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Abstract

We study the volatility risk premium, where the implied volatility exceeds the

realized volatility, in multiple asset classes and countries simultaneously. Extracting

the volatility risk premium by means of shorting delta hedged straddles produces

economically significant average returns in bonds, credits, commodities, currencies

and equity indices. Combining the asset class portfolios in a diversified global volatil-

ity risk premium factor results in a Sharpe ratio of 1.45. By studying the returns

in the cross section we gain deeper insights about the consistency, commonality and

patterns in the characteristics and risks of the volatility risk premium compared to

individual asset studies. The volatility risk premium is not explained by common

explanations offered in literature, downside risk, volatility risk or factor exposures

only partially explain the excess returns. We do find a strong common risk compo-

nent that the asset class portfolios tend to suffer drawdowns during recessions when

volatility rises across all asset classes. We explore the robustness of the strategy and

find that the premium can be further enhanced by considering alternative hedging

and weighting schemes.

Keywords: volatility risk premium, options, asset pricing, credits, government

bonds, equity indices, commodities, currencies, delta hedging
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1 Introduction

The difference between the realized and implied volatility, often referred to as the volatility

risk premium, is the focus of this study1. Eraker (2008) notes that on average the implied

volatility exceeds the realized volatility in the S&P 500 by roughly 3%. An investor trying

to benefit from this volatility risk premium would sell volatility as it yields a positive

average pay off if the implied volatility structurally exceeds the realized volatility.

Selling volatility can be done through selling straddles2. A short straddle position has a

positive payoff if the underlying is less volatile than was priced in the options. On the other

end the position loses money if the underlying moves to a greater extend than was priced

in the option. A common risk-based explanation for the existence of a negative volatility

risk premium is that investors are willing to pay a premium to protect themselves against

losses due to sudden increases in volatility (“bad-states of the world”). The payoff of a

straddle is not symmetrical as the maximum the seller can gain is the option premium

where he loses a multitude of the premium if the underlying would move abruptly in one

direction before expiring. Most studies regarding the volatility risk premium are individual

asset studies and find a negative volatility risk premium, a situation in which the implied

volatility on average exceeds the realized volatility of the underlying. This study aims to

bridge the gap between the individual asset studies and study the returns in the various

asset classes simultaneously.

We conduct a comprehensive study on the volatility risk premium simultaneously ap-

plied to multiple asset classes using a total of sixty assets. Our research adds to a growing

literature that studies the returns of factor investing in the cross section. This is the same

approach as Moskowitz et al. (2012) for time-series momentum, Asness et al. (2013) for

value and cross-sectional momentum, Frazzini and Pedersen (2014) for betting-against-

beta, and very recently Koijen et al. (2015) for carry. By studying the returns in the

cross section we gain deeper insights about the consistency, commonality and patterns in

the characteristics and risks of the volatility risk premium compared to individual asset

studies. To benefit from a negative volatility risk premium we write delta hedged straddles

on the assets using option data from the OptionMetrics IvyDB US database.

We make several contributions to the literature. Firstly, we are the first to study the

volatility risk premium in the cross section and find that statistically and economically

1Practitioners also use the term volatility risk premium for the excess returns that can be earned by
selling options. In this study we use the term volatility risk premium in both contexts.

2A straddle is a combined option package consisting of an at-the-money call and put option.
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significant excess returns can be earned by capturing the volatility risk premium across

credits, government bonds, commodities, currencies and equity indices. The asset class

portfolios all have negative skewness associated with the tail risk of shorting volatility.

This negative skewness is hardly reduced when we create a diversified global volatility risk

premium portfolio over the asset classes. This points at a strong common risk component

between the asset classes as large losses tend to coincide with global turmoil where the

volatility rises across all asset classes. During normal times the asset class portfolios do

provide diversification. Several explanations offered in the literature for the excess returns

are considered. Volatility, liquidity and downside risk among others all partly explain the

excess returns but fall short of explaining the returns in its entirety. Additionally, we are

the first to uncover the volatility risk premium in credits and find that the volatility risk

premium produces strong returns and a Sharpe ratio of 1.55.

Secondly, the performance of the global volatility risk premium portfolio is further

improved by altering the equal weighting scheme by deviating the weight based on the

difference between the historical realized volatility and the implied volatility. Applying the

weighting scheme to indices across several asset classes adds to the original research done

by Goyal and Saretto (2007) who applied the weighting scheme on single stocks.

Thirdly, we study unhedged option returns across asset classes for both call and put

options and by doing so we revisit the “overpriced puts puzzle” posed by Bondarenko

(2014). We conclude that puts have remained overpriced in a sample period that includes

the financial crisis of 2008 that was not included in Bondarenko (2014) and gives evidence

that the Peso-problem can not explain these returns. The term structure of the average

returns for S&P 500 has kept the same shape in which further out of the money put options

are more overpriced compared to in the money put options.

Fourthly, we examine the term structure of the average returns across different assets

for different maturities and moneyness and observe persistent patterns. We propose a new

linear regression model to explain the term structure of the average returns and perform an

portfolio management exercise based on the regression model and a simulated covariance

matrix.

Several studies investigate the profits of selling volatility by means of writing (delta

hedged) options or shorting variance swaps3. However most authors study the returns

over a short sample or a single asset class. An overview of the research conducted on the

3A variance swap is an over-the-counter derivative that pays the difference between the realized volatil-
ity and the implied volatility.
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volatility risk premium is provided in Table 1. The majority of research pertains to the

volatility risk premium in equity (index) options. Bakshi and Kapadia (2003) show that

the returns of delta hedged option portfolios are related to the sign and magnitude of the

volatility risk premium. Their sample for the S&P 500 spans between January 1988 and

December 1995 and the results are supportive of a negative market volatility risk premium.

The sample considered in this study for the S&P 500 starts where Bakshi and Kapadia

(2003) finishes and can be therefore regarded as an out-of-sample study in which we again

find evidence of a negative volatility risk premium. Eraker (2008) finds that the VIX index4

averages around 19% between 1990 and 2007 while the unconditional annualized standard

deviation is only 15.7%. This suggests that there is a substantial premium for the investor

who writes atm options on the S&P 500. Driessen and Maenhout (2006) write options on

S&P 500, FTSE 100 and Nikkei 225 indexes over the period April 1992 until the end of

June 2001. They find crash neutral5 straddles produce positive excess returns in all three

markets. Coval and Shumway (2001) evaluate the weekly returns of European call and put

options on the S&P 500 index from January 1990 to October 1995 and find an annualized

Sharpe ratio around 1.02 for crash neutral straddles.

Individual naked (unhedged) call and put option returns have also been investigated.

Bondarenko (2014) studies the overpriced puts puzzle, he argues that because puts are neg-

atively correlated with the market and contain leverage the magnitude of the risk premium

could be large. He addresses the Peso problem, a situation in which a catastrophic event

could have taken place but did not happen in the sample. He finds an annualized Sharpe

of 1.21 for at-the-money puts over the period August 1987 till December 2000. Broadie

et al. (2007) show that without taking the volatility risk premium into consideration that

writing 6% out-the-money puts earns an average monthly return of 22.6% under the Black

Scholes Model where CAPM holds and the annual Sharpe ratio of the stock market is 0.4

under the assumption that the market has a 6% average excess return and a 15% annual

standard deviation. This large return comes solely from the leverage contained in the

out-the-money option and its directional stock price exposure.

For currencies, Guo (1998) examines currency option returns for the Deutsche mark,

Japanese yen, British pound sterling, Swiss franc, Australian dollar, Canadian dollar over

the period January 1987 till December 1992. He concludes that the market price of variance

4The VIX has become the industry standard that gives a model free option implied estimate of the
volatility of the S&P 500.

5Crash neutral straddles control for crash risk by hedging the far downside exposure through an out-
the-money (otm) put
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Table 1: Overview Research volatility risk premium

Overview of previous research conducted on the volatility risk premium in different asset classes.
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Time Period

Coval and Shumway (2001) X 1990–1995
Bakshi and Kapadia (2003) X 1988–1995

Driessen et al. (2009) X 1996–2003
Guo (1998) X 1987–1992

Low and Zhang (2005) X 1996–2002
Neely (2003) X 1987–1998

Trolle and Schwartz (2008) X 1996–2006
Goodman and Ho (1997) X 1991–1996

Duarte et al. (2007) X 1988–2004
This study X X X X X 1996–2015

is non zero in currency options. Low and Zhang (2005) find significant negative risk premia

in the British Pound, the Euro, the Japanese Yen and the Swiss Franc with a term structure

that is decreasing in maturity.

In the case of commodity options, Neely (2003) find a significant negative risk premium

in gold future options over the period January 1987 till December 1998. The (implied)

volatility tends to increase for equities (indexes) when the underlying moves down, em-

pirical evidence shows that the same holds true for gold6. Trolle and Schwartz (2008)

find a significant negative risk premium in energy options over the period January 1996

till November 2006, and the risk premium is time-varying. The variance for natural gas

exhibits strong seasonality and peaks during the cold months of the year. They show

the risk premium is also higher during this period. Doran and Ronn (2008) demonstrate

numerically that a negative market price of volatility risk is the key risk premium in ex-

plaining the difference between risk-neutral and statistical volatility in both equity and

commodity-energy markets. Whereas prices and volatilities are negatively correlated in

the equity markets, they display a positive correlation in the energy markets.

6https://www.cmegroup.com/education/files/gold-storm-on-the-horizon.pdf
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Recent literature on the volatility risk premium in the fixed income asset class, such

as Goodman and Ho (1997) and Duarte et al. (2007), examine the existence and sign

of the volatility risk premium by means of a delta hedged option portfolio. Duyvesteyn

and de Zwart (2015) conduct empirical analysis of the term structure of the volatility

risk premium by creating portfolios of long-short portfolios of atm straddles in the four

major swaption markets (USD, JPY, EUR, GBP). They report a concave upward sloping

maturity structure, with the largest negative premium for the shortest maturity. Trolle and

Schwartz (2009) derive, under simplifying assumptions, that the volatility risk premium

in US Treasury market based on variance swaps should be negative. To the best of our

knowledge, there is no literature regarding the volatility premium in the corporate bond

market.

Apart from the literature written about a negative risk premium in single assets and

asset classes, advances in recent years have also been made in exploring the difference in

implied volatility and realized volatility between assets by means of long-short portfolios.

Goyal and Saretto (2007) explore the difference between the historical variance and the

implied volatility for individual equity options. By going long the undervalued options (low

implied versus realized volatility) and short the overvalued options (high implied versus

realized volatility) they find strong excess returns. It is important to note that this research

does not relate directly to the volatility risk premium as the portfolios are long-short and

do not carry a short volatility exposure as such. In our research we first consider the

volatility risk premium by shorting volatility but later incorporate the findings of Goyal

and Saretto (2007). Driessen et al. (2009) explore the difference in returns between equity

options and equity index options. The volatility risk premium is found to be negative in

both equities and equity indices, but far more negative for indices than for the individual

equities. To benefit from the difference Driessen et al. (2009) consider a correlation strategy

of selling index straddles and buying individual stock straddles and realize a Sharpe ratio

of 0.73. This strategy is short correlation as the index volatility increases when correlation

increases and therefore they conclude that the correlation premium is negative.

Eraker (2008) points out that the payoffs for selling volatility through options are non-

Gaussian such that an investor requires significant premiums for the tail-risks. Furthermore

the returns for selling an out-the-money option has a big chance of a small positive return

and a small chance of a high negative return. The strategy can look to be deceptively low

risk when the sample does not contain a market crash.

7



2 Methodology

This section describes the methodology we use to calculate returns, construct portfolios

and shows the mathematical connection between delta hedged straddles returns and the

volatility risk premium. In Section 2.1 we discuss the pricing of an option under the Black–

Scholes model and its terminal value. In Section 2.2 we show the mathematical connection

between delta hedged portfolio returns and the size of the volatility risk premium. In

Section 2.3 we explain the portfolio construction. Section 2.4 shows the return calculation

of the portfolios. Lastly we explain the realized volatility measure that we use in Section

2.5.

