Employment, Unemployment and Municipal Policy in the South Holland Province

Author: Mindaugas Valentukevičius 383825

Course: Urban, Port and Transport Economics

Supervised by Professor F. van Oort, Second Reader: Professor N. Cortinovis

I. Introduction

The topic of unemployment policies has been widely disputed for the last thirty years. The discussion has been fuelled significantly by Michael Porter (1995) who critiqued government intervention in inner cities to spur on employment, and his arguments are largely debated nowadays as well. This critique was grounded in the reasoning that the government does not "feel" the market and can do more harm than good. His evidence suggested previous failures of such government interventions. The proposed solution to the given problem was to involve the private sector, to close the gap between the public and the market (Porter M., 1995). Naturally such statements did not go without a response: various researchers from different backgrounds and scientific interests have argued that Porter's strategy would not work: the issue is not one for purely market procedures. Dymski (1996) argues firstly that Porter criticizes subsidy intervention too harshly: according to Dymski, there has not been enough subsidy to discourage work. He argues that Porter views the world through an erroneously jaded lens: nothing is perfectly distinguishable, nothing is of clear information – and because of such thinking, also lack of policy effect is not as easy to prove. Dymski pointed out that those subsidies can be of a supportive nature: for example, in child care so that parents could work (Dimsky, 1996). He then goes to suggest financial restructuring as a possible solution: to make borrowing and lending more fluid. Fainstein and Gray (1996) argue further that government intervention (as suggested by Porter) that is aimed at private sector interests, would rarely take welfare into consideration of the worst affected areas. Their proposed solutions were to finance agglomeration of industries that use the competitive advantage of an inner-city area. Hunts Point market was used as an example of a successful policy – it was a government financed initiative to improve the employability of the Hunts Point area in the USA, a food processing centre was built to be used by private companies, and it was required to hire the local population. This decreased unemployment, and by so doing improved welfare of the people living there. There is potential in fostering such industries and they can become selfsustaining (Fainstein & Gray, 1996). Authors Butler (1996), and Blakely and Small (1996) also add the dimension of race and a continued poverty trap to the discussion. They argue that race would play an important role in the issues faced by the inner city, and also that even if problems are solved by a successful policy, this simply leads to migration outwards from the area and then the cycle starts again in other places (Butler J., 1996), (Blakely & Small, Michael Porter: new gilder of ghetto's, 1996).

All this discourse is still relevant today, and there is a clear need to identify whether government policy is effective. Should the local government engage with the labour market to solve employment and unemployment problems and mismatches and do their efforts pay off? The problem that I would like to outline in this work is that the use of case specific examples suggests that a policy may work for one target group in a specific place, whilst not working in the same or different groups in the same or different places. Place- and group specific heterogeneity is crucial in understanding the relation to policy – labour market performance. Yet, contingency arguments should not replace generalizability. The approaches that were engaged within the 1995 debate were case specific, Hunts Point Market has worked at Hunts point as part of government expenditure on the specific issue of unemployed, low-skilled local population. But does it always work when government intervenes in such a way? Porter also argues for government intervention, just in a more market-friendly way, then gets criticized because that approach is argued to not have worked by his opponents using case specific examples. My paper will attempt to create a method of evaluating policies in a more generalized way – using variables that can be applied to all units of study and to represent what the argument between Porter and his criticizers is about.

Research Question

To understand about policy in general, one has to delve deeper into the understanding of how policies came to be: In the first half of the 20th century there was a predominant outlook that aggregate demand policies – as supported by John Maynard Keynes – were to solve the problems of unemployment and poor economic growth: increased expenditures on goods and services that are created through lower taxes would create demand for goods, this demand would need to be met with increased supply, the supply would be created by expanding production and hiring more workers, thus reducing unemployment, due to the heavily enlarged war-time economy in the United States of America, but then in the 1970s, a discovery was made of stagflation – rising inflation and unemployment, this hinted that aggregate demand policies are not the penultimate solution to the problem to falling gross domestic product and rising unemployment – they cause inflationary pressures that do not result in the intended economic benefits of smaller unemployment. Furthermore, excessive taxation, like that in Denmark has led to large public deficits, a long term disadvantageous factor in the economy. Devaluation policies to increase competitiveness also ceased usefulness in a more globalized world. From the 1990's there are also intentions to alter the composition of the labour force by "juggling" labour supply: by creating schemes of early retirement for the old, to be replace them by the young. Wage moderation strategies were suggested: more productivity based pay and curbed wage increases (to lower the relation between inflation and wages, thus lowering inflationary demand) – these were disputed among economists for their effectiveness. Excessive social security has also surfaced as a possible negative determinant of long term unemployment through the dulled skills of the worker over time. Literature also emerged on all sorts of flexibility: that of labour hours, labour protection, and, in response to the previously mentioned point – workfare, benefits based on the amount of work done. (Andersen & Halvorsen, 2002)

The previously discussed literature suggests that unemployment and or falling GDP is, over time, viewed in different ways as a problem and about the changing circumstances under which it is combated: from the extremes of supply side versus demand side policies, to the generosity of social security and social controls to discourage as well as solve unemployment, this all is done in the foreground of a more globalized economy and rising impacts of technology on the human society. Therefore, knowing the past, it is important to evaluate the present: do the policies with a basis in the past still work in the present - Does any kind of intervention work, if so – what works better: to intervene directly or to accommodate the market processes?

The following research question we want to be answered:

What works better for combating unemployment, direct intervention or economic facilitation, when tested on the municipal level in South Holland?

From this research question, hypotheses will be created based on type and or category of unemployment policy, to be evaluated, based on available data, in the result section of this paper. This implies the following two hypotheses:

Hypothesis 1: Direct intervention policies lower unemployment, ceteris paribus.

Hypothesis 2: *Economic facilitation policies lower unemployment, ceteris paribus.*

These two hypotheses will be a basis upon which the policies will be tested, however, there is more to hypothesize: Porter clearly had a strong belief in the government as a facilitator of economic activity rather than that of an interventionist. The government should encourage business through investments into business-related infrastructure (factories, subsidies, grants). Ex ante and ex post the critique he received from different economic thinkers, he provided cases as evidence to support the non-interventionist

perspective. In all cases he has made argumentation to counter the points of his opponents, however, these opponents would then also use case-specific examples to prove their points. This means that the whole procedure becomes rather hard to apply to economic theory. It creates a vacuum, a Schrödinger's Cat-like economic policy: It is both correct to intervene and incorrect to do so at the same time. This thesis will provide analysis of these difficult questions and produce insight in the statistics that it will use. Considering this duality, and in accordance to my beliefs, therefore, I would like to propose the third hypothesis which will also be tested in this work:

Hypothesis 3: Economic facilitation policies will reduce unemployment more than direct intervention policies, ceteris paribus.

Based on the arguments (that the government should accommodate, that the inner city is a cluster with its own advantages, and that interventionism does not economically work) of Porter, I would also like to draw eyes to two reasoned arguments. Firstly, one cannot build a house with no structural support: Given these arguments, it is highly likely that without good economic and physical infrastructure there isn't a possibility for successfully employing the population in question. Secondly, contrary to his critics, Porter portrays the disadvantaged people of the inner cities as motivated potential workers that suffer from a changing world because of their inability to change with it. They want to work and they want to better themselves, but the outdated physical and education infrastructure does not allow these people to attempt to build their lives for by themselves. Porter argues that this is exactly where the government could encourage businesses to hire locals, could provide infrastructural improvements to make commuting easier and could potentially do much more without directly tampering with the labour market. I have found Porters arguments to be more convincing than that of his opposition and hence why I believe that it is the facilitating policies that make the higher, more significant contribution towards fighting unemployment and increasing social wellbeing.

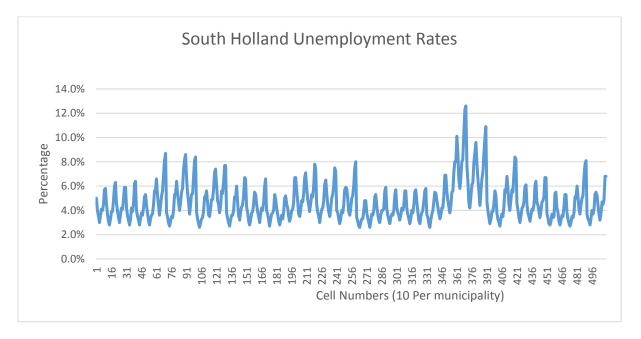


Figure 1

The purpose of this work, therefore, is to shed light upon what category of policy expenditure relates most to employment and unemployment dynamics. Is it better to directly interfere in labour market conditions of people, or is it better to facilitate place-based and firm oriented economic processes like Porter suggests? We use the municipalities in the Dutch province of Zuid-Holland as case study to investigate this. Clearly there are differences between municipalities (arranged alphabetically, then from years 2005 to 2014) in unemployment as shown in figure 1 above – there are potentially even several clusters of

unemployment as can be seen above (in cells 61 to 136, then 196 to 256 and then 346 to 421). This means there is much time- and place-varying variation in unemployment that can be used for analysing its relationship with municipality expenditures in various categories.

The variables to represent direct intervention policies, and market facilitation policies will be gathered from Statistics Netherlands (Centraal Bureau van Statistiek). Along with those, variables that are known to influence unemployment will be gathered to avoid heterogeneity bias — to prevent the statistical program giving too much significance to the previously mentioned variables of interest. In the following economic ideology discussion (theory part of this paper), the examples used to "prove" arguments are often on a case-by-case basis meaning that there are no similar control groups to test whether the support or disapproval of an approach is valid in terms of statistical significance.

This is the outline of my paper. The theory section will provide the Porter debate: the arguments between Porter and his opponents of the issue of direct versus accommodating policy approaches as a solution to unemployment and employment. Together with this, various articles dedicated to unearthing the factors of unemployment are discussed, which will then be used as control variables for the regression model. Variable issues such as lagged variable use will also be discussed here. The data section will focus on the sources of data – national statistics databases of South Holland municipalities— and the procedures to make that data usable in a statistical sense. The data will be in panel format – municipalities over the years. The methodology section will present my self-assembled equation, and variants of that equation for robustness tests. The results section will discuss in depth the variables used and their contributions to the dependent variable, followed by the conclusion as well as limitations, and suggestions for further research.

II. Theoretical Framework

To test unemployment and employment related policies, first one needs to know what those policies are and, secondly, what impacts unemployment/employment apart from policies. Generally, this means that the literature will be arranged in two parts: a section of policies and their found effects on unemployment, and a section of known determinants of unemployment that are distinctive from unemployment policies – variables to use to control for the non-policy effects on the incidence of being unemployed.

Below is included a series of small summaries for literature about the policies of unemployment that will be used to develop a broadly applicable categorization of policies by type and then to test their effectiveness based on the findings in the data section.

Research Aspects and the Porter Debate

To encourage private sector investment, firstly the disadvantages of the inner city need to be addressed (how this relates to the municipalities will be addressed in the paragraphs below): costly redevelopment of brownfield sites and of new infrastructure, high taxes to fund welfare, crime/security issues, and mothballed infrastructural development. Of strong importance is also the population of the inner city: it is too uneducated and incompetent. To address these issues Porter, suggest that the government redirects its resources only where there is absolute need rather than politically influenced bouts of generosity, also to create incentives with those subsidies for people to work. The government is to assume an accommodating role (according to Porter) - one to create an environment for business, and through that employment growth. The legislation is too heavy for small business owners to navigate and comprehend – this acts as a deterrent that should be removed. Moreover, the training to acquire job-specific skills should be contracted out to the private sector as no one feels the market better than them. Community Based Organizations are to accommodate investments (rather than deciding them), with a social education to encourage work, a managed and assembled pool of workers and an understanding of what their community is competitively good at. Naturally the private sector is to play a role: individuals should be financially enabled (through easier loans) to borrow and to make investments themselves. According to Porter, the private sector should establish relations with the incumbent population. Why should they do that? Because the inner city has many advantages: Firstly, their location within an urban area implies access to demand in all the city, short lead times and proximity to already developed clusters of business (ones to learn from and to compete with). Secondly, the purchasing power of the inner city matches or exceeds that of the other areas – the inner city is an untapped fountain of revenue for those clever enough to seek it. Finally – the people of the inner city may be uneducated; however, they also are willing to work and would accept lower wages whilst also being specialized in social services of the community. All of this provides a fertile ground for private sector investment (Porter M. E., The Competitive Advantage of the Inner City, 1995).

As a reaction to Porters statements, professors Mia Gray and Susan Fainstein provide several issues on the topic of government intervention. Firstly, there were government policies aimed precisely at attracting the private sector and there were expenditures to create a safety net in the light of such experimentation – the government has addressed these issues. Furthermore, just a few years ago, the public Comprehensive Training and Employment Act has been replaced by a Private Industry Council – to address the better "feel" of the market. This decision brought no fruit as the skills still mismatched what was in demand. The government should participate more: to create agglomeration economies within the inner city. The case study used to prove success was that of the Hunts Point Market – a food distribution agglomeration, created and still owned by the government upon which 60 food firms now ply their trade. More than half

of it is crewed by local population. As for the regressive role for the CBO – Porter needs to give them time to learn and develop (Fainstein & Gray, 1996).

Professor John Sibley Butler agrees with Porter, though he sees his ideas as lacking: Porter assumes the inner city to be dependent on outside factors such as skills, ideas, funding. Butler takes a historical look at the entrepreneurial prowess of blacks – there is evidence to say that black entrepreneurship has been successful in the past, indeed almost rivalling that of the incumbent whites. The issue of the inner city is how the skilled and rich flee from it: there is nothing to keep them there. The issue isn't people: its opportunities given to those people. What attracts blacks to stay? Ownership of property, something which was denied to them historically. It is a generational approach – it takes time to succeed. Furthermore, the public education system is more of a detention centre than a place of education – entrepreneurship should become a strong part of it, at the forefront of which should be the private school (Butler J. S., 1996).

Professor Dymski, however, does not see Porters ideas in such a good light: he first outlines that the size of subsidy is small – too small, in fact to be considered an economic waste. Furthermore, location near clusters becomes quite irrelevant due to the increased numbers of clusters surrounding the hypothetical inner city. Overall issues that are seen in the inner city are CAUSED by the market rather than mended by it. Race is also an issue, although there is some, minimal, race based lending – the gap remains and it won't close on its own. Dymski admits that subsidy may undermine competitiveness – but it also finances training and work. Work support facilities such as child care are also financed by public money. Dymski acknowledges that policies are hit and miss and that it is nigh-impossible to divide payments into efficient and wasteful. Locating near firms doesn't automatically mean rising growth – the inner city needs its own growth engine. The greatest issue is lack of capital and lack of institutions to accommodate the accumulation of capital – those moved out during the deindustrialization period, the root cause of the issues. The proposed solution is to augment the financial market – make it easier to get loans. Incentivize private financiers to participate and reward entrepreneurial success. Redevelop the CBO approach to accommodate this (Dymski, 1996).

Although Porter touches on relevant points, he also does so without considering the socio-cultural factors of the inner city, namely the ghettos. Ewald Blakely and Leslie Small discuss endemic ghetto factors and how not addressing them is inefficient. The issue is that all social policies that do work still end up with people leaving the inner city – so all that investment is now moving out. The issue is so great that there are discussions of political and economic separation of blacks and whites. Issues faced are such: even if there are skills, they are shadowed by the bad reputation of the ghetto – the consequence of which is isolation, only the most basic industries can function there, there is lack of re-adapting the inner city to the modern economy. Policies are simply incompetent in dealing with this, as Porter says. Those policies did give rise to some black politicians who address the issues faced. The people problem perception was what lead to this - individuals, not the community benefitted from reforms. The alternative view is that of the place - to regenerate it using locals. Those policies fail as well and the process of place regeneration is politicized. The outstanding solution is to modernise the ghetto – use up to date tertiary industries. Since most skilled people leave the ghetto, the idea is to encourage them to stay through ownership of assets. Encourage work by tax limits and offer education vouchers. The inner city can be its own cluster – all that needs to happen is that the CBO works to encourage business and to create a community – go as far as to pay men for taking care of families (Blakely & Small, Michael Porter: new gilder of ghetto's, 1996)

Michael Porter himself retorts to these arguments because the market can't lead to social optimum because of non-market effects: the bad image created of the inner city, outdated or simply bad policies, and poor communications and incentives to develop. Education (part of human infrastructure) remains the

best solution, especially in terms of business. The government previously engaged in very bad policies and seemed to have forgotten to develop infrastructure — especially public transport. Both the CBO and Government should remain advisers and accommodators for companies: through relaxed policies, non-discrimination in both directions, advice and financial incentives. Social policies need to be efficiently reassigned and lowered to allow for lowered taxes which would encourage businesses and accumulation of disposable income. The jobs created should match the population: low skill. Even in low skilled jobs there are advancement options (Porter M. E., 1996).

Economic and Employment Policies

In the Porter debate, the main issue is what kind of policy can the government use to efficiently solve the unemployment/employment problems. Porter argues that the government should only invest in activities which accommodate the labour market: if there are incentives for business to happen, it will happen and employment will rise, and unemployment will fall. Dymski and other critics argue that only accommodating the market is not enough: either Porters suggested policies were not enough or they may have worsened the situation – what needs to be done is active intervention into the labour market through government made training schemes and similar programmes that are created to directly influence the rise of employment and the decrement of unemployment. The debate generally distinguishes two types of policies, which will be discussed below.

- 1) Accommodating economic investments: as addressed by Porter and exemplified by the evidence he provides a successful economic unit, such as an inner city, is one that funds its economic activities (and through that growth in employment or decrease in unemployment) well business must be running as smoothly as possible there. Furthermore, as Butler points out, entrepreneurs should also be accommodated in the same manner. In any case the hypothesis incorporates activities which encourage private sector investment, and, through that, reductions in unemployment in the target unit. So, this thesis will account for such investments by the government into its business environment. The expectation is that economic investments by the government to improve its business environment will be ones that allow for falling unemployment rates among its citizens. Interestingly Dymski, an interventionist, mentions another important factor of government intervention that can be an accommodating policy more clearly: child care expenditures. This expenditure is to facilitate the care of children so that their parents can participate in the labour market.
- 2) Interventionist employment policies. As argued by interventionists using the Hunts Point Food market, a government initiative. The government must directly involve itself in finding jobs for its population. Clearly, there is reasoning for such arguments 60% of the food markets labour force were locals who had gone through the required procedures to acquire the skills necessary to participate in such a market. This is theorized to be a direct consequence of government intervention in combating unemployment, providing reasoning that expenditures on participation/employment policies are the determining factor of employment. Not only that, but for successful policies that impact participation of the population, the government also spends enough resources for administering to the population: monitoring unemployment issues and assigning its resources to solve them. In the case of participation policies, this includes the reactivation of the disabled who are looking for work, but can't find work the disabled unemployed a worthy means to counter unemployment within a municipality.

Known factors of Unemployment

Below is included a series of small summaries from literature about the factors of unemployment that will be used to control for the effects of the policies:

Age:

It is generally accepted that older workers face a degree of ageism: a level of discrimination since they are of an advanced age. Lee and Clemons (1985) have found that the variation of approval ratings for older workers to get employed is statistically significant both on absolute (age) and comparative (when faced with a younger worker). Performance information was found to have a statistically significant effect and to always raise approval rate for older workers, but, depending on whether the approval was comparative or absolute, not younger workers. The strongest drop in approval for old age employees was found to be when comparing them with a younger worker: a drop of 20 percent ((Lee & Clemons, 1985).

This implies that there may be a higher incidence of unemployment as age increases – even among the population that is still technically meant to be employed – up to the age of 64. However, the extension of this implication is that older workers would face event greater discrimination. In terms of unemployment policies and a demographics this would suggest that a rising proportion of older age workers would contribute to raising unemployment. The opposite can therefore be said about the younger working age population – employers have a preference of hiring younger workers due to the remaining time that they have in the labour market, among other reasons. It is important therefore to control for the age group variables, as the shear change in the population dynamics could be what relates to either a positive or a negative change in unemployment.

Migrant status:

Based on the findings of Shumway (1993), in theory there are conflicting estimates of how being a migrant would affect the outcomes in the job market. On the one hand migrants may be desperate for a job, thus lowering their reservation wage (minimum wage to persuade them to work), thus becoming more attractive to employers and finally, by being a migrant, raising employment chances. But there is another type of migrant: on whose reservation wage is raised by the cost of moving – it may be that this individual finds it too expensive to seek a job over some geographical distance and would therefore choose not to work, potentially granting a negative coefficient to the relationship between migration status and employment. The type of migration considered is within the nation. This study also considers the locational characteristics such as unemployment rate in the area as proxy for labour demand and whether the area is of an urban nature: this is done under the belief that due to the existence of wage differentials, individuals in rural areas will see different employment patterns. The reasons why people seek a job and the status beforehand also play a role: such as for example voluntary or involuntary nature of unemployment, job experience and the characteristics of the applicant themselves. Those variables are used as controls to see the effect of migration. The findings are such that unemployment duration is only strongly increased if the migrant does not find a job within six months after having migrated. The final finding of this paper is that there is an interaction effect between having recently migrated and receiving unemployment compensation as a positive factor of decreasing unemployment duration (Shumway, 1993).

All in all, this indicates that the status of being a migrant is one that has a different kind of relation to unemployment than that of a native. Due to various reasons migrants may have problems or advantages in the labour market – since the effects on unemployment may be present due to the previously mentioned case, the status of a migrant should be considered as a control variable within my study of unemployment policies.

Urbanization economies:

In their paper Frenken, Van Oort and Verburg (2005), find that increased urbanization – which is approximated by population density, has a negative effect on unemployment growth. In nearly all their tested cases, population density that was increasing led to negative unemployment growth in a statistically significant manner. They have theorized that this is since a higher population density also relates to a lower commuting distance due to more available job opportunities (Frenken, Oort, & Verburg, 2005).

The implications of this are twofold – population density is an inherent characteristic of a location – it makes sense to control for population density in the area. The second reason to include this variable is that it would then act as a reducer of upward bias of overall unemployment policies (due to opportunities) and specifically commuting related policies (due to the lack of need to commute because of density).

Household and marital status:

The previously cited paper, by Partridge and Rickman (1997) also identifies the household as a relevant contributor towards the unemployment within a state. They have found that the states with more households that had a child regardless of whether it was through marriage or not had contributed to raising unemployment. Furthermore, unemployment was seen to be lower in states where there were more married couples. Apart from household status, this paper also reinforces or contradicts the previously mentioned findings concerning population density (urbanization) as well as that of the age-unemployment relationship. Indeed, in American states population density would have a small, but statistically significant negative effect on unemployment rates. The increasing percentage of population of 14 and under (children) has a strong increasing effect on unemployment, however, contrary to previous findings – states with more people aged 65 and upwards see a negative effect on unemployment – unemployment falls as their numbers rise (Partridge & Rickman, 1997).

From the above-mentioned article, the effects of household composition and marital status need to be accounted for as they relate to the rate of unemployment per a spatial unit – such as an American state. Apart from that, population density is consecutively proven to be a statistically significant control variable for unemployment rate as mentioned before. Since the age variables are showing partly unexpected effects, which are still significant, it is important to see how these effects act within the given circumstances within this paper.

Institutions:

The government, local and national, have their own schemes for unemployment protection, as well as other social security provisions – ranging from disability benefits to employment insurance expenditures to counter the risks of redundancies among their employees. Various critics have argued that such security would encourage people to avoid work and to just live on the provided benefits. Since this is an issue that is quite often political as well as it is economical, it is important to account for it and to provide evidence on how this policy would act on its own. The findings of Partridge and Rickman are mixed on this variable – in simple regression the variable significantly contributes to unemployment increases, however upon analysis via panel regression, the findings suggest that a more income/unemployment secure population is also found to be less unemployed among the American states (Partridge & Rickman, 1997).

Industries as factors of employment:

Clearly the previously mentioned (Porter Debate) arguments also concern with skills and industry: what training/education the labour force was given, and what industry is dominant within the area of consideration. Porter in some cases is known to advocate low skill employment, however interventionists are also for that since the Hunts Point food market is one which requires basic skills to operate. It is a traditional factory that provides nourishment processing services to its client firms and the local population. The government maintains a presence there in terms of creation of infrastructure and maintenance. This case specific example indicates that low skilled areas such as food services and traditional factories may contribute to employing a population. It is therefore important to gather industry level data per economic unit to see how the industry type works overall several different areas, not just on a case-by-case basis. However, Porter also receives critique – the populations must adapt to the changing times, if factory-based industries have moved out – this void in the market must be replaced with the development of modern industries and business services – meaning that they theorize that as time progresses, the relative importance of low skilled primary/secondary sector industries would become redundant and will be replaced by those that are better suited to move on with the rest of the world. Do these modern industries contribute to reducing unemployment caused by the structural change of the economy? Overall – all groups of debaters are hinting toward the importance of employment opportunities in types of industry within an area.

Clustering and Scope of Analysis

Porter argues that the inner city, for various reasons, becomes its own cluster. One can see this to be true because of the similarities of inner city populations – ones of low skills, incomes and various other characteristics. This also indicates something else – a low reservation and overall cheaper labour expenditures due to that. Such thinking can be externalized to any economic unit – usually there will be characteristics which make that unit suitable or unsuitable for kinds of developments: one would invest coffee farming around the equator and into, for example, fishing industry in areas where the geography permits a year-round fishing. Same can be said for specializations/natural resources of a municipality. Porter argues that capitalizing on those advantages with a cluster of industry – specialization - would be economically beneficial for both the founder of the cluster as well as the local population in terms of employment opportunities that match their skills. Porter clearly identifies clustering – the accumulation of related activities in one place - as an important part of development of a location, so it becomes important to see how that plays a part in unemployment policies within any economic unit. The application of cluster thinking can be adapted to other economic units as well: neighbourhoods or municipalities. This can be done within an augmented Porter argument – if Inner cities have their own unique competitive advantages and disadvantages, why can't other economic units? Not only inner cities would exhibit the characteristics that he describes – peripheral municipalities can exhibit low skilled population, as well as an aged one: meaning that just like the populations of inner cities, these populations would exhibit their own competitive advantages and disadvantages. They can also coincide with Porters argumentation as a geographical location of a municipality or neighbourhood may be the inner city or part of it.

Globally, discretionary policies have received mixed response. For example, the subsidization of industries or firms, in the European Union as studies show, is no evidence of effectiveness of grants on ensuring falling unemployment or rising employment. However, in other areas, or on different levels of reference, effects of grants were found to be positive. This was, however, at the expense of productivity. Either ways, one is given reason to suggest that discretionary policies may work (Neumark & Simpson, 2015, pp. 1221-1230).

A study conducted of the US unemployment issues by Partridge and Rickman (1997), was one set to address what factors contribute to unemployment on a state level (as well as that of its major cities). The findings of this paper were peculiar, because one variable did not have the same effect on all states, for example, industry composition (relative shares by type) has been found to have different effects on different states (Partridge & Rickman, 1997).

Izraeli and Murphy (2001) have researched the importance of clustering with the use of a herfindahl index in the United States. They theorized that states with a more diverse industry (lower herfindahl index) would be more capable to combat unemployment. They have also theorized that there is no determination how diversity would impact employment rates within a country. Statistically, they find some support for their hypothesis that rising specialization within a state – shown by a rising herfindahl index – relates to rising unemployment rates (Izraeli & Murphy, 2001).

As shown by the above citations, the topic of industrial composition and its effects towards unemployment is disputed: This disagrees with the Porter-supported clustering of inner cities as a solution to problems of unemployment, arguing that clustering of any economic unit to focus only on what it is good at leaves it vulnerable when the source of their advantage becomes disadvantaged by the economic state of a nation. If there is clustering, some industry must have a sufficiently high share. If so – does that industry having a high share of employment in an area always contribute the same way towards unemployment? These findings pose a question: which industry to encourage for best effecting unemployment – if any? The findings also create an important dimension towards the unemployment debate – are there specific industries which can be encouraged, directly or indirectly to provide the needed reductions in unemployment? I think that, because of the varied results found by Neumark and Simpson (2015), there may be industries to which one can invest in any situation to always receive positive economic, unemployment-reducing effects. This thesis is about viable unemployment combating policies, and since there is contradicting evidence for either case (in some research types of industries have opposing effects towards employment and unemployment), it may be that there are some reasons to account for the growth/deterioration of some industries and the consequences that this may have in different municipalities, over time, on employment.

Education

Both Porter and his critics reveal that inner cities suffer from various issues – be that education or public transport. What can be said from such points? This means that the education/training provided from day 1 to pension matters – lack of options to educate oneself is just as bad as lack of opportunities to get employed. Generally, structural unemployment occurs due to a skill mismatch. As a solution, the government needs to make sure that its population is adapted to the changing environment – so expenditure of education matters in all cases.

How many students a university can educate can depend on how much funding it receives. Overall, a long-term contributor to reduction of unemployment through enhanced skills, and or productivity – that is one of the contributions of the university. There are interesting implications found in literature: proximity to university (sometimes in combination with a science park), contributes positively towards the employment increases as well as unemployment decreases to an area (Neumark & Simpson, 2015, pp. 1221-1230). Furthermore, with regards to education – in a study conducted by Partridge and Rickman (1997), in all cases education – both high school and college was found to be a very strong and statistically significant reducing factor of unemployment. This provides another dimension of research – if in all given cases education is an important contributor, then it means that a variable that encompasses expenditures on education would be one that provides clarity in a research when testing policies of unemployment (Partridge & Rickman, 1997).

