicitly formed. Taking into account the matrices that do not change
over iterations, this requires O(2|Ω|+|Ω|(2k − 1)) flops. The costs are therefore
O(2|Ω|+|Ω|(2k − 1) + nk) flops per iteration. In (31), this is exactly the same be-
cause most matrices are also known beforehand. in (37), we have an additional βij.
Hence, we need to evaluate all a′ibj, which costs O(|Ω|). If they are larger than one
we need to add (wij/mi)βij to the spare part. This will cost us O(2|Ω|) at most.
Hence, the worst case complexity is O(5|Ω|+|Ω|(2k − 1)).

In line 7, we conduct a SVD with the soft threshold SVD from Hastie et al.
(2015), which takes O(k|Ω|+(n + p)k2) flops and is equal for all algorithms. The
only difference here is that the row-weighted algorithms needs to be pre-multiplied
with a diagonal matrix, which takes another O(nk) flops.

Hence, the total computational costs for each of the the three algorithms is:

• WSI: O(2|Ω|+|Ω|(2k − 1) + k|Ω|+(n+ p)k2 + nk)

• RWSI: O(2|Ω|+|Ω|(2k − 1) + k|Ω|+(n+ p)k2 + 2nk)

• HRWSI: O(6|Ω|+|Ω|(2k − 1) + k|Ω|+(n+ p)k2 + 2nk)

Since they all differ only in the constants they are asymptotically equally com-
plex. Nonetheless, we expect the runtimes per iteration to be of increasing order.
This does not say much about the total runtime of total algorithm. Namely, we
already established in Section 3.3 and 3.4 that the WSI algorithm’s update might
change slowly in the presence of large weights. Note that all algorithms scale linearly
in complexity with the size of the data.

3.8 Evaluation Metric

The out-of-sample performance should always be assessed by means of some evalua-
tion metric. Because implicit feedback consists only of a possible positive feedback,
we cannot use any precision-oriented evaluation measures that depend on the size of
the (predicted) ratings such as the Root Mean Squared Error or the Mean Absolute
Error. For Implicit data, the most used evaluation metric is the recall-oriented Mean
Percentage Ranking (MPR) value (Hu et al., 2008; Johnson, 2014).

We calculate the MPR from the predicted preference estimate ÂB
′
. For each

user, we generate a ranked list of the size of his predicted preferences. From this
ranked list, we construct the percentile ranking: rankij. To clarify, for each user i
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we set rankij = 0% for the most preferred item. For items in that are less preferred,
the percentile ranking increases linearly with steps of 100%

p
where p is the amount

of columns of X, and thus the total amount of items. Percentile ranks are used
rather than absolute ranks in order to make the value of the metric independent of
p. The MPR score is defined as the weighted average of these percentile rankings
for observations in the test set:

MPR =

∑
ij w

t
ijrankij∑
ij w

t
ij

, (38)

where the wtij denote the weights that correspond to the test set. The expected MPR
score for random prediction is 50% and lower values are more desirable. Lower values
indicate that the observations in the test set have higher weighted average predicted
preference.

Two drawbacks of the MPR score are that the optimal value depends on the size
of the test set and that it depends on the selected weighting scheme. Firstly, we
illustrate how it depends on the size of the test set. Take, for example, the case where
for each user 10 observations are in the test set versus the case where 5 observations
are in the test set. Then, if there are 100 items in total and these observations have
equal weights. The optimal value for that row will be 5% in the first and 2.5% in the
second case. As a result, it is hard to compare MPR scores across different datasets.
Secondly, the MPR score is directly influenced by the selected weighting scheme
through weights wtij. As a consequence, it is hard to compare the performance of
different weighting schemes using this metric.

In this research however, the MPR scores will only be used to assess the per-
formance of the algorithms on the same dataset, with the same weighting scheme.
Therefore, the MPR metric can be properly applied in our context.
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4 Simulation Study

4.1 Simulation Setup

In this simulation study, we investigate the performance of our three algorithms in
terms of speed and their ability to uncover the true underlying preferences. Recom-
mender systems often need to be applied in situations with widely varying sparse
matrices X. It is therefore important to know the influence of the sparseness and
matrix size on the performance of the algorithm.