2.1 Payoff Options

In this study we are concerned with both call and put options. A call option gives the

holder the right but not the obligation to buy the underlying stock for strike price K at

maturity T . A put option gives the holder the right but not the obligation to sell the

underlying stock for strike price K at maturity T . Some options are cash settled in which

the terminal value of the options is paid, others require delivery of the underlying when the

option gets exercised. Regular options are American or European style, European options

can only be exercised at maturity T where American options can be exercised anywhere

between the current time t and the maturity date T . When dividends are not existent it

is never optimal to exercise an American call option early. For very deep in-the-money

put options it can be optimal to exercise early theoretically. For European options closed

form formulas exist under certain assumptions, the most popular one is the Black Scholes

model. The Black-Scholes model prices a call option at time t with maturity T and strike

price K for an underlying with price S as

Pcall = SN(d1)−Ke−r(T−t)N(d2) (1)

σ denotes the annualized implied volatility and r the interest rate over the period T − t.
The value of a put option under the Black-Scholes model is defined as

Pput = Ke−r(T−t)N(−d2)− SN(−d1) (2)
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d1 =
ln( S

K
) + (r + σ2

2
)(T − t)

σ(T − t)
d2 = d1 − σ(T − t)

In the case of a dividend bearing equity with dividend D at time t1, S gets replaced by S∗

in (1) and (2), with S∗ defined as,

S∗ = S −De−r(t1−t) (3)

An option priced under the Black–Scholes model has a sensitivity to all the input pa-

rameters, these sensitivities are usually referred to as “the Greeks” and can be found in

Appendix G. The most important one for this study is delta (∆), which is the sensitivity

of the price of an option to the price of the underlying. When we hedge this sensitivity by

taking an offsetting position in the underlying we are left with first order sensitivities to

the risk free rate and the implied volatility (vega) of the option. The sensitivity to the risk

free rate for short term options is negligible compared to the sensitivity to changes in the

implied volatility. This is precisely why we study delta hedged straddles, as the remaining

exposure of the option is dominated by the sensitivity to the implied volatility and the

exposure to the second derivative of the option to the underlying (gamma). Excess returns

of short delta hedged straddles should then be related to the volatility risk premium as we

will further explore in Section 2.2.

The Black–Scholes model is useful when the option still has time to maturity left. When

the option matures the option achieves its terminal value. For a put option the terminal

value is zero when the underlying price is above the strike price, given that the investor

would rather opt for selling the underlying in the market for a higher price. In case that

the underlying price is below the strike price the holder should exercise its option and sell

the underlying for K after which he can instantly buy it back in the market for S, the

value is therefore equal to K − S. For a call option the terminal value is derived through

the same logic, the option expires valueless when the underlying is below the strike price

and equal to S −K when it finishes above the strike price because now you can buy the

underlying for K at expiry and instantaneously sell it back for S in the market. More

formally the terminal value of a call option is equal to,

9



Vterm = max(S −K, 0) (4)

For put options the terminal value is determined as,

Vterm = max(K − S, 0) (5)

2.2 Delta Hedged Straddles and the Volatility Risk Premium

Here we describe the mathematical connection between the volatility risk premium and the

returns of delta hedged straddle portfolios following the notation of Bakshi and Kapadia

(2003). Often times mathematical derivations are done under the assumption that you

can continuously hedge the exposure of the option towards the underlying, something that

is not practically feasible and the considered daily data does not permit. Furthermore

volatility is often times assumed to be static instead of stochastic. To validate our research

approach, we explore the connection between discrete delta hedged returns under stochastic

volatility and the volatility risk premium. In Section 2.2.1 we define the returns of a delta

hedged option under discrete hedging. In Section 2.2.2 we explore the connection between

delta hedged returns under stochastic volatility and the sign of the volatility risk premium.

2.2.1 Delta Hedged Returns with Discrete Hedging

Let Ct+τ represent the price of a European call maturing in τ periods from time t, with

strike price K. Denote the corresponding delta by ∆ = δC
δS

. The continuously delta hedged

return, πt,t+τ , for a long delta hedged call position, where the net investment earns the

risk-free rate is

πt,t+τ ≡ Ct+τ − Ct −
∫ t+τ

t

∆udSu −
∫ t+τ

t

r(Cu −∆uSu)du (6)

The expected πt,t+τ can be interpreted as the excess rate of return on the delta hedged call

portfolio7. When the hedge is rebalanced discretely the expected πt,t+τ will not necessarily

be zero. Fortunately, Bertsimas et al. (2000) show that the delta hedged gains for a

discretely hedged portfolio has an asymptotic distribution that is symmetric with zero

mean if volatility risk is not priced. If we now translate equation (6) to its discrete version

in which we hedge N times we find,

7The excess rate of return of a long delta hedged put portfolio (long put, long stock) with ∆ = δP
δS is

defined in the same way with πt,t+τ ≡ Pt+τ − Pt −
∫ t+τ
t

∆udSu −
∫ t+τ
t

r(Pu −∆uSu)du.
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πt,t+τ ≡ Ct+τ − Ct︸ ︷︷ ︸−
N−1∑
n=0

∆tn(Stn+1 − Stn)︸ ︷︷ ︸−
N−1∑
n=0

r(Ct −∆tnStn)
τ

N︸ ︷︷ ︸ (7)

From equation (7) we can see that the delta hedged gains πt,t+τ consists of three parts,

Ct+τ − Ct denotes the option return over the holding period.
∑N−1

n=0 ∆tn(Stn+1 − Stn)

denotes the return of the stock position that is kept as a hedge for the option. Finally∑N−1
n=0 r(Ct − ∆tnStn) τ

N
refers to the interest that is earned (paid) over the cash position

of the portfolio over the holding period.

2.2.2 Delta Hedged Returns under Stochastic Volatility

Assume a stock process and stochastic volatility process,

dSt
St

= µt[St, σt]dt+ σtdW
1
t (8)

dσt = θt[σt]dt+ η[dσt]dW
2
t (9)

with correlation ρ between the two Wiener process W 1
t and W 2

t . θt denote the drift coeffi-

cient, and η[dσt] the diffusion coefficient. By Ito’s lemma,

Ct+τ = Ct+

∫ t+τ

t

δCu
δSu

dSu+

∫ t+τ

t

δCu
δσu

dσu+

∫ t+τ

t

(r(Cu−Su
δCu
δSu
− (θu[σu]−λu[σu])

δCu
δσu

)du

(10)

Where λt[σt] represents the price of volatility risk. The volatility risk premium will be

related to risk aversion. This can be rewritten to,

Ct+τ = Ct+

∫ t+τ

t

δCu
δSu

dSu+

∫ t+τ

t

r(Cu−
δCu
δSu

Su)du+

∫ t+τ

t

λu
δCu
δσu

du+

∫ t+τ

t

η
δCu
δσu

dW 2
u (11)

Bakshi and Kapadia (2003) then proof in their first proposition that the expected delta

hedged return is equal to,

Et(πt,t+τ ) =

∫ t+τ

t

Et(λu[σu]
δCu
δσu

)du (12)

We conclude that if volatility risk is priced the expected return of the delta hedged portfolio

is determined by the vega ( δCu
δσu

) and the volatility risk premium as can be seen from equation

(12). When delta hedged discretely the average πt,t+τ can deviate from zero but Bakshi
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and Kapadia (2003) show that this deviation gets smaller as the delta hedge frequency

increases. The outlined framework allows us to test whether the sign of the volatility risk

premium is positive or negative by looking at the average delta hedged gains over the

sample period. Positive average delta hedged return for a long straddle portfolio implies a

positive risk premium and vice versa.

2.3 Portfolio Construction

Within each asset we construct straddle portfolios on a monthly basis. At the last trading

day of each month we select the most atm strike and open short straddle position with

40-60 days till expiry. We delta hedge in all assets at the end of each day over the holding

period of one month. This ensures that at the end of the day we have no exposure to the

underlying under the Black–Scholes model. At the last trading day of the following month

we close our short straddle positions and open a new one at the most atm strike with again

40-60 days till expiry. We repeat this process over the sample period of 1996-2015. There

does not always exist a strike that is exactly at-the-money. In that case we pick the strike

that is closest to atm with the restriction that the absolute delta of the call and put for the

atm strike can not deviate more then 0.1 from 0.5 (call) or -0.5 (put). This means that the

residual delta exposure of the straddle is between -0.2 and +0.2. If there is no qualifying

strike that merits these requirements we skip the month and record no return.

In order to delta hedge we use the delta provided by OptionMetrics where possible. If

the OptionMetrics data does not provide Greeks for a given option we approximate the

delta in the following way, we first look for the call (put) with the same strike price and

calculate the approximated delta by solving 1 = −∆put + ∆call. If that ∆ is also missing

we look for all the puts (calls) that are available at that time with the same maturity

and linearly interpolate the missing delta, with the restriction that a call (put) delta

should be strictly positive (negative) and smaller (greater) than 1 (-1). Very occasionally

OptionMetrics does not hold data for an option for one day during the holding period, in

this case we keep the delta hedge equal to the preceding day and adjust the following day

when the option reappears in the OptionMetrics database.

2.4 Portfolio Returns

For each asset we create atm straddle portfolios. We choose to relate the monetary return

of the portfolio to the initial cost of the straddle at the beginning of the holding period in

12



line with Bakshi and Kapadia (2003)8. The monetary return of the delta hedged straddle

portfolio consists of four parts, the call return, the put return, the return for delta hedging

the straddle and the interest rate received/paid for the varying cash position to remain

delta hedged over the holding period. Using equation (7) we find,

r =
−πputt,t+τ − πcallt,t+τ

P put
t + P call

t

(13)

where π denotes the portfolio gains. The negative sign for π relates to our strategy of

shorting straddles as we want to benefit from a negative volatility risk premium.

Theoretically the returns of the delta hedged put and delta hedged call should be very

close (see Figure 1). So alternatively to delta hedging the straddle we could delta hedge

the put following the approach of Bakshi and Kapadia (2003). However by combining the

put and call option into a straddle we have the benefit that we can average out possible

erroneous prices in the OptionMetrics database. Secondly when measuring the return for

the delta hedged atm put it can be that the initial price of the atm put is fairly small due

to the most atm put being slightly out of the money. This makes measuring the percentage

return noisy as the denominator (initial price put) is small. When we combine the put

and call the denominator (initial price straddle) is greater and more stable, mitigating the

chance of dividing by quantities close to zero.

2.5 Realized versus Implied Volatility

Implied volatility is forward looking in the sense that it is the markets estimate of the future

volatility of the underlying. Realized volatility is backward looking and is calculated as

the volatility that has been realized. We follow the definition of Goyal and Saretto (2007)

for the annualized realized volatility over a n day period.

RVt =

√√√√252

n

n∑
i=1

ln

(
Pt−i
Pt−i−1

)2

(14)

Based on the relationship we found between the volatility risk premium and the returns

of the delta hedged straddles we expect a long position in a delta hedged atm straddle to

suffer a loss when the implied volatility exceeds the realized volatility.

Financial returns are often found to display volatility clustering. Mandelbrot (1963)

8Alternatively you can relate the monetary return of the portfolio to the price of the underlying, which
relates to the return of a covered call strategy. Our results are robust under both measures.
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reports evidence that large changes are often followed by large changes and small changes

by small changes. The squared returns display positively slowly decaying auto correlations

which led to the frequent use of GARCH models to forecast volatility as volatility shocks

today influence the expectation of volatility far into the future. Volatility is also found to

be mean reverting which is generally interpreted as their being a normal level of volatility

to which volatility will eventually return.

Goyal and Saretto (2007) indeed found that historical volatility has predictive power for

the future volatility. Sorting on the difference between the historical realized volatility (RV)

and the forward looking implied volatility (IV) they construct buckets that produce excess

returns when they go long the decile with assets where the IV is relatively low compared

to the RV and go short the decile with assets where the IV is relatively high compared to

the RV. Their look back period to calculate the historical volatility was one year so that

their model was primarily motivated by the mean-reverting property of realized volatility.

Picking a much shorter look back period would be more related to the volatility clustering

property of volatility.