Transport

Secondly, transport – every debater in the previous argument somehow points out how disconnected the inner city is. Industry moved out outside of the city, there are various decentralizations due to land price changes where one can find a job. This means that there must be investment into transport education to meet such criteria – the availability of public transport, roads to drive on as well as cars to drive is one of the important things to account for when determining how successful a government policy is. Neumark and Simpson (2015) also discuss infrastructure related policies: logistical and social infrastructure. The former focusses on the indirect accommodating place-based policy and the latter as well attempts to indirectly influence employment/unemployment by providing the "community" with the tools it needs to bolster its own employment. Overall, neither policy has strong or evident effects, yet those are policies that receive large funds. It is important to test them here to see if it remains the case that infrastructural and community spending do not have statistically significant effects (Neumark & Simpson, 2015, pp. 1221-1230). These findings conflict with theorizations of Porter as well as those of his opponents – therefore it is uncertain when public infrastructure can contribute to the economic environment of an economic unit. However – what is more important is that social/community expenditures are also mentioned as a determinant of social regeneration, or, a means to combat unemployment. It would be interesting to see how the theorized community effect plays a role in a standardized economic environment – when comparing different units empirically.

Scope

Overall, as found by Brechling (1967), UK's stabilization policies were ones to be based on total unemployment rather than regional unemployment. Such lack of focus indicates a strong mispronunciation of applied policy as some regions may need more stabilization than others. The stabilization policy itself is one in which government seeks to curtail the excessive, often inflationary rise of demand, or to encourage a slow-down of an existing decrease in aggregate demand for goods and services that with itself brings economic deterioration. Secondly, there is a difference between responsiveness to a stabilization policy depending on the prosperity of the region: a more prosperous region will be more responsive to changes in total unemployment, rather than that in a poorer region. The total unemployment mentioned here is concerned with national unemployment — the amount of people actively seeking working nation-wide and unable to find it. The regional unemployment means the amount of people looking for employment in a region and unable to find it. As mentioned by Brechling — there is a visible disparity between changes in either of those variables. Furthermore, it is found that there is no policy-making interest to provide employment in the prosperous regions — only depressed regions are targeted (Brechling, 1967).

This highlights the final consideration of this thesis: location. Brechling found that analysing national policy is inefficient because it is quite often targeted in a biased manner in a peculiar way: policy makers tend to forget that even prosperous regions have issues with unemployment – the ones which are more sensitive to changes in total unemployment. Hence why, it is inefficient to test for national policy due to the heavy issues concerning the skewed or distorted policies that might be in place. It is therefore preferable to take a smaller unit of account and to see how that unit manages with its own budget rather than with overarching schemes of the national authority.

Conceptual Model

The articles discussed in the Porter Debate and the Known Factors of Unemployment revolved about policies and their success in reducing unemployment or increasing employment, as well as the factors that related to changing size of unemployment and employment in the discussed economic units of analysis. It is good to shortly outline the relation of those concepts, and to show how they will appear in this research.

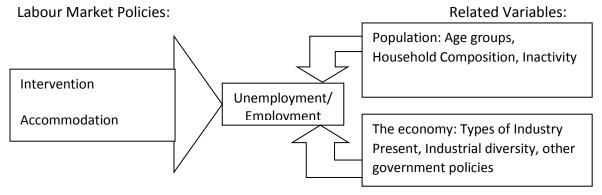


Figure 2

The left-hand side concerns with policy variables: intentionally used policies to raise employment or decrease unemployment. The right-hand side consists of endogenous factors that would affect unemployment/employment on their own. This includes population: a heterogeneous variable: it can be divided into different overlapping parts. It can be divided into age groups: the young may have an advantage against the old in the labour market, locations which have more young people would be ones that suffer less from unemployment. Alternatively, one can account (control) for households – are there many single person households? Are there many households with children – does this de-activate one parent who must take care of the child, lowering employment? This heterogeneity must be addressed by creating models that separate those categories. Secondly, there is also a need to see how the population is employed: which sectors contribute to employing the most, and which contributes to the greatest change in employment. The calibre of effects may change, but these variables are related to the variables of interest: employment (positively) and unemployment (negatively).

Policy Concept:

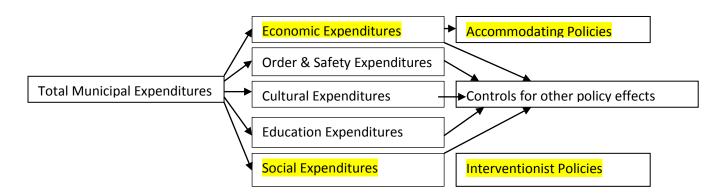


Figure 3

This is the hierarchy of the policy expenditure variables. As can be seen, some sub-categories are not fully expanded – this is, is because there are no direct or indirect policy variables there, however, they are still present due to positive indirect effects they can have upon the employability. These are the policies of interest and ones debated in the literature by Porter and others. The sub-categories that are expanded will be represented by their related variables, without the total values within the regression. The highlighted

text indicates the location of the accommodating/interventionist variables. The remaining expenditures will act as controls. Additionally – there are economic expenditures and social expenditures that are not either accommodating or interventionist policy expenditures, but they may also influence the unemployment and employment. They should be controlled for in the model to avoid overstating the importance of either of the policies of interest: accommodating and interventionist. Controls for policy effects is what is meant in the conceptual model:

Time: It may be necessary to view the effects of policies with a time lag. As Phillips (1957) theorizes that there are time delays through which the response to a change in policy begins to have an effect. This can be due to lack of regulation, poor administration or because there is a natural time delay for the effects to take place. The other issue to consider is the previous patterns of the errors that the policy should correct: how the errors vary over time. He also acknowledges the potential existence of various relationships in a policy study – factors that relate with the policy and the dependent economic variables. The suggestion is to control for any such factors to prevent the bias of the lagged effect (Phillips, 1957). The concept of time must, therefore be accounted for when measuring the effects of economic policies such as increases in economic accommodation and the effects of direct intervention into the labour market.

Table of Effects:

Variable	Effect on Employment	Effect on Unemployment
Accommodating Expenses	Positive, Stronger than direct	Negative, Stronger than
	intervention.	direct intervention.
Intervention Policies In the	Positive, Stronger than	Negative, Stronger than
labour market	accommodating policies.	accommodating policies
Age Group	Varied: Would fall with older	Varied: Would fall with
	aged population due to	younger population, or
	retirement.	would rise with older
		population due to possible
		discrimination.
Clustering	Positive effect due to growth	Dependent on the economic
	in specialization of a location	state. May increase
		unemployment if there is an
		economic downturn.
Type of industry	Disputed positive effect	Disputed negative effect
Population Density	Significant and Positive	Significant and Negative
	Effect	Effect.
Household composition	Varied effects – Married	Varied effects – households
	households would have	with children would be less
	higher employment.	likely to have
		unemployment.
Income Security	Disputed effect. Some argue	Analysis indicates a small
	that this decreases	negative effect on
	willingness to work.	unemployment.
Migration Status	Migrants may find it more	Migrants may find it more
	difficult to find a job due to	difficult to find a job due to
	discrimination. Decreasing	discrimination. Increasing
	the incidence of employment	the incidence of
	among them.	unemployment among them.
Education	A better match with the skill	Areas with higher
	demands of the labour	investments into education
	market may increase	have been found to have
	employability of a population	lower unemployment.
Entrepreneurship	Rising entrepreneurship	An increased number of
	would be a source of both	entrepreneurs allows for
	self-employment as well as	more options for the
	that of others.	unemployed to match skills.
Non-Market Effects	Bad reputation to discourage	Discrimination on the job
	firm location.	market.

III. Data

The data gathered is on an aggregated municipal level: a panel database which contains responses from municipalities about their economic and demographic characteristics. Variables such as employment, age distribution, educational level, potential worsening factors such as disability and others, gross domestic product of the relevant area of measurement are included. Finally, policy variables will be represented over time: expenditures or dummy variables as indicators.

Data will be agglomerated from several sources. Demographic variables are found on the CBS — Centraal Bureau van Statistiek — a Dutch statistics website. The data given ranges from the years 2004 to 2016 and concerns with employment status and related variables aggregated for the whole population of a municipality, neighbourhood or city. The variable definitions (in Dutch) can also be downloaded there (Kerncijfers, wijken en buurten, 2017). This will be the core foundation dataset which will then be modified to include policy variables. The next website will be the CBS Statline dataset: it provides in depth information about expenditures on various policies (STATLINE, 2014). These datasets will be merged together in an appropriate manner to provide information. Furthermore, this data will be mended using these datasets from CBS's statline findings: Arbeidsdeelname; regionale indeling 2016, Regional Kerncijfers Nederland, Gemeentebegrotingen; per gemeente, baten en lasten, heffingen 2005-2015. Since the exact link of the data selected for this thesis cannot be copied, these datasets are not provided with hyperlinks. The final source of data, specifically to evaluate different industries as sources of lower unemployment. The LISA database gives the different types of two-digit industries and the employment in each municipality by them. There are 85 industries that relate to the acquisition of resources, manufacturing and services (Landelijk InformatieSystem Arbeidsplaatsenm 1996-2015, EUR/RSM).

On the basis of availability – the cross-sectional analysis and panel analysis will be set the time bracket of 2005 to 2014. The cross-sectional analysis will have all municipalities which had data, including those that may have changed in size – that is because that change wouldn't make a difference for the given years of analysis. The panel regressions will be carried out for 47 municipalities, which have, with certainty, not changed in size in the time of consideration.

The focus of data will be on the municipal level and the scope of the research will be within South Holland. This area contains a large portion of the Randstad area – an area of dense economic activity, however it also contains enough scarcely economic areas which could be used as valid control groups for where policies are less likely to be enacted. This reasoning works because, once put through a statistical model, the relative difference become apparent.

Variable list:

Below are variables that were left after removals of redundant, missing or merged findings from the data sources.

Demographics dataset:

Variable Name	Variable Definition
Name	Name of the municipality
Рор	Total population within a municipality at the starting year.
Men	Total male population within a municipality given the starting year. Note –
	this variable was rounded by CBS to the nearest ten.
Women	Total female population within a municipality given the starting year. Note –
	this variable was rounded by CBS to the nearest ten.

Pop14	Percentage of population below 14 years of age.
Pop1524	Percentage of population between 15 and 24 years of age.
Pop2544	Percentage of population between 25 and 44 years of age.
Pop4464	Percentage of population between 44 and 64 years of age.
Pop6480	Percentage of population between 65 and 80 years of age.
Pop80plus	Percentage of population above 80 years of age.
Popdens	Population density within 1 square kilometer.
West	Percentage of western migrants.
Nwest	Percentage of non-western migrants from developed countries.
Nwesto	Percentage of non-western migrants not from the previous two groups.
Hh	Number of households rounded to the nearest 10.
hhone	Percentage of households with one individual.
hhnochild	Percentage of households with no children.
hhchild	Percentage of households with children.
hhavgsize	Average size of a houshold.
lowinc	Percentage of population with low income.
highinc	Percentage of population with high income.
inactivepop	Percentage of population which is inactive in the labour market. Inclusive of
	those who are too disabled to work, students in non-tenured labour, and
	pensioners.
genbenefits	Total expenditures on general benefits rounded to the nearest 10.
disabben	Total expenditures on disability benefits roudned to the nearest 10.
unemp	Percentage of the labour force that is looking and has no employment.
carstot	Total cars in the municipality
year	Year of observation.
·	

From the demographics dataset, the variable of interest – unemployment rate, will be the dependent variable within this thesis. Other variables of importance here are the name and the year, both of which will be the determining variables within the panel data research part of this paper. All remaining variables will be noted as control variables for the regressions. The next dataset to consider is the municipal expenditures dataset. All variables in this dataset are expenditures per inhabitant on their respective spheres.

Expenditures dataset:

Expenditure name	Expenditure definition
totmuni	Total expenditure on all policies by the municipality
totordersafety	Total expenditure on fire prevention, explosive disarmament and
	security.
admin	Municipal expenditure on bureaucracy.
tottransport	Total expenditures on land and water transport infrastructure.
totecon	Investment into trade and economic accomodation such as fairs, market stalls, industrial subsidies and financial deals to accommodate industry. As well as the supply of electricity and gas to the consumers as well as businesses.
toteduc	Investment into construction of educational infrastructure, for children and adults, as well as staffing expenditures for those facilities

educaccom	Subcategory of education expenditures for tutoring, assistance
	facilities, scholarships, subsidies for students, supplies for specific
	classes.
totsoc	Total expenditures on social affairs such as income assistance,
	unemployment/participation policies, social assistance, child care,
	disabled facilities and integration of foreigners.
incsec	Subcategory of social expenditures. Income security policy expenditure.
	Income assistance to the unemployed, partially unemployed, disabled,
	and other target groups.
empart	Subcategory of social expenditures. Direct intervention policies to
	encourage employment of people, to raise participation of various
	parties, such as the disabled.
socwork	Subcategory of social expenditures. Assistance towards childen, the
	disabled, the elderly, the minorities, and others.
childcare	Subcategory of social expenditures. Government provision of childcare
	establishments such as kindergardens and daycare.
sochouse	Subcategory of social expenditures. Government provided housing, and
	or subsidies to providers of housing to the disadvantaged.
totcult	Total expenditures on sports, arts, music, museums, parks.
tothealth	Total expenditures on physical and mental health care. Inclusive of
	infrastructe and environment protection.
Youth*	Custom-made variable to summarize investments into youth
	development, youth health and youth centers.

This section gives us the important variables with regards to the Porter debate: about whether direct or intervention policies are more effective. There is an imbalance of variables between direct intervention and accommodating policies that are geared towards cutting down unemployment – there are more designated accommodating policies than those that directly intervene in the market, at least by name.

Firstly, the direct intervention policies. The variable "empart" describes combined employment and participation policy expenditures – these policies are there to re-activate redundant labour force, adult education, various employment schemes, training and retraining that is provided by the government. The second variable to focus on direct intervention is a combination of three variables which were added together: Youth health, youth development and youth centres. These policies, as the name suggest target teenagers who are either at risk of social degradation or simply are looking for employment. Care needs to be taken of this variable as it is a combination variable, meaning that the variations within it are more geared towards encouraging activation – entry into the labour market, rather than exit from unemployment (therefore, already being part of the labour market).

Secondly, the accommodating policies. This section is to include policies which encourage economic activity broadly: trade facilitation, traffic and health infrastructural investments. This also includes the municipalities own investment into the bureaucratic management of its citizens – the variable "admin". Total economic investment – to encourage market trading (at market stalls), as well as to assist and attract various sectors/firms and developments in cities. The mismatch of skills within labour, both old and the young, is to be solved by the accommodating variable of education investment – it includes all forms of investment into the facilities of education, this variable should contribute to reductions in skill related unemployment. Child care investments – this variable would be one that contributes to the difficulties of

parents finding employment that accommodates for them having a child – they wish to work, but cannot leave their child behind, thus being unemployed voluntarily.

Finally, the last group of variables are there to account for the different types of employment that there is to have in a municipality: the different types of industries. These variables are aggregates of double digit employment codes that are provided by Van Oort (2004). The Aggregation process is described in the appendix.

Industry Variable	Industry Variable definition
Acq	Total employment in acquisition of natural resources such as farming,
	fishing, hunting and forestry output.
Trad	Total employment in the traditional manufactories such as metals, fossil
	fuels and use of other raw materials
mod	Total employment in the modern manufactories such as printing,
	electronics and media.
busserv	Total Employment in the business services such as information, finance
	and design.
Dist	Total employment in the distribution/logistics sectors for services such
	as public transport, utilities and telecommunications.
oserv	Total employment in other services. This includes trash collection,
	accommodation, food and beverages, and retail.
speccons	Total employment in special constructions. This is employment in public
	and or private initiatives to construct such objects as dijks, military
	infrastructure and others.
govt	Total employment in government-related industries. This includes
	education, health and security, among others.
totemp	Total employment within the municipality at a given time.
herfindahl	Custom-made herfindahl index that indicates the level of industrial
	concentration in a municipality.

These variables are alternative ways to view potential unemployment/employment policies: the above described industries are there to see if any grouping of industries allows a one-size-fits-all solution for the government to invest in with a certain, positive outcome on reducing unemployment. Furthermore, it produces the second variable interest – total employment within the municipality.

IV. Method

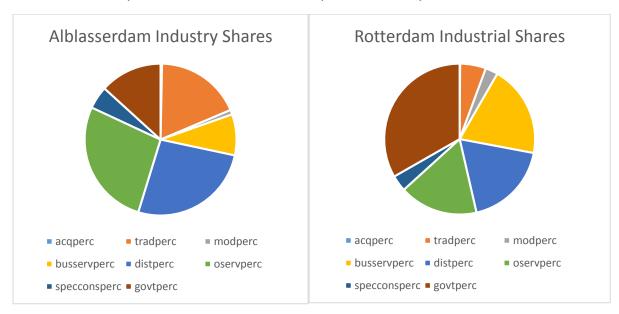
The variables for policy success tested here will be unemployment and employment. The first is displayed as percentage and the second is given as an absolute number, this is done based on data availability. The nature of the data implies a panel setting: there are multiple municipalities over multiple years. This panel data will be analysed using firstly the fixed effect model – to give a within-municipality effect of the policies and other variables. Ideally, it would also be nice to use the random effects model as it compares the significance between different municipalities. To determine which model is used, firstly a Hausman test will be carried to see the differences between the outputs of both models. If there is no difference, the random effects model will be used. Either model is applicable, however, if possible there is a preference for the random effects model as it would provide lower standard deviations – therefore more clear-cut results. However, before engaging in more complex models, an overview will be given via cross-sectional analysis, at several points in the timespan 2005 to 2014.

Missing Variables and Merges

Missing variable solutions

In some cases, in the dataset, there are variables which are both core — at the top of the previously mentioned hierarchy, as well as having missing observations for specific years. In this case, given the finality of the dataset, the following solution will be applied: Where variables are missing, and in the case that there is only a year missing, the trend of the previous and future year will be assumed: an average will be taken. Although this type of solution is not optimal, it provides variables to work with to test the validity of the overall model. There second case whereby entire municipality observations are missing. This does occur frequently in the CBS dataset, especially for the smaller (in terms of population) municipalities. However, among the CBS "gemeentebegrotingen" datasets, I have found several datasets to merge with my initial 2005-2014 set. These are described already in the datasection. The unemployment variable is retrieved from the workforce participation section — 'arbeidsdeelname' part of CBS STATLINE. Others are from a more up to date version of the "gemeentebegrootingen" that was done in 2015 for the previous years.

Variable Merges

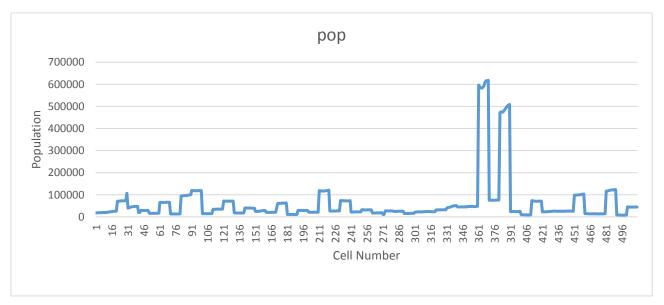

Secondly, upon several other correlation tests, I have found great risks for multicollinearity between all variables: increasing the number of variables within a correlation function, has shown near perfect correlations: positive or negative. The solution for this is to collapse related variables into each other, to create agglomerated data that can then be used a single variable. In some cases, the dataset permits for little effort to be used in this endeavour – there are summed variables that can be used. The chosen categories are based on the expanded version of four-way categorization of industries: Primary (acquisition of resources), Secondary (manufacturing), and Tertiary (services). Primary is reduced in size: only forestry, fishing and agriculture are given the category (A) – acquisition of resources. The second category contains traditional manufacturing (T) – includes mining and oil excavation, as well as long established manufactory such as steel or furniture, and the other category is the modern manufacturing category (M) – anything from 3d printing to electronics and to pharmaceuticals. The third category will contain Business Services (BS) – services which facilitate business related endeavours, and Other Services (OS) – services provided by private parties but not for businesses, rather, independent consumers. The remaining two categories are Government Services (G), such as national defence, health or education, and Distribution/Network Services (D). The full explanation of what variables entered the summary can be found in the appendix. The first group that needs to be reduced in size is that of different industries of employment – there are 85

employment variables. The correlation table has indicated that there is quite some relationship between variables – on average the correlation was 60 percent, with quite a few industries having higher. All employment industry variables have been put together based on the given industries.

The other variable merge is one to account for investment into the youth: this variable, as mentioned in the data section contains expenditures on youth development – extracurricular activities, youth centres – places for the young to find help or entertainment, and investments into youth health. This variable is created for two reasons – to see if investments into the young can pay off in lower unemployment rates, and to account for the absence observation in the three separate variables. This also reduces risks of multicollinearity that I expect this will have with social expenditures and healthcare expenditures.

Herfindahl index:

In previous researches, I have also found cause to include a herfindahl index of all industries. Traditionally this variable is used to calculate the concentration between different firms in one industry. Mathematically it is the sum of the squared market shares of different firms within one market. It can also be applied to check whether concentration of one industry in a municipality at a given time is a valid contributor towards reductions in unemployment. Since I had total employment and the summaries of data mentioned previously, I have applied the same method as one would to market shares of firms. The variable of industrial diversity was calculated for all municipalities and all years and will be used in the regression.

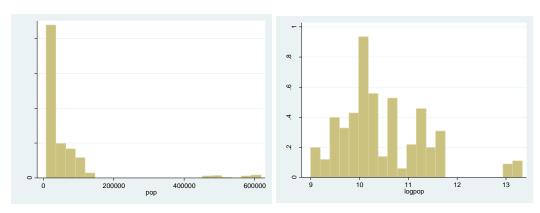


What can be seen from this is that there are different levels of industrial diversity present in different places – Alblasserdam is a large provider of agriculture and other services. Rotterdam provides business and government services. What is interesting is that in Rotterdam, more than a quarter of industry is the government sector. Therefore, it may be important to account for different industrial types present in the municipality.

Finalized dataset

After variable configurations, removals, conversions and other procedures. Issues of normality among variables must be addressed. Firstly, by getting descriptive statistics and normality tests. The full descriptives can be found in the appendix, along with the related variables. The descriptives discussed here will be ones that caused issues for statistical inference and how they were solved.

The skewness of variables in this thesis will be measured by the Pearson method – 0 being no skew and anything above or below indicating a skew to the right or left respectively. A skew above 2 or below -2 will be consider an issue for inference and will warrant a solution, first by creating a log, and then by other procedures if necessary. The kurtosis is basically how high the peak data is – in other words if there is an outlier at the peak. The method will again be that of Pearson. The normal value of Kurtosis that is consider a "normal" peak is 3. Anything above or below, depending on how extreme it is, will be solved with a logistic function of the troubled variable. Certain tolerance can be had with kurtosis as the peakedness will not matter when comparing the between variations between municipalities – only one-time period is taken. That is because the comparison is between relative, not absolute variations and so if some municipality peaks higher, it will not be as much an issue as if in the case if the small municipality of Alblasserdam was compared, on absolute terms, with a huge municipality like Rotterdam. In summary – the percentage variables were ones that gave no issues neither in terms of skewness or kurtosis. Problems came with totals variables such as population, and average variables such as the expenditures on policies. The latter case is not necessarily bad as it implies that there is significant variation within the dataset. However, to avoid bias in any case, firstly the variables will have a log function developed using STATA's generate function. Alternatively, they are converted to percentages.



Population graph: overall there are variations, but the spikes are representative of The Hague and Rotterdam – creating high kurtosis and a skewness that needs to be addressed.

As can be seen from the percentage conversions of the industry – the skewness and kurtosis issues become almost non-existent. This is a simple solution that was done on excel by taking the percentages of the total industry. The advantage of this is that this kind of information can be represented quite simply: percentages are easy to understand and to display in a graph. This is one case where creating a logistic function can be avoided. Please note that XLSTAT output is given in general numbers, not fractions or percentages.

Absolute population

Logarithmic function of population

As can be seen from above, a logarithmic function of a variable, especially one that varies as much as population, can induce a variable to behave in mostly a normal distribution – keeping the relative variation to allow for statistical inference. This is applied to variables that have a high skewness and or kurtosis to normalize them. As can be seen by the above outlier near the log number 13, the does not eliminate outliers, but it does reduce the bias that is caused by them very clearly. Upon closer inspection, it turned out that none of the variables followed a normal distribution. This has been mended by making all the variables into logarithmic sequences. The issue was mended, but not solved as there is too much disparity in the data.

Another thing that is to be done to this dataset is to test it for possible multicollinearity issues caused by explanatory variables being correlated with each other as well as the dependent variable. This was done with the STATA's "correl" command. The findings of such tests will be divided based on the three datasets that this thesis relies on:

- 1. Demographics dataset: Total population correlates heavily with men, women, population density, migrant percentages, household statistics, cars, benefits received. This makes this variable unsuitable to be included if the previously mentioned variables are also included. Same pattern is seen for men and women as well. Pop density is on the verge of being unusable but will be included if the preceding three variables are excluded.
- 2. Expenditures dataset: The correlations overall are not very high, though some can reach 0.6. No variables will be excluded from the regressions manually this is left for STATA to determine to remove the least number of variables reducing the greatest amount of multicollinearity risks.
- 3. Employment/Industry dataset: The correlations are slightly lower than that of the previous dataset. Generally, they do not pass 0.7, indicating that there will be no risks in this dataset of multicollinearity. However, the herfindahl index shows some strong correlations with some variables I will leave it to STATA to determine if those correlations pose a serious threat towards the integrity of this research.

	totemp	acqperc	tradperc	modperc	busser~c	distperc	oservp~c	specco~c	govtperc 1	herfin~l
totemp	1.0000									
acqperc	-0.1474	1.0000								
tradperc	-0.1981	-0.0843	1.0000							
modperc	0.1907	-0.2928	-0.0323	1.0000						
busservperc	0.2742	-0.2103	-0.3785	0.1693	1.0000					
distperc	-0.1280	0.0145	0.2728	0.0382	-0.3623	1.0000				
oservperc	-0.2679	0.0908	-0.3413	-0.2255	-0.0667	-0.3028	1.0000			
specconsperc	-0.2416	0.3347	0.2513	-0.2395	-0.3797	0.1504	0.0179	1.0000		
govtperc	0.3007	-0.4217	-0.4419	0.0980	0.1793	-0.6362	-0.0446	-0.4976	1.0000	
herfindahl	0.1601	-0.4276	-0.4756	-0.0810	0.1938	-0.4161	0.0318	-0.5551	0.8482	1.0000

This is an example of how correlation output looks when given by STATA. The other dataset correlations can be added upon request, but are not included due to the sheer size of the graphical representation of such an operation. The variables that are most highly correlated with other variables will be dropped from the research. Some population, gender, and benefit statistics from the demographics dataset are dropped. Out of the household data, only the log of the number of households and the percentage of households with children is left. Car ownership has been removed as well – the mobility explanatory loss will be accounted for by the expenditure variable for transport. Out of income data, high income has been removed, leaving only the low-income percentage. The remaining issue will be with migrants: all three migration variables correlate, not only with each other, but also with the variables next to them. Further variable drops will be left up to STATA.

Cross Sectional Analysis – Effects at a point in time

This method is convenient here, because it allows to keep municipalities which may have changed over time as it only captures and compares the effects of expenditures across different municipalities in the given year. The municipalities will be chosen for two years – first and last years of the dataset: 2005 and 2014. This is done to account for growth in municipalities, especially for the changing relevance of policies between municipalities.

The models used this part of the analysis will be arranged in increasing manner: more and more variables will be added. Firstly, only the most basic model will be created to be parsimonious and to avoid multicollinearity risks. Secondly, a model of unemployment with each different dataset will be created. Thirdly, different variables will be added or removed to create a model with the most explanatory power. Finally – only the significant variables will be left to test their significance against each other.

Another form of cross sectional analysis that may be relevant is the cross-sectional growth analysis. It differs from the usual form of cross sectional regression by having a dependent variable that is a log function of a later observation of, for example, unemployment, divided by the earlier observation of the same variable. This difference is to account for the actual change that has happened rather than the relationship between different moments in the dataset. Same pattern of variable increase will be used in this model. However, the model should now be read as — up to which period are the differences in policies significant when based on the same starting year. The starting year in the case of my models will be 2005. The ending year is 2014.

Reliability tests

Two tests will be used to test the models: skewness test for residuals and the Ramsey reset test. The former will test whether the predictive model is easily externally applicable: if the residuals are skewed, that means the predictive power is not equally distributed, meaning that some municipalities can't be explained as well as others in terms of employment. The latter will focus on whether there is miss-specification issue because of missing non-linear variables.

The fixed effects model – Policy effects over all time of consideration

By construction, the fixed effects model will eliminate unobserved and fixed factors – ones which would not change over time in the data set of consideration. This is especially useful to determine enacted policy effects if they were enacted during the time of consideration – 2005 to 2014. Any other policies that were enacted outside of that period and held through that period would therefore be excluded by the fixed effects model as unobservable, therefore granting light to only the variables that have changed within that time. In terms of the assumptions of regression this is perfect since now, the error term is no longer correlated with the fixed effects regressors and can't be used to create confounders in the dataset. Overall this is known as the within estimator as it concentrates on the internal changes of the variable consideration – in our case – the unemployment within a municipality over different time periods. This will allow one to estimate what happens when one becomes part of a policy over different municipality and times, allowing to estimate the effects of the same policy on employment in the same municipality over time and seeing if the pattern is recurring across different municipality at a statistically significant recurrence. Although the fixed effects model brings certain benefits, it also creates on difficulty: it does not account for fixed factors such a constant policy, meaning that dummy variables that symbolize policies in a municipality will not provide accurate estimates – if any. The solution for this is the use of random effects model, but first – we need to see if we can do so.