We simulate data according to a relatively simple process. We generate the
underlying preferences by drawing two standard normal random matrices Ã and B̃
with dimensions n× k and p× k respectively. The underlying preferences are given
by ÃB̃′ and we construct our artificial feedback matrix X̃ by x̃ij = 1 ⇐⇒ ã′ib̃j > 0
and zero’s elsewhere. Implicitly, we assume here that the user has positive preference
for half of the products. The corresponding matrix Ψ̃ is generated according to
ψ̃ij = dã′ib̃je, with d·e denoting the ceiling function. From X̃ and Ψ̃, we generate
a test and a training set by sampling (δ × 2) of the observed values in each row
for the training set and leaving the rest in the test set. Because we have that
x̃ij = 1 ⇐⇒ ã′ib̃j > 0, δ corresponds to the sparseness level. Matrix Ψ̃ is split up
accordingly. Note that in this setup our expected optimal MPR score lies around
50%−δ

2
, depending on the weights.

In order to have a good variety of matrices with different structures and levels
of sparseness, we vary: n = (1000, 1500, 15000), p = (300, 750), k = (10, 20), δ =
(5%, 2.5%, 1.5%). We run our algorithms again on these 36 combinations with 10%

of the rows in Ψ̃ inflated by a factor 5, so we can investigate the effect of extreme
weights on the WSI and RWSI algorithms. In total we have 72 datasets on which
we run the three algorithms according to the procedure from Section 3.6, with a
regularization path of 30 λ’s (Λ = 30). We restrict the matrix rank of the estimate
with a maximum of 30 to avoid costly computations. For each run of an algorithm,
we save the lowest obtained MPR score with its associated matrix rank and value
of the objective function. In addition, the total time for the algorithm to run over
its regularization path is recorded in seconds.

The matrix rank of the estimate that is associated with the lowest MPR score is
expected to be equal to k. That is, we expect the algorithm to achieve the lowest
out-of-sample MPR score for estimates that have the same rank as our simulated
matrices. Estimates with lower ranks are not likely able to correctly estimate X̃
because they cannot capture the more complex structure, while higher ranks are
associated with overfitting. We investigate the ability of the algorithm to uncover
the true underlying preferences through the difference between the uncovered rank
and true rank k. This is more appropriate than MPR scores since these cannot be
compared across datasets, as was discussed in Section 3.8
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Figure 3: Histograms of the ratios between the total runtime of the algorithms

4.2 Results Simulation Study

In order to assess the performance of the three algorithms in terms of speed, we
calculate the ratios of total running times over the entire regularization path. From
the histograms in Figure 3, one can see that the HRWSI and RWSI have very compa-
rable running times. Nonetheless, the HRWSI is often slightly slower than the RWSI

algorithm. This likely due to the difference in computational complexity, while the
variation is caused by different (local) optima. In addition, we find that the WSI

algorithm is always slower than both the HRWSI as well as the RWSI algorithm, even
though its iterations are computationally less intense. This result supports the idea
that the WSI algorithm does not converge as fast as the row weighted algorithms
because it uses the overall maximum in the majorization step (see Section 3.3). We
expect this effect to increase in the presence of extreme weights for the WSI algo-
rithm, while the other algorithms are more robust to this variation. Specifically, the
HRWSI and RWSI algorithm are expected to have more similar running times with our
without extreme weights, since the row-maxima are used in the majorization step.
In Figure 4, we find support for this claim. The HRWSI and RWSI algorithms tend to
be closer to the diagonal than the WSI algorithm. The effect becomes more visible
for larger matrices with longer running times.