To formalize, the RV is calculated using equation (14). We then sort on the log difference

between the RV and the IV,

Rt = lnRVt − ln IVt (15)

Based on the sorting Goyal and Saretto (2007) go long the top decile (high RV compared

to IV) and short the bottom decile. We deviate from their weighting scheme as our study

is considered with 60 assets with an average of 12 assets per asset class, making buckets

would lead to very small number of assets per bucket. Therefore we opt for a weighting

scheme in which all assets are assigned a weight but differ in magnitude. We use two

different weighting schemes. In Section 4.4 we use a weighting scheme where the weights

sum to -1 to stay consistent with being short volatility for the k assets at time t. Equation

(16) shows the weighting formula.

weightit = − rankingit∑k
i=1 ranking

i
t

(16)

In Appendix J a weighting scheme is used to created a long-short portfolio for the k assets

at time t that aims to benefit from the relative volatility mispricing between assets without

being short volatility at a portfolio level. Equation (17) contains the weighting formula.

weightit = −zt(rankit −
k + 1

2
) (17)
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zt is a scalar that ensures that the long and short positions equal 1 and -1. We apply this

long short weighting scheme to all the assets within an asset class. The weighting scheme

in equation (17) is identical to the weighting scheme in Koijen et al. (2015) where they

create long-short carry portfolios.

3 Data

The data for this study comes from the IvyDB US database of OptionMetrics and covers

the time period January 1996 to August 2015. The database is a frequently used standard

for academic studies, the database contains historical price and implied volatility data of

the US markets for 4409 optionable securities. Most of these securities are common stocks,

ADR’s and mutual funds. After removing these securities we are left with 632 ETFs and

34 indices. Per asset class we try to include as many individual securities as possible

under the condition that they have sufficient trading volume and for ETFs that they have

sizable Assets Under Management (AUM). We also avoid including the exact same asset

twice, but do include assets related to the same sector (oil for example) that have different

constituents. If we have two identical securities which have available options every month

we take the security with the longest available data. For example we have option data on

both the SPX index and the SPY ETF. We included the SPX index as the data goes back

to 1996 where SPY data starts in 2005. In total we select 40 ETFs and 20 indices across

the different asset classes, see Table 2. The data set is very size-able with the raw option

data over 16.1 gigabytes in size. The SPX index alone has over 7 million daily observations

for all the different options combined. The total for all 60 assets combined is well over

a hundred million daily observations. This made it important to structure and filter the

data to make backtesting the delta hedged strategies feasible.

For credits we cover 3 ETFs with the earliest starting in 2003. The first ETF covers

investment grade corporate bonds while the two other ETFs cover high yield corporate

bonds. For government bonds we include 4 indices and 4 ETFs. These are all US treasury

related but cover different maturities from 13 weeks till 30 year bonds9. For currencies our

data starts in 2007 and covers 12 securities including the U.S. Dollar, Great British Pound,

Japanese Yen, Canadian Dollar, Swiss Franc, Chinese Reminbi and the Euro. Within the

commodity asset class we include Gold, Silver, Oil gas and agriculture securities for a total

9We also collected swaption data from an anonymous broker covering Germany, Japan and the U.K.
and found similar results.
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of 9 securities. Lastly we include 10 indices and 18 ETFs of different global equity markets,

covering Germany, Sweden, U.S., Canada, China, Australia, Japan, Italy, Hong Kong and

emerging markets. The descriptions of all the different securities, including AUM for ETFs,

can be found in Appendix A. Appendix B provides an overview of the total volume over

the sample period in the various securities.

Table 2: Overview Data

General overview of the different assets grouped per asset class included in this study. In brackets you can
find the Bloomberg codes. This table contains a subset of all considered assets.

Equity Index Currency Bonds

US (SPX, DJX) Australia (XDA, FXA) US 13 weeks (IRX)
China (FXI, GXC) Canada (XDC, FXC) US 1-3 year (SHY)
Europe (VGK, EZU) Yen (FXY, XDN) US 3-7 year (IEI)
World (VEU, ACWI) Swiss Franc (XDS, FXF) US 7-10 year (IEF)
Germany (EWG) British Pound (FXB) US 10-20 year (TNX)
South Korea (EWY) US Dollar (UUP) US 20+ year (TLT)
Japan (EWJ) Reminbi (CYB) US 30 year (TYX)
Italy (EWI) Euro (FXE)
Hong Kong (EWH)

Commodities Credits

Gold (GLD, IAU) Investment Grade (LQD)
Silver (SLV, XAU) High Yield (HYG, JNK)
Oil (OIL, USO, OSX)
Gas (UNG)
Agriculture (DBA)

The IvyDB US database also contains risk free rate series and the historical (closing)

prices of the associated underlying instruments and option sensitivities for all the differ-

ent options (delta/gamma/vega etc). This makes it possible to backtest option trading

strategies, including hedging strategies for different greeks. We delta hedge our straddle

positions and use the delta provided by the database where possible. IvyDB US calculates

the greeks for European options using the Black & Scholes formula based on the midpoint

price. For American options the greeks are calculated using a proprietary algorithm based

on Cox, Ross and Rubinstein binomial tree model (Cox et al. (1979)). Sometimes the

deltas are missing for an individual option. In that case we use the data available at that

specific point of time and extrapolate or interpolate to find the missing deltas. Battalio

and Schultz (2006) note that option prices and underlying prices are frequently recorded
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at a different time in IvyDB US. This is due to the different times the options and the

underlying cease trading for the day.

Duplicate Assets

We study the volatility premium by using options. For a European call the vega and

gamma is equal to the vega and gamma of the European put (see Appendix G). This

means that after we delta hedge both options, the assets are identical in terms of delta,

gamma and vega exposure 10. In this sense our study of delta hedged straddles is the

same as the approach Bakshi and Kapadia (2003) in which they delta hedge puts instead

of straddles. With our approach of delta hedging a straddle we attempt to average out

measurement errors in the calculated returns of our option portfolio which are caused by

our inability to measure the exact fair value as we take the midpoint of the bid-ask spread.

In Figure 1 you find the put and call returns for the SPX index and see that returns are

indeed very similar with a correlation of 0.89, but not exactly the same.
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Figure 1: Monthly returns delta hedged SPX calls and versus puts

This figure shows the returns of the monthly atm delta-hedging strategy for the atm call options and the
atm put options over the sample February 1996 till August 2015 for the SPX Index. The return is related
to the price of the option at the beginning of the holding period and includes the interest that is earned
(paid) by selling (buying) the stock.

In a similar way we show the relation between ETF and Index options on the same

underlying. The SPX Index and SPY ETF are both assets that are based on the S&P

10We ignore here the difference between American and European options.
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500. This means that the two assets should trade within arbitrage bounds of each other

as when the SPY ETF becomes overvalued compared to the underlying S&P 500 basket

you can redeem your ETF shares and substitute them for shares of the underlying basket.

Arbitragers step in every time these arbitrage bounds are violated and make a risk free

profit. Apart from the similarities between the SPY and the SPX there are the following

differences, the SPY ETF started trading later than Index options on the SPX and the SPY

trades at one tenth of the value of the SPX. This makes the SPY ETF more accessible to

smaller investors having to put down a smaller amount of money to gain exposure. Trading

in the SPY ETF is more liquid than the SPX options in the sample period where both are

available from February 2005 till August 201511. We established the arbitrage bounds for

the Index versus the ETF, the same holds for the options. Since the options on the SPY

and SPX are based on essentially the same underlying, arbitrage bounds keep the prices

in line. To show this we compare the returns of the SPX and the SPY atm delta hedged

options. Figure 12 in Appendix E clearly shows that the monthly returns for the delta

hedged strategy from Section 2.3 are almost identical.

Option trading volumes

In Appendix D you can find the cumulative interest in the different asset classes in terms of

contracts traded for the put and call options. In every asset class we see the same general

pattern for both put and call options, volumes increase as we move from in the money

to out of the money and peaks slightly out of the money. The relative interest between

put and call options differs between asset classes. For commodities and currency we see

cumulatively more call options trade, where for equity indices and (corporate) bonds the

put options are relatively more popular. Gold (GLD) options for example have a call put

ratio of 1.35 meaning that there is 35% higher volume in the call options than the put

options, on the opposite side of the spectrum the call put ratio for the SPX options is 0.60.

The put call ratios are highly persistent through time.

11By liquidity we here mean quantity volume, in terms of notional the index is still larger.
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4 The Global Volatility Risk Premium

In this section we analyze the summary statistics of the volatility risk premium portfolios

in the different asset classes. First we analyze them by asset class in Section 4.1. Secondly

we analyze the global volatility risk premium by combining the asset class portfolios risk

equally weighted in Section 4.2. Thirdly we analyze the global volatility risk premium

portfolio where we do not delta hedge in Section 4.3. Lastly we alter the equal weighting

scheme in an asset class based on the difference between the historical realized volatility

and the implied volatility in Section 4.4.

4.1 The Volatility Risk Premium per Asset Class

For each asset within each asset class we write delta hedged at-the-money straddles and

calculate the returns using equation (13). Table 3 reports the annualized mean, standard

deviation, skewness, kurtosis, best and worst monthly return and Sharpe ratio of the

Volatility Risk Premium (VRP) for each asset class. We are the first to examine the

VRP for credits made possible by the existence of three large ETFs - one with AUM in

excess of 32 billion for investment grade and two in excess of 10 billion for high yield.

We find an impressive Sharpe ratio of 1.55 for credits. All other asset classes have been

investigated before, but in most cases by studying the period 1996 to 2015 we are looking to

a large extent at an out-of-sample period including the 2008 market crash. The results for

government bonds, commodities and equity indices are all highly significant with a Sharpe

ratio above one. Only for currencies (which has the shortest sample from 2007-2015) we

see a modest VRP with a Sharpe of 0.27.

Out of the 60 considered assets 50 have a positive Sharpe showing that the result is

robust for many different assets and not determined by a few positive outliers. The Sharpe

ratios range from -1.31 to 3.55 over all the assets. The robust results indicate that the

volatility risk premium is a strong factor across asset classes. And this result is achieved

by using a single uniform strategy in all asset classes: writing delta hedged at-the-money

straddles. Appendix C shows the results per individual asset, including the sample period

over which each individual asset is available.

It is worth noting that in each of the five asset classes the skewness is negative, ranging

from -0.8 for commodities to -4.2 for currencies. The currency portfolio also has a very

high kurtosis of 28.43, this is mostly due to the event where the Swiss currency appreciated

more than 20% relatively to the euro on 15 January 2015 as the central bank abandoned
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Table 3: The Returns of the Volatility Risk Premium per Asset Class

This table reports for each asset class the mean annualized excess return, the annualized standard deviation
of return, the skewness of monthly returns, kurtosis of monthly returns, the worst and best monthly return,
and the annualized Sharpe ratio of the Volatility Risk Premium (VRP). This strategy at the start of each
month writes delta hedged at-the-money straddles on all individual assets within each asset class. The final
column shows the results when combining the returns of the VRP in the individual asset classes by scaling
each portfolio return to a 10 percent standard deviation based on the full-sample standard deviation and
then equally weighting the scaled return series. The resulting portfolio is called the Global Volatility Risk
Premium (GVRP).

Credits Government Commodities Currencies Equity GVRP
Bonds Indices

Mean % 112.61 73.43 50.78 24.08 63.64 10.95
St. Dev. % 72.72 62.42 48.09 89.11 54.26 7.57
Skewness −1.05 −1.04 −0.81 −4.23 −1.48 −1.28
Kurtosis 4.54 4.69 3.66 28.43 7.73 6.42
Min % −64.52 −62.55 −45.62 −180.19 −86.58 −10.30
Max % 54.22 43.99 32.45 30.21 30.47 6.30
Sharpe 1.55 1.18 1.06 0.27 1.17 1.45

the cap. The asymmetrical payoff is to be expected as the payout is closely related to the

difference between the implied volatility and the realized volatility. Both realized volatility

(RV) and implied volatility (IV) can suddenly spike with specific events, which will cause

large losses for the strategy, and then gradually returns to normal levels resulting in steady

gains. Also the excess kurtosis is high indicating fat-tailed positive and negative returns.

In the Appendix in Figure 13 you can find the cumulative log excess returns of the

VRP returns per asset class. In general the performance is strong over time for each asset

class. We also see substantial drawdowns which can coincide, for example in Q4 2008, and

sometimes are specific to that asset class alone. Credits do not suffer a drawdown in 2008

but this is caused by the assets having no atm straddles available leading to us recording

no returns. If there would have been options available it is likely we would have suffered a

loss.

4.2 The Global Volatility Risk Premium

The final column in Table 3 reports the performance of the portfolio that invests in the

VRP in all asset classes. For this purpose we construct a risk equally weighted portfolio

that each VRP contributes equally to the total volatility of the Global Volatility Risk

Premium (GVRP). To make all the assets contribute equally, we scale all the asset classes
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to 10% annual standard deviation before combining them. This procedure is the same as

in Moskowitz et al. (2012), Asness et al. (2013), and Koijen et al. (2015).