The Hausman test

The Hausman test is a function which allows one to determine between the fixed and random effects model. It is conducted in such manner – firstly results are calculated using both methods. Then the Hausman function is used to compare whether the results are statistically different – if they are, this means that there is an inconsistency between the models, the between errors and within errors do differ, so the model that accounts for the difference – Fixed effects – should be used at the expense of not having time invariant variables. However, if there is no statistically significant difference between the results of the models, the Random effects model is preferred as it gives smaller standard errors – pinpointing a clearer effect of a variable. Since the random effects model may still be used within this piece, one needs to describe it.

The random effects model

One should engage in random effects estimations if the time variant errors are not correlated with each explanatory variable in different time periods. That is because, if that is the case, the fixed effects model would knock out the time invariant errors and by so doing, part of the explanatory power of the model. To shine the brightest light upon a model, the random effects would be preferred as it combines both between and within variations of variables – therefore showing how effective is a policy to one municipality and how effective it is over all. This would help answer the question: does one size fit all?

It may be that, due to the findings in the data section, the dataset becomes of multiple levels: there is a level of personal characteristics such as job, income or education, but there also may be regional factors — the unemployment policy may be of a varying scope — it could be regional and it could also be narrower — on a neighbourhood level. Therefore, a situation may arise where a multi-level model of analysis will have to be used.

The regression

Unemployment/employment total =a variable for accommodating policy + a variable for interventionist policy + demographic variables + policy expenditure variables + industrial variables + control variables + error terms

The number of variables present in the model will be added or removed based on historically-known and in-model statistical significance – to be parsimonious, insignificant variables will be removed if their insignificance is tested via the addition or removal of other variables.

V. Results

The results will be structured in the following manner firstly, cross sectional analysis will be carried out. Years 2005 and 2013 will be analysed as cross sections. After another similar model will be created: the cross-sectional growth model. Following this, the fixed effects model and random effects model. The models will be tested with the Hausman test to see whether it is possible to use and interpret the random effects model. In all cases the research will first be carried out using unemployment as the dependent variable, this will be followed using employment as the dependent variable. The summary graphical results for the latter will be found in the appendix and will only be described in text form in the results section. The interpretations will be found in the discussion section.

Cross Sectional Analysis

2005

Basic Model: Unemployment

logunemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0585988	.0268099	2.19	0.034	.0046642	.1125334
logempart	.0767522	.0164113	4.68	0.000	.043737	.1097675
_cons	-3.439363	.0641042	-53.65	0.000	-3.568324	-3.310402

The basic model is one where unemployment is regressed against the two explanatory variables of interest: economic accommodating policies and interventionist policy expenditure. The former is significant as a 5% significance level and contributes positively towards unemployment. The latter is significant at 1% significance level and contributes positively as well.

. sktest residuals

Skewness/Kurtosis tests for Normality

						Joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	50	0.9589	0.9385		0.01	0.9957

. ovtest

```
Ramsey RESET test using powers of the fitted values of logunemp Ho: model has no omitted variables F\left(3\text{, }44\right) = 5.78 Prob > F = 0.0020
```

Although the residuals of this model are not skewed, the model is very certainly miss-specified and there may be quadratic effects present.

Employment:

When the same regression is carried out using employment as the dependent variable, the following results are seen. Accommodating economic expenditures lose any significance and interventionist policies contribute positively to rising employment at a statistically significant manner at 1% significance level. This is in accordance to what was hypothesized in the theoretical framework section of this work. The model

provides less explanatory power, however. The model is neither skewed nor are the misspecification issues as found by the skewness test and the Ramsey test.

Demographics model: Unemployment

logunemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0216285	.0146685	1.47	0.150	0081814	.0514384
logempart	0177572	.0116176	-1.53	0.136	041367	.0058527
logpop1524	1259248	.1376715	-0.91	0.367	4057069	.1538573
logpop2544	2093405	.2777982	-0.75	0.456	7738944	.3552133
logpop4564	1724011	.2284777	-0.75	0.456	6367238	.2919215
logpop6580	2490753	.162245	-1.54	0.134	5787967	.0806461
logpop80plus	.1916108	.0645479	2.97	0.005	.0604337	.3227879
logpopdens	0268381	.0201956	-1.33	0.193	0678804	.0142043
logwest	0843081	.0612538	-1.38	0.178	2087908	.0401746
lognwest	.1634123	.0455131	3.59	0.001	.0709187	.255906
lognwesto	0472166	.0539748	-0.87	0.388	1569066	.0624734
loghh	.0554953	.0250674	2.21	0.034	.0045522	.1064384
hhchild	.1297716	.4917085	0.26	0.793	8695003	1.129043
lowinc	-1.166691	.6388008	-1.83	0.077	-2.46489	.1315082
loginactivepop	.7045915	.1557465	4.52	0.000	.3880765	1.021106
_cons	-2.377484	1.040901	-2.28	0.029	-4.49285	2621193

In the demographics model, the variables of interest are compared against demographic variables, such as age groups. At a 1% significance level, municipalities with increased relative share of the over 80 population experience more unemployment. Similarly, and at the same level, increasing proportion of non-western migrants is also seen at municipalities that experience higher unemployment rates. Similarly, inactive population numbers contribute to higher unemployment rates. At a 5% significance level, increasing numbers of households, also is seen in more highly unemployed municipalities. Municipalities are seen to experience lower unemployment if the proportion of lower income population increases there – this is observed at 10% significance level.

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	50	0.0113	0.2442	7.00	0.0302

. ovtest

Ramsey RESET test using powers of the fitted values of logunemp Ho: model has no omitted variables $F(3,\ 31)\ =\ 2.81$ $Prob\ >\ F\ =\ 0.0559$

There is evidence that the residuals of the model are skewed, and that omitted variable bias is not a cause of model miss-specification. Bias comes from distribution-related issues.

Employment:

Although the explanatory power of the model does not change almost at all, the model itself provides few statistically significant variables. The only variables that are relevant towards employment: At 1% significance level, the increasing number of households also contributes to rising employment. At a 5% significance level, municipalities that have a higher relative share of non-western third world migrants are ones which have higher employment. At a 10% significance level, municipalities where there are more people with lower incomes also have more employment. Neither explanatory variable is relevant in this model. The model suffers from skewed residuals, but not from OVB-related miss-specification.

Policy Model: Unemployment

logunemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0087201	.0218652	0.40	0.692	0355437	.052984
logempart	.0115453	.0205318	0.56	0.577	0300191	.0531098
logtoteduc	.0605298	.0286579	2.11	0.041	.0025149	.1185446
logincsec	.1061932	.0369156	2.88	0.007	.0314615	.180925
logchildcare	.091095	.0315063	2.89	0.006	.0273137	.1548762
logsochouse	0084217	.018317	-0.46	0.648	0455025	.0286592
logyouth	0140666	.0331549	-0.42	0.674	0811852	.053052
logtotorder	.2243546	.0645867	3.47	0.001	.0936057	.3551036
logtothealth	.046372	.0589188	0.79	0.436	0729029	.1656469
logtotcult	0758706	.0703268	-1.08	0.287	2182397	.0664985
_cons	-4.86694	.4528622	-10.75	0.000	-5.783712	-3.950169

In this model, policy expenditures are compared as explanatory variables for unemployment. In some cases, like social expenditures, they are expanded to more detailed expenditures. At a 1% level, municipalities which have higher expenditures in law and order, also experience more unemployment. Higher expenditures on income security and child care are also seen as factors of unemployment increase. The model provides a high explanatory power of 80%, its residuals are not skewed and there are omitted variable issues in the model according to the Ramsey reset test.

Employment:

At a 5% significance level income security, child care, and cultural expenditures all contribute positively towards employment. The overall explanatory power of this model is 20% lower for employment than it was for unemployment, however the residuals are not skewed and there is not enough evidence to say that the model has been miss-specified according to the Ramsey reset test.

Industrial model: Unemployment

logunemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0342796	.0247095	1.39	0.173	0157423	.0843014
logempart	.0505954	.0153555	3.29	0.002	.0195097	.081681
logacqperc	0187724	.0150138	-1.25	0.219	0491662	.0116215
logtradperc	.1028184	.0414321	2.48	0.018	.0189434	.1866933
logmodperc	.0059458	.0248554	0.24	0.812	0443714	.056263
logbusservperc	.1878956	.0702294	2.68	0.011	.0457236	.3300676
logdistperc	.1581929	.0712397	2.22	0.032	.0139758	.3024101
logoservperc	.2759804	.0920918	3.00	0.005	.0895503	.4624104
loggovtperc	.357019	.1043162	3.42	0.001	.1458418	.5681961
logherfindahl	.0131671	.2124497	0.06	0.951	4169149	.4432491
_cons	-1.44009	.6968419	-2.07	0.046	-2.850772	0294072

The industrial model comprises of different industries in South Holland and the employment in them. It can be seen from the results of this model, that at a 1% significance level, the interventionist employment policies contribute positively towards unemployment. At the same level, increased other services employment and larger government employment are seen in municipalities that experience greater unemployment. At a 5% significance level, the increase employment in business services, and in distribution/logistics, and in traditional manufacturing employment is related to increased unemployment in municipalities. The model provides less than 80% of explanatory power, suffers from skewed residuals and omitted variable bias may cause distortions in the specification of this model.

Employment:

Employment is affected, at a 5% significance level, by intervention in the labour market and encouragement to participate – the effect is positive. At a 5% significance level, municipalities that have increased business services employment also experience larger employment. At a 10% statistical significance level, employment in the government sector is found in municipalities with higher overall employment. This model has lower explanatory power than its predecessor – just 61% percent of variation in employment is explained. However, this model is neither skewed nor is there reason to believe that the model is miss-specified in terms of missing variables.

Basic Model: Unemployment

Source	SS	df	MS	Number of obs	=	50
				F(2, 47)	=	33.20
Model	1.19164562	2	.595822808	Prob > F	=	0.0000
Residual	.843394296	47	.017944559	R-squared	=	0.5856
				Adj R-squared	=	0.5679
Total	2.03503991	49	.041531427	Root MSE	=	.13396
	•					
logunemp	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]
logtotecon	.0837344	.0194571	4.30	0.000 .04459	917	.122877
logempart	.1765482	.0320045	5.52	0.000 .11216	635	.2409329
_cons	-3.814976	.1429446	-26.69	0.000 -4.1025	544	-3.527409

In this basic model, both accommodating and intervening policies are seen to have a statistically significant incremental effect on unemployment at the 1% level of significance. The explanatory power of the model is low as these variables explain a little over half of the variation. However, interestingly, the model's residuals are not skewed and the Ramsey reset test does not detect a miss-specification based on missing variables.

. sktest residuals

Skewness/	Kurtosis	tests	for	Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	50	0.0152	0.4853	5.98	0.0504

. ovtest

Ramsey RESET test using powers of the fitted values of logunemp Ho: model has no omitted variables $F \, (3 , \ 44) \ = \qquad 0.85$ $Prob > F \ = \qquad 0.4765$

Employment:

Like in the previous model, in this model, both policies have a positive, statistically significant effect on employment within a municipality. It is interesting to note that the coefficients for both policies are almost 4 times the size when predicting employment rather than unemployment. This effect is significant at the 1% level. The model has slightly less explanatory power than its counterpart, suffers from skewness and is not miss-specified in terms of missing variables.

Demographics Model: Unemployment

.

logunemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0212062	.0146744	1.45	0.158	0086158	.0510282
logempart	023763	.0387874	-0.61	0.544	1025885	.0550625
logpop1524	1836193	.136707	-1.34	0.188	4614414	.0942028
logpop2544	1321303	.2133525	-0.62	0.540	5657147	.3014542
logpop4564	.2872122	.2608896	1.10	0.279	2429792	.8174036
logpop6580	3213191	.1540308	-2.09	0.045	6343473	0082909
logpop80plus	.0933783	.0910718	1.03	0.312	0917018	.2784584
logpopdens	0224853	.0185468	-1.21	0.234	060177	.0152064
logwest	0623622	.0559656	-1.11	0.273	1760981	.0513736
lognwest	.1828346	.0462869	3.95	0.000	.0887683	.276901
lognwesto	0080493	.0533694	-0.15	0.881	116509	.1004104
loghh	.0156153	.0236215	0.66	0.513	0323893	.0636199
hhchild	8569086	.4102906	-2.09	0.044	-1.690719	0230978
lowinc	.4942837	.606583	0.81	0.421	7384412	1.727009
loginactivepop	.2832294	.2041364	1.39	0.174	1316257	.6980845
_cons	-2.374588	.991636	-2.39	0.022	-4.389835	3593417

At statistical significance level of 1%, non-western migrants contribute positively towards unemployment. At a 5% statistical significance level, the population in the age bracket of 65 to 80 contributes negatively towards unemployment, as do increasing numbers of households with children. The model provides nearly 90% explanatory power; however, its residuals are skewed, and it may be miss-specified because of missing variables.

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	50	0.0162	0.3162	6.28	0.0433

. ovtest

Ramsey RESET test using powers of the fitted values of logunemp Ho: model has no omitted variables $F(3,\ 31) \ = \ 5.80$ $Prob \ > \ F \ = \ 0.0029$

Employment:

At a 10% and at 5% significance levels respectively, accommodating policies and interventionist policies contribute to a rising employment rate. At a 1% significance level, employment rises with the rising number of households. The model provides high explanatory power of just over 90%, the residuals are skewed and the model does not suffer from OVB-related model miss-specification.

Policy model: Unemployment

logunemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.01221	.0124689	0.98	0.334	0130544	.0374745
logempart	.0059316	.0223851	0.26	0.792	0394249	.0512882
logtoteduc	0534407	.0401097	-1.33	0.191	1347107	.0278292
logincsec	.2852434	.0283375	10.07	0.000	.2278263	.3426606
logchildcare	0050088	.0187432	-0.27	0.791	042986	.0329684
logsochouse	0050077	.0122098	-0.41	0.684	0297472	.0197318
logyouth	.0244189	.0253788	0.96	0.342	0270034	.0758411
logsocwork	.0057063	.0222984	0.26	0.799	0394746	.0508871
logtotorder	.0638517	.0369658	1.73	0.092	011048	.1387514
logtotcult	.0236401	.0384762	0.61	0.543	0543202	.1016004
logtothealth	.0875957	.0496194	1.77	0.086	0129428	.1881342
_cons	-5.029274	.2747228	-18.31	0.000	-5.585915	-4.472632

At a 1% significance level, municipalities of higher income security expenditures, also have higher unemployment. In this model, the only two policies that are significant at a 10% level are order and safety expenditures, and healthcare expenditures – they are both higher in municipalities with higher unemployment rates. The explanatory power in this model is near 90%, there are no skewness issues with its residuals and the model is likely to suffer from OVB-related miss-specification:

. sktest residuals

Skewness/Kurtosis tests for N	Normality
-------------------------------	-----------

					joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	4 9	0.0180	0.6593	5.54	0.0628

. ovtest

Ramsey RESET test using powers of the fitted values of logunemp Ho: model has no omitted variables F(3, 34) = 3.85 Prob > F = 0.0179

Employment:

At a 10% statistical significance level, accommodating policies contribute to increasing employment in the municipalities. At 1% statistical significance level, increased expenditures on income security are seen in municipalities that experience higher employment overall. The model is less explanatory for employment than it is for unemployment by around 20%. There is both a skew in the residuals and omitted variable bias that is affecting the explanatory power of this model. The coefficients of the statistically significant variables are larger than those of the unemployment model.

Industrial model: Unemployment

<u> </u>						
logunemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0575566	.0216516	2.66	0.011	.0137622	.101351
logempart	.1478196	.0479096	3.09	0.004	.0509133	.244726
logacqperc	0137308	.0170584	-0.80	0.426	0482346	.020773
logtradperc	0066423	.059021	-0.11	0.911	1260235	.1127389
logmodperc	0130018	.0336403	-0.39	0.701	0810458	.0550422
logbusservperc	.1476414	.0746353	1.98	0.055	0033227	.2986054
logdistperc	.0653357	.0737524	0.89	0.381	0838426	.214514
logoservperc	.1451641	.1121848	1.29	0.203	081751	.3720793
loggovtperc	.1571207	.125597	1.25	0.218	0969233	.4111646
logherfindahl	0308577	.2418634	-0.13	0.899	5200726	.4583572
_cons	-2.94331	.9319006	-3.16	0.003	-4.828257	-1.058363

At a 1% significance level, the employment participation interventionist policies contribute positively towards unemployment. At a 5% statistical significance level, accommodating policies contribute to increased unemployment. Increased employment in business services contributes positively towards unemployment at a 10% significance level. The model provides a mediocre level of explanatory power of 65% and does not suffer neither from skewed residuals, nor OVB-related model miss-specification:

. sktest residuals

Skewness	/Kurto	sis	tests	for	Normality
----------	--------	-----	-------	-----	-----------

Variable	Obs	Pr(Skewness)) Pr(Kurtosis)		Prob>chi2
residuals	50	0.1241	0.6506	2.72	0.2572

. ovtest

Ramsey RESET test using powers of the fitted values of logunemp Ho: model has no omitted variables $F(3,\ 36) \ = \ 2.14$ $Prob \ > \ F \ = \ 0.1124$

Employment:

At a 1% significance level, intervention in the labour market contributes positively to raise employment. At a 5% significance level, accommodation of the economy to encourage employment contributes positively to raising employment. At a 5% significance level, increased employment in business services contributes positively towards employment, however both increased traditional manufacturing and other services are contributing negatively towards employment.

Cross Sectional Growth Models

Pre-crisis (2005-2006)

Basic Model: Unemployment

Source	SS	df	MS	Numk	er of obs	5 =	50
				- F(2,	47)	=	6.23
Model	.019826748	2	.009913374	Prob	> F	=	0.0040
Residual	.074786489	47	.001591202	R-sc	quared	=	0.2096
				- Adj	R-squared	= £	0.1759
Total	.094613237	49	.001930882	Root	MSE	=	.03989
logunempgr~y	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
logtotecon	0155419	.0065304	-2.38	0.021	0286	794	0024043
logempart	0040985	.0039975	-1.03	0.310	01214	405	.0039434
_cons	0941287	.0156147	-6.03	0.000	12554	414	062716

In this group of models, the change in unemployment is taken from 2005 to 2006 – instead of what it is in the year of measurement of other variables. As the results show, accommodating policies, at a 5% significance level contribute negatively towards unemployment, whilst interventionist policies have no found effect. The model has low explanatory power of 20%. As shown in the below graph, the models residuals are not skewed and OVB does not cause specification issues:

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint	
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2	
residuals	50	0.1864	0.6345	2.08	0.3541	

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F(3,\ 44) = 0.66$ Prob > F = 0.5834

Employment:

Neither policy has been found to have a statistically significant effect. The model is of very low explanatory power, however without skewed residuals and with no detected ovb specification issues.

Demographics Model: Unemployment

.

logunempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	015214	.0069607	-2.19	0.036	0293599	0010681
logempart	.0058841	.005513	1.07	0.293	0053196	.0170878
logpop1524	0038162	.06533	-0.06	0.954	1365827	.1289503
logpop2544	.0776923	.131825	0.59	0.560	1902085	.345593
logpop4564	.0807667	.1084208	0.74	0.461	1395708	.3011042
logpop6580	.1378848	.076991	1.79	0.082	0185796	.2943493
logpop80plus	0354023	.0306303	-1.16	0.256	0976505	.0268459
logpopdens	0043675	.0095835	-0.46	0.651	0238436	.0151085
logwest	.003207	.0290671	0.11	0.913	0558644	.0622784
lognwest	0328607	.0215976	-1.52	0.137	0767522	.0110308
lognwesto	.0412515	.0256129	1.61	0.117	0108002	.0933033
loghh	.0101409	.0118954	0.85	0.400	0140334	.0343152
hhchild	1014085	.233333	-0.43	0.667	5755983	.3727813
lowinc	.4089305	.3031335	1.35	0.186	2071109	1.024972
loginactivepop	1641276	.0739072	-2.22	0.033	3143251	0139301
_cons	1360511	.4939443	-0.28	0.785	-1.139867	.8677644

Accommodating policies have a negative effect on unemployment growth, at a 5% significance level. Also at a 5% significance level, rising inactive population has a negative effect on unemployment growth. At a 10% significance level, increased cohorts of 65 to 80 are seen to raise unemployment in municipalities. The model has low explanatory power of 30%, no skewed residuals and no OVB specification issues.

. sktest residuals

Skewness/Kurtosis tests for Normality

					— joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi	2(2) Prob>chi2
residuals	50	0.5328	0.8582	0.43	3 0.8069

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F(3,\ 31) \ = \ 0.72$ $Prob > F \ = \ 0.5487$

Employment:

At 5% significance accommodating policies raise employment. At a 10% significance level, the 45-64 age cohort has a negative effect, western migrants have a positive effect, non-western migrants have a negative effect, and households with children contribute positively towards employment. The model has very low explanatory power, is neither skewed nor plagued by OVB miss-specification.

Policy model: Unemployment

logunempgr~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	0143913	.0074586	-1.93	0.061	0295039	.0007212
logempart	.0036538	.0070057	0.52	0.605	0105411	.0178486
logtoteduc	0143001	.009874	-1.45	0.156	0343067	.0057064
logincsec	020902	.013225	-1.58	0.123	0476984	.0058945
logchildcare	0149131	.0110267	-1.35	0.184	0372553	.0074291
logsochouse	.0009986	.0062361	0.16	0.874	0116369	.0136341
logyouth	0077294	.0114402	-0.68	0.503	0309094	.0154506
logsocwork	0085823	.0137339	-0.62	0.536	0364097	.0192451
logtotorder	.0200185	.0224629	0.89	0.379	0254956	.0655326
logtotcult	.0545525	.0244727	2.23	0.032	.0049662	.1041388
logtothealth	.0040463	.02006	0.20	0.841	0365992	.0446918
_cons	257907	.1571059	-1.64	0.109	5762339	.0604198

At a 10% significance level, municipalities that engaged in relatively higher accommodating policy expenditures see lower unemployment, whilst cultural expenditures contribute to raising unemployment at a 5% significance level. This model has low explanatory power of 20%, has no skew and may suffer accuracy penalties due to OVB:

. sktest residuals

					joint
Variable	Obs	Pr(Skewness)) Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	49	0.9063	0.4808	0.52	0.7697

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F(3,\ 34)\ =\ 3.12$ $Prob\ >\ F\ =\ 0.0385$

Employment:

This model offers no explanatory power towards employment – all variables are insignificant. All variables are insignificant.

Industrial Model: Unemployment

.

logunempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	0122994	.0068013	-1.81	0.078	0260679	.0014691
logempart	0007412	.0042266	-0.18	0.862	0092975	.0078152
logacqperc	.0075722	.0041326	1.83	0.075	0007937	.0159381
logtradperc	0201096	.0114042	-1.76	0.086	0431962	.002977
logmodperc	.002866	.0068415	0.42	0.678	0109838	.0167159
logbusservperc	0124592	.0193307	-0.64	0.523	0515921	.0266737
logdistperc	0268016	.0196088	-1.37	0.180	0664974	.0128943
logoservperc	0417337	.0253483	-1.65	0.108	0930487	.0095812
loggovtperc	0211514	.0287131	-0.74	0.466	079278	.0369752
logherfindahl	0590351	.0584769	-1.01	0.319	1774154	.0593452
_cons	3842449	.1918061	-2.00	0.052	772536	.0040462

As can be seen from the above table, accommodating policies are significant at a 10% significance level and contribute to lowering unemployment. Also at a 10% significance level, growth in the resource acquisition industry relates to rise in unemployment growth, and growth in the traditional manufacturing industry relates to a fall in unemployment growth. The model offers low explanation for its variations: 37%. It suffers neither from skewed residuals nor from OVB miss-specification:

. sktest residuals

Skewness/Kurtosis tests for Normality

						joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	49	0.6716	0.0462		4.28	0.1178

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F(3,\ 35)\ =\ 0.09$ $Prob\ >\ F\ =\ 0.9672$

Employment:

In this model, no variable is statistically significant, the residuals are skewed, but ovb is not the cause of miss-specification.

Crisis (2009-2010)

Basic Model: Unemployment

Source	SS	df	MS	Number of o	bs =	51
				F(2, 48)	=	8.09
Model	.614276069	2	.307138035	Prob > F	=	0.0009
Residual	1.82165203	48	.037951084	R-squared	=	0.2522
				- Adj R-squar	ed =	0.2210
Total	2.4359281	50	.048718562	Root MSE	=	.19481
logunempgr~y	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
logtotecon	0449072	.0277023	-1.62	0.112100	6063	.0107919
logempart	1006658	.0380506	-2.65	0.011177	1716	02416
_cons	.6092014	.1699548	3.58	0.001 .267	4844	.9509183

In this basic model, at a 5% significance level, the interventionist policies have a negative effect on unemployment growth: municipalities which invest relatively more into such policies experience lower unemployment growth. The model has a low explanatory power of 22%, however, it does not suffer from skewed residuals or miss-specification related to OVB:

. sktest residuals

Skewness/Kurtosis tests for Normality

						Joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	51	0.0204	0.3394		5.91	0.0520

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables F(3, 45) = 1.33 Prob > F = 0.2763

Employment:

This model shows that increased expenditures into interventionist policies are seen in municipalities which have lower employment growth, at a 5% significance level. The explanatory power of this model is very low, it has skewed residuals and no OVB miss-specification.

Demographics Model: Unemployment

logunempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0031017	.0314489	0.10	0.922	0607429	.0669463
logempart	007893	.0649753	-0.12	0.904	1397999	.1240139
logpop1524	.2228262	.3196918	0.70	0.490	4261827	.8718351
logpop2544	.9271079	.5575253	1.66	0.105	2047286	2.058944
logpop4564	.2327497	.5147211	0.45	0.654	8121897	1.277689
logpop6580	.6873659	.3659028	1.88	0.069	0554563	1.430188
logpop80plus	1645436	.1659815	-0.99	0.328	501504	.1724169
logpopdens	0105108	.0435571	-0.24	0.811	0989364	.0779149
logwest	0389958	.1319249	-0.30	0.769	3068175	.2288259
lognwest	0339491	.0990685	-0.34	0.734	2350689	.1671706
lognwesto	0608374	.1384079	-0.44	0.663	3418202	.2201455
loghh	0801187	.0560692	-1.43	0.162	1939452	.0337078
hhchild	-1.045419	1.149784	-0.91	0.369	-3.379605	1.288767
lowinc	.2364817	1.494468	0.16	0.875	-2.797451	3.270414
loginactivepop	3106252	.4923682	-0.63	0.532	-1.310186	.6889354
_cons	3.191962	2.384052	1.34	0.189	-1.647922	8.031845

In this population-based model, neither of the policies is statistically significant. Only municipalities which have had higher share of the 65 to 80 age demographics in 2009 are seen to experience higher unemployment growth at a 10% significance level. The model has a mediocre explanatory power of 40%, is neither skewed nor is it with miss-specification issues caused by OVB.

. sktest residuals

					joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	51	0.1538	0.9594	2.14	0.3424

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables F(3, 32) = 0.27 Prob > F = 0.8480

Employment:

Like previously, no policy variable is significant here. Municipalities with denser population had lower employment growth at a 5% significance level, and the same effect is seen from increased households at a 1% significance level. Residuals are not skewed and neither are there OVB miss-specification issues with this model.

Policy model: Unemployment

.

logunempgr~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	0277981	.0331214	-0.84	0.406	0947925	.0391962
logempart	0084517	.0626056	-0.13	0.893	1350834	.11818
logtoteduc	.0126421	.0763034	0.17	0.869	1416961	.1669803
logchildcare	.0352362	.0589527	0.60	0.553	0840069	.1544794
logsochouse	0067736	.0269796	-0.25	0.803	061345	.0477978
logyouth	.0078735	.0706951	0.11	0.912	1351209	.1508679
logtotorder	.1003365	.1190707	0.84	0.405	1405066	.3411797
logtotcult	.0523468	.1269704	0.41	0.682	204475	.3091686
logincsec	102099	.0939989	-1.09	0.284	2922297	.0880318
logsocwork	1461084	.0763329	-1.91	0.063	3005063	.0082895
logtothealth	.0572674	.121455	0.47	0.640	1883985	.3029333
_cons	0265396	.9074128	-0.03	0.977	-1.861955	1.808876

In this model, changes in policies in 2009 are compared against changes in unemployment from 2009 to 2010. Only social work has a negative effect on unemployment growth at a 10% significance level. The model has low explanatory power, however no skewness or OVB miss-specification:

. sktest residuals

Skewness/Kurtosis tests for Normality

				· 	JOINC
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	51	0.9773	0.5745	0.32	0.8538

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F(3,\ 36) = 1.12$ Prob > F = 0.3541

Employment:

This model sees a more statistically significant impact of social to reduce employment growth, with very low explanatory power of the variations, no skew and with OVB-specification issues.

Industrial Model: Unemployment

logunempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	0074377	.0351321	-0.21	0.833	0784424	.0635669
logempart	0905837	.0511615	-1.77	0.084	1939849	.0128175
logacqperc	.0078463	.0217134	0.36	0.720	036038	.0517307
logtradperc	0361523	.0741124	-0.49	0.628	1859391	.1136345
logmodperc	.0598592	.0438356	1.37	0.180	028736	.1484543
logbusservperc	198628	.1210951	-1.64	0.109	4433703	.0461143
logdistperc	1597002	.1118926	-1.43	0.161	3858435	.0664431
logoservperc	2513989	.1542709	-1.63	0.111	5631921	.0603943
loggovtperc	3343016	.1882351	-1.78	0.083	7147389	.0461357
logherfindahl	0622516	.3221782	-0.19	0.848	7133979	.5888947
_cons	9819879	1.211672	-0.81	0.422	-3.430868	1.466893

At a 10% significance level, municipalities which have invested into intervening in the labour market in 2009, have seen lower unemployment growth from 2009 to 2010. Similarly, municipalities with a larger employment in the government sector have seen lower unemployment growth. The model explains little variation of the dependent variable, but has no skew or OVB-caused bias.