We proceed to investigate the algorithm’s ability to uncover the true underlying
preferences by investigating the matrix ranks of the estimates that obtain the lowest
MPR. In Figure 5, we plotted the difference in the rank of the estimate and true
underlying rank k against the lowest MPR scores that the algorithm obtained. From
this plot, we identify two possible issues. First, there are many observations with
MPR scores close to 50%. Apparently, the algorithms are unable to uncover the
underlying structure and thus unable to improve over random prediction in these
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Figure 4: Running times (in seconds) in the
presence of extreme weights plotted against the
running times without extreme weights. The
black line is the diagonal

Figure 5: Differences between the uncov-
ered rank (matrix rank of estimate with lowest
out-of-sample MPR) and the true rank k plot-
ted against their associated out-of-sample MPR
score

cases. Another observation is that the WSI algorithm appears to overestimate k in a
larger extent than the other algorithms. Both issues will be addressed sequentially.

In order to gain understanding of the first problem, we investigate the group of
39 observations with a MPR larger than 47.5%. This group consists of runs of the
algorithm on 13 distinct datasets. All datasets have an amount of rows, n, of 1000
or 1500, they are all sparser than 5% and 11 of them have large underlying matrix
ranks (k = 20). An explanation for the inability of the algorithms to uncover the

true rank and obtain a lower MPR score is found in the binary nature of X̃. When
we transform ÃB̃′ into X̃ we discard a lot of information, including information
on the underlying rank. When matrices are small, binary and sparse, there is little
information available and the information that is available is distorted. This makes
it difficult for the algorithms to recover the underlying structure. In Figure 6, we find
support for this claim. We see that the sparseness level has the largest effect on the
obtained MPR score, followed by the true rank. Figure 6 suggests that this problem
decreases with matrix size, even if the matrix is very sparse. Since recommender
systems primarily deal with very large matrices, we believe that this problem will
become nearly irrelevant in practice.

The second observation from Figure 5 was that the optimal estimates of the WSI

algorithm often have higher matrix ranks than the optimal estimates of the other
algorithms. Closer inspection shows us that for these observations, the algorithm ran
on datasets with inflated weights for 10% of the rows. In Figure 7 and 8, we see that
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Figure 6: Average MPR scores for different matrix sizes (n× p), with varying sparseness levels
(δ) and true ranks (k). Trendlines are constructed for each sparseness level.

under similar conditions (sparseness: δ = 5% and true rank: k = 10), the uncovered
ranks tend to increase for the WSI algorithm in the presence of inflated weights. The
HRWSI and RWSI algorithms are more robust to extreme weights and do not change
much. A likely explanation is that the inflated weights hinder the convergence of the
algorithm. From Section 3.3, we know that extreme weights cause the new estimate
to be fitted mostly to old estimate. This potentially leads to premature triggering of
the stopping criterion. Then, for one of the next lambdas in the regularization path,
an estimate with higher rank might achieve a lower MPR score and will be selected
as the optimal estimate. This effect is reduced in the HRWSI and RWSI algorithms by
using row maximum weights. For the WSI algorithm, it is important to reduce the
effect of extreme weights by adopting an appropriate weighting scheme.

In this simulation analysis we have found that our algorithms potentially run into
problems if they need to estimate sparse matrices. Fortunately, we found evidence
that the sparsity problem reduces for larger matrices, which are typically used in
the recommender system context. In addition, we found that the WSI algorithm
performs poorly in the presence of extreme weights, both in terms of speed as in
its ability to uncover the true rank of the estimate. If we keeps these two points in
mind, we believe that the algorithms will show good performance in practice.
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Figure 7: The uncovered ranks for each al-
gorithm without inflated weights.

Figure 8: The uncovered ranks for each al-
gorithm with inflated weights.