The GVRP has a Sharpe ratio of 1.45 making it one of the strongest factors in the

academic literature. The Sharpe ratios for the five asset classes average 1.05, hence there

are diversification benefits of applying the VRP across asset classes. On the other hand

if the VRP returns per asset class would have zero correlation with each other we would

have expected the Sharpe ratio to increase by a factor
√

5 whereas the actual increase is

roughly 40 percent. This suggests that there is quite some correlation between the VRP

returns of the different asset classes. The interdependence is also visible from the negative

skewness of -1.28, suggesting that large losses in each asset class tend to coincide.
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Figure 2: Cumulative Performance of the GVRP

This figure shows the cumulative sum of the log excess returns of the Global Volatility Risk Premium
portfolio (GVRP). The GVRP returns are calculated as the equally weighted average of the returns of the
VRP per asset class after scaling these returns to 10% annualized volatility. The sample period is from
February 1996 till August 2015.

Figure 2 contains the log cumulative performance of the GVRP. The returns for the

GVRP are impressive throughout the sample, but it also exhibits a large drawdown in the

fourth quarter of 2008 when both the RV and the IV spiked in all asset classes leading to

losses in all VRPs. In Section 5 we will further investigate the dependence between the

VRP’s as well as study possible explanations of the strong results for the GVRP.
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4.3 The Global Volatility Risk Premium Naked

Delta-hedging the straddle positions generates more transaction costs as the frequency of

delta-hedging N over the holding period increases. Therefore less frequent delta-hedging

can be seen as beneficial for practitioners who do not want to keep track of the delta

position on a daily basis or want to avoid the transactions costs involved.

A special case is when we choose N to equal zero so we do not delta hedge over the

holding period. This has considerable consequences for the returns of the strategy. First

in Section 3 we showed how the returns of a delta hedged atm put and a delta hedged atm

call on the same underlying are empirically highly positively correlated. For the unhedged

option returns the delta of the atm call (0.5) is the opposite of the atm put (-0.5). This

means that an upward move in the underlying results in a profit for the long call position

while the long put position suffers a loss of the same magnitude. The returns of the naked

long call and put position are now negatively correlated instead of positively correlated if

we were to delta-hedge.

Due to the second derivative (gamma) of the option to the underlying the delta of the

long atm call position becomes more positive as the underlying drift upwards, while the

delta of the put decreases and becomes less negative. As a result a further upward drift

in the underlying leads to a bigger positive gain for the long call position then the loss for

long atm call position. Hence as we move further away from the atm strike the negative

correlation between the call and the put decreases. Since the correlation fluctuates the

average realized return for the put and the call as well as the realized volatility can differ.

Not delta-hedging has as a consequence that the return of the straddle portfolio be-

comes more path dependent. Consider a daily delta hedged long straddle portfolio. Two

consecutive daily returns in the underlying of -1% and again -1% produces roughly the

same portfolio return as two daily returns in the underlying of -1% and 1%12. This is due

to the fact that we delta hedge the exposure to the underlying every end of day so that the

return of the delta hedged straddle is mostly driven by gamma and changes in the implied

volatility.

An unhedged straddle portfolio has an equal return to the delta hedged straddle portfo-

lio after the first day of the holding period as the straddle portfolio initial has a zero delta.

However the unhedged straddle portfolio has a negative delta position at the end of day

one, compared to the zero delta exposure of the delta hedged straddle. If the underlying

experiences a negative return of -1% again the unhedged portfolio becomes more valuable

12We ignore the reduction in gamma as we move further away from the strike.
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both because of the gamma - and the negative delta position. If the underlying moves up

1% we end up where we started, the unhedged straddle is now worth less than two days

earlier as the option now has less time to maturity left.

The methodology for the unhedged straddle portfolios simplifies to selling the straddle

at the beginning of the holding period and buying it back at the end of the holding period.

The monetary return for a short straddle portfolio over holding period t till t + τ then

simplifies to Pt − Pt+τ + Ct − Ct+τ .
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Figure 3: Naked versus delta hedged

This Figure shows the cumulative log outperformance of the delta hedged global volatility risk premium
portfolio and the naked portfolio. For both portfolios the asset class portfolios are scaled to have 10%
annual standard deviation before combining them equally weighted. The sample period is from February
1996 till August 2015.

We again construct the GVRP portfolio with the condition that we keep all the straddles

naked for our 60 assets within the 5 asset classes. We scaled the resulting asset class

portfolio to have 10% annual standard deviation for easy comparison with the delta hedged

GVRP. In Figure 3 you can see the log cumulative outperformance of the naked and as

a benchmark the delta hedged portfolio. The Sharpe ratio is 1.15 with average excess

yearly returns of 8.0% and standard deviation of 7.0%. The returns of the delta hedged

and unhedged straddle portfolio follow a similar pattern. However the unhedged strategy

earns less per unit risk and therefore the cumulative performance of the naked portfolio

lacks behind the delta hedged portfolio.

The returns of the two constituents of the unhedged straddle can be vastly different.
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Hence the return of the total straddle can be dominated by the return of the put or the call

option. For the S&P 500 the annualized average return of the short naked put is 266.2%,

compared to 34.6% for the naked short call. The average returns differ almost 8 fold in

size. We observe the same pattern for bonds (TLT) with -122% average annual return for

short call and 201.7% average annual return for the put. In both cases the option that pays

off in bad states of the world carries the largest premium. We will study the unhedged

returns of the call and put in more detail in Section 6.

4.4 The Global Volatility Risk Premium Enhanced

In section 4.2 we constructed the Global Volatility Risk Premium (GVRP) portfolio by

combining the asset class returns risk equally weighted. Each asset class portfolio is con-

structed by combining all the constituents equally weighted. However recent research by

Goyal and Saretto (2007) showed that outperformance can be achieved in US equities by

taking into account the difference between implied volatility (IV) and the realized volatil-

ity (RV) in order to identify over- and underpriced options. Goyal and Saretto (2007)

sort stock options based on the difference between the historical realized volatility and at-

the-money implied volatilities and construct straddle portfolios. They find economically

significant returns for a zero-cost trading strategy that goes long in assets with a large

positive difference between the historical and implied volatility and short where we have a

large negative difference. We apply the same measure between the realized and the implied

volatility for our GVRP portfolio in order to see if we can more efficiently go short volatility

by shorting the most where the opportunity is the largest. Our hypothesis is that an un-

derlying where the implied volatility is relatively large compared to its historical volatility

relative to the other underlyings this underlying offers a bigger opportunity relatively to

the others.

We evaluate both the last month RV, and the yearly RV for sorting, Figure 4 shows

the results. For the 1 year RV we find an average annual return of 11.62% with a standard

deviation of 7.51% for a Sharpe ratio of 1.55. For the 1 month RV we find an average annual

return of 11.49% with a standard deviation of 7.45% for a Sharpe ratio of 1.54. This is

compared to the average return of 10.95% with standard deviaton of 7.57% with a Sharpe

ratio of 1.45 for the original GVRP portfolio. In both cases the Sharpe ratio improves over

the original GVRP portfolio. We perform the Jobson and Korkie (1981) Sharpe ratio test

with the correction from Memmel (2003) to test if the Sharpe ratios significantly increase

over the original GVRP portfolio. We find a significant p-value of 0.001 for the 1 month
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Figure 4: Comparison GVRP Enhanced

This Figure shows the cumulative log outperformance of the portfolios sorted on the 1 month realized
volatility, the 1 year realized volatility and for comparison the original GVRP portfolio. For all three
portfolios the asset class portfolios are scaled to have 10% annual standard deviation before combining
them equally weighted. The sample period is from February 1996 till August 2015.

RV portfolio and 0.003 for the 1 year RV portfolio. Hence we conclude that sorting on the

difference between the RV and the IV can improve the performance of the GVRP portfolio

significantly further13.

5 Potential Explanations for the VRP

We find a highly statistical and economical significant global volatility risk premium, we

now investigate possible explanations for this result. What is driving the global volatility

risk premium? We first look for common variation in the volatility risk premium across

asset classes in Section 5.1 to check whether a common risk factor could explain the pre-

mium. Secondly, we study the relation between the global volatility risk premium and

various candidates for the common risk factor: volatility risk, crash risk, liquidity risk,

macroeconomic risk and the relation with other global factors.

13In Appendix J we also consider long short portfolios instead of short only and find positive excess
returns.
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5.1 Common Risks

Table 4 reports the monthly correlations of VRP returns across the five asset classes. All

the correlations are positive, but the average correlation is a modest 38 percent. These

moderate correlations suggest that substantial diversification benefits can be achieved by

combining the five VRP’s into the GVRP. However, correlations will be downward biased

due to the noise in monthly returns and are not saying anything about co-movements in

returns in for example bad times.

Table 4: Correlations between VRP Returns of Different Asset Classes

This table shows the monthly return correlations between the VRP returns of the five asset classes.

Credits Government Commodities Currencies Equity
Bonds Indices

Credits 1 0.44 0.22 0.28 0.39
Government Bonds 1 0.23 0.39 0.43
Commodities 1 0.48 0.48
Currencies 1 0.5
Equity Indices 1

Following the methodology of Koijen et al. (2015) we investigate the commonality for

the VRP across asset classes by looking at correlations during GVRP expansions (positive

performance) and drawdowns (negative performance). The results in Table 5 show the

correlations during drawdowns (left bottom triangle) and expansions (upper right triangle).

In general most correlations between the VRP returns across asset classes are higher during

drawdowns. Also the correlation of each VRP with the GVRP is larger during GVRP

drawdowns.

Another way to look at commonality in the VRP returns for the different asset classes

is to regress each individual asset class VRP returns on the GVRP, see Table 6. For each

asset class the VRP loads significantly on the GVRP, also when excluding the VRP of that

asset class from the GVRP. Hence there is a significant commonality in the VRP returns.

For credits, commodities, and equities this even leads to a no longer significant alpha. This

indicates to a strong common component in the VRP returns of the different asset classes.

5.2 Risk-Adjusted Performance and Exposure to Other Factors

The first attempt to explain the common variation in the VRP returns reported in the

previous section is to see to what extent the VRP returns can be explained by the underly-
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Table 5: correlation Drawdown-Expansion

This table provides the correlations between the asset class portfolios and the gvrp portfolio in drawdons
and expansions of the gvrp portfolio. The left bottom triangle contains the correlation between the asset
classes under the condition that GVRP has a negative return. Vica versa the top right triangle contains
the correlations between the asset classes when the GVRP portfolio has a positive return.

Credits Government Commodities Currencies Equity
Bonds Indices

Credits 1 0.15 −0.07 −0.11 0.02
Government Bonds 0.56 1 −0.09 0.01 0.13
Commodities −0.02 −0.15 1 0.38 0.14
Currency −0.03 0.01 0.19 1 0.29
Equity Indices 0.21 0.25 0.17 0.25 1

Table 6: Individual VRP exposure to GVRP

This table provides the results from regressing the VRP of each asset class on the GVRP including the
VRP of that asset class (columns labelled ’incl’) or the GVRP excluding the VRP of that asset class
(columns labelled ’excl’). We report the intercept or α and the beta (’GVRP’) along with the t-statistics,
and the R2 from the regression.

Credits Government Bonds Commodities Currencies Equity Indices

incl excl incl excl incl excl incl excl incl excl

mean 1.29 1.29 0.98 0.98 0.88 0.88 0.23 0.23 0.98 0.98
t-stat (4.60) (4.60) (4.79) (4.79) (4.66) (4.66) (0.76) (0.76) (5.19) (5.19)

α 0.14 0.61 0.08 0.52 0.00 0.41 −0.39 −0.27 0.00 0.36
t-stat (0.41) (1.48) (0.4) (2.03) (−0.01) (1.72) (−1.16) (−0.78) (0.02) (1.59)

GVRP 1.08 0.67 0.99 0.53 0.96 0.5 0.88 0.59 1.07 0.69
t-stat (10.77) (4.46) (14.43) (5.08) (12.7) (6.28) (4.07) (5.68) (12.00) (5.89)

R2 46.78 19.04 49.03 16.46 52.66 17.4 54.99 25.99 65.24 31.02

ing market (equally weighted return of the assets underlying the options) and factors that

also generate strong returns: value, cross-sectional momentum and time-series momentum.