. sktest residuals

Skewness/Kurtosis tests for Normality

					JOINL
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	51	0.6419	0.0044	7.40	0.0248

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F(3,\ 37)\ =\ 0.50$ $Prob\ >\ F\ =\ 0.6871$

Employment:

None of the variables are significant in this model, it has low explanatory power, is skewed and doesn't have OVB miss-specification.

Post Crisis (2013-2014)

Basic Model: Unemployment

Source	SS	df	MS	Number of obs	=	50
				F(2, 47)	=	1.08
Model	.00357265	2	.001786325	Prob > F	=	0.3470
Residual	.077544554	47	.001649884	R-squared	=	0.0440
				· Adj R-squared	=	0.0034
Total	.081117204	49	.001655453	Root MSE	=	.04062
logunempgr~y	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
logtotecon	.0029645	.0058998	0.50	0.61800890	4 4	.0148334
logempart	.0116282	.0097045	1.20	0.23700789	47	.031151
_cons	0430987	.0433439	-0.99	0.32513029	54	.044098

In this model, growth rate from 2013 to 2014 is taken with regards to unemployment. It is tested against both theorized policy types – accommodating and interventionist – to find that none of the policies are significant, at least in this setting. The model offers negligible explanatory power, however no skew or OVB related issues concerning the two variables used.

. sktest residuals

Skewness/Kurtosis tests for Normality

						joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	50	0.0581	0.9171		3.82	0.1480

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F\left(3\text{, }44\right) = 0.93$ Prob > F = 0.4332

Employment:

Interventionist policies begin having a negative effect for employment growth, at a 5% significance level. Explanatory power remains low, and skewness and OVB are not issues.

Demographics Model: Unemployment

logunempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0024101	.0080435	0.30	0.766	0139364	.0187565
logempart	.0012418	.0212607	0.06	0.954	0419651	.0444487
logpop1524	.0241629	.0749337	0.32	0.749	1281207	.1764466
logpop2544	.1975005	.1169457	1.69	0.100	0401618	.4351627
logpop4564	.2754576	.1430024	1.93	0.062	0151581	.5660734
logpop6580	096221	.0844295	-1.14	0.262	2678023	.0753603
logpop80plus	.0206118	.0499195	0.41	0.682	0808369	.1220604
logpopdens	0117525	.0101661	-1.16	0.256	0324125	.0089076
logwest	.1101528	.0306767	3.59	0.001	.0478103	.1724952
lognwest	.0056647	.0253714	0.22	0.825	0458962	.0572257
lognwesto	0410974	.0292536	-1.40	0.169	1005478	.018353
loghh	0228456	.0129477	-1.76	0.087	0491585	.0034674
hhchild	.3736948	.2248941	1.66	0.106	083345	.8307347
lowinc	.3367224	.3324886	1.01	0.318	3389756	1.01242
loginactivepop	.130942	.111894	1.17	0.250	096454	.3583381
_cons	.9764442	.5435491	1.80	0.081	1281804	2.081069

At a 1% significance level, municipalities with a higher proportion of western migrants may experience higher unemployment growth. A rising demographic of 45 to 64s is seen in municipalities of rising unemployment, at a 10% significance level. At the same significance level, the rising number of households relates to a fall in unemployment growth. This model has very low explanatory power of just 17%, no skewness and no OVB issues.

. sktest residuals

residuals

					joint
Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2

0.9302 0.45

0.7968

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F(3,\ 31)\ =\ 0.38$ $Prob\ >\ F\ =\ 0.7673$

0.5084

Skewness/Kurtosis tests for Normality

Employment:

In this model, an increase in the amount of inactive population has a positive effect on employment growth at a 1% significance level, increase in households with children has a positive effect at a 5% significance level, increase in non-western non-third world migrants has a decreasing effect on employment growth, and an increase in the 65 to 80 age cohort is seen (at a 10% significance level), in municipalities with higher employment growth. The model has minimal explanatory power, no skew and no OVB miss-specification.

Policy model: Unemployment

.

logunempgr~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.001306	.008211	0.16	0.874	0153309	.017943
logempart	.0208498	.0147409	1.41	0.166	0090181	.0507177
logtoteduc	.036395	.0264128	1.38	0.177	0171224	.0899124
logincsec	0108501	.0186606	-0.58	0.564	0486601	.0269599
logsochouse	.0041509	.0080403	0.52	0.609	0121404	.0204422
logchildcare	0125349	.0123426	-1.02	0.316	0375434	.0124736
logyouth	.0041464	.0167123	0.25	0.805	0297159	.0380086
logsocwork	0148515	.0146838	-1.01	0.318	0446037	.0149007
logtotorder	0026721	.0243425	-0.11	0.913	0519946	.0466504
logtotcult	0119875	.0253371	-0.47	0.639	0633254	.0393504
logtothealth	.0109049	.0326751	0.33	0.740	0553011	.0771109
_cons	1350336	.1809088	-0.75	0.460	5015896	.2315224

In this model, to test accommodating and interventionist policies and their effect on unemployment growth in 2013-2014, other policy variables are used as controls. However, none of the variables have significance towards the dependent variable. Apart from that, the model also sheds little light on explanation of the variable, has no skew and no OVB issues in specification.

. sktest residuals

Skewness/Kurtosis tests for Normality

						JOINC
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	49	0.8353	0.2799		1.27	0.5310

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F(3,\ 34) \ = \ 1.15$ $Prob \ > \ F \ = \ 0.3439$

Employment:

This model provides more results than its unemployment predecessor: a negative effect of intervention policies is seen at a 10% significance level. However, as one can see (if they look in the appendix of this thesis) increasing expenditures of social housing are seen in municipalities with higher employment growth. There are no skewed residuals or OVB miss-specs.

Industrial model: Unemployment

.

logunempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0065666	.0077774	0.84	0.404	0091646	.0222978
logempart	.0292261	.0172094	1.70	0.097	0055832	.0640354
logacqperc	.0046421	.0061275	0.76	0.453	0077519	.017036
logtradperc	0046906	.0212007	-0.22	0.826	0475731	.0381918
logmodperc	0029409	.0120838	-0.24	0.809	0273827	.0215009
logbusservperc	0145874	.0268094	-0.54	0.589	0688146	.0396398
logdistperc	.0037583	.0264923	0.14	0.888	0498274	.057344
logoservperc	.0200138	.0402974	0.50	0.622	0614955	.1015231
loggovtperc	0243641	.0451152	-0.54	0.592	1156182	.06689
logherfindahl	.0333655	.0868788	0.38	0.703	1423634	.2090944
_cons	1096015	.3347442	-0.33	0.745	7866856	.5674826

A slight effect can be seen in this model, of employment participation, towards an increase in unemployment growth of the municipalities. The effect is significant at a 10% significance level. Other than that, the model explains only 11% of the overall variation. There are no skewed residuals and there are no OVB issues.

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	50	0.9236	0.0179	5.40	0.0671

. ovtest

Ramsey RESET test using powers of the fitted values of logunempgrowthearly Ho: model has no omitted variables $F(3,\ 36) \ = \ 0.52$ $Prob \ > \ F \ = \ 0.6727$

Employment:

Here, interventionist policies have a negative effect on employment growth and it is significant at a 10% significance level. Other than that, increase employment in other services, corresponds with decreased employment growth overall, at 5% significance level. The model explains little, has skewed residuals and no OVB miss-specs.

Panel Regression Models

In this part, the panel regression models will be created under the following principles: parsimoniousness and diligence – to account only for those variables that have been previously found to have an effect in theory, or in this piece itself. The models present will exclude the municipalities of Alphen and Rijn, Binnenmass, Nieuwkoop, and Rotterdam. These municipalities have changed in size over the consideration period of 2005 to 2014, and so cannot be used, for fear of confounding factors, in the regressions.

```
. xtdes
```

```
id: 1, 2, ..., 51
                                                                              47
                                                                 n =
    year: 2005, 2006, ..., 2014
                                                                 т =
                                                                              10
           Delta(year) = 1 unit
           Span(year) = 10 periods
           (id*year uniquely identifies each observation)
                                                    50%
                                                               75%
                                                                        95%
Distribution of T i:
                        min
                                  5%
                                         25%
                                                                                max
                         10
                                  10
                                          10
                                                     10
                                                                10
                                                                         10
                                                                                 10
                        Cum.
     Freq. Percent
                                 Pattern
                      100.00
       47
             100.00
                                 1111111111
             100.00
       47
                                 XXXXXXXXX
```

The identifying variable was created simply by numerating the municipalities. When ID equals 1, the municipality referred to is Alblasserdam, and so on. The time variable according to which the municipalities are arranged are the years. Overall, as one can see from the above graph, the dataset has 47 municipalities (known as the groups). Which are evenly distributed – meaning that each municipality is observed an equal amount of times. In this case – 10 years. The summary statistics for all variables, both logged and unlogged will be found in the appendix section of this thesis. The variables used for the fixed effects regression will be logged, due to the existences of many skewed, kurtosis-affected distributions among the variables.

Unemployment Fixed Effects

	ithin) regression		Number of obs			459 47
Group variable:	ıα		Number of gro	oups	=	4 /
R-sq:			Obs per group):		
within = 0	.4954			min	=	7
between = 0	.6871			avg	=	9.8
overall = 0	.3211			max	=	10
			F(28,384)		=	13.46
corr(u_i, Xb) =	-0.9942		Prob > F		=	0.0000
	 					
logunemp	Coef. St	d. Err. t	P> t	[95%	Conf.	Interva
	I					

logunemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
logtotecon	.0332397	.0206923	1.61	0.109	0074448	.0739241
logempart	0468321	.0169238	-2.77	0.006	080107	0135572
logpop1524	2314354	.3203467	-0.72	0.470	8612887	.398417
logpop4564	-1.236799	.4614224	-2.68	0.008	-2.144029	3295678
logpopdens	1.00678	.4277544	2.35	0.019	.1657457	1.84781
logwest	.3889444	.1472628	2.64	0.009	.0994021	.678486
lognwest	.4601222	.0928428	4.96	0.000	.2775784	.64266
lognwesto	.2597306	.0674086	3.85	0.000	.1271945	.3922668
logpop	.1372194	.373056	0.37	0.713	5962687	.870707
loghhchild	-1.040095	.4351467	-2.39	0.017	-1.895664	18452
loglowinc	.627446	.4105681	1.53	0.127	179797	1.43468
loginactivepop	3497752	.1860368	-1.88	0.061	7155534	.0160033
logtoteduc	.006383	.033991	0.19	0.851	0604488	.073214
logincsec	.1210151	.0371098	3.26	0.001	.0480512	.193978
logsocwork	0448503	.034693	-1.29	0.197	1130624	.023361
logchildcare	0333514	.0321053	-1.04	0.300	0964755	.0297728
logsochouse	0239886	.0167307	-1.43	0.152	0568838	.008906
logyouth	.0606014	.0221133	2.74	0.006	.0171232	.104079
logadmin	122472	.0468501	-2.61	0.009	2145868	030357
logtottransport	.0413374	.0162643	2.54	0.011	.0093593	.0733155
logacqperc	.0664322	.0286189	2.32	0.021	.0101629	.122701
logtradperc	0131928	.0699173	-0.19	0.850	1506615	.124275
logmodperc	.0148597	.0381196	0.39	0.697	0600896	.089809
logbusservperc	2195808	.1165824	-1.88	0.060	4488007	.00963
logdistperc	1460362	.1028189	-1.42	0.156	3481946	.0561223
logoservperc	.0120277	.163036	0.07	0.941	3085273	.3325828
loggovtperc	.1244793	.1614379	0.77	0.441	1929336	.4418922
logherfindahl	.4936102	.3300387	1.50	0.136	1552989	1.14251
_cons	-11.25307	4.808772	-2.34	0.020	-20.70789	-1.79825
sigma_u	1.6248057					
sigma_e	.17367284					
rho	.98870393	(fraction	of varia	nce due t	o u i)	

F test that all $u_i=0$: F(46, 384) = 3.72

Prob > F = 0.0000

Overall, in this model, accommodating policies have no effect over the time of consideration within the municipalities. However, the direct intervention policy of employment participation has a negative effect on unemployment at a 1% significance level. Out of the control variables, at a 1% significance level administrative expenditures and higher numbers of the age group 45 to 64 are seen in municipalities with lower unemployment. However, municipalities which have a higher share of migrants of any kind, higher income security expenditures and higher youth expenditures are ones which also experience higher unemployment. At 5% significance level municipalities where there are more households with children experience lower unemployment, whilst those where there is a higher population density, higher transport investments and more resource acquisition industry, will experience higher unemployment. Finally, at a 10% significance level, municipalities with higher inactive populations experience less unemployment,

same is true for those with higher business service industries. The model provides an average overall explanatory power of 30% of the variation of the dependent variable, and more explanatory power is seen from between variation rather than within. The residuals for this model are skewed, thus impeding its explanatory power, when applied externally.

. sktest residuals

	Skewne	ss/Kurtosis te	ests for Norma	lity	
					joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	459	0.0029	0.0483	11.51	0.0032

Random effects were also generated, the full results of the random effects can be seen in the appendix. The model itself offered more explanatory power in all aspects and had residuals that are not skewed. However, upon storing both fixed effects and random effects results (estimates store command), and then using the Hausman test (in that order), it became clear that there are systematic differences in the coefficients of both models. This means that the random model effects results cannot be interpreted leaving the fixed effects model as the one from which interpretation will be made in the following section.

Employment Fixed Effects:

The same model has been regressed with regards to employment. Accommodating policy expenditure has been seen to have a negative effect on employment, at a 5% significance level. Employment participation policies have been seen to have a positive effect at a 1% statistical significance level. Out of the controls, at a 1% significance level, age group 15 to 24, non-western third world migrants, income security policies, rising other services industry has been seen in municipalities with lower employment. Municipalities that had higher proportion of the age group 45 to 64 and more industrial concentration (higher herfindahl of industries) have also had higher employment. At a 10% statistical significance, the incidence of having children has potentially contributed to a decrease in employment. At the same significance level, rising traditional and modern manufacturing industries are seen in municipalities that have higher employment. The model's residuals are skewed, and explanatory power is slightly higher than its predecessor. However, like its predecessor, this model is one to interpret, because the Hausman test found the random effects estimation to have systematically different coefficients, leading to it being unusable for interpretation.

VI. Discussion

In this section, summarized results will be presented and interpreted. The conclusions on the hypothesis will be drawn at the end, and it will be followed by limitations and suggestions for future research. In the results table, variables will be mentioned twice: firstly, the explanatory variables of interest, the policies, secondly, in the others section will be included all other variables. In both cases there will be either a plus (+) or a minus (-) before each variable indicating whether they contribute positively or negatively towards the dependent variable. After the variable, there will be asterisks: 1 to indicate 10% significance level, 2 to indicate 5%, and 3 to indicate 1%. In the issues section, there will be 3 considerations: skewness, omitted non-linear variable bias-related misspecification, and finally, in the fixed effects section, whether the model qualified for random effects testing. If there is no skewness, ovb-miss-specification or random effects, a "no" will be written. Finally, the models also have explanatory power rankings: from very low (V.Low) which corresponds to below 20%, to very high (V. High) which corresponds to above 90% explanatory power. An x will be seen in a section which should have significant variables in it, but does not. The models will firstly be discussed by group – cross section, cross section growth, and fixed effects – then related to each other. The summary containing only the two variables of interest (accommodating and interventionist policies) will be provided at the end of this section.

Cross Sectional Models

Cross Sectional Models	Unemple	oyment	Employment		
	2005 U	2013 U	2005 E	2013 E	
Basic:					
Accomodating Policies	+**	+***	Х	+***	
Intervention Policies	+***	+***	+***	+***	
Demographics:					
Accomodating Policy Spending	х	х	X	+*	
Intervention Policies Spending	х	х	Х	+**	
65 to 80 Age Bracket %	х	-**	Х	Х	
80+ Age Bracket %	+***	х	Х	Х	
Households	+**	Х	+***	+***	
Households with Children %	х	_**	х	х	
Non Western Migrats %	+***	+***	Х	х	
Third world country Migrants %	+**	х	х	х	
Low-Income Earners %	-*	х	+*	х	
Inactive Population%	+***	х	Х	х	
Policy:					
Accomodating Policies	х	Х	Х	+*	
Intervention Policies	х	х	Х	х	
Total Education Spending	+**	Х	Х	х	
Income Security Spending	+***	+***	+**	+***	
Childcare Spending	+***	х	+**	+***	
Order&Safety Spending	+***	+*	Х	Х	
Cultural Spending	х	х	+**	х	
Industry (Employment in):					
Accomodating Policies	х	+**	Х	+**	
Intervention Policies	+***	+***	+**	+***	
Traditional Manufacturing	+**	х	Х	-**	
Business Services	+**	+*	+**	+**	
Distribution/Logistics	+**	Х	х	х	
Other Services	+**	х	х	-**	
Government	+***	х	+*	х	
Other Issues:					
Explanatory Power	High	High	High	High	
Skewness of Residuals	No	No	No	Yes	
Non-Linear OVB	No	Yes	No	No	

Cross sections were taken at beginning and near the end of the consideration period. Over the crosssectional results, several trends can be seen. Firstly, the models provide better explanatory power for the variations of unemployment rather than employment. Secondly, there is a high tendency among explanatory and control variables to always be positively related towards the dependent variable: either unemployment or employment. Sometimes a variable that relates to rising unemployment also relates to rising employment, as can be seen with both interventionist policies and accommodating policies in the basic model across the years. There can be two explanations for that - since both unemployment and employment seem to be rising – either the labour market itself is becoming larger, so some of the variables result in more unemployed and some result in more employer, or, there is something wrong in the time relationship of the variables. After all, policies are created as a response to an issue or to reach a set goal. If the case is the former, it means that a trend can be seen among municipalities, that unemployment policy expenditures are increased as a response to rising unemployment. In this case, the current positive relationships among municipality unemployment and policy expenditure would make sense. Since all the current variables are measured at the year of interest, these cross-sectional models do not account for lagged effects. This may mean that, whilst accommodating and intervention policies are responses to rising unemployment, it may also take time for them to take the desired effect. The following cross-sectional growth models may shed some light.

Cross Sectional Growth Models:

Cross Sectional Growth Models	Unemployn	nent	t Employ			
	2006 U	2010 U	2014 U	2006 E	2010 E	2014 E
Basic:						
Accomodating Policies	_**	Х	Х	Х	Х	х
Interventionist Policies	х	_*	Х	Х	_*	_**
Demographics:						
Accomodating Policies	-**	Х	Х	+**	Х	X
Interventionist Policies	х	Х	Х	Х	Х	Х
45 to 64 Age Bracket %	х	Х	+*	-*	Х	Х
65 to 80 Age Bracket %	+*	+*	Х	Х	Х	+*
Households	х	Х	-*	Х	-***	
Households with Children %	х	Х	Х	+*	Х	+**
Western Migrants %	х	Х	Х	+*	Х	Х
Non-Western Migrants %	х	Х	_***	-*	Х	-*
Population Density	х	Х	Х	Х	-**	Х
Inactive Population %	_**	Х	Х	х	х	+***
Policy:						
Accomodating Policies	_*	Х	Х	Х	Х	Х
Interventionist Policies	х	Х	Х	Х	Х	Х
Cultural Spendin	+**	Х	Х	Х	Х	Х
Social Work Spending	х	_*	Х	Х	-**	Х
Industry (Employment in) %:						
Accomodating Policies	_*	Х	Х	Х	Х	Х
Interventionist Policies	х	_*	+*	Х	-*	_*
Acquisition of Resources	+*	Х	Х	Х	Х	Х
Traditional Manufacturing	_*	Х	Х	Х	Х	Х
Other Services	х	Х	Х	Х	Х	-**
Government	х	_*	Х	Х	Х	Х
Other Issues:						
Explanatory Power	Low	Low	V.Low	V.Low	Low	V.Low
Skewness of Residuals	No	No	No	No	Yes	No
Non-Linear OVB	No	No	No	No	No	No

In these models, growth in employment and unemployment is calculated and set into a logarithmic regression in three periods. This is done to see how the relative importance of the unemployment policies

has changed pre-crisis, directly in the aftermath of the crisis, and several years after the global economic crisis of 2007. Now, the variables may make more predicted sense: Accommodating policies, at least in the pre-crisis time (2005-2006) lower unemployment and increase employment. This means that increased government expenditures on encouraging economic activity have the desired effect on the labour market. However, this policy loses significance in the later years as interventionist policy begins to take statistically significant, but only slightly, effect. However, now it seems that the relationship between intervention and the dependent variables is like what was seen in the normal cross section models – higher intervention expenditures relate to higher unemployment or lower employment, though sometimes that is also not the case. Only the 2009-2010 period still shows these expenditures to improve the labour market. The 2013-2014 growth models show the lowest explanatory power. It seems, over time, other variables begin providing explanatory power for unemployment/employment changes. It may be that other variables should be in the equation – changes in the legal system, different policies, to impact the labour market. Overall, the models that use unemployment as the dependent variable, also provide more explained variations with the dependent variable rather than employment.

Fixed Effects Models

Fixed Effects Models	Unemployment	Employment		
Variables of Interest:				
Accomodating Policies	Х	_**		
Intervention Policies	_***	+***		
Demographics:				
15 to 24 Age Bracket %	Х	_***		
45 to 64 Age Bracket %	_***	+***		
Population Density	+**	X		
Western Migrants %	+***	Х		
Non-Western Migrants %	+***	X		
Third World Migrants %	+***	_***		
Households with Children %	_**	_*		
Inactive Population %	_*	X		
Policy:				
Income Security Spending	+***	_***		
Admistrative Spending	_***	Х		
Transport Spending	+**	X		
Industry (Employment in) %:				
Acquisition of Resources	+**	X		
Traditional Manufacturing	Х	+*		
Modern Manufacturing	х	+*		
Business Services	_*	X		
Other Services	Х	_***		
Herfindahl of Industrial Concentration	Х	+***		
Other Issues:				
Possibility to do Random Effects	No	No		
Skewed Residuals	Yes	Yes		

The fixed effects models consider the whole data-given time of 2005 to 2014. There are 47 municipalities in those models. 4 were dropped due to having changed in size (and possibly, other characteristics). They are Alphen an den Rijn, Binnenmass, Nieuwkoop, and Rotterdam. They have been dropped from the final model to avoid any confounding done to the explanatory variables. As can be seen from the above table, Interventionist policies have, over time, the desired effect – they reduce unemployment and they increase employment. Accommodating policies have no effect within municipalities over the consideration period for the dependent variable unemployment, and they seem to reduce employment. The reliability of the findings is not entirely what was desired: both models were tested using the Hausman test and in both cases, the use of the random effects model was forbidden due to the existence of systematic differences in

the coefficients. That is regrettable as the random effects model, apart from having more reliable standard errors, also represents a combined reference to both within and between variations. As the current case stands: only the within variation is explained. This is not entirely bad, since policies by municipalities are created for the municipalities and by municipalities themselves. What is tested, are the effects of municipality policy choices and their overall effectiveness in each municipality on reducing unemployment or increasing employment. In all cases, the residuals of both models are skewed. Although the effects of policies are still explained by the models, external application of these models will not be as efficient as it would have been if the residuals were not skewed. That is, because this implies that some municipalities may have either municipality specific effects, or some omitted variable that is a relevant contributor to those municipalities, and the exclusion of said variable forces the residuals to be skewed rather than normally distributed.

Additional Findings and the predictions of Literature

Apart from referring to the findings about the explanatory variables of interest – accommodating and interventionist policies – I would also like to refer to the other variables that were found to be significant.

In literature that I have discussed, population density, was always found to be negatively related with unemployment: less people would be unemployed in population-dense areas. However, based on the results, that is almost never the case – the denser a population of some South Holland area, the more unemployment there is in that area this may be the case, because, although where there are more people there are more jobs (as found by Frenken, Van Oort and Verburg) – there may also be too few jobs per member of population, hence the negative effect on the labour market. Migration, remains to be an issue of mixed review, there was reason to believe, from literature, that immigrants would contribute to increased unemployment, however, from the results of the models tested here, that remains a mixed issue. In the cross-sectional models, both normal and growth versions, migrants from any of the three groups (western, third-world, non-western), would sometimes be seen in municipalities of higher unemployment, and sometimes they would be seen in municipalities of lower unemployment. The fixed effects model, however, strongly believes that all kinds of migration may have a strong detrimental effect on employment and to raise unemployment. It would be difficult to conclude anything without investigating further due to such conflicting findings.

Age group is also an issue of consideration. In the cross-sectional models, different age groups would have different, and inconsistent effects. Especially the 45 to 64 demographics, which would sometimes contribute positively and sometimes negatively towards the labour market outcomes. Literature argued that as one gets older, they are more likely to be unemployed, yet the fixed effects model finds the opposite – a larger share of older-aged workers (45 to 64) is seen in municipalities with lower unemployment, and the opposite is true for the youth (15 to 24) – this is contrary to what Lee and Clemons have found. However, this does conform to the findings of Partridge and Rickman: the older demographic of +65 would contribute towards lower unemployment. The incidence of having children seems to almost always impact the labour market positively: both the cross sectional, cross sectional growth, and fixed effects models find that municipalities with higher share of households with children are also ones that experience both lower unemployment and higher employment – this is once more contrary to literature as Partridge and Rickman find the opposite effect on unemployment: families with children experience more unemployment. The type of industry rarely had a strongly significant effect in any of the models. In each model, different industries were significant: sometimes acquisition (acq) contributed to raising unemployment, sometimes traditional industry worked to fight it – this, just as the findings in literature, remains a challenged topic. Income security expenditures were seen to have an overall detrimental effect on the labour market – municipalities that spent more on income security, may have also been the ones to

suffer from less employment or more unemployment, contrary to the findings of Partridge and Rickman. Alternatively, there is reverse causality: municipalities try to protect their unemployed, and so the municipalities which have more unemployment, would also be the ones which must spend more on income security. This idea, however, may be put into question by the fixed effects model which does account for change overtime and still shows income security to be detrimental. Finally, industrial concentration doesn't seem to have any relevance up to the last fixed effects model: there it is a strong statistically significant positive contributor towards increased employment within municipalities. This may indicate that investing into agglomeration economies, as suggested by Fainstein and Grey, is not a substantial policy to improve labour market outcomes.

Conclusion

In the beginning of this paper, I have made the following hypotheses with regards to the literature that I have read. I will now determine the rejection or non-rejection of these hypotheses.

Hypothesis 1: Direct intervention policies lower unemployment, ceteris paribus.

With regards to the first hypothesis, the interventionist policy that was characterized by investment into employment participation programs was found to be a relevant factor in reducing unemployment. The effect was seen both by the cross-sectional growth models during crisis and post-crisis, and by the fixed effects models – there it both reduced unemployment and was seen to be raising employment. Overall, there is sufficient evidence (provided by the cross-sectional growth and panel regression models) to not reject the first hypothesis. However, as mentioned in the growth model section, interventionist policies are seen to have no significant effect on the 2013-2014 growth rates of neither employment nor unemployment. Overall, the policy still had the effect overall, as proven by the fixed effects model, however, will it continue to do so in the future?

Hypothesis 2: Economic facilitation policies lower unemployment, ceteris paribus.

The evidence for accommodating policies as effective fighters against unemployment is much less clear and convincing – it either has no statistically significant effect or has an incremental effect on unemployment in most models. Overall, it may have lost its significance as an effective policy of decreasing unemployment. However, even in the time of consideration, the bracket of 2005 to 2006 – where it did have the predicted effect, there is evidence to believe that these policies do influence fighting unemployment. It may be that, due to omitted variable bias, or lack of regard to an existing interaction effects in the crisis and post-crisis periods, this variable has no shown significance. There is insufficient evidence to claim that simply accommodating the market is an effective means to fight unemployment, hence why the second hypothesis must be rejected.

Hypothesis 3: Economic facilitation policies will reduce unemployment more than direct intervention policies, ceteris paribus.

The third and final hypothesis was to consider the relative effectiveness of both policies over the time of consideration and in the municipalities of South Holland. However, as can be seen from the results section, there is rarely a time where both interventionist policy and accommodating the labour market have a statistically significant effect at the same time. This makes comparing their effectiveness statistically unreasonable. Paired with the fact that economic accommodation policies may have lost their significance after the economic crisis, it makes sense to reject the third hypothesis: there are not enough testable environments among the models used in this thesis to prove that economic facilitation policies have a stronger effect on fighting unemployment than interventionist policies. However, this may also outline an issue to be answered by future research: In what environment can economic facilitation policies and

interventionist policies be tested successfully, when interested in their comparative effectiveness as beneficiaries of the labour market?