5 Empirical example

We use an empirical dataset from Helloprint, an e-commerce company that special-
izes in print, to illustrate the practical use of our algorithms. They offer a wide
variety of products, ranging from booklets to printed kitchen knifes. The data used
consists of online clickdata on products. In this analysis, we only include users that
have provided feedback for more than one product because the company focuses on
returning customers. We have in total 571,179 observed clicks from 159,279 users
on 258 products. These products are defined with the objective of our recommender
system in mind. That is, we want to recommend products that the user is unaware of
and that he likes. We treat for example ”flyers A4” and ”flyers A5” as one product,
since a user will be aware that both are offered after having ordered one.

The purpose of this empirical example is to show that the algorithm works in
practice. We acknowledge that the choice of the weighing scheme and the tuning of
the parameters, has a large impact on the results. Because computations are costly
and this article focuses on the development of the algorithms, we do not evaluate
the performance of all possible weighting schemes in this empirical example. As we
want to avoid the influence of extreme weights, we choose the logarithmic weighting
scheme. We set α ∈ {7.5, 15, 22.5, 30} and look for the value for which we obtain
the lowest out-of-sample MPR.

For 10% of all users, we randomly take out 1 observation as a test set. This
approach is adopted to prevent a situation where all observations of a user are
drawn into the test set, thereby deleting the user’s information from the training
data. As a result, we have 555,252 observations in our training- and 15,927 in our
test-set.

In order to better assess the performance of the algorithms, we also report the
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MPR score of a competing model. We use the popularity model, which simply
recommends the most popular products to all users. This model is surprisingly
powerful since users often concentrate on relatively few products.

For each of the algorithms, we execute the estimation procedure from Section 3.6
with a regularization path of 50 lambdas. Since the regularization paths are different,
we will compare the out-of-sample MPR scores for different ranks of the estimates

ÂB
′
λi

. In order to improve the ease of comparison, we restrict the rank of each
estimate to be at most 2 higher than the previous, with a maximum of 30 to save
computational time. By doing so, we create a grid of ranks with corresponding MPR
scores that can easily be compared.

For this dataset, we found that the lowest MPR was reached for α = 30. In
Figure 9, we display the MPR scores obtained by each algorithm for α = 30.

Figure 9: MPR scores with the associated rank of the estimate ÂB
′
λi

for α = 30

As a first observation in Figure 9, we would like to note that the Popularity
method shows an extremely good performance in terms of MPR. This is explained
by the fact that there are only a few products very popular at Helloprint, while most
other products are only visited occasionally. As a result, the MPR score of 0.068
for the popularity method is already a large improvement to the expected MPR for
random prediction of 0.5.

Nonetheless, we see that all algorithms are able to outperform the popularity
method in terms of MPR. The best out-of-sample performance is attained around
rank 8 - 12 for all algorithms. As a minimum MPR score, we find for HRWSI 5.23%,
for RWSI 5.43% and for WSI 5.56%, with associated values of λ of 185.73, 185.73 and
1743.40 respectively. It would be wrong to conclude that the HRWSI algorithm shows
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the best performance since these minima are not necessarily the true minimal values.
As we search only over 50 lambdas, we could improve our prediction by searching
for a better lambda in the neighborhood of our optimal values with more flexibility
on the ranks of the estimate. Nonetheless, we may conclude that our algorithms
show superior performance in comparison to the the popularity method.

On this dataset, the RWSI algorithm structurally had the shortest computation
time. For α = 30, this was 34 minutes. The HRWSI and WSI algorithms took 41
and 46 minutes to compute. Calculations were done on an Amazon EC2 instance
of type ”c4.4xlarge”, with 8 processor cores and 15GB of RAM. The runtime for
lower levels of α were shorter since an increase in α leads to more extreme weights,
which slows down the algorithm.
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6 Conclusion and Discussion

In this paper, we aimed to extend the convex spectral regularization methods for
matrix factorization to the case of implicit data. Until now, all available methods
used Gradient Descent or ALS type techniques for optimization. Because convex
minimization is quick and does not need a lot of observed data points, it seems to
be an attractive alternative over the current methods.