The results in Table 7 show that the alpha, i.e. the risk-adjusted performance, for each

VRP is positive and significant for all five asset classes. In fact for government bonds and

currencies the alpha is even higher than the unadjusted performance (the mean is shown

in row one of Table 6). The market and factors explain most for currencies and equity

indices. For equity indices we see a strong loading on the equity market indicating that

the VRP returns are more positive when equity markets are rallying and more negative in
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equity bear markets. This makes sense as equity bear markets are often accompanied by

rising equity volatility which is detrimental for the VRP returns. Interestingly the VRP

for government bonds loads negatively on the bond market. One example from 2008 is

that the implied volatility for the bond options reached an all-time high leading to a large

loss for the VRP, whilst government bond returns were very positive.

Table 7: VRP Exposures to Other Factors

This table provides the results from regressing the VRP of each asset class on the underlying market
(equally weighted return of all the assets underlying the options), value, cross-sectional momentum (mom)
and time-series momentum (tsmom). We report the risk-adjusted performance (α), the beta coefficients
of the market and the factors, t-statistics, and the R2.

Panel A: Regression Per Asset Class All Factors

Credits Gov. Bonds Commodities Currencies Equity Indices
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat

α 0.79 (2.0) 1.23 (5.5) 0.83 (3.4) 0.71 (2.8) 0.83 (4.1)
passive 0.22 (1.1) −0.24 (−3.7) 0.06 (1.6) 0.15 (1.4) 0.20 (3.9)

value −0.37 (−0.6) −0.60 (−1.9) 0.06 (1.3) −0.27 (−3.2) 0.38 (3.2)
mom −0.43 (−0.9) 0.44 (1.2) 0.13 (3.2) 0.11 (1.0) 0.23 (2.3)

tsmom −0.01 (−0.2) −0.04 (−1.5) −0.05 (−0.9) −0.01 (−0.3) 0.00 (0.1)
R2 4.0 11.6 6.0 30.8 23.3

Panel B: Regression Per Asset Passive Long

Credits Gov. Bonds Commodities Currencies Equity Indices
Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat

α 1.20 (3.2) 0.99 (4.6) 0.87 (4.0) 0.18 (0.6) 0.86 (4.5)
passive 0.27 (1.3) −0.14 (−2.3) 0.07 (1.8) 0.29 (2.5) 0.21 (4.0)

R2 3.4 3.1 3.8 5.2 15.5

5.3 Crashes and Downside Risk Exposure

A popular hypothesis for strong factor returns is whether the returns compensate investors

for crash risk or negative returns during “bad times”. One way to test this is to look at

whether VRP returns are poor when the underlying assets have negative returns. For this

Henriksson and Merton (1981) propose the following regression,

rt = α + βmktrmkt + βdown max(0,−rmkt) + εt (18)
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where the market return for an asset class is the equally weighted return of all the

underlyings for the options in an asset class. The results in Table 8 Panel A indeed show a

strong significant loading on βdown for all asset classes. The R squared is now also more than

20 percent for credits, commodities and equity indices indicating that a substantial part

in variation of the VRP returns can be explained by downside risk. However, the alphas

for credits, government bonds, commodities and equity indices are still highly significant.

Hence crash risk can only partly explain the VRP returns.

An alternative version of equation (18) is to only consider negative market returns

when they exceed minus one standard deviation instead of looking at all negative market

returns, following Lettau et al. (2014). Panel B in Table 8 shows the results. We see similar

results as in Panel A. There is a significant loading on downside risk14, with the exception

of credits where we have only a small number of observations with market returns more

negative than one standard deviation. In general the alphas in Panel B are lower than in

Panel A. But they are still highly significant for credits, government bonds, commodities

and equity indices.

5.4 Global Liquidity and Volatility Risk

Several studies have looked at liquidity risks and volatility risk to explain excess returns.

We measure market liquidity by looking at the TED spread, the difference between interest

rates on interbank loans and on short-term U.S. government debt. Our TED measure is

the average taken over the G10 countries rather than only the U.S. We measure volatility

risk by changes in the VIX, the implied volatility index for S&P 500 index options. Table 9

shows the results from regressing the VRP returns on liquidity risk and volatility changes.

In general both liquidity risk and volatility changes are important. For the latter this

is as expected. A rise in equity implied volatilities is obviously detrimental for the VRP

applied to equity indices as the payoff of the delta hedged straddle is directly related to

the difference between the implied volatility at the start of writing the straddle and the

realized volatility in the subsequent month. A rise in VIX during that month will imply a

rise in the realized volatility which in turn will lower or even turn negative the difference

between the implied volatility at the start of the month and the realized volatility. Hence

14Bollerslev et al. (2015) use high frequency data to accurately measure realized volatility for the S&P
500 returns to get a daily measure of the VRP for the S&P 500. This allows to identify two types of risks
that can explain the existence of the VRP. One attributable to market fears and a special compensation
for jump tail risk. It appears we have traction with the downside risk in terms of fear for market losses,
but get nothing extra out of looking at more extreme negative market returns.
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Table 8: Exposure to Downside Risk

In this Table we report the results from regressing the VRP returns on the market (the equally average
return of all the assets underlying the options) on downside risk measures. Panel A reports the regression
results from the Henriksson and Merton (1981) model, where downside beta is estimated on the market beta
and the maximum of zero and minus the market. The results include the α (risk-adjusted performance),
market beta and downside beta along with their t-statistics. The final column shows the R2. In Panel
B we report the Lettau et al. (2014) downside risk measure where we estimate the market beta and the
conditional beta where the excess market return is one standard deviation below zero.

Panel A: Regression Henrikkson and Merton (1981)

α t-stat βmkt t-stat βdown t-stat R2

Credits 2.51 (4.8) −0.52 (−2.0) −1.88 (−2.9) 22.6
Government Bonds 1.80 (6.5) −0.44 (−5.3) −0.68 (−3.9) 11.5
Commodities 2.40 (10.5) −0.18 (−5.0) −0.49 (−9.5) 24.6
Currency 0.84 (1.5) −0.02 (−0.2) −0.81 (−1.9) 9.2
Equity Indices 1.94 (6.8) −0.05 (−0.9) −0.51 (−4.4) 24.3

Panel B: Regression Lettau, Maggiori and Weber (2014)

α t-stat βmkt t-stat βdown t-stat R2

Credits 1.34 (3.4) 0.13 (0.6) −0.61 (−1.0) 6.0
Government Bonds 1.36 (5.9) −0.33 (−4.5) −0.49 (−3.5) 9.5
Commodities 2.20 (10.1) −0.16 (−4.5) −0.46 (−9.3) 25.8
Currency 0.43 (1.2) 0.10 (1.3) −0.87 (−3.3) 12.0
Equity Indices 1.56 (6.5) 0.02 (0.4) −0.39 (−3.9) 22.9

no surprise to see for the VRP for equity indices the highly significant negative loading

on changes in VIX with a t-statistic of -10.8. The fact that changes in VIX also have

significant explanatory power for VRP returns in the other asset classes simply illustrate

again a strong commonality in volatility changes across asset classes. VIX increases are

likely to coincide with increases in implied and realized volatilities for credits, government

bonds, commodities and currencies as illustrated by the significant negative loadings on

VIX changes for these asset classes. Nevertheless the alphas are still highly significant for

all asset classes except for currencies.

5.5 Drawdowns

We analyze the drawdown periods of the GVRP portfolio in terms of length, severity and

check if these periods coincide with a global crises. First we present summary statistics

about the five biggest drawdowns the GVRP portfolio suffers which can be found in Table
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Table 9: Global Liquidity and Volatility Risk

This table shows the results from the regression of volatility risk premium (VRP) returns of each asset class
on the changes in VIX, the implied volatlity index for the S&P 500 index options, and the TED spread as
a proxy for liquidity risk. The TED spread is the difference between the interest rates on interbank loans
and on short-term U.S. government debt. Our measure is an average taken over the G10 countries rather
than using only the U.S. TED spread. The table shows the alpha, the betas for liquidity (TED spread),
the change in VIX (∆VIX) and the R2.

Credits Gov. Bonds Commodities Currencies Equity Indices

beta t-stat beta t-stat beta t-stat beta t-stat beta t-stat

α 2.89 (7.6) 1.38 (4.1) 1.40 (5.4) 0.63 (1.1) 1.79 (7.5)
TED spread −0.03 (−6.9) −0.01 (−1.7) −0.01 (−3.5) −0.01 (−1.4) −0.01 (−4.0)

∆VIX −0.17 (−2.6) −0.16 (−3.3) −0.23 (−6.6) −0.18 (−4.5) −0.36 (−10.8)
R2 28.2 9.7 18.3 16.3 42.7

10.

Table 10: Drawdowns

This table contains summary statistics for the 5 worst drawdowns of the GVRP portfolio over the period
1996 till 2015. The column named months contains the amount of months it takes between the start of
the drawdown and the start of the recovery.

start drawdown start recovery end recovery months peak-through (%)

05–2007 11–2008 12–2009 18 −22.0
08–2014 03–2015 12–2015 7 −12.0
03–2002 08–2002 03–2003 6 −9.5
05–2011 09–2011 03–2012 4 −9.3
03–2013 06–2013 11–2013 3 −7.5

We see that the worst drawdown in 2007/2008 coincides with the biggest global crisis

in recent years which put the US in a recession. In 2011 the GVRP portfolio experiences

a drawdown together with the European Debt crisis. The drawdown in August 2014 is

caused by turmoil in commodities and currencies.

We use the recession indicator of the National Bureau of Economic Research which

is based on the US business cycle15. In recent years this indicator records two recessions:

March 2001 till November 2001 (8 months) and December 2007 till June 2009 (18 months).

In Figure 5a you can find the cumulative log returns of the GVRP portfolio and shaded in

15http://www.nber.org/cycles.html
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red are the periods where the portfolio suffered a drawdown. We see that both recessions

overlap with a period in which the global VRP portfolio suffers a drawdown.

(a) Drawdowns GVRP
(b) Recessions

Figure 5: Cumulative return GVRP with recessions / drawdowns

Figure 5a contains the cumulative log returns of the GVRP portfolio. Shaded are the periods in which
the portfolio experience one of its 5 worst drawdowns. In Figure 5b the cumulative log returns are again
plotted but now shaded are the recession indicator of the NBER and seperately shaded are the Ruble crisis
and the Greece debt crisis.

6 The Term Structure of the Volatility Premium

The average return of the naked call and the naked put on the same strike for the same

underlying can differ significantly as the options have opposite sensitivity towards the

underlying. This leads to the question if allocating evenly to the atm put and call is

optimal if the returns of the call and put differ or if we can optimize the weighting in order

to get better results. To optimize we will need a deeper understanding of the option returns

and the correlations between call and put options of different maturity and moneyness.

Therefore we first study the returns of the naked put and call options on the S&P 500

separately to gain insight in what a potential model for these returns should be able to

explain. Then we evaluate if the found insights carry over to bonds and gold which belong

to different asset classes. Lastly we propose a regression model to explain and forecast the

average returns alongside the covariance matrix and evaluate the performance.
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6.1 S&P 500 Naked Returns

The returns of the individual call and put options of the S&P 500 have been studied by

Bondarenko (2014). They found that the naked put options on the S&P 500 were grossly

overpriced over the period 1987 till 2000. The average excess return per month is -39%

for atm and -95% for far out of the money naked puts. Over our sample (which is entirely

out-of-sample compared to Bondarenko (2014)) from 1996 till 2015, which includes the

global financial crisis of 2008, puts have remained overpriced with an average excess return

per month of -41.4% for atm and -95.7% for far otm naked put options. Bondarenko

(2014) noted that naked put options correlate negatively with the market which carries

a positive risk premium so we can expect a negative put premium. Furthermore options

carry leverage which could magnify this effect. Put options pay off in bad states of the

world for which investors are willing to pay a premium depending on how risk averse they

are.
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Figure 6: Term Structure Sharpe Ratio SPX Put options

This Figure shows the term structure of the Sharpe ratio for put options on the SPX Index based on delta
and time to maturity over the period February 1996 till August 2015. The surface is created by making
buckets based on the delta with a width of 0.1 and based on the time to maturity with a width of 10
days. The width is chosen as a too small width would lead to a very noisy surface with few observation
belonging to each bucket.