Summary of the Effects of the Policy Variables

Cross Sectional Models	Unemployment		Employme			
	2005 U	2013 U	2005 E	2013 E		
Basic:						
Accomodating Policies	+**	+***	Х	+***		
Intervention Policies	+***	+***	+***	+***		
Demographics:						
Accomodating Policy Spending	x	х	Х	+*		
Intervention Policies Spending	x	х	Х	+**		
Policy:						
Accomodating Policies	x	х	Х	+*		
Intervention Policies	x	х	Х	х		
Industry (Employment in):						
Accomodating Policies	x	+**	Х	+**		
Intervention Policies	+***	+***	+**	+***		
Cross Sectional Growth Models	Unemployment			Employn	nent	
	2006 U	2010 U	2014 U	2006 E	2010 E	2014 E
Basic:						
Accomodating Policies	_**	Х	Х	x	Х	Х
Interventionist Policies	Х	_*	Х	х	_*	_**
Demographics:						
Accomodating Policies	_**	Х	Х	+**	Х	Х
Interventionist Policies	X	Х	Х	X	Х	Х
Policy:						
Accomodating Policies	_*	Х	Х	X	Х	Х
Interventionist Policies	Х	Х	Х	X	Х	Х
Industry (Employment in) %:						
Accomodating Policies	_*	Х	Х	X	Х	Х
Interventionist Policies	Х	_*	+*	Х	_*	_*
Fixed Effects Models	Unemployment		Employme	ent		
Variables of Interest:						
Accomodating Policies	Х		_**			
Intervention Policies	_***		+***			

VII. Limitations

The chapter below mentions potential issues found in literature that need to be overcome for a successful research (Neumark & Simpson, 2015, pp. 1221-1230):

- a) Boundaries of Areas: Where does an area end? However, this issue is to be mended specifically by the division of areas in municipalities and or neighbourhoods and only selecting policies that are applicable to those areas. This does not account for spill over effects, however.
- b) Selection bias: All policy areas of a policy may exhibit similar characteristics therefore making them susceptible to the effects, positive or negative, of the policy in question. This will not be an issue within this research to a large extent. The only municipalities that are not selected from the given area South Holland are ones that have changed in size in the time of consideration. The remaining municipalities are all included regardless of any factors.
- c) Multiple policies: what if an area is impacted by several, maybe over-lapping, policies? Since more than one type of policy can be used to impact unemployment in an area it is highly likely that more than one policy will be in place. This can be an issue considering national or larger region policies, however inside the municipalities themselves, there is a detailed accumulation of different government policies to control for bias. However, what is not controlled for are legislative changes both within and outside of the municipalities. If a labour law is altered in a way that, for example, makes it harder to hire or fire individuals, or to recruit groups of individuals, unemployment of those individuals, or employment of those individuals, would change. Lack of account for this factor within this thesis may bias the results strongly.
- d) Displacement effects: what if the jobs were not created but merely shifted? In this case a policy that is encouraging migration of people and business with economic leniencies, such as tax credits, would cause migration of employable labour into an area, but then would deprive another area. To balance this effect, one needs to account for migration in an out of the policy area. If, after a policy, there is a statistically significant effect of migrants towards unemployment: the policy has created displacement along with, but not necessarily, jobs. Furthermore, since employment and unemployment are not mirrored terms this may suggest the usage of employment as part of the unemployment regression. If unemployment falls with rising employment, this indicates that the policy that was used would be one that both creates jobs and grants jobs to the seekers. This issue is not fully countered in this research as migration data could not be added. This could create overstatements and understatements. However, a second-best alternative is used population change is controlled for at least inside the municipalities in one form or another.
- e) Discretionary policy (grants) effect: Who exactly is affected by the grants? The issue here would be that recipients of a grant would likely be different from the control group the non-recipients. This must be corrected for in the similar way that accounts for spill overs similar plants must be used to control for subsidy effects on the plant level. These effects are included and accounted for by both explanatory variables economic accommodation and economic intervention. However, although there is also reference to different industries that may be subsidized, only the growth of those industries is seen. This means that the underlying factor on why the dependent variables are affected natural growth or investment is not visible.

Another grouping of policies is those that are dedicated to a specific location on a more immersive level – specific issues are identified within an area and are catered to by a policy based in that place. There are two broad types of place-based policies: for specific groups of people and those that target an area. They are further split into direct (specifically target the place or group of interest) and indirect (act more as an accommodator of the target place or group of interest). The two existing glasses through which to view the said policies are the spatial mismatch hypothesis: an existence of a cycle of disadvantage for the low

skilled and or minorities, and positive externalities: spill overs through which employment is created by networking (Neumark & Simpson, 2015).

Either one of those factors play a role in the effectiveness in policy determination – some areas, as mentioned before, may be in a cycle of outward migration, because, due to lack investment, the quantity of jobs is either stagnant, or, dwindling. Less people, less investment, less jobs – the cycle is a mimic of a downward descending spiral of bad fortune. Then there is a positive externality: both a godsend to non-policy neighbours and a curse for those who wish to measure the statistical significance of policies. The former case occurs because of positive spill overs of increased consumption – therefore outward demand – of goods and services. The latter case, sadly, occurs because the effects of policies can no longer be truly distinguished, and far worse, the externalities cannot be readily measured.

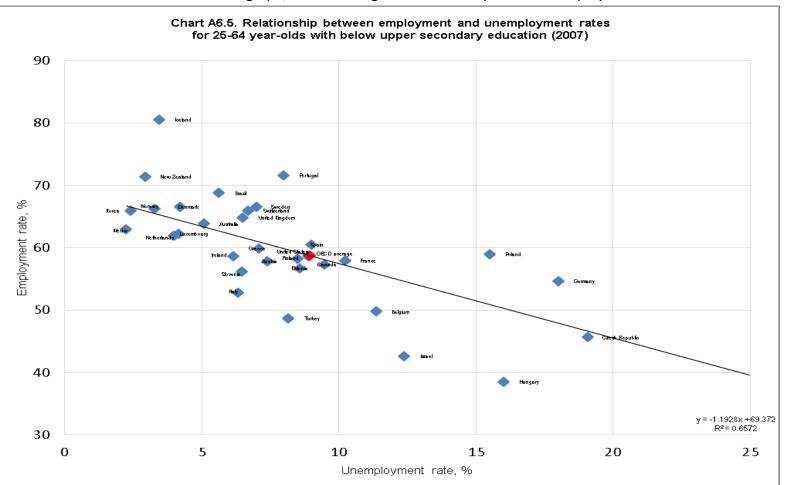
Among issues that were found by myself with my work are these:

- Quality of data: Whilst it can be stated with relative certainty that the data found is of the
 municipalities and is accurately represented, there are, sometimes missing observations. As
 mentioned in data processing, the small gaps in data are filled in with averages of the previous and
 next years, to conform to the existing trend of change. This, when done in small quantities, should
 not impact the accuracy of the results too much, though there is always the possibility that it has
 done so.
- 2. Missing variables: Although some variables could be recovered from the several issued versions of the same CBS output, many variables had so few observations across the municipalities of interest, that these variables simply had to be excluded, because creating averages for said data would not lead to proper specification. This creates omitted variable biases in variables about the population and policies, which may bias the explanatory variables either up or down – to under or overstate the actual contribution of direct/indirect policies. This means that more variables need to be gathered by whatever means available. For example: those are for property ownership as suggested by Butler and Blakely & Small. Furthermore – no migratory data was to be found, it was theorised by the previously mentioned authors to also be relevant. Finally, it was difficult to account for existing social issues and those that may or may not relate to race – as argued by the three authors before. The final issue is one related to what is specified in the theoretical framework section: it was not possible to account for socio-demographic issues of race, and economic issues of borrowing/investment - at least with the given dataset. John Sibley Butler believed that race and discrimination played an important role in his area of consideration, the inner city – if that was the case in one part of a city, there is reason to believe it could have been the case on a municipal level as well. Furthermore, the ability to self-develop using credits, as mentioned by Dymski, may also be a relevant determinant of unemployment, especially on a municipality level - since that indicates how much the municipality allows for entrepreneur based growth that can be a regulator of employment in that area. If this is missing, the effects of either of the policies of interest – direct and indirect – may be biased.
- 3. Availability of years of data: I could only find a bracket of 10 years where data would match entirely between all 3 of my datasets: demographics, policy and industry. The greatest difficulty was caused specifically by the demographics dataset created from Buurt en Kerncijfers from CBS resources. Measurements varied strongly through the years. Some variables were available at dubious intervals 2004 to 2008, then again in 2010 to 2014. Income data had to be excluded, because the calculation method of income has changed right in the middle of that period. The final, merged dataset was created as a compromise where the most variables would be available. This means that it cannot be seen how the contribution of the direct intervention policies and the market accommodation policies impacted employment/unemployment over time, and makes it harder to

- predict if how they are impacting the labour market will continue to be the way these variables contribute to it. The solution to this is may be difficult to find if data is not available even from the foremost data authority, it may need to be gathered manually. Although it is clear what data may be gathered (from previous literature), the act of gathering itself is a very tedious issue.
- 4. Data itself: In its most raw format the data is usually skewed and usually also plagued by outliers. Whilst some of these issues can be solved and were solved using logarithms, upon closer inspection, there were still skewedness or kurtosis issues. This means that it will be hard to say how the explanatory variables would behave in a well-balanced dataset. This can be solved either by gathering more data, or by using more advanced methods of standardizing the distributions within existing data.
- 5. Results as can be seen from the results section, there were often issues of skewedness of the residuals of all models. This means that, even though a predictive line can be drawn, showing the relationship between the explanatory and dependent variables, each point of observation of the dependent variable stands in an ununiformed manner next to the regressive line: to some observations the existing model offers good explanation, and to some it does not. This creates problems externalizing the findings to other municipalities OR different levels of analysis.
- 6. Reverse causality sometimes, especially in the case of the cross sectional simple models, some variables may be caused by unemployment rather than to have caused it. This can be true about both accommodating and intervention policies. Unemployment may be the issue that the increased expenditures on both are trying to solve. Support is found for this idea, when changing from the simple cross-sectional model, to the growth cross sectional model: both policies change sign. This may indicate that the policies work as they are supposed to and reduce unemployment in retrospect, but expenditures are seen to be higher as a response to the rising unemployment at the same year.

In summary, the greatest issues of this piece, in the opinion of the author, are the data. There is too little data available, and the data that is available is either measured in an ununiformed manner, or has missing observations. Since skewness, and therefore predictive power, is an issue, the greatest solution is to gather more data and to process it in such a manner that, at the very least, the distribution would reflect a Gaussian curve.

Time-span:


There is one other potential limitation: The time-span. The amount of time given by available data to look for the effect of the policies is very small. It may be that policies that have long term effects: such as accommodating policies — may be effective, but their effectiveness is seen over a longer time. Considering also, that there was economic turmoil globally because of the crisis, maybe it may have caused the relationships between policy and other variables to change. This means that what once had a positive effect, may have switched to a negative one.

Relation between Employment and Unemployment:

After reading the literature that is described in the Theory part of this thesis, there is one issue: the effects of policies and other variables on both employment and unemployment. Some literature speaks about employment and some about unemployment. Can this pose a problem? That depends on how related those two topics are. In theory, employment is the amount employable population that is employed and unemployment is the amount of population that is looking for a job, but cannot find it. There is an overlap among those terms, because the unemployed are, employable, as they participate in the labour market — they are not classed as inactive. This means that there is some form of relationship between these two variables, but also that they are not perfect opposites of each other.

OECD has released a book, Education at a glance (2009), which discusses this relationship between unemployment and employment. A study is carried out for OECD members internationally, to correlate the unemployment and employment. The findings are such:

As can be seen from the OECD graph, there is a negative relationship between employment and

Note: The Slovak Republic has been excluded from the chart to preserve legibility.

Source: OECD. Table A6.2a and Table A6.4a. See Annex 3 for notes (www.oecd.org/edu/eag2009)

unemployment. The correlation coefficient is the square root of the R squared. The correlation is -0.81. The Netherlands is located on the top left corner of the correlation line: its coordinates are around (4% unemployment, and 62% employment. This closeness to the trend line means that the Netherlands exhibits the relationship well (OECD, 2009).

The issue is resolved globally. However, is it applicable to the municipalities of the South Holland Provinces? This can be resolved by correlating these variables on a yearly basis. The variables used below are as they appear when given by the relevant source of data:

2005: 2013:

	unemp	totemp		unemp	totemp
unemp	1.0000		unemp	1.0000	
totemp	0.7484	1.0000	totemp	0.7728	1.0000

The correlation between these variables remains high and stable. This outlines an interesting issue: unemployment and employment move in the same direction within South Holland over time. Could this mean that the labour market grows almost proportionately in both employment and unemployment?

However, the causes on why this relationship exists within South Holland is beyond the scope of this thesis, but it may be interesting to investing for future researchers. This may provide explanation on some of the findings where variables contribute in an unexpected manner towards unemployment: When sometimes policies that are there to decrease unemployment, are seen to be raising it. It may be that, since employment and unemployment move in the same direction because of some unforeseen characteristics, policies that would normally reduce unemployment are seen to raise it. This also implicates reverse causality – it's because of rising unemployment that income security expenditures are also rising. Similarly, to the interventionist policies which are seen to be relatively higher in areas of higher unemployment. This is logical because more investment needs to be made to counter higher unemployment. This reverse causality idea can then be expanded towards all variables which have the unexpected, and illogical effect on unemployment.

VIII. References

- Andersen, J. G., & Halvorsen, K. (2002). Chapter 1. Changing Labour Markets, Unemployment and Unemployment Policies in a Citizenship Perspective. In J. G. Andersen, & K. Halvorsen, *Changing labour markets, welfare policies and citizenship* (pp. 1-20). doi:DOI:10.1332/policypress/9781861342720.003.0001
- Blakely, E., & Small, L. (1996). Michael Porter: new gilder of ghetto's. *The Review of Black Political Economy, 24*(2/3), 161-183.
- Brechling, F. (1967). Trends and Cycles in British Regional Unemployment. *Oxford Economic Papers, 19*(1), 1-21. Retrieved from http://www.jstor.org/stable/2662497
- Breen, R. (2005, April). Explaining Cross-National Variation in Youth Unemployment: Market and Institutional Factors. *European Sociological Review, 21*(2), 125-134. doi:10.1093/esr/jci008
- Butler, J. S. (1996). Entrepreneurship and the advantages of the Inner City: How to augment the Porter hypothesis. *The Review of Black Political Economy, 24*(2/3), 39-49.
- Dymski, G. (1996). Business strategy and access to capital in inner city . *The Review of Black Political Economy,* 24(2/3), 51-65.
- Edzes, A. J., Rijnks, R., & Dijk, J. v. (2013, December). Spatial Implications of Using Firm Level Quotas to Employ Low Productive Workers. *Tijdschrift voor Economische en Sociale Geografie, 104*(5), 621-629. Retrieved from http://www.rug.nl/research/portal/publications/spatial-implications-of-using-firm-level-quotas-to-employ-low-productive-workers(d8e1db0e-77e7-4a57-9389-d397be9a4547).html
- Fainstein, S. S., & Gray, M. (1996). ECONOMIC DEVELOPMENT STRATEGIES FOR THE INNER CITY: THE NEED FOR GOVERNMENT INTERVENTION. *The Review of Black Political Economy, 24*(2/3), 29-38.
- Frenken, K., Oort, F. V., & Verburg, T. (2005, August 27). Related Variety, Unrelated Variety and Regional Economic Growth. *Regional Studies*, 41(5), 693, 695. doi:10.1080/00343400601120296
- Izraeli, O., & Murphy, K. (2001). The exect of industrial diversity on state unemployment rate and per capita income. *The Annals of Regional Science, 37*(1), 9-10. Retrieved from https://link.springer.com/content/pdf/10.1007%2Fs001680200100.pdf
- Kerncijfers, wijken en buurten. (2017). Retrieved from CBS.nl: https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/wijk-en-buurtstatistieken/kerncijfers-wijken-en-buurten-2004-2017
- Lee, J. A., & Clemons, T. (1985). Factors Affecting Employment Decisions About Older Workers. *Journal of Applied Psychology, 70*(4), 785-788. Retrieved from http://ovidsp.tx.ovid.com/sp-3.25.0a/ovidweb.cgi?QS2=434f4e1a73d37e8cff7fb618affc25b1de3b5373f27fef21957d0170718599f02ac972 4082acff8cc134bfb83a9c38c7501de8d8a8ce5001e2ced915a22c0a519ae069445ae21507fd81249f16b42d76 e4c3e6aad9df71966388f34559cc23efb5854e245c
- Neumark, D., & Simpson, H. (2015). Chapter 18: Place-based Policies. *Handbook of Regional and Urban Economics,* 5(B), 1198-1206. Elsevier. Retrieved from http://www.socsci.uci.edu/~dneumark/1-s2.0-B9780444595317000181-main.pdf
- OECD. (2009). *Education at a glance*. Paris, Ile de France, France: OECDpublishing. Retrieved from http://www.oecd-ilibrary.org/docserver/download/9609061e.pdf?expires=1511629728&id=id&accname=guest&checksum=85 F6E0987660AB1BDE8507868A3014AD
- Partridge, M., & Rickman, D. (1997). The Dispersion of US State Unemployment Rates: The Role of Market and Non-market Equilibrium Factors. *Regional Studies, 31*(6), 600-603. Retrieved from http://www.tandfonline.com/doi/pdf/10.1080/00343409750131721

- Phillips, A. W. (1957, June). STABILISATION POLICY AND THE TIME-FORMS OF LAGGED RESPONSES. *The Economic Journal, 67*(266), 275-277. Retrieved from http://www.jstor.org.eur.idm.oclc.org/stable/pdf/2227788.pdf
- Porter, M. (1995, May). The Competitive Advantage of the Inner City. *Harvard Business Review*, 55-71. Retrieved from http://www.uc.edu/cdc/urban_database/food_resources/competitive-advantage-of-inner-city.pdf
- Porter, M. E. (1996). AN ECONOMIC STRATEGY FOR AMERICA'S INNER CITIES: ADDRESSING THE CONTROVERSY. *The Review of Black Political Economy*, *24*(2/3), 303-336.
- Shumway, J. M. (1993, April). FACTORS INFLUENCING UNEMPLOYMEN TDURATION WITH A SPECIAL EMPHASIS ON MIGRATION: AN INVESTIGATION USING SIPP DATA AND EVENT HISTORY METHODS. *Papers in Regional Science*, 72(2), 159-176. doi:10.1007/BF01557457
- STATLINE. (2014). Retrieved from CBS.nl: http://statline.cbs.nl/Statweb/selection/?DM=SLNL&PA=70942NED&VW=T
- Zenou, Y. (2000). Urban unemployment, agglomeration and transportation policies. *Journal of Public Economics*, 77(1), 97–133. doi:S0047-2727(99)00083-3

IX. Appendix

Data Processing

Concerning the demographic municipal data from CBS: This set of data had different ways of measurement as well as different variables measured across time. The solution was first to rename all variables in a unified manner and to remove variables, such as Housing mobility, which have not occurred frequently enough within the dataset. All this dataset came from separate sheets in the xls format which had to be merged firstly into one dataset before any further processing took place. This was done firstly by importing each excel sheet into STATA for destringing – so that all numeral data was known to the processors as numeral. The next step was to append everything into one file. All variables which were not present in the 2004 dataset have been pushed to the end of the new, unified STATA file. For further editing, this has been exported back into excel. Firstly, not all years can be used: 2016 contains the least amount of data and is likely to be removed from the final results. Secondly, not all Dutch municipalities in South Holland retained their composition throughout the time bracket of interest: this meant that only municipalities that were of the same size throughout this bracket could be used. Referencing was firstly done based on 2016 municipality names to 2004. The municipalities that were left were ones that, at the least, have not changed name due to a merger. A second method was used to ensure the municipalities where consistent over time: all were arranged according to name and year, then ones which had inexplicably large jumps were determined to be municipalities that are not consistent over time. Those were Alphen an den Rijn, Binnenmaas, Katwijk, Nieuwkoop. Leaving 49 municipalities that can be worked with currently. As things stand Alphen an den Rijn, the 5th largest South Holland municipality can be used by excluding the years 2015 and 2016 from the research. Since they contained very little variables, it may be a viable solution. To account for any other abnormalities, a dummy variable will be created for any anomalous year, to localize the distortionary effects of including this municipality in the research.

Concerning the policy expenditure data from CBS: this dataset has been extracted from the archives of CBS. It shows, for a period of 2005 to 2014, policy expenditures within the Netherlands. Broad categories of education and economics have been selected and those recorded both in thousands of euros, as well as per person expenditures. More deliberation on which type of numeral representation to use will be considered in the methodology section. The dataset was adjusted to only include the variables that the demographics dataset would also have. This had left policies, municipality names as well as years. This matched my demographics dataset perfectly, however, the angle of the policy dataset was 90 degrees off what it would need to be to create a panel dataset. The simple solution for this was to use the excel function "transpose" to turn the dataset around the correct way. To merge both datasets, both were sorted according to year and name and the data was simply copied to where it was applicable.

Concerning the merged dataset: Finally, one more step needed to be taken – the cleaning up of the merged dataset. Firstly, the policy variables needed to be translated. The original variable definitions are in the excel output file from STATLINE and can be accessed upon request. The translations for every variable that was not found in the first mentioned data source, come from this output document.

Employment Categorizations – Part 1

00. (Still) unknown / No business activities	unknown	Categories
01. Agriculture, hunting and service for agriculture and hunting	agrihuntemp	Α
02. Forestry, forestry and forestry services	forestemp	Α
03. Fisheries and breeding of fish and crustaceans	fishemp	Α
06. Oil and natural gas extraction	oilgasemp	Т
08. Mineral mining (no oil and gas)	mineemp	Т
09. Mineral extraction services	mineservemp	Т
10. Manufacture of foodstuffs	manufoodemp	Т
11. Manufacture of beverages	manudrinkemp	Т
12. Manufacture of tobacco products	manutobacemp	Т
13. Manufacture of textiles	manutextiemp	Т
14. Manufacture of clothing	manuclothemp	Т
15. Manufacture of leather, leather goods and shoes	manuleatheremp	Т
16. Primary woodworking and manufacture of art. made of wood	manuwoodworkemp	Т
17. Manufacture of paper, cardboard and paper and cardboard products	manupaperemp	Т
18. Printing, reproduction of recorded media	printemp	М
19. Manufacture of coke oven products and petroleum processing	manucokepetroemp	Т
20. Manufacture of chemical products	manuchememp	М
21. Manufacture of pharmaceutical raw materials and products	manupharmarawemp	М
22. Manufacture of rubber and plastic products	manuplasticemp	Т
23. Manufacture of other non-metallic mineral products.	manunonmetemp	Т
24. Manufacture of metals in primary form	manumetemp	Т
25. Manufacture of prod. of metal (no machines and app.)	manuprodmetemp	Т
26. Manufacture of computers, electronic and optical power.	manuelectronicsemp	М
27. Manufacture of electrical equipment	manuelectricsemp	М
28. Manufacture of other machinery and equipment	manmachineemp	Т
29. Manufacture of cars, trailers and semi-trailers	manucarsemp	Т
30. Manufacture of other means of transport	manutransportothere	n T
31. Manufacture of furniture	manufurnitureemp	Т
32. Manufacture of other goods	manuothergoodsemp	Т
33. Repair and installation of machinery and equipment	repairsinstalemp	Т
35. Production, distribution, trade in electricity, natural gas	electricitysupemp	D
36. Winning and distribution of water	watersupemp	D
37. Wastewater collection and treatment	sewageemp	D
38. Waste collection and treatment; preparation for recycling	trashemp	os
39. Rehabilitation and other waste management	recycleemp	os
41. General civil and utility building, project development	civiluticonstructemp	os
42. Soil, water and road construction (no earthquake)	earthworkroadconstru	ı D
43. Specialized construction work	specconstructemp	С
45. Trade in and repair of cars, motorcycles, trailers	cartraderepemp	D
46. Wholesale and retail mediation (not in cars, etc.)	wholesaleemp	D
47. Retail (not in cars and the like)	retailemp	os
49. Land transport	landtransportemp	D
50. Water transport	watertransportemp	D

Employment Categorizations – Part 2

51. Aviation	aviationemp	D
52. Storage and service for transport	transpservemp	D
53. Post and couriers	postemp	D
55. Accommodation	accomoemp	OS
56. Food and beverage	fooddrinkemp	OS
58. Publishers	publishemp	M
59. Production and distribution of films and television programs s	filmtvsupplyemp	M
60. Broadcasting and broadcasting of radio and television programs s	broadcastsupemp	M
61. Telecommunications	telecomemp	D
62. Service Loss. activities in the field of information technology.	infotechservemp	BS
63. Service activities in the field of information	infoservemp	BS
64. Financial institutions (no insurance, pension fund)	financemp	BS
65. Insurance and pension funds (no compulsory social security)	insurpensionemp	BS
66. Other financial services	otherfinancemp	BS
68. Rental of and trading in real estate	realestateemp	BS
69. Legal services, accounting, tax advice	legalauditemp	BS
70. Holdings (no financial), internal concert services	holdingsemp	BS
71. Architects, engineers and technical design and advice	archiemp	BS
72. Research and development work	rdemp	BS
73. Advertising and market research	markettingemp	BS
74. Industrial design and design, photography, translation	industrydesignemp	BS
75. Veterinary services	vetemp	os
77. Rental and leasing of cars, consumer goods, machinery	leaseemp	BS
78. Employment mediation agencies, employment agencies and personnel m	empemp	BS
79. Travel agency, travel agency, tourist information	travelemp	OS
80. Security and detection	securityemp	G
81. Facility management, cleaning and landscaping	maintenancemp	OS
82. Other business services	otherbusinessemp	BS
84. Public administration, public services, social insurance	socservemp	G
85. Education	educemp	G
86. Healthcare	healthemp	G
87. Nursing, care and guidance with overnight stay	nurseemp	G
88. Social services without overnight stay	socservnonightemp	G
90. Art	artemp	G
91. Cultural lending centers, archives, museums, zoos	cultureemp	G
92. Lotteries and gambling	loteremp	G
93. Sports and recreation	sportemp	G
94. Religious and political organizations	religpolitemp	G
95. Repair of computers and consumer goods	repairemp	os
96. Wellness and other services; funeral industry	wellnessdeathemp	OS
99. Extraterritorial organizations and bodies	extrateritemp	G

• Marked in red are the categories that were excluded due to lack of representation in most municipalities.

				pop1	pop152	pop254	pop456	pop658	pop80plu
Statistic	pop	men	women	4	4	4	4	0	S
Observation									_
S	510	510	510	510	510	510	510	510	510
Missing	0	0	0	0	0	0	0	0	0
Min	8075.000	4010.000	4060.000	0.127	0.092	0.173	0.226	0.081	0.021
	618357.00	304350.00	314005.00						
max	0	0	0	0.240	0.199	0.346	0.336	0.178	0.076
freq min	1	1	1	1	1	1	1	1	2
freq max	1	1	1	1	1	1	1	1	3
Mean	59950.635	29512.225	30438.363	0.180	0.118	0.261	0.281	0.119	0.041
	102869.64								
std dev	9	50586.066	52290.164	0.020	0.015	0.029	0.023	0.020	0.010
skew	4.239	4.233	4.244	0.123	1.723	0.128	-0.191	0.399	1.094
Kurtosis	17.896	17.850	17.933	0.303	5.722	0.319	-0.632	-0.525	1.411

Descriptives

Statistic	west	nwest	nwesto	hh	hhone	hhnochild	hhchild	lowinc	highinc
observations	510	510	510	510	510	510	510	510	510
Missing	0	0	0	0	0	0	0	0	0
Min	0.020	0.010	0.010	3080.000	0.210	0.220	0.210	0.290	0.160
max	0.220	0.370	0.110	313295.000	0.560	0.380	0.490	0.456	0.380
freq min	5	13	68	2	8	9	1	4	3
freq max	6	5	3	1	2	2	2	1	2
Mean	0.083	0.094	0.034	27684.333	0.314	0.311	0.375	0.372	0.241
std dev	0.036	0.076	0.022	51923.152	0.076	0.033	0.053	0.031	0.044
skew	1.175	1.616	1.321	4.305	1.126	-0.752	-0.536	-0.351	0.885
kurtosis	2.182	2.857	1.260	18.369	0.969	0.789	0.352	-0.227	0.497

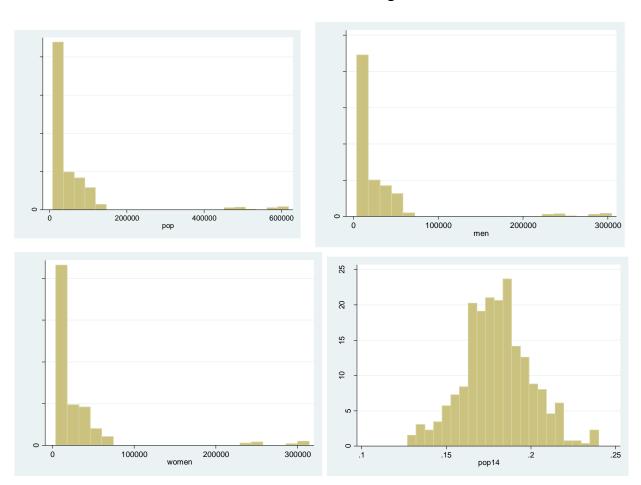
	genbenefit				unem	inactivepo	hhavgsiz		
Statistic	S	disabben	carstot	popdens	р	р	е	incsec	empart
observation									
S	510	510	510	510	510	510	510	510	510
missing	0	0	0	0	0	0	0	0	0
min	20.000	290.000	3610.000	139.000	0.026	0.120	1.800	12.000	0.000
		28190.00	216375.00	6216.00				1177.00	838.00
max	40280.000	0	0	0	0.126	0.630	2.800	0	0
freq min	2	1	1	1	4	1	10	1	1
freq max	1	1	1	1	1	1	3	1	1
·				1935.58					120.49
Mean	1637.882	2470.765	24174.686	4	0.047	0.180	2.331	223.418	5
				1470.77					131.07
std dev	5297.826	4559.780	35573.098	9	0.015	0.041	0.206	183.866	5
skew	5.267	4.211	3.990	0.764	1.489	3.282	-0.419	1.856	2.408
kurtosis	28.407	17.432	16.172	-0.178	3.099	26.892	-0.079	4.308	6.835