The three algorithms that were developed seem to show good performance. In
our simulation studies we saw that the algorithms are, under certain conditions,
able to uncover the underlying structure. We uncovered two possible problems that
should be taken into account when the algorithms are applied in practice. Firstly,
we have seen that the methods fail on small and sparse matrices, but that this effect
disappears for large matrices. Because the typical user-item matrix is very sparse, we
should assure us that they are sufficiently large. Secondly, in the presence of extreme
weights, the WSI algorithm becomes unreliable. This can be solved by adopting a
different weighting scheme.

We conclude that from our three algorithms, the HRWSI and RWSI algorithms
outperform the WSI algorithm in terms of speed and robustness to extreme weights.
We cannot base any conclusions on the predictive performance of our algorithms,
since it could depend on the use case and more tuning of the parameters is re-
quired. Nonetheless, we have seen that all our methods outperform the popularity
recommendation method.

For future research, it is of interest to test the performance of the algorithms
against some ALS or Gradient descent type methods such as the ones discussed
in the related works section. It should be verified if the proposed methods show
comparable, or even better, performance on a variety of datasets. Moreover, the
algorithms should be run on an implicit feedback dataset that is widely used in
academic research. In this way, the performance in terms of speed can be easily
compared with other algorithms. Unfortunately, there is not (yet) such a dataset
openly available.

Future research on the performance of the one-sided quadratic hinge loss model
for implicit data is needed as well. The method can easily be extended to a two-side
variant where we include implicit positive as well as negative implicit feedback. Such
negative implicit feedback could consist of the amount of complaints or returning
products. It is of interest to see whether this improves the performance of the
method.

In addition, more research is needed on the effectiveness of different weighting
schemes since a clear framework is currently missing. Depending on the situation, it
could be that temporal or contextual information should be included while for other
situations this does not make any sense.

Finally, it is of interest to continue developing new implicit-feedback algorithms
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that use convex optimization techniques. To the best of our knowledge, this article
is the first that uses convex optimization techniques for implicit-feedback spectral
regularized algorithms. Many alternative algorithms can be developed that exploit
the problem structure in a similar way as was done in this article. Exploiting these
new algorithms could lead to even more accurate recommendations and a further
reduction of the choice overload problem.
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A Appendix

A.1 Definition of WNN

We use the approach from Angst et al. (2011) to arrive at the definition of the
Weighted Nuclear Norm (WNN). A summary of their approach is given in this
appendix.

We know that the Nuclear Norm (NN) is defined as the sum of singular values,
hence:

||X||∗=
min(m,p)∑

i

σi. (39)

There exists, however, other equivalent ways to define the NN. One way is to write
it as a Semi Definite Programming problem:

||X||∗ =
1

2
min
X1X2

〈Im+n,

[
X1 X
X ′ X2

]
〉

s.t.

[
X1 X
X ′ X2

]
� 0(m+n)×(m+n). (40)

This definition allows us to arrive at the WNN. If we take positive definite block
diagonal matrix and it’s eigen-decomposition:

D =

[
Dr 0
0′ Dc

]
= V ΛV ′

V =

[
Vr 0
0′ Vc

]
, Λ =

[
Λr 0
0′ Λc

]
,

we can replace the identity matrix with D. Then, using the cyclical property of the
trace function, we have that:

||X||∗D =
1

2
min
X1X2

〈D,
[
X1 X
X ′ X2

]
〉

=
1

2
min
X1X2

trace

(
D′
[
X1 X
X ′ X2

])
=

1

2
min
X1X2

trace

(
Λ1/2V ′

[
X1 X
X ′ X2

]
V Λ1/2

)
=

1

2
min
X1X2

trace

([
CrX1C

′
r CrXC

′
c

CcX
′C ′r CcX2C

′
c

])
, (41)

where Cr = Λ
1/2
r V ′r and Cc = Λ

1/2
c V ′c . If we now write Y1 = CrX1C

′
r and Y2 =

CcX2C
′
c, we conclude from (41) that we have: ||C ′rXCc||∗= ||X||∗D
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