In Figure 7 we see the term structure of the monthly average excess returns for put

options on the S&P500. The returns are rescaled to a 30 day holding period in line with

Bondarenko (2014) to make the returns between different maturities comparable. It can be

clearly seen that the returns are decreasing as we go further out of the money and as the
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time to maturity decreases. Based on these expected returns we could argue that selling

an atm put is sub optimal to selling an otm put. In Figure 6 you can see the Sharpe ratio

as a function of delta and the time to maturity. Again based on the Sharpe ratio shorting

out of the money options on the S&P 500 would be the best choice.

In Figure 7 you can find the term structure of the average monthly returns of the SPX

Index put options over the period January 1996 till August 2015. The surface is created

by making buckets based on the delta with width 0.1 and based on the time to maturity

with a width of 10 days. The returns are rescaled to a 30 day holding period to make the

returns for different maturities comparable (in line with Bondarenko (2014). We picked

these stepsizes because picking the buckets with a too small window of expiry or delta

leads to a very noisy surface that is very difficult to fit when minimizing quadratic errors.

We see that in line with Bondarenko (2014) that as we have less days to maturity the

average return becomes more negative, furthermore we see that as we move further out

of the money the returns become more negative. Bondarenko (2014) found that atm put

options with one month to maturity had on average -39% return and far out the money

-95% return. We find very similar results over our sample period, which includes the crash

of 2008, with -41.3% average return for atm options and -95.7% for very far out of the

money options.
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Figure 7: Term Structure SPX Put options

This Figure shows the term structure of the average returns for put options on the SPX Index based on
delta and time to maturity over the period February 1996 till August 2015. The surface is created by
making buckets based on the delta with a width of 0.1 and based on the time to maturity with a width of
10 days. The width is chosen as a too small width would lead to a very noisy surface with few observation
belonging to each bucket.
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6.2 Gold and Bonds Naked Options

Here we investigate if the term structure that we found for S&P 500 (SPX) put options is

consistent across other assets. We focus on the gold (GLD) options and the government

bond (TLT) options as they are liquid and belong to different asset classes than equity

indices. In Appendix I you can find the term structures for the call and put options on gold,

bonds and the S&P 500 over the full sample period. Gold is an interesting candidate as

the ratio between the call and put volumes is higher than one at 1.35 over the full sample,

meaning that there is more interest in calls relatively to puts. For bonds and equity index

options it is the opposite as the call put ratio is lower than one, with 0.89 for bonds and

0.60 for the the S&P 500.

It is important to note that we find the same shape for the term structure for S&P

500 put options, bond put options and gold call options. The average returns for these

options are strictly negative and downwards sloping as we get closer to expiry and further

out of the money. This coincides with the call put volume ratio being above or below

one, so where most trading takes place the average returns are negative. For the S&P

500 and the bond index the average investor is naturally long and would consider a very

negative return as undesirable. In that sense there is a natural hedge demand for put

options in both these assets. For gold options, one could argue that very positive returns

for gold would coincide with a bad-state of the world, therefore we expect the same shape

of the term structure not for the put options but for the call options. However, you could

argue that negative average returns for puts (calls) are just caused by a positive (negative)

returns of the underlying over the sample period (directional exposure). This argument

does not hold as the average return for gold has been positive over the sample period but

the average return for naked call options still are consistently negative. We conclude that

the term structure seems to be consistent across asset classes based on where the bad state

is for the average investor16.

6.3 Model

In the previous sections we described the term structure found in the different assets. Any

potential model should be able to capture the characteristics of the term structure of the

16As a proxy for where the natural hedging interest is one could look at the call put ratio. So for
equities and bonds on the put side, and for gold on the call side.
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average excess returns. We propose the following model for the term structure,

Rt = α + βmaturity
1

T − t
+ βdelta

1

|∆|
+ εt (19)

We use the inverse of the absolute delta as a measure of the leverage of the option in

order to capture the difference in average returns as we vary the moneyness of the option.

Secondly we use the inverse of the time to maturity T − t as a measure for the time to

expiry. For example if there are still 90 days left till expiry the passing of 1 day is not

very important as you still have 89 days left, where with 2 days to expiry 1 day represents

50% of the time that your option has to finish in-the-money. For near to expiry options

the volatility of volatility is also higher compared to long term options which could be a

reason for a higher premium.

We evaluate all the available options from the OptionMetrics database for which the

delta is available. This should make it moderately easy to replicate the stated results as

one does not need to fill in the missing deltas or delta hedge. We evaluate the options

on every day and keep it naked till the option expires. For any option series that has N

business days till expiry we will also get N option returns with different time to maturity

but identical strike but varying moneyness (delta) as the stock (implied volatility) increases

or decreases.

In Figure 8 you can find the visual fit of our regression model to the realized average

return. The stepsize is 10 for the amount of days, and stepsize 0.1 for the delta region.

We leave out all options with less than 20 days to expiry and options that are very far out

of the money. For very far otm options the absolute spread becomes large compared to

the value of the options and therefore using midpoint valuation to determine the return

becomes problematic.

We see that overall the fit is decent and the residuals are centered around zero. The

adjusted R-squared is equal to 0.80. In order to test if this model is promising we will

perform a portfolio exercise that uses this model in Section 6.5.

6.4 Covariance Put and Call option

Our objective is to get a portfolio with the best return risk ratio. To adequately determine

the riskiness of our portfolio we need a robust estimation of the covariance matrix between

the put and call options for different maturities. Luckily we optimize per asset which

means that all the options we use are on the same underlying. Therefore we are able
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Figure 8: Term Structure Put options SPX

This figure shows the fit between the realized returns of SPX put options and the fit from our model.

to estimate the covariance matrix based on the assumption that the Black-Scholes model

holds. Where the correlation between assets can differ over time, and is very difficult to

estimate, this is not the case for options. When the underlying moves up all call options

will become more valuable while all put options will become less valuable ceterus paribus.

In order to simulate the covariance matrix of the put and call options we will simulate the

returns of the underlying and calculate the returns and covariance matrix where we keep

the implied volatility constant for all options. Since we select options based on delta and

not moneyness the volatility of the underlying stock is not very important as the delta

scales with (implied) volatility. We simulate a stock with 16% annual volatility, over a

30 day period with 3000 time steps. The stock is simulated as a discrete process from

equation (20).

St+1 = Ste

(
r−σ

2

2

)
∆t+
√

∆tσWt (20)

Afterwards we calculate the returns under the Black–Scholes model for a fine grid of

strike prices around St and 30-60 days to maturity. We simulate the stock return 100.000

times and calculate the 3000 by 3000 theoretical co-variance matrix under the Black–

Scholes model.
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6.5 Portfolio Optimization

Based on the simulated covariance matrix from Section 6.4 and the regression model from

Section 6.3 for the expected returns we try to improve the performance of the GVRP

portfolio. We try two different directions per asset, to improve the performance in terms

of return per unit risk.

On an asset level we first relax the restriction that the portfolio needs to consist of

one naked put and one naked call. Coval and Shumway (2001) show that if the stochastic

discount factor is negatively correlated with the price of the underlying, any call option

on that security will have a positive expected return that is increasing in the strike price.

Likewise the expected return for the put option on that security will have a negative

expected return that is increasing in strike price. We apply this insight by relaxing the

weights of the put and call, but we do force the weights to be strictly negative as we want

to stay consistent with shorting volatility. Secondly we broaden the investment universe

in any period by including an otm put and an otm call into the optimization. Again the

weights are strictly negative. The optimization allocates towards the otm put and otm call

if this results in a higher expected return per unit risk.

6.5.1 Vary Allocation Straddle

First we optimize the allocation between atm put and call option with the restriction that

the weights needs to be negative, to stay consistent with a negative volatility risk premium.

At time t we pick the option expiry that has the most options available between 40 and

60 days till expiry. Within this set of options we pick the most atm put and call option.

Based on the regression model and the simulated covariance matrix we pick the portfolio

weights that maximizes the return per unit risk. The out of sample period starts 10 year

after the first data become available. We do this for all assets after which we risk equally

combine the return per asset class. In Figure 9 you can find the result. The average excess

return is equal to 7.54% with an annualized standard deviation of 7.60% for a Sharpe ratio

of 0.99. Compared to the GVRP portfolio over the same sample period with an average

excess return of 6.43% with annual standard deviation of 6.26% for a Sharpe ratio of 1.09.

We conclude that although our optimization produced a better average return the overall

Sharpe ratio decreases compared to the GVRP portfolio due to an increase in standard

deviation.
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Figure 9: Cumulative Performance Portfolio Optimzation

This Figure contains the cumulative performance of the GVRP portfolio and the optimization for the atm
call and put options. Every month the most atm put and call are selected and based on the regression
model and the simulated covariance matrix the optimal point on the efficient frontier is determined. The
sample period is February 2006 till July 2015

6.5.2 Vary Allocation Strangle-Straddle

Secondly we expand the investment universe by apart from the atm put and call also

including an otm put and call. Formally at time t we pick the option expiry that has the

most options available between 40 and 60 days till expiry. Within these options we pick

the four options that are closest to delta 0.5, 0.25, -0.25 and -0.5 as there is more liquidity

in out-the-money than in-the-money options17. The selected options are an atm call and

put and an otm call and put. Secondly we select the four by four covariance matrix by

selecting the options in the simulated covariance matrix that most closely match the four

selected options in terms of delta and times to maturity. we estimate the expected return

based on our regression model fitted to the growing sample of expired options. The weights

of the considered options are restricted to be negative to stay consistent with a negative

volatility premium. The out of sample period starts 10 years after first available data to

have a robust estimate of the average returns.

The results can be found in Figure 10. The average excess return is equal to 9.09%

with an annualized standard deviation of 7.57% for a Sharpe ratio of 1.20. This Sharpe

17including all options which are highly correlated into the optimization results in a near singular inverse
covariance matrix which leads to numerical instability.
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Figure 10: Cumulative Performance Portfolio Optimzation

This Figure contains the cumulative performance of the GVRP portfolio and the optimization for the
atm/otm call and put options. Every month the most atm put and call are selected together with a delta
0.25 call and -0.25 put and based on the regression model and the simulated covariance matrix the optimal
point on the efficient frontier is determined.

ratio is better than both the GVRP portfolio and the optimisation for the atm put and

call options.

7 Conclusion

The volatility premium, extracted by shorting delta hedged atm straddles, produces eco-

nomically meaningful and statistical significant average returns over a sample spanning

nearly two decades across bonds, credits, currencies, commodities and equity indices. The

volatility risk premium is not explained by common explanations offered in literature,

downside risk, volatility risk or factor exposures only partially explain the excess returns.

The closest we come to a risk-based explanation for the global volatility risk premium is the

negative returns in bad states of the world. We do find a strong common risk component

that the asset class portfolios tend to suffer drawdowns during recessions when volatility

rises across all asset classes. All asset class portfolios contain sizable tail risk which does

not disappear when you create a diversified global volatility risk premium portfolio by

combining the asset class portfolios risk equally weighted. During normal times the assets

do provide diversification benefits which leads to a Sharpe ratio of 1.45 for the GVRP. We

explore the robustness of the strategy and find that the premium can be further enhanced
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by considering alternative weighting schemes taking into account the relative difference

between the historical and the implied volatility among the different assets.