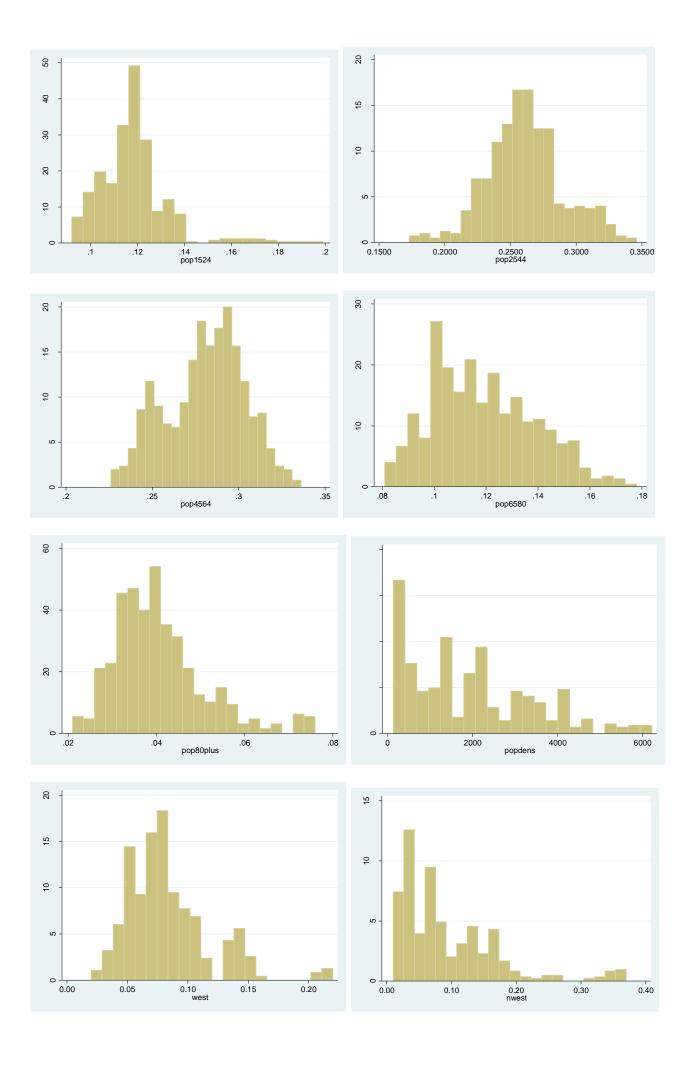
		totordersafet		tottranspor			educacco		
Statistic	totmuni	У	admin	t	totecon	toteduc	m	totcult	totsoc
observation									
S	510	510	510	510	510	510	510	510	510
missing	0 1057.00	0	0	0	0	0	0	0	1
min	0	35.000	8.000	0.000	0.000	57.000	14.000	72.000	128.000

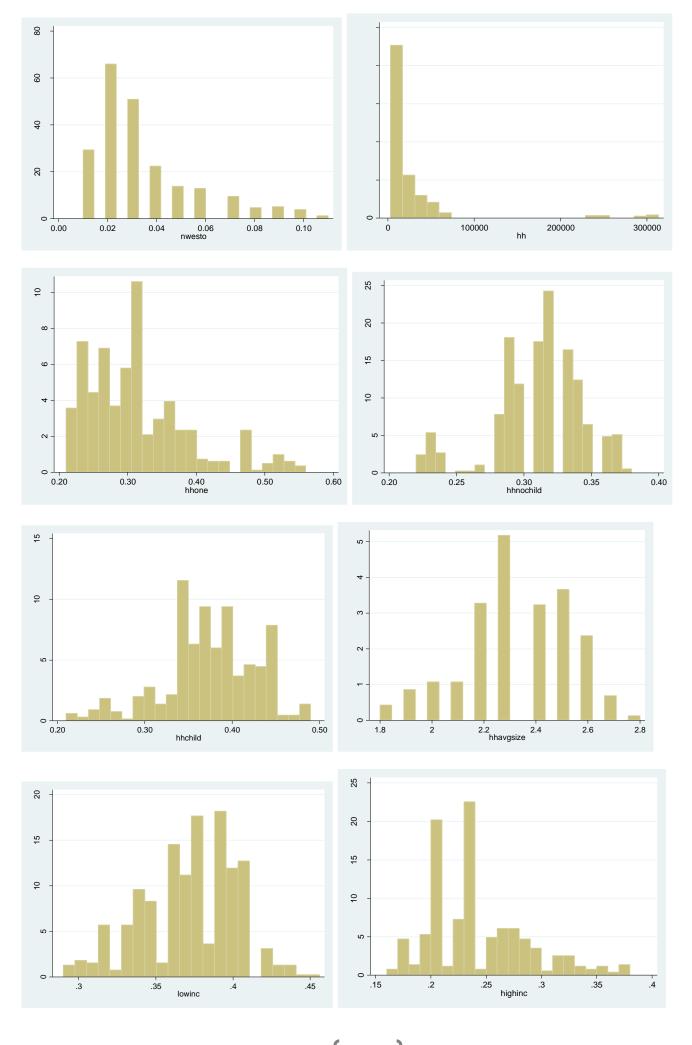
	6505.00		69.00		506.00	1224.00		615.00	2353.00
max	0	264.000	0	676.000	0	0	258.000	0	0
freq min	1	1	1	2	2	1	2	1	1
freq max	1	1	1	1	1	1	1	1	1
	2610.50		18.83					251.01	
Mean	4	90.856	3	33.419	28.175	180.540	58.200	3	638.997
std dev	998.720	33.317	7.633	62.232	51.588	126.559	37.276	85.881	408.138
skew	1.342	1.774	3.013	5.577	5.642	3.571	2.372	1.402	1.565
			12.85						
kurtosis	2.462	5.781	1	44.037	39.727	19.099	7.083	2.662	2.554

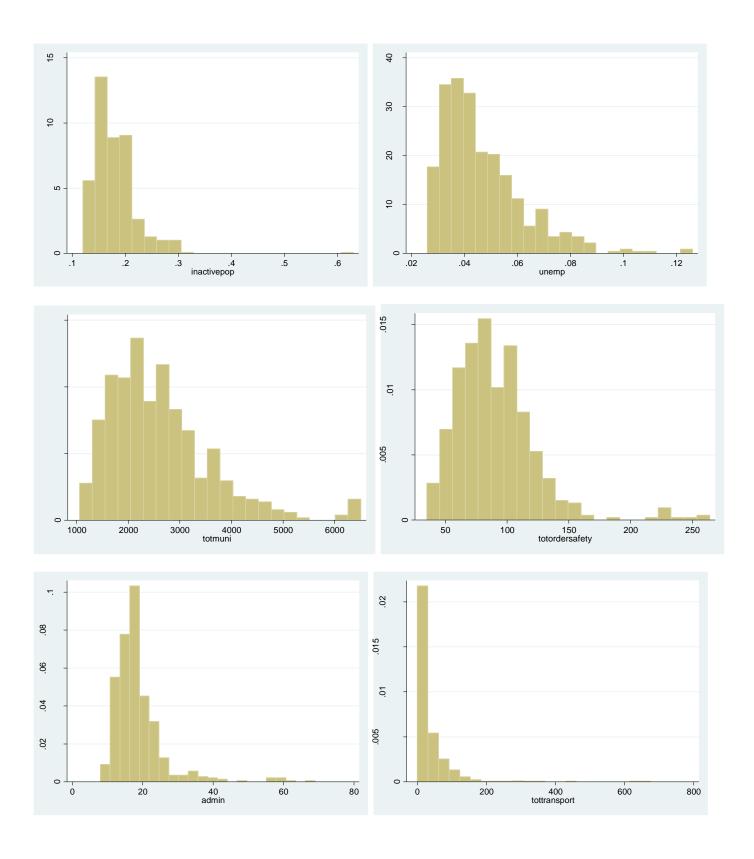
Statistic	socwork	childcare	sochouse	tothealth	youth	herfindahl
observations	510	510	510	510	510	510
missing	0	1	1	0	0	0
min	7.000	0.000	21.000	64.000	0.000	0.152
max	171.000	73.000	3652.000	516.000	128.000	0.449
freq min	1	3	1	2	1	1
freq max	1	1	1	1	1	1
Mean	42.230	14.322	572.467	211.628	27.664	0.217
std dev	31.000	8.551	537.488	56.363	18.448	0.052
skew	1.749	2.821	2.143	1.093	2.925	1.765
kurtosis	3.025	12.860	6.372	5.895	11.458	3.805

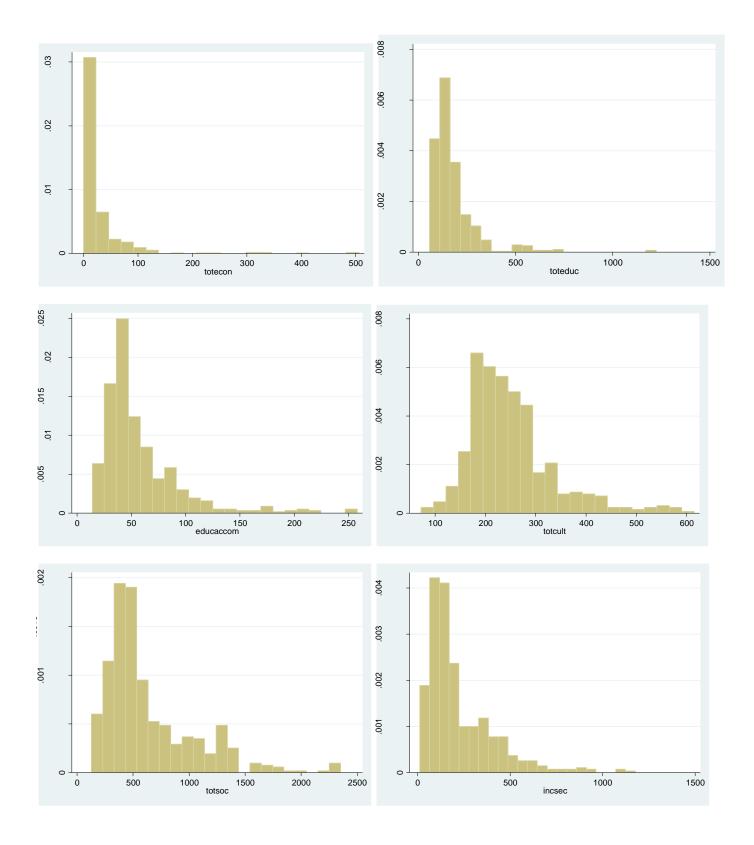
							speccon		
Statistic	acq	trad	mod	busserv	dist	oserv	S	govt	totemp
observatio									
ns	510	510	510	510	510	510	510	510	510
missing	0	0	0	0	0	0	0	0	0
min	0.000	46.000	2.000	151.000	222.000	386.000	43.000	257.000	1511.000
	13320.0	17582.0	9766.00	65430.0	59599.0	54983.0	11663.0	120777.0	327694.0
max	00	00	0	00	00	00	00	00	00
freq min	2	2	3	1	1	1	1	1	1
freq max	1	1	1	1	1	1	1	1	1
		1629.50		4733.55	4460.09	5277.05			27766.31
Mean	520.061	6	653.959	9	8	1	963.851	9428.261	6
	1727.03	2552.36	1399.30	10622.2	8690.40	9466.07	1625.65	21898.04	55608.48
std dev	2	7	8	74	7	1	4	9	9
skew	6.349	4.596	4.287	4.360	4.914	4.166	4.785	4.241	4.291
kurtosis	40.804	24.688	20.676	19.350	25.955	17.142	25.267	17.335	18.228

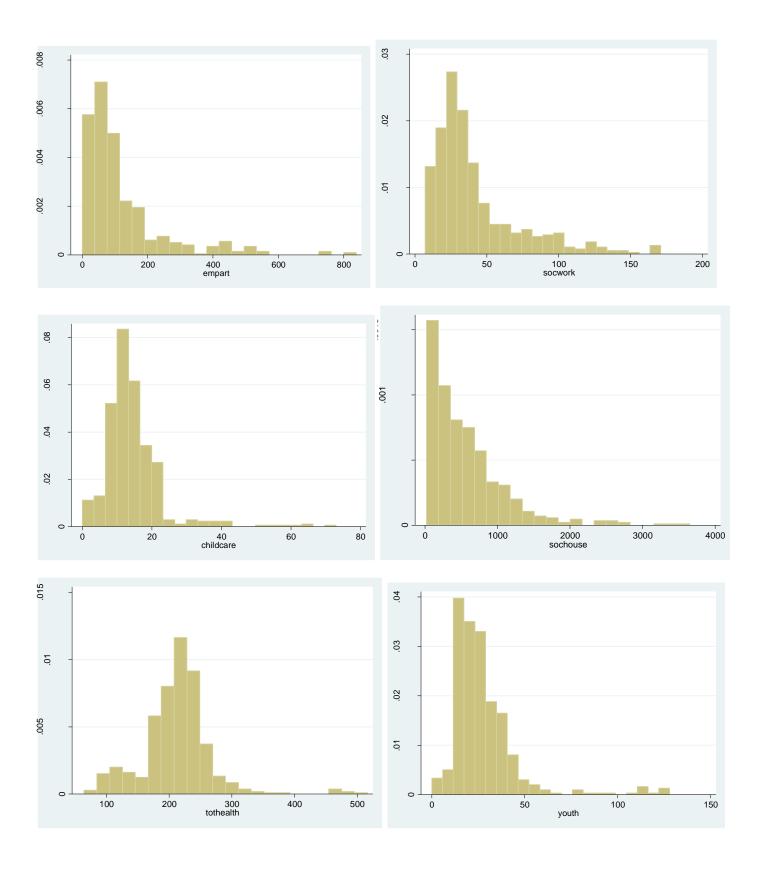

• Highlighted in Yellow variables that must be accounted for because f their skewness

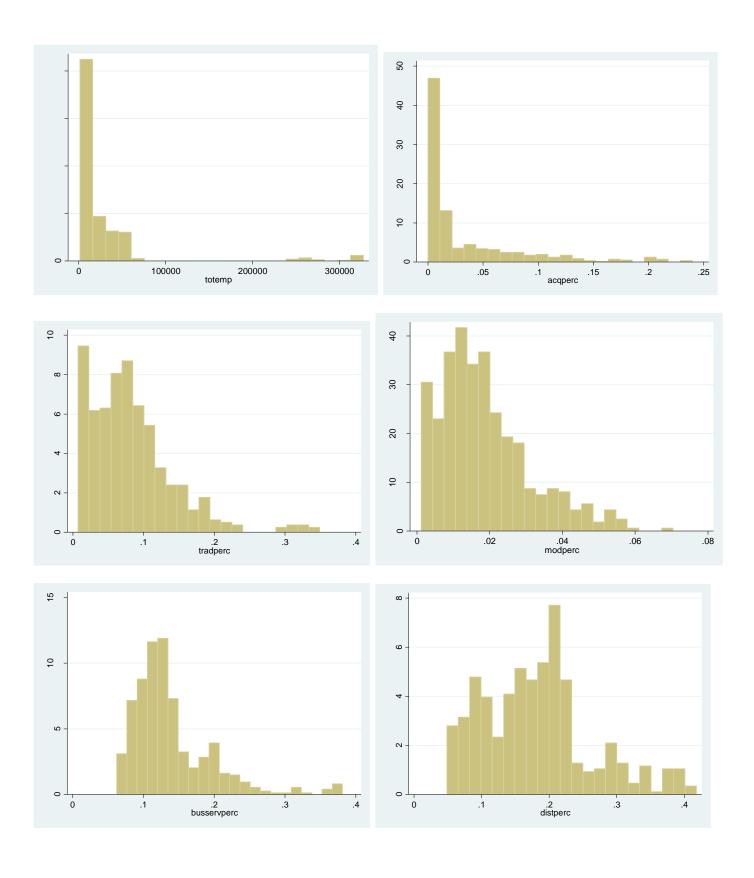

Data Loggings

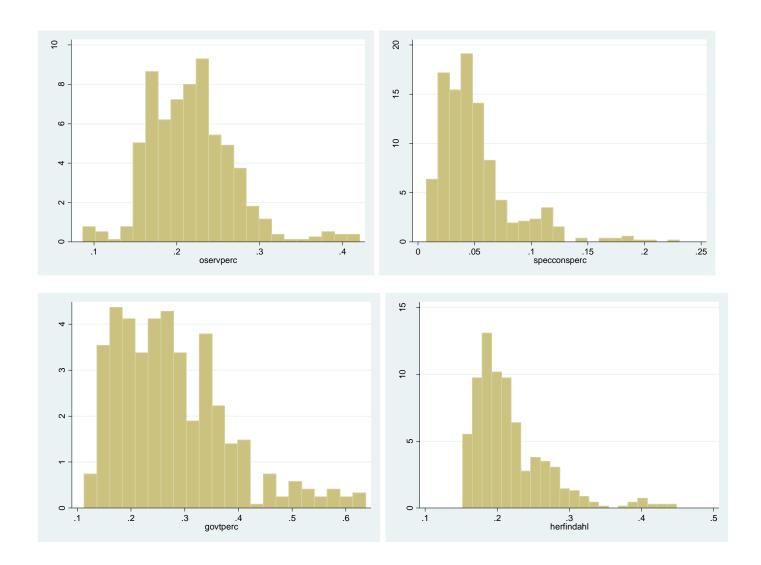

Statistic	logpop	logmen	logwomen	loghh	loggenbenefits	logdisabben	logcarstot	logtoteduc	logeducaccom
observations	510	510	510	510	510	510	510	510	510
missing	0	0	0	0	0	0	0	0	0
min	8.997	8.297	8.309	8.033	2.996	5.670	8.191	4.043	2.639
max	13.335	12.626	12.657	12.655	10.604	10.247	12.285	7.110	5.553
freq min	1	1	1	2	2	1	1	1	2
freq max	1	1	1	1	1	1	1	1	1
Mean	10.464	9.757	9.784	9.609	5.874	7.185	9.648	5.050	3.917
std dev	0.880	0.877	0.883	0.940	1.488	0.961	0.819	0.498	0.515
skew	1.091	1.110	1.073	1.085	0.840	0.975	1.015	0.933	0.583
kurtosis	1.569	1.596	1.541	1.482	0.693	1.138	1.336	1.310	0.417


Statistic	loginactivepop	logempart	logadmin	logtottransport	logtotecon	logsochouse	logyouth	logchildcare
observations	510	510	510	510	510	510	510	510
missing	0	1	0	2	2	1	1	4
min	-2.120	0.000	2.079	0.000	0.000	3.045	0.000	0.000
max	-0.462	6.731	4.234	6.516	6.227	8.203	4.852	4.290
freq min	1	7	1	44	6	1	7	2
freq max	1	1	1	1	1	1	1	1
Mean	-1.734	4.266	2.878	2.495	2.673	5.946	3.149	2.528
std dev	0.196	1.167	0.320	1.481	1.079	0.944	0.633	0.546
skew	1.142	-0.969	0.988	0.097	0.376	-0.202	-1.481	-0.697
kurtosis	3.072	1.926	2.532	-0.843	0.375	-0.550	7.910	3.184


Variable Histograms







ADDITIONAL RESULTS GRAPHS

2005 Basic Unemployment:

Source	SS	df	MS	Number of obs	=	50
 				F(2, 47)	=	25.10
Model	1.34612205	2	.673061024	Prob > F	=	0.0000
Residual	1.2604591	47	.026818279	R-squared	=	0.5164
				Adj R-squared	=	0.4959
Total	2.60658115	49	.053195534	Root MSE	=	.16376

2005 Basic Employment:

. reg logtotemp logtotecon logempart

Source	SS	df	MS		per of obs	=	50
				- F(2)	, 47)	=	20.53
Model	26.1332362	2	13.0666183	l Prob	> F	=	0.0000
Residual	29.9097344	47	.636377328	8 R-sc	quared	=	0.4663
				- Adj	R-squared	=	0.4436
Total	56.0429706	49	1.14373409	9 Root	MSE	=	.79773
logtotemp	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
logtotecon	.2045621	.1305982	1.57	0.124	058167	6	.4672918
logempart	.3630729	.0799437	4.54	0.000	.202246	9	.523899
_cons	7.710433	.3122684	24.69	0.000	7.0822	3	8.338636

. drop residuals

. predict residuals

(option **xb** assumed; fitted values)

(1 missing value generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	50	0.8318	0.8949	0.06	0.9692

. ovtest

Ramsey RESET test using powers of the fitted values of logtotemp

Ho: model has no omitted variables

F(3, 44) = 2.39Prob > F = 0.0813

2005 Demographics model unemployment:

Source	SS	df	MS	Number of obs	=	50
				F(15, 34)	=	27.21
Model	2.40614433	15	.160409622	Prob > F	=	0.0000
Residual	.200436825	34	.005895201	R-squared	=	0.9231
				Adj R-squared	=	0.8892
Total	2.60658115	49	.053195534	Root MSE	=	.07678

2005 Demographics model employment:

Source	SS	df	MS	Number	of obs	=	50
-				F(15,	34)	=	26.62
Model	51.6451646	15 3.	44301097	Prob >	F	=	0.0000
Residual	4.397806	34 .1	29347235	R-squa	red	=	0.9215
-				Adj R-	squared	=	0.8869
Total	56.0429706	49 1.	14373409	Root M	SE	=	.35965
•							
logtotemp	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
logtotecon	0033472	.0687091	-0.05	0.961	1429	981	.1362865
logempart	0095095	.0544185	-0.17	0.862	12010		.1010822
logpop1524	5815856	.6448716	-0.90	0.373	-1.8921		.7289511
logpop1524	.3398217	1.301244	0.26	0.796	-2.3046		2.984267
logpop2544	.2828112	1.07022	0.26	0.793	-1.8921		2.457761
31 1				0.793			
logpop6580	1363151	.759977	-0.18		-1.6807		1.408144
logpop80plus	2261305	.302351	-0.75	0.460	84058		.3883206
logpopdens	0129857	.0945988	-0.14	0.892	20523		.1792623
logwest	1389965	.2869209	-0.48	0.631	722	09	.444097
lognwest	0328015	.2131892	-0.15	0.879	46605	42	.4004512
lognwesto	.5549952	.2528252	2.20	0.035	.04119	26	1.068798
loghh	.9466773	.1174191	8.06	0.000	.7080	153	1.185302
hhchild	.180625	2.303228	0.08	0.938	-4.5000	98	4.861348
lowinc	5.664833	2.992228	1.89	0.067	41610	162	11.74577
loginactivepop	5554708	.7295374	-0.76	0.452	-2.0380	169	.9271275
_cons	-2.508838	4.875719	-0.51	0.610	-12.417	49	7.399816

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)) Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	50	0.0030	0.0538	10.39	0.0055

. ovtest

Ramsey RESET test using powers of the fitted values of logtotemp Ho: model has no omitted variables

F(3, 31) = 0.25 Prob > F = 0.8640

2005 Policy model unemployment:

	Source	SS	df	MS	Number of obs	=	49
-					F(10, 38)	=	15.64
	Model	2.05860144	10	.205860144	Prob > F	=	0.0000
	Residual	.500188599	38	.013162858	R-squared	=	0.8045
-					Adj R-squared	=	0.7531
	Total	2.55879004	48	.053308126	Root MSE	=	.11473

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	49	0.0307	0.3818	5.27	0.0719

. ovtest

Ramsey RESET test using powers of the fitted values of logunemp

Ho: model has no omitted variables

F(3, 35) = 4.66Prob > F = 0.0076

2005 Policy model employment:

Source	SS	df	MS	Numk	er of ob	s =	49
				- F(10), 38)	=	8.54
Model	37.6537743	10	3.76537743	B Prok	> F	=	0.0000
Residual	16.7503405	38	.440798433	R-sc	quared	=	0.6921
				- Adj	R-square	d =	0.6111
Total	54.4041148	48	1.13341906	5 Root	MSE	=	.66393
logtotemp	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
logtotecon	.0719229	.1265317	0.57	0.573	1842	271	.3280729
logempart	.051436	.1188152	0.43	0.668	1890	928	.2919648
logtoteduc	0574632	.1658399	-0.35	0.731	3931	886	.2782621
logincsec	.4711369	.2136265	2.21	0.034	.0386	727	.9036011
logchildcare	.3805677	.1823236	2.09	0.044	.0114	728	.7496626
logsochouse	134374	.1059985	-1.27	0.213	3489	567	.0802088
logyouth	.2187086	.1918635	1.14	0.261	1696	988	.6071161
logtotorder	.2868723	.373756	0.77	0.448	4697	572	1.043502
logtothealth	.1166025	.3409564	0.34	0.734	5736	277	.8068327
logtotcult	.9099612	.406973	2.24	0.031	.0860	875	1.733835
_cons	3897754	2.620662	-0.15	0.883	-5.695	028	4.915477

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	49	0.0064	0.0753	9.01	0.0111

. ovtest

Ramsey RESET test using powers of the fitted values of logtotemp

Ho: model has no omitted variables

F(3, 35) = 0.65Prob > F = 0.5875

2005 Industrial model: unemployment

	Source	SS	df	MS	Number of obs	=	49
-					F(10, 38)	=	13.21
	Model	2.02015215	10	.202015215	Prob > F	=	0.0000
	Residual	.581246307	38	.015295955	R-squared	=	0.7766
-					Adj R-squared	=	0.7178
	Total	2.60139845	48	.054195801	Root MSE	=	.12368

. sktest residuals

Skewness/Kurtosis tests for Normality

] 01 n t
Variable	Obs	Pr(Skewness)) Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	49	0.4172	0.0146	6.16	0.0460

. ovtest

Ramsey RESET test using powers of the fitted values of logunemp

Ho: model has no omitted variables

F(3, 35) = 3.35Prob > F = 0.0299

2005 Industrial model: employment

Source	SS	df	MS	Number of obs	=	49
 				F(10, 38)	=	8.57
Model	38.6933954	10	3.86933954	Prob > F	=	0.0000
Residual	17.1553829	38	.451457445	R-squared	=	0.6928
 				Adj R-squared	=	0.6120
Total	55.8487784	48	1.16351622	Root MSE	=	.67191

logtotemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0888896	.1342408	0.66	0.512	1828667	.3606458
logempart	.1975868	.0834229	2.37	0.023	.0287061	.3664675
logacqperc	0165003	.0815663	-0.20	0.841	1816227	.1486222
logtradperc	0637302	.2250906	-0.28	0.779	5194022	.3919419
logmodperc	.2112942	.1350335	1.56	0.126	0620668	.4846552
logbusservperc	.9509314	.3815392	2.49	0.017	.1785457	1.723317
logdistperc	.6440705	.3870277	1.66	0.104	1394261	1.427567
logoservperc	6506878	.500312	-1.30	0.201	-1.663517	.3621409
loggovtperc	.9848323	.5667245	1.74	0.090	1624414	2.132106
logherfindahl	4170782	1.154187	-0.36	0.720	-2.753608	1.919452
_cons	12.02322	3.785771	3.18	0.003	4.359323	19.68711

. drop residuals

. predict residuals

(option xb assumed; fitted values)

(2 missing values generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

						Joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	49	0.8844	0.3045		1.12	0.5708

. ovtest

Ramsey RESET test using powers of the fitted values of logtotemp

Ho: model has no omitted variables

F(3, 35) = 2.25 Prob > F = 0.0993

2013 Basic Model: Unemployment

. reg logunemp logtotecon logempart

Source	SS	df	MS	Number of obs	=	50
				F(2, 47)	=	33.20
Model	1.19164562	2	.595822808	Prob > F	=	0.0000
Residual	.843394296	47	.017944559	R-squared	=	0.5856
				Adj R-squared	=	0.5679
Total	2.03503991	49	.041531427	Root MSE	=	.13396

logunemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon logempart _cons	.0837344 .1765482 -3.814976	.0194571 .0320045 .1429446	4.30 5.52 -26.69	0.000	.0445917 .1121635 -4.102544	.122877 .2409329 -3.527409

. predict residuals
variable residuals already defined
r(110);

- . drop residuals
- . predict residuals
 (option xb assumed; fitted values)
 (1 missing value generated)
- . sktest residuals

${\tt Skewness/Kurtosis\ tests\ for\ Normality}$

						Joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	50	0.0152	0.4853		5.98	0.0504

. ovtest

Ramsey RESET test using powers of the fitted values of logunemp

Ho: model has no omitted variables

F(3, 44) = 0.85Prob > F = 0.4765

2013 Basic Model: Employment

. reg logtotemp logtotecon logempart

Source	SS	df	MS	Number of obs	=	50
				F(2, 47)	=	31.92
Model	31.6229697	2	15.8114849	Prob > F	=	0.0000
Residual	23.284461	47	.495414064	R-squared	=	0.5759
				Adj R-squared	=	0.5579
Total	54.9074307	49	1.12055981	Root MSE	=	.70386

logtotemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.4851503	.1022342	4.75	0.000	.2794816	.6908189
logempart	.8279442	.1681622	4.92		.4896454	1.166243
_cons	4.293138	.751079	5.72		2.782162	5.804114

. drop residuals

. predict residuals

(option xb assumed; fitted values)

(1 missing value generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

						Joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	50	0.0106	0.3858		6.64	0.0361

. ovtest

Ramsey RESET test using powers of the fitted values of logtotemp

Ho: model has no omitted variables

F(3, 44) = 0.65Prob > F = 0.5860

2013 Demographics model: Unemployment

	Source	SS	df	MS	Number of obs	=	50
_					F(15, 34)	=	27.59
	Model	1.88052724	15	.125368483	Prob > F	=	0.0000
	Residual	.154512667	34	.00454449	R-squared	=	0.9241
_					Adj R-squared	=	0.8906
	Total	2.03503991	49	.041531427	Root MSE	=	.06741

2013 Demographics model: Employment

Source	SS	df	MS	Number	of obs	=	50
				F(15,	34)	=	36.29
Model	51.6792927	15 3	.44528618	Prob >	> F	=	0.0000
Residual	3.22813806	34 .	094945237	R-squa	ared	=	0.9412
				Adj R-	-squared	=	0.9153
Total	54.9074307	49 1	.12055981	Root 1	1SE	=	.30813
logtotemp	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
logtotecon	.134604	.0670742	2.01	0.053	0017	7071	.270915
logempart	.3981977	.1772902	2.25	0.031	.0379	8008	.7584947
logpop1524	.6113569	.624863	0.98	0.335	6585	5174	1.881231
logpop2544	1198073	.9751957	-0.12	0.903	-2.101	643	1.862029
logpop4564	1.408885	1.192479	1.18	0.246	-1.014	1524	3.832294
logpop6580	.2083003	.7040468	0.30	0.769	-1.222	2495	1.639095
logpop80plus	1729942	.4162726	-0.42	0.680	-1.018	3962	.6729735
logpopdens	0231386	.0847741	-0.27	0.787	1954	1203	.1491432
logwest	.2255214	.2558088	0.88	0.384	2943	3446	.7453874
lognwest	.1023097	.2115691	0.48	0.632	3276	5504	.5322698
lognwesto	.0950205	.2439419	0.39	0.699	4007	7291	.5907701
loghh	.9615346	.1079695	8.91	0.000	.7421	142	1.180955
hhchild	2.138888	1.875364	1.14	0.262	-1.67	7231	5.950087
lowing	3.510797	2.772581	1.27	0.214	-2.123	3765	9.14536
loginactivepop	-1.339975	.9330705	-1.44	0.160	-3.236	5202	.5562528
_cons	-2.293725	4.532588	-0.51	0.616	-11.50)505	6.917603

- . drop residuals
- . predict residuals
 (option xb assumed; fitted values)
 (1 missing value generated)
- . sktest residuals

Skewness/Kurtosis tests for Normality

						joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	50	0.0043	0.0835		9.40	0.0091

. ovtest

Ramsey RESET test using powers of the fitted values of logtotemp

Ho: model has no omitted variables

F(3, 31) = 0.35Prob > F = 0.7901

2013 Policy Model: Unemployment

	Source	SS	df	MS	Number of obs	=	49
•					F(11, 37)	=	39.47
	Model	1.86548092	11	.169589175	Prob > F	=	0.0000
	Residual	.158979151	37	.004296734	R-squared	=	0.9215
-					Adj R-squared	=	0.8981
	Total	2.02446007	48	.042176252	Root MSE	=	.06555

2013 Policy Model: Employment

Source	SS	df	MS		er of ob		49 9.83
Model	40.7430752	11	3.70391593		, 37) > F	=	0.0000
Residual	13.9355313	37	.37663598	R-sq	uared	=	0.7451
				- Adj 1	R-square	d =	0.6694
Total	54.6786065	48	1.13913764	Root MSE		=	.61371
	'						
logtotemp	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
logtotecon	.2134284	.1167403	1.83	0.076	0231	098	.4499667
logempart	.259831	.2095806	1.24	0.223	1648	196	.6844816
logtoteduc	2816201	.3755268	-0.75	0.458	-1.04	251	.4792694
logincsec	.8467314	.2653093	3.19	0.003	.3091	637	1.384299
logchildcare	.0050494	.1754827	0.03	0.977	3505	124	.3606111
logsochouse	.1138705	.1143145	1.00	0.326	1177	527	.3454936
logyouth	.2492777	.2376085	1.05	0.301	2321	629	.7307182
logsocwork	.2139533	.2087687	1.02	0.312	2090	523	.6369589
logtotorder	.2533192	.3460917	0.73	0.469	4479	292	.9545677
logtotcult	.4118714	.3602336	1.14	0.260	3180	313	1.141774
logtothealth	185624	.4645617	-0.40	0.692	-1.126	915	.7556673
_cons	1872734	2.572091	-0.07	0.942	-5.398	825	5.024278

- . drop residuals
- . predict residuals

(option $\mathbf{x}\mathbf{b}$ assumed; fitted values)

(2 missing values generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

						Joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	49	0.0127	0.4859		6.21	0.0449

. ovtest

Ramsey RESET test using powers of the fitted values of logtotemp

Ho: model has no omitted variables

F(3, 34) = 3.55Prob > F = 0.0245

.

2013 Industrial model: unemployment

Source	SS	df	MS	Number of obs	=	50
				F(10, 39)	=	10.35
Model	1.47812125	10	.147812125	Prob > F	=	0.0000
Residual	.556918659	39	.014279966	R-squared	=	0.7263
 				Adj R-squared	=	0.6562
Total	2.03503991	49	.041531427	Root MSE	=	.1195

2013 Industrial model: employment

Source	SS	df	MS	Number of obs	=	50
				F(10, 39)	=	13.08
Model	42.2956483	10 4	.22956483	Prob > F	=	0.0000
Residual	12.6117824	39 .	323379037	R-squared	=	0.7703
				Adj R-squared	=	0.7114
Total	54.9074307	49 1	.12055981	Root MSE	=	.56866
·						
logtotemp	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
logtotecon	.2582573	.1030342	2.51	0.016 .049	8509	.4666636
logempart	.7123268	.2279895	3.12	0.003 .251	1745	1.173479
logacqperc	0109749	.0811764	-0.14	0.893175	1697	.1532198
logtradperc	5959543	.2808657	-2.12	0.040 -1.16	4059	0278498
logmodperc	.0389482	.1600857	0.24	0.809284	8557	.3627521
logbusservperc	.8728156	.3551701	2.46	0.019 .154	4163	1.591215
logdistperc	.4770066	.3509688	1.36	0.182232	8948	1.186908
logoservperc	-1.117943	.5338587	-2.09	0.043 -2.19	7774	038112
loggovtperc	.8371448	.5976841	1.40	0.169371	7854	2.046075
logherfindahl	-1.577791	1.150966	-1.37	0.178 -3.90	5839	.7502578

0.80 0.427 -5.410489

12.52947

. predict residuals
(option xb assumed; fitted values)
(1 missing value generated)

. sktest residuals

_cons

Skewness/Kurtosis tests for Normality

					joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	50	0.1569	0.8201	2.17	0.3386

. ovtest

Ramsey RESET test using powers of the fitted values of logtotemp

Ho: model has no omitted variables

F(3, 36) = 0.72Prob > F = 0.5467

3.559491 4.434676

2005 Growth basic model: Employment

. reg logempgrowthearly logtotecon logempart

Source	SS	df	MS	Number of obs	=	50
				F(2, 47)	=	1.14
Model	.002390584	2	.001195292	Prob > F	=	0.3290
Residual	.049353177	47	.001050068	R-squared	=	0.0462
				Adj R-squared	=	0.0056
Total	.051743761	49	.001055995	Root MSE	=	.0324

logempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0080043	.005305	1.51	0.138	0026681	.0186766
logempart	0025328	.0032474	-0.78	0.439	0090657	.0040002
_cons	0049561	.0126847	-0.39	0.698	0304744	.0205622

. predict residuals

(option **xb** assumed; fitted values)

(1 missing value generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

				-		joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	50	0.7354	0.3497		1.03	0.5979

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly

Ho: model has no omitted variables

F(3, 44) = 0.47Prob > F = 0.7057

2005 Growth Demographics model: unemployment

	Source	SS	df	MS	Number of obs	=	50
-					F(15, 34)	=	2.48
	Model	.049478118	15	.003298541	Prob > F	=	0.0138
	Residual	.045135119	34	.001327503	R-squared	=	0.5230
-					Adj R-squared	=	0.3125
	Total	.094613237	49	.001930882	Root MSE	=	.03643

2005 Growth demographics model: employment

. reg logempgrowthearly logtotecon logempart logpop1524 logpop2544 logpop4564 log

> lowinc loginactivepop

Source	SS	df	MS	Number of obs	=	50
				F(15, 34)	=	1.25
Model	.018381663	15	.001225444	Prob > F	=	0.2859
Residual	.033362098	34	.000981238	R-squared	=	0.3552
				Adj R-squared	=	0.0708
Total	.051743761	49	.001055995	Root MSE	=	.03132

logempgrowth~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0133148	.0059844	2.22	0.033	.0011529	.0254766
logempart	.0023774	.0047397	0.50	0.619	0072549	.0120097
logpop1524	0241309	.0561671	-0.43	0.670	1382762	.0900143
logpop2544	0162902	.1133359	-0.14	0.887	2466164	.2140359
logpop4564	1734185	.0932141	-1.86	0.071	3628524	.0160154
logpop6580	0019856	.0661926	-0.03	0.976	136505	.1325339
logpop80plus	0156532	.0263342	-0.59	0.556	0691707	.0378643
logpopdens	.0083624	.0082394	1.01	0.317	008382	.0251069
logwest	.0426438	.0249903	1.71	0.097	0081425	.0934301
lognwest	0374271	.0185684	-2.02	0.052	0751626	.0003083
lognwesto	0152438	.0220206	-0.69	0.493	059995	.0295075
loghh	.011712	.010227	1.15	0.260	0090718	.0324957
hhchild	.3681528	.2006068	1.84	0.075	0395293	.7758348
lowinc	1721934	.2606174	-0.66	0.513	7018317	.3574448
loginactivepop	.0550227	.0635413	0.87	0.393	0741088	.1841542
_cons	5975251	.4246658	-1.41	0.168	-1.46055	.2654997

. predict residuals

(option $\mathbf{x}\mathbf{b}$ assumed; fitted values)

(1 missing value generated)

- . drop residuals
- . predict residuals

(option **xb** assumed; fitted values)

(1 missing value generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	50	0.8604	0.0596	3.80	0.1497

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly

Ho: model has no omitted variables

F(3, 31) = 1.64Prob > F = 0.2000

2005 Growth policy model: Unemployment

	Source	SS	df	MS	Number of obs	=	49
-					F(11, 37)	=	2.27
	Model	.037950749	11	.003450068	Prob > F	=	0.0312
	Residual	.056341867	37	.001522753	R-squared	=	0.4025
					Adj R-squared	=	0.2248
	Total	.094292616	48	.001964429	Root MSE	=	.03902

2005 Growth policy model: employment

. reg logempgrowthearly logtotecon logempart logtoteduc logincsec logchildcare

Source	SS	df	MS	Number of obs	=	4 9
				F(11, 37)	=	0.73
Model	.009241205	11	.00084011	Prob > F	=	0.7019
Residual	.042502494	37	.001148716	R-squared	=	0.1786
				Adj R-squared	=	-0.0656
Total	.051743699	48	.001077994	Root MSE	=	.03389

logempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0063354	.0064781	0.98	0.334	0067905	.0194613
logempart	000066	.0060847	-0.01	0.991	0123949	.0122629
logtoteduc	.0064463	.008576	0.75	0.457	0109303	.0238229
logincsec	0047437	.0114865	-0.41	0.682	0280176	.0185302
logchildcare	.0043528	.0095771	0.45	0.652	0150524	.0237579
logsochouse	.0087177	.0054163	1.61	0.116	0022568	.0196921
logyouth	0076099	.0099363	-0.77	0.449	0277427	.0125229
logsocwork	00756	.0119284	-0.63	0.530	0317293	.0166094
logtotorder	0075109	.01951	-0.38	0.702	0470419	.03202
logtotcult	004816	.0212556	-0.23	0.822	0478839	.0382519
logtothealth	.0070262	.017423	0.40	0.689	0282762	.0423286
_cons	01571	.1364534	-0.12	0.909	2921908	.2607707

. predict residuals $(\mbox{option } {\bf xb} \mbox{ assumed; fitted values})$

(2 missing values generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

						joint ———
Variable	Obs	Pr(Skewness)) Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	49	0.1263	0.8785		2.49	0.2873

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly

Ho: model has no omitted variables

F(3, 34) = 0.50Prob > F = 0.6853

2005 Growth industry model: Unemployment

Source	SS	df	MS	Number of obs	=	49
				F(10, 38)	=	3.86
Model	.044713461	10	.004471346	Prob > F	=	0.0012
Residual	.044036859	38	.001158865	R-squared	=	0.5038
				Adj R-squared	=	0.3732
Total	.088750321	48	.001848965	Root MSE	=	.03404

2005 Growth industry model: employment

Source	SS	df	MS	Number of obs	=	4 9
				F(10, 38)	=	0.45
Model	.00540286	10 .	000540286	Prob > F	=	0.9140
Residual	.046122841	38 .	001213759	R-squared	=	0.1049
				Adj R-squared	=	-0.1307
Total	.051525702	48 .	001073452	Root MSE	=	.03484
·						
	1					
logempgrowth~y	Coef.	Std. Err.	t	P> t [95%	Conf.	<pre>Interval]</pre>
logtotecon	.0100864	.0069605	1.45	0.156004	0044	.0241773
-		.0043256	-0.33	0.740010		.0073107
logempart						
logacqperc	.003176	.0042293	0.75	0.457005	3857	.0117378
logtradperc	.0020741	.0116712	0.18	0.86002	1553	.0257012
logmodperc	0016559	.0070016	-0.24	0.814015	8299	.0125182
logbusservperc	0004171	.0197832	-0.02	0.983040	4661	.039632
logdistperc	.0112873	.0200678	0.56	0.577029	3379	.0519124
logoservperc	.0023125	.0259417	0.09	0.929050	2037	.0548288
loggovtperc	0056319	.0293853	-0.19	0.849065	1193	.0538555
logherfindahl	.0436376	.0598459	0.73	0.47007	7514	.1647893
_cons	.0821711	.1962963	0.42	0.6783	1521	.4795523

. predict residuals (option \mathbf{xb} assumed; fitted values) (2 missing values generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	49	0.0516	0.1056	5.99	0.0499

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly Ho: model has no omitted variables

F(3, 35) = 1.36 Prob > F = 0.2706

2009 Growth basic model: employment

. reg logempgrowthearly logtotecon logempart

Source	SS	df	MS	Number of obs	=	51
			· · · · · · · · · · · · · · · · · · ·	F(2, 48)	=	5.00
Model	18.6969335	2	9.34846676	Prob > F	=	0.0106
Residual	89.6776207	48	1.86828377	R-squared	=	0.1725
f				Adj R-squared	=	0.1380
Total	108.374554	50	2.16749108	Root MSE	=	1.3669
	•					

logempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	3059856	.1943679	-1.57	0.122	6967884	.0848171
logempart	4848298	.2669749	-1.82	0.076	-1.021619	.0519593
_cons	3.150288	1.192457	2.64	0.011	.7526931	5.547883

. predict residuals
(option xb assumed; fitted values)

. sktest residuals

Skewness/Kurtosis tests for Normality

						Joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	51	0.0148	0.2360		6.69	0.0352

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly

Ho: model has no omitted variables

F(3, 45) = 0.08Prob > F = 0.9695

2009 Growth basic model: Unemployment

	Source	SS	df	MS	Number of obs	=	51
-					F(15, 35)	=	3.29
	Model	1.42547778	15	.095031852	Prob > F	=	0.0018
	Residual	1.01045031	35	.028870009	R-squared	=	0.5852
-			·		Adj R-squared	=	0.4074
	Total	2.4359281	50	.048718562	Root MSE	=	.16991

2009 Growth basic model: employment

Source	SS	df	MS	Number		=	51
26 1 1	70. 2526601	1.54	60004401	F(15, 3	,	=	4.32
Model	70.3536601		.69024401	Prob >		=	0.0002
Residual	38.0208941	35 1	.08631126	R-squar		=	0.6492
				Adj R-s	-	=	0.4988
Total	108.374554	50 2	.16749108	Root MS	E	=	1.0423
logempgrowth~y	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
logtotecon	.0412139	.1929117	0.21	0.832	3504	177	.4328455
logempart	.2420022	.3985677	0.61	0.548	5671	333	1.051138
logpop1524	9075433	1.961034	-0.46	0.646	-4.888	655	3.073568
logpop2544	1.453049	3.419938	0.42	0.674	-5.489	794	8.395892
logpop4564	-3.603959	3.157371	-1.14	0.261	-10.01	376	2.805845
logpop6580	1.376877	2.244499	0.61	0.544	-3.179	698	5.933452
logpop80plus	7063567	1.018154	-0.69	0.492	-2.773	319	1.360606
logpopdens	6182583	.2671854	-2.31	0.027	-1.160	674	075843
logwest	.1348114	.8092455	0.17	0.869	-1.508	044	1.777667
lognwest	.2514952	.6077	0.41	0.682	9822	015	1.485192
lognwesto	.336311	.8490131	0.40	0.694	-1.387	277	2.059899
loghh	-1.480812	.3439361	-4.31	0.000	-2.179	039	7825842
hhchild	-4.520204	7.052937	-0.64	0.526	-18.83	843	9.798019
lowinc	-7.395266	9.167279	-0.81	0.425	-26.00	583	11.2153
loginactivepop	.9224766	3.020256	0.31	0.762	-5.208	968	7.053921
_cons		14.62411	1.49	0.144	-7.852	117	51.52493

- . drop residuals
- . predict residuals
 (option xb assumed; fitted values)
- . sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	51	0.0405	0.3468	5.00	0.0822

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly $$\operatorname{\textsc{Ho}}$:$$ model has no omitted variables

F(3, 32) = 0.42Prob > F = 0.7370

2009 Growth policy model: Unemployment

	Source	SS	df	MS	Number of obs	=	51
-					F(11, 39)	=	2.98
	Model	1.11252669	11	.10113879	Prob > F	=	0.0058
	Residual	1.32340141	39	.03393337	R-squared	=	0.4567
-					Adj R-squared	=	0.3035
	Total	2.4359281	50	.048718562	Root MSE	=	.18421

2009 Growth policy model: employment

Source	SS	df	MS		per of obs		51
Model Residual	34.5649492 73.8096051	11 39	3.14226811 1.89255398	Prob	., 39) > F quared	= =	1.66 0.1199 0.3189
Total	108.374554	50	2.16749108		R-squared MSE	d = =	0.1268 1.3757
logempgrow~y	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
logtotecon	2221832	.2473542	-0.90	0.375	7225		.2781379
logempart logtoteduc	4236409 .0849492	.4675452	-0.91 0.15	0.370	-1.369 -1.067	665	.5220586
logchildcare logsochouse	0812892 0893701	.4402654	-0.18 -0.44	0.854	97183 49693	151	.8092316 .3181749
logyouth	3282765 1.225196	.527959	-0.62 1.38	0.538	-1.3963 5734	466	.7396214
logtotcult	612344 .3737488	.9482286	-0.65 0.53	0.522	-2.5303 -1.0463	168	1.305629
logsocwork logtothealth _cons	-1.204089 .6971389 .5747571	.5700626 .9070391 6.776657	-2.11 0.77 0.08	0.041 0.447 0.933	-2.35° -1.1375 -13.13°	521	0510289 2.531799 14.28184
	. 3/4/3/1	0.110031	0.00	0.900	-10.10	233	14.40104

. predict residuals
(option xb assumed; fitted values)

. sktest residuals

Skewness/Kurtosis tests for Normality

				-		joint ———
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj d	chi2(2)	Prob>chi2
residuals	51	0.0593	0.5945	4	4.03	0.1336

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly

Ho: model has no omitted variables

F(3, 36) = 3.49Prob > F = 0.0255

2009 Industrial growth model: Unemployment

	Source	SS	df	MS	Number of obs	=	51
-					F(10, 40)	=	3.14
	Model	1.07200975	10	.107200975	Prob > F	=	0.0047
	Residual	1.36391834	40	.034097959	R-squared	=	0.4401
-					Adj R-squared	=	0.3001
	Total	2.4359281	50	.048718562	Root MSE	=	.18466

2009 Industrial growth model: Employment

Source	SS	df	MS	Number of obs	=	51
				F(10, 40)	=	2.33
Model	39.9212893	10	3.99212893	Prob > F	=	0.0283
Residual	68.453265	40	1.71133162	R-squared	=	0.3684
				Adj R-squared	=	0.2105
Total	108.374554	50	2.16749108	Root MSE	=	1.3082

logempgrowth~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0232568	.2488898	0.09	0.926	4797683	.5262818
logempart	221549	.3624483	-0.61	0.544	9540844	.5109864
logacqperc	.1801537	.1538262	1.17	0.248	1307406	.491048
logtradperc	.5161808	.5250417	0.98	0.331	5449681	1.57733
logmodperc	1584335	.3105491	-0.51	0.613	7860767	.4692096
logbusservperc	-1.020878	.8578858	-1.19	0.241	-2.75473	.7129737
logdistperc	8294423	.7926913	-1.05	0.302	-2.431531	.7726466
logoservperc	1.206462	1.092916	1.10	0.276	-1.002405	3.415328
loggovtperc	-1.80113	1.333532	-1.35	0.184	-4.496299	.8940387
logherfindahl	3.196178	2.282438	1.40	0.169	-1.416802	7.809157
_cons	3.476181	8.583966	0.40	0.688	-13.87266	20.82502

. predict residuals
(option xb assumed; fitted values)

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	51	0.2383	0.5175	1.90	0.3866

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly Ho: model has no omitted variables

F(3, 37) = 0.24

2013 Growth basic model: Employment

. reg logempgrowthearly logtotecon logempart $% \left(1\right) =\left(1\right) \left(1\right) \left$

Source	SS	df	MS	Number of obs	=	50
				F(2, 47)	=	2.45
Model	.002452215	2	.001226108	Prob > F	=	0.0970
Residual	.023497902	47	.000499955	R-squared	=	0.0945
				Adj R-squared	=	0.0560
Total	.025950117	49	.000529594	Root MSE	=	.02236

logempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0018026	.0032477	0.56	0.582	004731	.0083362
logempart	0118292		-2.21	0.032	0225761	0010824
_cons	.0321823		1.35	0.184	0158174	.0801821

. predict residuals

(option xb assumed; fitted values)

(1 missing value generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

				_	:	joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj c	:hi2(2)	Prob>chi2
residuals	50	0.9528	0.8586	C	0.04	0.9825

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly

Ho: model has no omitted variables

F(3, 44) = 1.98Prob > F = 0.1316

2013 Growth Demographics Model: Unemployment

	Source	SS	df	MS	Number of obs	=	50
_					F(15, 34)	=	1.69
	Model	.034693789	15	.002312919	Prob > F	=	0.1000
	Residual	.046423415	34	.001365395	R-squared	=	0.4277
-					Adj R-squared	=	0.1752
	Total	.081117204	49	.001655453	Root MSE	=	.03695

2013 Growth demographics model: Employment

Source	SS	df	MS	Number of obs	=	50
				F(15, 34)	=	1.78
Model	.011413391	15	.000760893	Prob > F	=	0.0809
Residual	.014536726	34	.000427551	R-squared	=	0.4398
-				Adj R-squared	=	0.1927
Total	.025950117	49	.000529594	Root MSE	=	.02068

logempgrowth~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0013847	.004501	0.31	0.760	0077625	.0105319
logempart	0161973	.0118971	-1.36	0.182	0403751	.0079806
logpop1524	.0406523	.0419317	0.97	0.339	0445631	.1258677
logpop2544	.0702769	.0654409	1.07	0.290	0627149	.2032687
logpop4564	.0488885	.0800217	0.61	0.545	1137352	.2115123
logpop6580	.0910998	.0472453	1.93	0.062	0049142	.1871138
logpop80plus	0308474	.0279341	-1.10	0.277	0876164	.0259215
logpopdens	0025741	.0056888	-0.45	0.654	0141351	.008987
logwest	.0095212	.0171661	0.55	0.583	0253646	.044407
lognwest	0263409	.0141974	-1.86	0.072	0551935	.0025118
lognwesto	0049276	.0163698	-0.30	0.765	038195	.0283399
loghh	.0004294	.0072453	0.06	0.953	0142948	.0151537
hhchild	.2969145	.125847	2.36	0.024	.0411626	.5526663
lowinc	1471207	.1860551	-0.79	0.435	5252301	.2309886
loginactivepop	.1958949	.062614	3.13	0.004	.0686479	.3231419
_cons	.6303737	.304161	2.07	0.046	.0122441	1.248503

. predict residuals

(option \mathbf{xb} assumed; fitted values)

(1 missing value generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

					- joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2	Prob>chi2
residuals	50	0.2897	0.9181	1.18	0.5543

. ovtest

 $\hbox{\tt Ramsey RESET test using powers of the fitted values of logempgrowthearly}$ Ho: model has no omitted variables

F(3, 31) = 1.12 Prob > F = 0.3566

2013 Growth Policy Model: Unemployment

	Source	SS	df	MS	Number of obs	=	49
_					F(11, 37)	=	0.59
	Model	.012175796	11	.001106891	Prob > F	=	0.8212
	Residual	.068939811	37	.001863238	R-squared	=	0.1501
					Adj R-squared	=	-0.1026
	Total	.081115607	48	.001689908	Root MSE	=	.04317

2013 Growth Policy Model: Employment

Source	SS	df	MS	Number of obs	s =	49
				F(11, 37)	=	3.12
Model	.012479442	11	.001134495	Prob > F	=	0.0046
Residual	.013465699	37	.000363938	R-squared	=	0.4810
				Adj R-squared	d =	0.3267
Total	.025945141	48	.000540524	Root MSE	=	.01908
'	•					
logempgrow~y	Coef.	Std. Err.	t	P> t [95% (Conf.	<pre>Interval]</pre>

logempgrow~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	.0012303	.0036289	0.34	0.737	0061225	.0085831
logempart	0115742	.0065148	-1.78	0.084	0247745	.0016261
logtoteduc	.0160438	.0116733	1.37	0.178	0076085	.0396962
logincsec	0065113	.0082472	-0.79	0.435	0232217	.0101991
logsochouse	.0137093	.0035535	3.86	0.000	.0065092	.0209093
logchildcare	0017498	.0054549	-0.32	0.750	0128025	.0093029
logyouth	0046248	.0073861	-0.63	0.535	0195905	.0103408
logsocwork	.0010125	.0064896	0.16	0.877	0121367	.0141617
logtotorder	.0114209	.0107583	1.06	0.295	0103775	.0332193
logtotcult	.0010239	.0111979	0.09	0.928	0216652	.023713
logtothealth	0222418	.014441	-1.54	0.132	0515019	.0070184
_cons	0158017	.0799538	-0.20	0.844	1778035	.1462001

. predict residuals

(option **xb** assumed; fitted values)

(2 missing values generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

						joint ——
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj	chi2(2)	Prob>chi2
residuals	49	0.2293	0.1223		4.02	0.1339

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly Ho: model has no omitted variables

F(3, 34) = 0.87

Prob > F = 0.4677

2013 Growth Industrial Model: Unemployment

	Source	SS	df	MS	Number of obs	=	50
-					F(10, 39)	=	0.50
	Model	.009258595	10	.000925859	Prob > F	=	0.8778
	Residual	.071858609	39	.001842528	R-squared	=	0.1141
-					Adj R-squared	=	-0.1130
	Total	.081117204	49	.001655453	Root MSE	=	.04292

2013 Growth Industrial Model: Employment

Source	SS	df	MS	Number of obs	=	50
				F(10, 39)	=	1.26
Model	.006318532	10	.000631853	Prob > F	=	0.2886
Residual	.019631585	39	.000503374	R-squared	=	0.2435
				Adj R-squared	=	0.0495
Total	.025950117	49	.000529594	Root MSE	=	.02244

logempgrowth~y	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon logempart logacqperc logtradperc logmodperc logbusservperc logdistperc logoservperc	0009585 0153496 .0000767 0045551 0045322 0029998 0051194 0465463	.0040651 .0089951 .0032027 .0110812 .006316 .0140128 .0138471	-0.24 -1.71 0.02 -0.41 -0.72 -0.21 -0.37 -2.21	0.815 0.096 0.981 0.683 0.477 0.832 0.714	009181 0335439 0064014 026969 0173075 0313434 0331278 0891498	.0072639 .0028446 .0065548 .0178588 .0082432 .0253438 .0228889 0039428
loggovtperc logherfindahl _cons	.0160626 0317417 090577	.0235809 .04541 .1749651	0.68 -0.70 -0.52	0.500 0.489 0.608	0316344 1235922 4444773	.0637595 .0601087 .2633233

. predict residuals
(option xb assumed; fitted values)
(1 missing value generated)

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	50	0.0170	0.0797	7.72	0.0211

. ovtest

Ramsey RESET test using powers of the fitted values of logempgrowthearly $$\operatorname{\textsc{Ho}:}$}$ model has no omitted variables