Put options on the S&P 500 remained overpriced over the period 1996-2015 with more

negative returns for further out-the-money options in line with previous studies. We find a

similar pattern in the average returns for gold call and bond put options. We introduce a

new regression model for the term structure of the average returns. Using the model and a

simulated covariance matrix we perform a portfolio optimization and significantly improve

the performance over the GVRP portfolio when we include out of the money options into

the optimization.
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A Description Data

Description underlying securities I

Panel A: Commodities

Asset Market cap Class Description

XAU 173.62bln Index XAU PHLX Gold-Silver Index, Index of 30 miners.
OSX 197.68bln Index The PHLX oil service index (OSX) is a price weighted index

composed of companies involved in the oil services sector
GLD US 41.2bln ETF SPDR Gold Trust, tracks gold bullion, physically backed
IAU US 9.61bln ETF iShares Gold Trust, tracks Gold Bullion, physically backed
USO US 3.55bln ETF tracks light sweet crude oil, futures based NYME
OIL US 0.8bln ETF tracks S&P GSCI crude oil total return index, through futures

on WTI
UNG US 0.48bln ETF tracks natural gas futures through futures
SLV US 6.98bln ETF tracks Silver Bullion, physically backed
DBA US 0.81bln ETF Agriculture, tracks DBIQ diversified agriculture index excess

return

Panel B: Government Bonds

Asset Market cap Class Description

TNX Index CBOE 10year Treasury Note, cash settled, option on 10 times
the yield

IRX Index CBOE annualized discount rate on the most recently auctioned
13 week treasury bill, option on 10x yield

FVX Index CBOE 5 year treasury note Index, option on 10x yield
TLT 8.06bln ETF 20+ year treasury bond, tracks Barclays Capital US 20+ year

Treasury bond index
IEF 9.24bln ETF 7-10 year treasury bond, tracks Barclays Capital US 7-10 year

Treasury bond Index
SHY 10.24bln ETF 1-3 year treasury bond, track Barclays Capital US 1-3 year

Treasury bond index
IEI 6.41bln ETF 3-7 year treasury bond etf, Barclays Capital US 3-7 year trea-

sury bond index
TYX Index CBOE 30 year treasury yield index, option on 10 times the

annualized yield

42



Panel C: Equity Indices I

Asset Market cap Class Description

RUI 22.37T Index Russell 1000 index
XMI 3.74T Index NYSE Arca Major Market Index, american price weighted stock

market index made up of 20 blue chip industrial stocks US
corporations

MID - Index S&P400 Mid caps US
RUT 2.02T Index Russell 2000 Index
SML - Index S&P600 small cap US
DJX - Index Dow Jones Industrial Average
NDX 5.57T Index Nasdaq 100
SPX - Index S&P 500
OEX - Index S&P100 American Style
XEO 12.31T Index S&P100 European Style
FEZ 2.82bln ETF SPDR Euro Stoxx 50 ETF, tracks EURO STOXX 50 Index
EFA 60.76bln ETF iShares MSCI EAFE ETF, tracks MSCI EAFE Index, measures

performance of equity markets in European, Australasian and
Far Eastern

FXI 3.88bln ETF iShares China Large Cap ETF, tracks FTSE China 25 Index,
measures performance largest companies in the China Equity
Market

VGK 11.87bln ETF Vanguard FTSE Europe ETF, tracks FTSE Developed Europe
Index, index comprises of large and midcap stocks

VEU 14.08bln ETF Vanguard FTSE All world ex US ETF, tracks FTSE All world
ex US Index, includes approx 2200 stocks from 46 countries,
both developed and emerging

ACWI 5.63bln ETF iShares MSCI ACWI ETF, MSCI All country World Index,
measure performance global equity markets

VT 6.13bln ETF Vanguard Total Stock Market ETF, tracks CRSP US TOTAL
Market Index, 4000 constituents representing nearly 100% of
the US investable equity market

GXC 0.77bln ETF SPDR S&P China ETF, tracks S&P China BMI Index, in-
vestable universe of publicly traded companies domiciled in
China, but legally available to foreign investors
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Panel C: Equity Indices II

Asset Market cap Class Description

EEM 21.8bln ETF iShares MSCI Emerging Markets ETF, tracks MSCI Emerging
Markets Index, index consists of 21 emerging markets

EWH 1.6bln ETF iShares MSCI Hong Kong ETF, tracks MSCI Hong Kong Index,
tracks performance Hong Kong Equity market

EWI 0.7bln ETF iShares MSCI Italy Capped ETF, tracks MSCI Italy Index,
tracks italian equity market

EWJ 14.8bln ETF iShares MSCI Japan ETF, tracks MSCI Japan Index, track
Japan equity market

EWY 3.1bln ETF iShares MSCI South Korea Capped ETF, tracks MSCI Korea
Index

EWD 0.3bln ETF iShares MSCI Sweden ETF, tracks Swedish Equity market
EWL 1.1bln ETF iShares MSCI Switzerland Capped ETF, tracks MSCI Switzer-

land Index
EWC 2.8bln ETF iShares MSCI Canada ETF, tracks MSCI Canada Index
EZU 10bln ETF iShares MSCI EMU ETF, tracks MSCI EMU INDEX, tracks

performance of equity market of European Union members that
have adopted the Euro

EWG 3.9bln ETF iShares MSCI Germany ETF, tracks MSCI Germany Index,
index measures performance German Equity market
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Panel D: Credits

Asset Market cap Class Description

LQD 32.55bln ETF tracks Iboxx $ Liquid Investment Grade Index, the index tracks
the performance of 600 highly liquid investment grade corporate
bonds

HYG 16.64bln ETF tracks Iboxx $ Liquid High Yield Index, junk bonds, high yield
corporate bonds for sale in the US, there is no limit to the
number of issues in the index

JNK 12.28bln ETF SPDR Barclays Capital High Yield Bond ETF, tracks Barclays
Capital High Yield Very Liquid Index, non investment grade.

Panel E: Currencies

Asset Market cap Class Description

XDA - Index PHLX Australian dollar
XDC - Index PHLX Canadian dollar
XDN - Index PHLX Yen
XDS - Index PHLX Swiss Franc
FXB 55mln ETF Guggenheim CurrencyShares British Pound Sterling Trust
FXA 0.17bln ETF Guggenheim CurrencyShares Australian Dollar Trust ETF
FXF 0.16bln ETF Guggenheim CurrencyShares Swiss Franc Trust ETF
FXC 0.2bln ETF Guggenheim CurrencyShares Canadian Dollar Trust ETF
FXY 0.15bln ETF Guggenheim CurrencyShares Japanese Yen Trust ETF, tracks

JPY
UUP 0.8bln ETF PowerShares DB US Dollar Index Bullish Fund, basket of cur-

rencies versus US dollar.
CYB 50mln ETF WisdomTree China ex State Owned Enterprises Fund, Reminbi
FXE 0.3bln ETF Guggenheim CurrencyShares Euro Trust ETF, offers exposure

to EURDOL. Increases when EURO strenghtens.
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B Option Volumes per Asset

Government Bond Options Summary Statistics

This Table contains the Bonds summary statistics. The first column contains the asset name by Bloomberg
Ticker, in the second, third and fourth column the total options traded.

Asset Total volume Calls Puts

IEI 62,422 52,365 10,057
IRX 21,069 10,028 11,041
SHY 416,054 110,595 305,459
FVX 26,720 14,658 12,062
TNX 218,121 131,173 86,948
TYX 425,696 227,482 198,214
IEF 3,182,246 1,403,263 1,778,983
TLT 90,526,048 42,581,008 47,945,040

Currency Option Summary Statistics

This Table contains the Currency summary statistics. The first column contains the asset name by
Bloomberg Ticker, in the second, third and fourth column the total options traded.

Asset Total volume Calls Puts

CYB 361,519 227,444 134,075
UUP 31,036,782 24,762,546 6,274,236
FXF 642,903 333,298 309,605
FXC 1,487,628 742,076 745,552
FXA 2,240,397 840,256 1,400,141
FXB 1,132 390 368,131 764,259
XDA 1,203,479 922,998 280,481
XDC 719,349 423,709 295,640
XDS 650,730 456,903 193,827
XDN 1,419,841 815,308 604,533
FXY 7,626,572 2,334,677 5,291,895
FXE 23,981,193 6,871,866 17,109,327

C Summary Statistics Option Portfolios
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D Option Volumes
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(e) Commodities

Figure 11: This Figure shows the option volumes (contracts traded) aggregated for the different asset
classes. The dotted red line denotes the volume traded in the puts per delta group. The solid black line
denotes the traded volume for the calls per delta group.
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Equity Index Options Summary Statistics

This Table contains the Equity Index summary statistics. The first column contains the asset name by
Bloomberg Ticker, in the second, third and fourth column the total options traded.

Asset Total volume Calls Puts

EWL 16,597 8,257 8,340
VT 49,371 36,729 12,642
EZU 148,586 79,017 69,569
ACWI 55,721 29,358 26,363
EWI 702,647 308,158 394,489
EWD 17,308 7,604 9,704
FEZ 1,622,484 569,983 1,052,501
VEU 128,934 96,199 32,735
GXC 53,139 31,647 21,492
EWJ 43,300,682 27,309,031 15,991,651
EWH 7,333,278 3,506,402 3,826,876
EWC 2,101,928 878,999 1,222,929
EWG 4,512,607 2,297,990 2,214,617
VGK 1,158,062 616,611 541,451
SML 452,992 228,057 224,935
RUI 285,267 108,638 176,629
XMI 3,143,556 1,596,039 1,547,517
EWY 7,995,947 3,413,468 4,582,479
MID 1,583,413 714,844 868,569
EFA 105,853,002 45,774,265 60,078,737
FXI 164,097,789 79,457,796 84,639,993
XEO 24,487,482 10,986,789 13,500,693
OEX 287,049,256 132,584,790 154,464,466
DJX 93,989,306 40,729,916 53,259,390
MNX 73,368,544 32,956,928 40,411,616
RUT 207,670,174 90,373,512 117,296,662
NDX 134,816,341 57,545,122 77,271,219
SPX 2,052,121,912 769,549,278 1,282,572,634

48



Commodity Option Summary Statistics

This Table contains the Commodity summary statistics. The first column contains the asset name by
Bloomberg Ticker, in the second, third and fourth column the total options traded.

Asset Total volume Calls Puts

IAU 1,751,250 1,403,922 347,328
OIL 2,053,789 968,770 1,085,019
DBA 7,617,573 5,638,275 1,979,298
UNG 86,027,853 51,058,742 34,969,111
SLV 195,814,566 119,527,404 76,287,162
USO 159,903,825 77,243,210 82,660,615
XAU 17,079,323 9,170,456 7,908,867
OSX 18,519,087 8,413,139 10,105,948
GLD 313,191,996 179,729,550 133,462,446

Credits Summary Statistics

This Table contains the Credits summary statistics. The first column contains the asset name by Bloomberg
Ticker, in the second, third and fourth column the total options traded.

Asset Total volume Calls Puts

JNK 2,948,540 808,800 2,139,740
LQD 1,251,963 459,788 792,175
HYG 18,127,234 5,384,683 12,742,551

49



Equity Indices

This Table displays the summary statistics for the delta hedged atm straddles in Equity Indices. The
mean and standard deviation (Std.) is reported as 1% = 0.01.

Asset Mean Std. Sharpe t-stat Begin End Skewness Kurtosis

EWL −0.75 1.57 −0.48 −0.36 2012 2015 −1.97 5.00
VT 0.70 0.67 1.05 1.00 2012 2015 −0.29 1.88
EZU −1.34 1.02 −1.31 −1.56 2009 2015 −1.07 3.35
ACWI 0.36 0.87 0.41 0.31 2013 2015 −0.51 1.91
EWI −0.02 0.56 −0.03 −0.05 2010 2015 −0.30 3.18
EWD 1.02 0.92 1.11 1.11 2007 2015 −1.15 3.59
FEZ 0.01 0.70 0.01 0.02 2007 2015 −0.78 3.16
VEU 0.05 0.77 0.07 0.12 2008 2015 −0.57 3.62
GXC −0.90 0.84 −1.06 −1.19 2008 2015 −0.60 3.93
EWJ 1.01 0.66 1.52 3.17 2005 2015 −1.41 7.01
EWH 0.59 0.84 0.71 1.65 2006 2015 −0.97 4.52
EWC 0.45 0.68 0.67 1.58 2006 2015 −0.90 3.58
EWG 0.13 0.74 0.17 0.40 2007 2015 −1.36 6.02
VGK −0.06 0.92 −0.07 −0.15 2006 2015 −2.12 8.73
SML 1.21 0.59 2.04 3.27 1997 2011 0.14 2.76
RUI 1.18 0.47 2.53 2.19 2005 2010 −1.45 3.88
XMI 0.85 0.57 1.49 3.07 1996 2007 −0.65 3.59
EWY 0.67 0.80 0.85 2.21 2007 2015 −4.17 28.97
MID 1.34 0.54 2.49 4.97 1996 2011 −1.01 3.41
EFA 0.21 0.76 0.27 0.86 2003 2015 −1.03 4.22
FXI −0.16 1.19 −0.13 −0.41 2005 2015 −5.32 44.26
XEO 0.57 0.70 0.81 2.55 2001 2015 −2.66 17.31
OEX 0.56 0.90 0.62 2.66 1996 2015 −6.16 62.73
DJX 0.89 0.64 1.38 5.82 1997 2015 −2.02 12.44
MNX 0.47 0.56 0.84 3.06 2000 2015 −0.79 3.45
RUT 0.99 0.60 1.65 6.65 1996 2015 −1.33 8.03
NDX 0.41 0.54 0.77 3.13 1996 2015 −0.76 3.33
SPX 0.72 0.63 1.14 4.95 1996 2015 −2.07 12.94

50



Currency

This Table displays the summary statistics for the delta hedged atm straddles in Currency. The mean and
standard deviation (Std.) is reported as 1% = 0.01.

Asset Mean Std. Sharpe t-stat Begin End Skewness Kurtosis

CYB 0.60 0.79 0.76 0.49 2012 2015 −0.37 2.43
UUP 1.11 0.62 1.78 3.25 2008 2015 −0.61 3.24
FXF −3.04 4.18 −0.73 −1.21 2008 2015 −5.05 27.93
FXC 0.59 0.63 0.94 1.99 2007 2015 −0.60 3.05
FXA −0.07 0.80 −0.09 −0.22 2007 2015 −1.89 7.50
FXB 0.16 0.64 0.26 0.50 2007 2015 −1.66 6.37
XDA −0.47 0.95 −0.49 −0.78 2007 2015 −1.41 4.41
XDC 0.09 0.73 0.13 0.22 2007 2015 −0.59 2.66
XDS 0.17 0.71 0.25 0.34 2007 2015 −0.84 4.96
XDN −0.01 0.84 −0.02 −0.02 2007 2014 −1.04 3.39
FXY 0.65 0.82 0.80 1.90 2007 2015 −1.01 4.28
FXE 0.60 0.59 1.02 2.69 2007 2015 −1.09 4.98

Commodities

This Table displays the summary statistics for the delta hedged atm straddles in Commodities. The mean
and standard deviation (Std.) is reported as 1% = 0.01.

Asset Mean Std. Sharpe t-stat Begin End Skewness Kurtosis

IAU 0.32 1.26 0.25 0.43 2009 2014 −3.55 17.87
OIL 0.68 0.71 0.97 1.83 2010 2015 −0.76 3.04
DBA 1.31 0.69 1.91 4.78 2007 2015 −0.74 3.71
UNG 0.54 0.58 0.94 2.47 2007 2015 −1.33 7.07
SLV 0.80 0.71 1.12 2.83 2009 2015 −1.68 8.64
USO 0.64 0.57 1.12 3.16 2007 2015 −0.51 3.01
OSX 0.38 0.59 0.64 2.32 1997 2014 −0.68 4.45
XAU 0.23 0.62 0.37 1.49 1996 2015 −1.17 5.55
GLD 0.72 0.86 0.84 2.19 2008 2015 −2.22 9.90
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Credits

This Table displays the summary statistics for the delta hedged atm straddles in Credits. The mean and
standard deviation (Std.) is reported as 1% = 0.01.

Asset Mean Std. Sharpe t-stat Begin End Skewness Kurtosis

LQD 0.45 0.79 0.57 1.47 2003 2015 −1.28 5.10
JNK 1.70 0.99 1.71 3.63 2009 2015 −3.34 17.46
HYG 1.56 0.92 1.70 3.90 2007 2015 −1.62 7.13

Government Bonds

This Table displays the summary statistics for the delta hedged atm straddles in Bonds. The mean and
standard deviation (Std.) is reported as 1% = 0.01.

Asset Mean Std. Sharpe t-stat Begin End Skewness Kurtosis

IEI 1.96 0.66 2.97 2.84 2009 2015 0.70 3.07
IRX 3.36 0.95 3.55 2.71 1997 2007 −1.37 3.71
SHY 0.42 1.72 0.24 0.32 2004 2015 −1.47 3.95
FVX 1.41 0.74 1.91 1.56 1999 2006 0.23 1.50
TNX 1.00 0.61 1.64 2.93 1999 2008 −1.04 4.47
TYX 1.12 0.57 1.97 4.74 1996 2008 −0.14 2.79
IEF 0.90 0.56 1.62 4.42 2003 2015 −0.55 3.03
TLT 0.46 0.60 0.77 2.62 2003 2015 −1.32 5.93
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Figure 12: Monthly returns SPX versus SPY ETF options

This figure shows the returns of the monthly atm delta-hedging strategy for the SPX options and the SPY
ETF options for the sample period February 2005 till August 2015 in which both assets trade. The SPY
ETF trades at one tenth the value of the SPX Index and therefore the options should also trade at one
tenth
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F Spread Realized - Implied

Equity Indices

IV RV spread spread % return

RUI 0.16 0.10 0.06 0.31 1.18
XMI 0.18 0.15 0.03 0.15 0.85
MID 0.20 0.17 0.04 0.19 1.34
RUT 0.23 0.21 0.03 0.13 0.99
SML 0.22 0.20 0.02 0.11 1.21
DJX 0.19 0.16 0.02 0.10 0.89
NDX 0.27 0.25 0.01 0.05 0.41
MNX 0.25 0.24 0.01 0.05 0.47
EWC 0.23 0.24 -0.01 -0.07 0.45
EZU 0.21 0.20 0.01 0.05 -1.34
EWL 0.19 0.13 0.06 0.31 -0.75
EWD 0.27 0.22 0.05 0.19 1.02
EWY 0.30 0.28 0.02 0.03 0.67
EWG 0.26 0.25 0.00 -0.02 0.13
EWJ 0.22 0.20 0.02 0.08 1.01
EWI 0.32 0.32 0.00 -0.01 -0.02
EWH 0.28 0.29 -0.01 -0.03 0.59
SPX 0.19 0.17 0.02 0.09 0.72
OEX 0.19 0.18 0.01 0.06 0.56
XEO 0.19 0.18 0.01 0.04 0.57
FEZ 0.21 0.20 0.02 0.05 0.01
EFA 0.20 0.23 -0.03 -0.28 0.21
FXI 0.31 0.35 -0.04 -0.11 -0.16
VGK 0.21 0.22 -0.01 -0.09 -0.06
VEU 0.21 0.21 0.00 -0.04 0.05
GXC 0.29 0.35 -0.05 -0.19 -0.90
ACWI 0.13 0.14 -0.01 -0.11 0.36
VT 0.16 0.12 0.04 0.22 0.70
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Bonds

IV RV spread spread % return

IRX 0.05 0.05 0.00 0.03 3.36
FVX 0.29 0.23 0.06 0.18 1.41
TNX 0.25 0.23 0.02 0.08 1.00
TYX 0.16 0.13 0.03 0.16 1.12
TLT 0.14 0.13 0.00 0.01 0.46
IEF 0.08 0.07 0.01 0.07 0.90
SHY 0.03 0.02 0.01 0.25 0.42
IEI 0.04 0.03 0.01 0.24 1.96

Credits

IV RV spread spread % return

LQD 0.06 0.06 0.00 0.03 0.45
HYG 0.10 0.08 0.02 0.13 1.70
JNK 0.11 0.09 0.02 0.15 1.56

Commodities

IV RV spread spread % return

XAU 0.40 0.38 0.02 0.04 0.23
OSX 0.38 0.38 0.01 0.01 0.38
GLD 0.21 0.19 0.02 0.07 0.72
IAU 0.21 0.21 0.00 0.00 0.32
USO 0.34 0.32 0.03 0.07 0.64
SLV 0.33 0.30 0.03 0.09 0.80
DBA 0.23 0.19 0.04 0.17 1.31
UNG 0.44 0.43 0.01 0.00 0.54
OIL 0.32 0.30 0.02 0.06 0.68
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Currency

IV RV spread spread % return

FXE 0.11 0.10 0.01 0.09 0.60
FXB 0.10 0.09 0.01 0.04 0.16
FXA 0.13 0.13 -0.01 -0.06 -0.07
FXF 0.12 0.12 0.00 -0.03 -3.04
FXC 0.10 0.08 0.01 0.11 0.59
FXY 0.11 0.10 0.01 0.08 0.65
UUP 0.12 0.10 0.02 0.13 1.11
XDS 0.13 0.13 0.00 -0.03 0.17
XDN 0.13 0.12 0.01 0.05 -0.01
XDA 0.13 0.14 -0.01 -0.13 -0.47
XDC 0.09 0.09 0.00 -0.01 0.09
CYB 0.09 0.02 0.07 0.75 0.60

G Greeks

Under the Black-Scholes model we can take derivatives to the different inputs of the Black-

Scholes formula. In Table 11 you can find the derivatives that are essential for this study.

Table 11: Greeks

This Table displays the Greeks of the Black–Scholes Model for European options. V denotes the value of
the option. S denotes the value of the stock, K the strike price and T − t the time till maturity.

Name Derivative Call Put

delta (∆) ∆ = δV
δS

N(d1) −N(−d1)

gamma (Γ) ∆ = δ2V
δS2

N ′(d1)

Sσ
√
T−t

vega (ν) ∆ = δV
δσ

SN ′(d1)
√
T − t
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H Cumulative Performance VRP portfolios

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

year

-0.5

0

0.5

1

1.5

2

2.5
cu
m
u
la
ti
v
e
lo
g
o
u
tp
er
fo
rm

a
n
ce

Credits

Government Bonds

Commodities

Currencies

Equity Indices

Figure 13: Cumulative Performance of the VRP per Asset Class

This figure shows the cumulative sum excess returns of the asset class returns. At the start of each month
we write delta hedged at-the-money straddles on all individual assets within each asset class. The portfolio
return for each asset class is the equally weighted return of all returns within that asset class. Afterwards
the asset class portfolios are scaled to have 10% annualized volatility for easy comparison. The sample
period is from February 1996 till August 2015.
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I Term structures

(a) SPX call (b) SPX put

(c) TLT call (d) TLT put

(e) Gold call (f) Gold put

Figure 14: This Figure shows the term structure of the average returns of the unhedged call and put
options over the sample period January 1996 till August 2015
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J Straddles Long Short

In Section 4.4 we used the insight of Goyal and Saretto (2007) in order to be more short

where the opportunity was the largest by means of the relative RV versus IV measure.

In this Section we go long short instead of only short, staying closer to the methodology

of Goyal and Saretto (2007). It is important to note that we now very temporary leave

the volatility risk premium, as we no longer have a short volatility exposure, in order to

gain additional insight. As an analogy consider the two major technology stocks Apple

and Google. One can have a model which concludes that the entire technology sector is

overvalued and as a result would short both Apple and Google. Alternatively one can

have a model which concludes that Apple is overvalued compared to Google, as a result

one would go short Apple and long Google in order to profit from the relative mispricing.

This strategy is however no longer short the technology sector. The two strategies are

therefore fundamentally different. As a results we expect a low correlation between the

short volatility and the long short returns.

We again rank based on the log difference between RV and IV. The weights for the k

assets available in the asset class at time t are determined as,

weightit = −zt(rankit −
k + 1

2
) (21)

where zt is a scalar that ensures that the long and short positions equal 1 and -1. We apply

this long short weighting scheme to all the assets within an asset class.

For the 1 month look back realized volatility we find an average annual return of

8.67% with a standard deviation of 8.43% for a Sharpe ratio of 1.03. For the 1 year

look back realized volatility we find an average annual return of 6.40% with a standard

deviation of 7.45% for a Sharpe ratio of 0.86. In figure 15 you can find the cumulative log

outperformance. Although the 1 month RV and 1 year RV portfolio do not nearly offer the

same Sharpe ratio as the GVRP portfolio, it does offer a very uncorrelated performance

driver. Interestingly enough the returns of the 1 month look back realized volatility are

hardly correlated with the 1 year look back realized volatility. The correlation matrix is

shown in Figure 12.
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Table 12: Correlation long-short and GVRP

This Table contains the correlations between the GVRP portfolio and the 1 month 1 year long-short
portfolios over the sample period March 1996 till August 2015.

1 year 1 month GVRP

1 year 1.00 -0.14 0.05
1 month -0.14 1.00 -0.14
GVRP 0.05 -0.14 1.00

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
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Figure 15: Long-short 1 year versus 1 month

This figure shows cumulative log outperformance for the long short portfolios based on the ranking of the
IV versus the RV. For both portfolios we rescaled them to have 10% annual standard deviation. If the RV
is not yet available, if the asset doesn’t exist long enough, we record no return. The sample period is from
February 1996 till August 2015.
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