F(3, 36) = 1.03Prob > F = 0.3904

Fixed Effects Additional Graphs

Summary Statistics Unlogged Part 1

between within .0092494 .0243 .074 n = .0034738 .0304362 .0514362 T = .0034738 .0304362 .0514362 T = .0092494 .0243 .074 n = .0092494 .0243 .074 n = .0092494 .094362 .0514362 T = .0092494 .094362 .0	ations	erv	Obs	Max	Min	Std. Dev.	Mean		Variable
Within	C	=	N					overall	name
id overall between within	C	=	n					between	
Detween within		=	Т	•				within	
within 0 26.65957 26.65957 T =	470	=	N	51	1	14.55418	26.65957	overall	id
pop overall between within 49615.29 71485.25 72141.71 8252.2 887969.6 n = 2363.736 N = 2363.736 31799.09 70585.69 N = 72141.71 8252.2 887969.6 n = 2363.736	47	=	n	51	1	14.69587		between	
men overall between within	10	=	T	26.65957	26.65957	0		within	
within 2363.736 31799.09 70585.69 T T men overall between within 24427.47 35217.79 4010 251305 N = women overall between within 35538.53 4095 240222 n = women overall between within 36612.64 4155.5 247747.5 n = pop14 overall between within .0183693 .1365 .2338 n = pop1524 overall between within .0146587 .0976 .1784 n = pop2544 overall between within .0260151 .1913 .3244 n = pop4564 overall between within .0260151 .1913 .3244 n = pop6580 overall between within .0233833 .226 .336 N = pop80p~s overall between within .0145728 .2185064 .2956064 T = pop4564 overall between within .0163367 .0	470	=	N	508940	8075	71485.25	49615.29	overall	pop
men overall between within 24427.47 35217.79 4010 251305 240222 n = 1241.938 15521.97 35510.47 T = women overall between within 25187.77 36277.2 4060 257630 N = 1282.88 16282.27 35070.27 T = pop14 overall between within .128.288 16282.27 35070.27 T = pop14 overall between within .0192445 .127 .24 .2	47	=	n	487969.6	8252.2	72141.71		between	
between within	10	=	Т	70585.69	31799.09	2363.736		within	
within 1241.938 15521.97 35510.47 T = women overall between within 25187.77 36277.2 4060 257630 N = 257630 N = 36612.64 N = 36612.64 4155.5 247747.5 N = T = 247747.5 N = T = 247747.5 N = 128.288 N = 128.288 16282.27 35070.27 T = pop14 overall between within .0183693 .1365 .2338 N = N = 247747.5 N = N	470	=	N	251305	4010	35217.79	24427.47	overall	men
women overall between within 25187.77 36277.2 36217.2 35070.27 4060 257630 247747.5. 247747.5. 24774747.5. 247747.5. 2477474.1. 2477474. 247	47	=	n	240222	4095	35538.53		between	
between within	10	=	Т	35510.47	15521.97	1241.938		within	
within	470	=	N	257630	4060	36277.2	25187.77	overall	women
pop14 overall between within .1805191 .0192445 .127 .24 N = n = .0183693 .1365 .2338 n = n = .2026191 T = .2026191 N = .2026191 <t< td=""><td>47</td><td>=</td><td>n</td><td>247747.5</td><td>4155.5</td><td>36612.64</td><td></td><td>between</td><td></td></t<>	47	=	n	247747.5	4155.5	36612.64		between	
between within	10	=	Т	35070.27	16282.27	1128.288		within	
between within	470	=	N	.24	.127	.0192445	.1805191	overall	pop14
pop1524 overall between within .1190723 .0150081 .093 .199 N = n = n = n = n = n = n = n = n = n =	47	=	n	.2338	.1365	.0183693		between	
between within	10	=	Т	.2026191	.1557191	.0062766		within	
between within	470	=	N	.199	.093	.0150081	.1190723	overall	pop1524
within .0038067 .1036723 .1396723 T = pop2544 overall between within .2611064 .0296001 .173 .346 N = pop4564 overall between within .0145728 .2185064 .2956064 T = pop4564 overall between within .0233833 .226 .336 N = pop6580 overall between within .0075415 .2564915 .3038915 T = pop6580 overall between within .0163367 .0886 .1555 n = pop80p~s overall between within .0097967 .021 .076 N = popdens overall between within .0034738 .0304362 .0514362 T = popdens overall between within .0340507 140.1 5942.5 n = within .0841277 .0362411 .02 .22 N =	47	=	n		.0976	.0146587			
between within	10	=	Т			.0038067		within	
between within	470	=	N	.346	.173	.0296001	.2611064	overall	pop2544
pop4564 overall between within .2799915 .0233833 .226 .336 N = .3245 n = .3245 <td< td=""><td>47</td><td>=</td><td>n</td><td>.3244</td><td>.1913</td><td>.0260151</td><td></td><td></td><td></td></td<>	47	=	n	.3244	.1913	.0260151			
between within	10	=	T	.2956064	.2185064	.0145728		within	
within .0075415 .2564915 .3038915 T = pop6580 overall between within .0194293 .081 .178 N = between within .0163367 .0886 .1555 n = pop80p~s overall between within .0405362 .0097967 .021 .076 N = popdens overall between within .0092494 .0243 .074 n = popdens overall between within 1995.7 1486.873 139 6216 N = within 1500.07 140.1 5942.5 n = within 61.34244 1680.8 2485.8 T =	470	=	N	.336	.226	.0233833	.2799915	overall	pop4564
pop6580 overall between within .118734 .0194293 .081 .178 N = .1555 n = .0163367 .0886 .1555 n = .0107578 .091834 .157834 T = .009780p~s overall between within .0405362 .0097967 .021 .076 N = .0092494 .0243 .074 n = .0092494 .0304362 .0514362 T = .0092494 .0304362 .0304362 .0514362 N = .0092494	47	=	n	.3245	.2397	.0223493		between	
between within	10	=	T	.3038915	.2564915	.0075415		within	
between within	470	=	N	.178	.081	.0194293	.118734	overall	pop6580
pop80p~s overall between within .0405362 .0097967 .021 .076 n = .0092494 .0243 .074 n = .0034738 .0304362 .0514362 T = popdens overall between within 1995.7 1486.873 139 6216 n = .0216 n = .022 N = .0222 N = .0	47	=	n						
between within .0092494 .0243 .074 n = .0034738 .0304362 .0514362 T = .0034738 .0362411 .002 .022	10	=	T	.157834	.091834	.0107578		within	
within .0034738 .0304362 .0514362 T = popdens overall 1995.7 1486.873 139 6216 N = between 1500.07 140.1 5942.5 n = within 61.34244 1680.8 2485.8 T = west overall .0841277 .0362411 .02 .22 N =	470	=	N	.076	.021	.0097967	.0405362	overall	pop80p~s
popdens overall 1995.7 1486.873 139 6216 N = between within 61.34244 1680.8 2485.8 T = west overall .0841277 .0362411 .02 .22 N =	47	=	n	.074	.0243	.0092494		between	
between	10	=	Т	.0514362	.0304362	.0034738		within	
within 61.34244 1680.8 2485.8 T = west overall .0841277 .0362411 .02 .22 N =	470	=	N	6216	139	1486.873	1995.7	overall	popdens
west overall .0841277 .0362411 .02 .22 N =	47	=	n	5942.5	140.1	1500.07		between	
	10	=	Т	2485.8	1680.8	61.34244		within	
hetween 0362711 025 216 5 -	470	=	N	.22	.02	.0362411	.0841277	overall	west
Decween .0302/11 .020 .210 N =	47	=	n	.216	.025	.0362711		between	
within .0048032 .0691277 .1061277 T =	10	=	Т	.1061277	.0691277	.0048032		within	
nwest overall .0902128 .0673213 .01 .34 N =	470	=	N	.34	.01	.0673213	.0902128	overall	nwest
between .0674311 .014 .333 n =	47	=	n	.333	.014	.0674311		between	
within .0085119 .0482128 .1182128 T =	10	=	Т	.1182128	.0482128	.0085119		within	
nwesto overall .0335957 .0207546 .01 .11 N =	470	=	N	.11	.01	.0207546	.0335957	overall	nwesto
between .0203477 .01 .096 n =	47								
within .0049668 .0175957 .0475957 T =	10	=	Т			.0049668		within	

Summary Statistics Unlogged Part 2

hh	overall	22487.33	35675.23	3080	250150	N =	470
	between		36007.21	3115.5	242753.5	n =	47
	within		1040.632	15453.33	29883.83	Т =	10
hhone	overall	.3137021	.0738892	.21	.56	N =	470
	between		.0737563	.222	.534	n =	47
	within		.0111359	.2807021	.3507021	т =	10
la la caracta a d		2112617	0212155	.22	2.7	.,	470
hhnoch~d		.3113617	.0313155		.37	N =	
	between		.0310584	.221	.366	n =	47
	within		.0058772	.2913617	.336361/	Т =	10
hhchild	overall	.3752128	.0530343	.21	.49	N =	470
	between		.0524533	.23	.481	n =	47
	within			.3442128		Т =	10
	WICHIII		.0100013	.3112120	.1002120	_	10
hhavgs~e	overall	2.333191	.2049609	1.8	2.8	N =	470
	between		.2010852	1.82	2.7	n =	47
	within		.0484735	2.203191	2.473191	т =	10
lowinc		.3719255	.0301398	.29	.456	N =	470
	between		.0291961	.2957	.4234	n =	47
	within		.0085061	.3471255	.4178255	Т =	10
highinc	ovorall	.2420617	.0449745	.17	.38	N =	470
nightne	between	.2420017	.044644		.3639	n =	47
	within				.2666617	т =	10
	WICIIIII		.0002379	.2101017	.2000017	1 -	10
inacti~p	overall	.1782766	.0333251	.12	.29	N =	470
	between		.0325613	.136	.28	n =	47
	within		.0084066	.1407766	.2112766	Т =	10
unemp	overall	.0462638			.109	N =	470
	between		.0088884	.0349	.0732	n =	47
	within		.0111657	.0170638	.0820638	Т =	10
year	overall	2009.5	2.875342	2005	2014	N =	470
year	between	2009.3	2.073342	2009.5	2009.5	n =	47
	within		2.875342	2009.5	2009.3	T =	10
	WICIIIII		2.0/3342	2003	2014	1 -	10
totmuni	overall	2556.9	852.98	1057	5505	N =	470
	between		765.3937	1479.6	4460	n =	47
	within		391.1384	1002.25	4631.25	Т =	10
totord~y	overall	88.00851			191	N =	470
	between			51.6		n =	47
	within		15.41516	37.95851	151.8085	Т =	10
admin	0**0**211	18.3266	6 21/12	8	63	N =	470
	between	10.3200		12.25		n =	47
	within			5.626596		T =	10
	WICHIII		1.000107	3.020330	37.0200	_	10
tottra~t	overall	26.86596	34.20473	0	182	N =	470
	between		30.80465	1	115.5	n =	47
	within		15.46761	-9.634043	176.916	Т =	10
totecon		23.08511			170	N =	470
	between		23.64964			n =	47
	within		11.68656	-42.11489	86.28511	Т =	10
toteduc	overall	179.5787	122.7913	57	1224	N =	470
2222440	between	1,3,3,0,		65.3		n =	47
	within			-93.72128		T =	10
educac~m	overall	56.15213	30.1045	14	209	N =	470
	between		27.746	17.9	167.5	n =	47
	within		12.29689	14.90213	180.7521	Т =	10

Summary Statistics Unlogged Part 3

•		I					
totcult	overall	247.0957	80.62573	72	615	N =	470
	between		74.80452			n =	47
	within		31.81467	120.9957	403.8957	Т =	10
totsoc	overall	622.7761	356.8515	131	1847	N =	469
	between		344.9585	292.3		n =	47
	within		102.3853	185.8761	867.8761	T-bar =	9.97872
incsec	overall	214.4862	155.5536	12	842	N =	470
	between		152.212	58.4	688.5	n =	47
	within		38.38007	69.28617	367.9862	Т =	10
empart	overall	115.5468	115.8509	0	571	N =	470
	between		105.5939	29.7	459.3	n =	47
	within		49.85286	-77.75319	298.5468	T =	10
socwork	overall	40.94574	29.36974	7	171	N =	470
BOCWOIN	between	10.31371	26.90814			n =	47
	within			-4.654255	87.14574	T =	10
childc~e	overall	14.42964	8.817133	0	73	N =	469
	between		8.201609	2.4		n =	47
	within		3.432913	-3.370362	36.72964	T-bar =	9.97872
aaahauaa	overall	572.581	546.5781	21	3652	N =	469
socnouse	between	372.361	448.694	93		n =	409
	within			-735.619	2471.131		9.97872
tothea~h	overall	209.0096	45.09004	64	366	N =	470
	between		40.14683	97.3	285.85	n =	47
	within		21.26671	121.0096	317.0096	Т =	10
				_			
youth		27.17234		13.3	128	N =	470
	between within		14.87668 9.460652	13.3	119.3 62.37234	n = T =	47 10
	WICHIE		3.100032	.3723101	02.37231	<u> </u>	10
totemp	overall	22131.97	38335.5	1511	269735	N =	470
	between		38682.53	1789.8	259366.3	n =	47
	within		1409.79	12091.67	32500.67	T =	10
			0.400.000				450
acqperc		.0319837	.0490363	.0000844	.2399092	N =	470 47
	between within			0052015	.0870893	n =	10
	WICHIII		.0000542	.0032013	.0070033		10
tradperc	overall	.0816986	.0614631	.0072062	.3491566	N =	470
	between		.0605435	.0085706	.3194228	n =	47
	within		.0135105	.0354071	.1918064	T =	10
modperc	overall	.0183905	.0128007	.0011669	.0704328	N =	470
	between within		.0114547	.0017937	.046626	n =	47 10
	MICHIE		.0039299	0010631	.0660703	T =	10
busser~c	overall	.1396065	.0578555	.0623245	.381504	N =	470
	between		.0571698	.0731365	.3647129	n =	47
	within		.0118992	.0862688	.1800796	T =	10
distperc		.1804288	.0832409	.0486337	.4177742	N =	470
	between within		.082501	.0627316	.3901956	n =	47
	MICHIE		.0159135	.1245002	.24691	1 -	10
oservp~c	overall	.2191241	.0528381	.0865411	.4206835	N =	470
-	between		.0513019	.0980709	.3974845	n =	47
	within		.0145081	.1745421	.2842452	T =	10
specco~c		.0501904	.0335142	.0074215	.2309062	N =	470
	between		.0323231	.0148653	.1713933	n =	47
	within		.0099231	008188	.1242699	T =	10
govtperc	overall	.2781092	.1075001	.1127136	.6367908	N =	470
55020	between		.1067362	.1385973	.5688158	n =	47
	within		.0195518	.1968693	.3488635	T =	10
herfin~l		.219985	.0527458	.1519506	.4488082	N =	470
	between		.052068	.1617858	.390583	n =	47
	within	I	.0110934	.1466369	.2885403	T =	10

Summary Statistics Logged Part 1

Variable		Mean	Std. Dev.	Min	Max	Observat.	ions
logpop	overall	10.40257	.8017685	8.996528	13.14009	N =	470
	between		.8090019	9.018057	13.09763	n =	47
	within		.0301339	10.05524	10.5043	T =	10
logmen	overall	9.694697	.7990358	8.296547	12.43442	N =	470
	between		.8062471	8.31734	12.38887	n =	47
	within		.0299638	9.34521	9.792325	T =	10
logwomen	overall	9.723599	.8047276	8.308938	12.45928	N =	470
	between		.8119766	8.332003	12.41985	n =	47
	within		.0305367	9.378647	9.829445	T =	10
logpop14	overall	-1.717597	.1068984	-2.063568	-1.427116	N =	470
	between		.1018238	-1.992738	-1.453533	n =	47
	within		.0354703	-1.871142	-1.595279	T =	10
log~1524	overall	-2.135133	.1166096	-2.375156	-1.61445	N =	470
	between		.1136383	-2.327069	-1.725969	n =	47
	within		.0305279	-2.258267	-2.023614	T =	10
log~2544	overall	-1.349318	.1146545	-1.754464	-1.061316	N =	470
	between		.1004814	-1.656112	-1.125926	n =	47
	within		.0569465	-1.504192	-1.209513	T =	10
log~4564	overall	-1.276532	.0845585	-1.48722	-1.090644	N =	470
	between		.0807256	-1.428776	-1.125747	n =	47
	within		.0275422	-1.357387	-1.182593	T =	10
log~6580	overall	-2.144072	.1624871	-2.513306	-1.725972	N =	470
	between		.1378828	-2.426417	-1.862643	n =	47
	within		.0880638	-2.369399	-1.862582	T =	10
logpop~s	overall	7.213945	.9996342	4.934474	8.734882	N =	470
	between		1.008975	4.942349	8.689418	n =	47
	within		.0278157	7.062665	7.390451	T =	10
logwest	overall	-2.564771	.4304782	-3.912023	-1.514128	N =	470
	between		.4294887	-3.709291	-1.532736	n =	47
	within		.0662622	-2.767504	-2.222415	T =	10
lognwest	overall	-2.691882	.7957114	-4.60517	-1.07881	N =	470
	between		.7931125	-4.327911	-1.09989	n =	47
	within		.12728	-3.315714	-2.275994	T =	10
lognwe~o		-3.56937	.5976377	-4.60517	-2.207275	N =	470
	between		.5816355	-4.60517		n =	47
	within		.1592572	-4.193203	-2.945538	T =	10
loghh	overall	9.546363	.8586048	8.032685	12.42982	N =	470
	between within		.866153 .0371184	8.0441 9.189844	12.39959 9.663768	n = T =	47 10
loghhone		-1.184343	.2194419	-1.560648	5798185	N =	470
	between		.2179239	-1.506236	6278541	n =	47
	within		.0396897	-1.294175	-1.048925	T =	10
loghhn~d		-1.172236	.106537		9942523	N =	470
	between			-1.509683	-1.005212	n =	47
	within		.0188803	-1.234112	-1.089841	T =	10
loghhc~d		9911777	.1518564	-1.560648	7133499	N =	470
	between			-1.471003	7319506	n =	47
	within		.0282314	-1.080823	9064694	T =	10
loghha~e		.8432463	.0903265	.5877867	1.029619	N =	470
	between		.0888361	.5986001	.99284	n =	47
	within		.0204563	.7862158	.8993307	T =	10

Summary Statistics Logged Part 2

	-						
loglow~c	overall	9924591	.0833196	-1.237874	7852625	N =	470
-	between		.0808847	-1.21855	8595589	n =	47
	within		.0229208	-1.067136	8855905	Т =	10
loghig~c	overall	-1.434598	.1764974	-1.771957	967584	N =	470
	between		.1748173	-1.702172	-1.010993	n =	47
	within		.0343032	-1.54484	-1.329531	T =	10
logina~p	overall	-1.740672	.1778218	-2.120264	-1.237874	N =	470
	between		.1728989	-1.995756	-1.273613	n =	47
	within		.0479606	-1.927158	-1.564463	T =	10
logtot~i		7.793288	.3260777	6.96319	8.613412	N =	470
	between		.2921355	7.292521	8.401851	n =	47
	within		.1504035	7.148687	8.394409	T =	10
logtot~y		4.430378	.311449	3.555348	5.252274	N =	470
	between		.2583835	3.923011	4.897351	n =	47
	within		.1775377	3.659551	5.098268	T =	10
logadmin		2.862592	.2911019	2 070442	4.143135	N =	470
logadmin	between	2.862592	.1973778	2.079442 2.500193	3.415645		470 47
	within		.1973776	2.240878	4.085436	n = T =	10
	WICHIII		.2137079	2.240070	4.005450	1 -	10
logto~rt	overall	2.434385	1.420259	0	5.204007	N =	469
10910 11	between	2.434303	1.312324	0	4.720701	n =	
	within		.5784528	.6523501	5.526021	1	9.97872
						_	
logto~uc	overall	5.054202	.4797809	4.043051	7.109879	N =	470
. ,	between		.3798131	4.17446	5.8714	n =	47
	within		.2978254	3.991989	6.292681	Т =	10
logedu~m	overall	3.909469	.4772805	2.639057	5.342334	N =	470
	between		.4406926	2.872797	5.110528	n =	47
	within		.1931672	3.202432	5.315396	T =	10
logto~lt	overall	5.461232	.3102295	4.276666	6.421622	N =	470
	between		.28437	4.705169	6.253217	n =	47
	within		.1301071	5.032729	6.020657	T =	10
logto~oc		6.283739	.5483673		7.521318	N =	469
	between		.4962275	5.606916	7.422369	n =	
	within		.2430725	5.445554	6.733004	T-bar =	9.97872
		- 100010	5605060		6 50550		4.7.0
loginc~c		5.103818	.7635969	2.484907	6.73578	N =	
	between		.694716	3.922015	6.529933	n =	
	within		.3312272	3.541355	5.852239	Т =	10
logsoc~k	ovorall	3.513023	.6126345	1.94591	5.141664	N =	470
10930C*K	between	3.313023	.5568937			n =	
	within		.266724	2.597685	4.531374	T =	
	WICHIII		.200724	2.337003	4.331374	1 -	10
logchi~e	overall	2.529451	.5592089	0	4.29046	N =	466
1090111 0	between	2.023101	.5002419		3.981495	1	47
	within		.2800689	.8041249	3.532044	1	9.91489
logsoc~e	overall	5.938174	.9523304	3.044523	8.203031	N =	469
	between		.8076058	4.424095	7.587023	n =	47
	within		.5158982	3.426124	7.572241	T-bar =	9.97872
logtot~h	overall	5.314384	.2512663	4.158883	5.902633	N =	470
	between		.2294782	4.559858	5.650788	n =	47
	within		.1071684	4.486589	5.690542	Т =	10
logyouth		3.143112		0	4.85203	N =	
	between		.3743984		4.780593	n =	
	within	I	.4898399	.2318282	4.251582	T-bar =	9.97872

Summary Statistics Logged Part 3

logacq~c	overall	-4.785795	1.917491	-9.85917	-1.427495	N =	468
	between		1.913358	-9.422994	-1.55326	n =	47
	within		.3178401	-6.464373	-2.523615	T-bar =	9.95745
logtra~c	overall	-2.822639	.8775548	-4.932812	-1.052235	N =	470
_	between		.8702694	-4.76396	-1.142328	n =	47
	within		.1651285	-3.493525	-1.618936	Т =	10
logmod~c	overall	-4.274274	.8235504	-6.753438	-2.653097	N =	470
	between		.7845249	-6.353245	-3.068873	n =	47
	within		.2730693	-5.395537	-2.746143	Т =	10
logbus~c	overall	-2.037586	.3562823	-2.7754	9636339	N =	470
	between		.3472893	-2.619549	-1.010079	n =	47
	within		.0929606	-2.454434	-1.78009	T =	10
logdis~c	overall	-1.825595	.4932233	-3.023438	8728142	N =	470
-	between		.4862612	-2.774206	9417364	n =	47
	within		.1065677	-2.379299	-1.286857	Т =	
logose~c	overall	-1.546985	.2431683	-2.447136	8658745	N =	470
3	between		.2360578	-2.325186	9230569	n =	47
	within		.0669093	-1.754206	-1.25904	T =	
logspe~c	overall	-3.17249	.5954777	-4.903378	-1.465744	N =	470
3 1	between		.5761259	-4.307948	-1.780918	n =	47
	within		.1704175	-3.76792	-2.603266	T =	
loggov~c	overall	-1.349238	.3706148	-2.182906	4513141	N =	470
3 3	between		.3662586	-1.98448	5646995	n =	47
	within		.076054	-1.635589	-1.055007	T =	
logher~l	overall	-1.538468	.2127176	-1.8842	8011597	N =	470
3	between		.2109322	-1.822331		n =	
	within		.0401272	-1.740982		T =	
logunemp	overall	-3.115759	.2855727	-3.649659	-2.216407	N =	470
3 1	between		.1768876	-3.37631		n =	
	within		.2255282	-3.589212		T =	
logtot~p	overall	9.426003	.9706809	7.320527	12.5052	N =	470
5 1	between		.9786509	7.483975	12.46562	n =	
	within		.0533189	9.189335	9.572901	Т =	
logtot~n	overall	2.649013	.9983893	0	5.135798	N =	468
-	between		.8728214	1.046287		n =	47
	within		.4997516	.209861	4.418382	Т =	9.95745
logemp~t	overall	4.260232	1.139815	0	6.347389	N =	469
	between		.8444905	2.848	6.123096	n =	
	within		.7739804	.80596	5.985695	T-bar =	9.97872
		I				I	

Unemployment Random effects

Random-effects GLS regression	Number of obs	=	459
Group variable: id	Number of groups	=	47
R-sq:	Obs per group:		
within = 0.3877	min	=	7
between = 0.8526	avg	=	9.8
overall = 0.5526	max	=	10
	Wald chi2(28)	=	428.97
$corr(u_i, X) = 0 $ (assumed)	Prob > chi2	=	0.0000

logunemp	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
logtotecon	.0474131	.0155726	3.04	0.002	.0168913	.0779348
logempart	0604058	.0159741	-3.78	0.000	0917146	0290971
logpop1524	.0295288	.1362163	0.22	0.828	2374502	.2965078
logpop4564	.2015765	.1916297	1.05	0.293	1740108	.5771639
logpopdens	0277072	.0286788	-0.97	0.334	0839165	.0285022
logwest	0891161	.0637596	-1.40	0.162	2140825	.0358504
lognwest	.1589663	.0432316	3.68	0.000	.0742339	.2436986
lognwesto	.2048187	.0529825	3.87	0.000	.1009749	.3086626
logpop	0299421	.0350728	-0.85	0.393	0986834	.0387993
loghhchild	3187103	.1603935	-1.99	0.047	6330758	0043447
loglowinc	.7223032	.254529	2.84	0.005	.2234356	1.221171
loginactivepop	5915265	.1482167	-3.99	0.000	8820259	3010271
logtoteduc	0094922	.0275499	-0.34	0.730	063489	.0445045
logincsec	.1458488	.0333923	4.37	0.000	.080401	.2112965
logsocwork	0365295	.0266189	-1.37	0.170	0887016	.0156425
logchildcare	.0026804	.0238294	0.11	0.910	0440243	.0493852
logsochouse	0230696	.0125937	-1.83	0.067	0477527	.0016135
logyouth	.0885069	.0187685	4.72	0.000	.0517214	.1252925
logadmin	05596	.0440477	-1.27	0.204	1422919	.0303719
logtottransport	.0250946	.0119124	2.11	0.035	.0017466	.0484426
logacqperc	.0149758	.0112243	1.33	0.182	0070234	.0369749
logtradperc	.0751014	.0340396	2.21	0.027	.0083851	.1418177
logmodperc	.0186265	.0187129	1.00	0.320	0180501	.0553031
logbusservperc	0737625	.0568727	-1.30	0.195	185231	.0377061
logdistperc	0757777	.0526942	-1.44	0.150	1790566	.0275011
logoservperc	.098262	.0705959	1.39	0.164	0401036	.2366275
loggovtperc	0059724	.0846249	-0.07	0.944	1718341	.1598894
logherfindahl	.3604249	.15712	2.29	0.022	.0524752	.6683745
_cons	-1.700336	.855913	-1.99	0.047	-3.377894	022777
sigma_u	.04555905					
sigma_e	.17367284					
rho	.06438472	(fraction	of varia	nce due t	o u_i)	

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	459	0.2188	0.6956	1.67	0.4335

Hausman Test Results Unemployment

. hausman fe re

	Coeffi	cients ——		
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fe	re	Difference	S.E.
logtotecon	.0332397	.0474131	0141734	.013626
logempart	0468321	0604058	.0135737	.0055894
logpop1524	2314354	.0295288	2609642	.2899434
logpop4564	-1.236799	.2015765	-1.438375	.4197484
logpopdens	1.00678	0277072	1.034487	.4267919
logwest	.3889444	0891161	.4780604	.1327443
lognwest	.4601222	.1589663	.301156	.0821633
lognwesto	.2597306	.2048187	.0549119	.0416746
logpop	.1372194	0299421	.1671615	.3714037
loghhchild	-1.040095	3187103	7213852	.4045078
loglowinc	.627446	.7223032	0948573	.3221508
loginactiv~p	3497752	5915265	.2417513	.1124344
logtoteduc	.006383	0094922	.0158752	.0199096
logincsec	.1210151	.1458488	0248337	.0161892
logsocwork	0448503	0365295	0083208	.0222495
logchildcare	0333514	.0026804	0360318	.0215153
logsochouse	0239886	0230696	0009189	.0110144
logyouth	.0606014	.0885069	0279055	.0116936
logadmin	122472	05596	066512	.0159603
logtottran~t	.0413374	.0250946	.0162428	.0110734
logacqperc	.0664322	.0149758	.0514564	.0263259
logtradperc	0131928	.0751014	0882942	.0610716
logmodperc	.0148597	.0186265	0037668	.0332104
logbusserv~c	2195808	0737625	1458184	.1017691
logdistperc	1460362	0757777	0702584	.0882895
logoservperc	.0120277	.098262	0862342	.146959
loggovtperc	.1244793	0059724	.1304517	.1374802
logherfind~l	.4936102	.3604249	.1331853	.2902392

 $\mbox{b = consistent under Ho and Ha; obtained from xtreg} \\ \mbox{B = inconsistent under Ha, efficient under Ho; obtained from xtreg} \\$

Employment Fixed Effects

Fixed-effects (within) regression	Number of obs	=	459
Group variable: id	Number of groups	=	47
R-sq:	Obs per group:		
within $= 0.4511$	mir	=	7
between = 0.5865	avo	r =	9.8
overall = 0.5941	max	=	10
	F(28,384)	=	11.27
$corr(u_i, Xb) = 0.4840$	Prob > F	=	0.0000

logtotemp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logtotecon	0130418	.0050239	-2.60	0.010	0229197	003164
logempart	.0197294	.004109	4.80	0.000	.0116505	.0278083
logpop1524	2426918	.0777778	-3.12	0.002	3956156	0897681
logpop4564	.4794565	.11203	4.28	0.000	.2591876	.6997255
logpopdens	.34521	.1038556	3.32	0.001	.1410131	.5494069
logwest	0525721	.0357543	-1.47	0.142	1228708	.0177267
lognwest	.0051171	.0225415	0.23	0.821	0392032	.0494373
lognwesto	0589243	.0163663	-3.60	0.000	0911031	0267454
logpop	.062309	.0905753	0.69	0.492	1157765	.2403946
loghhchild	1871682	.1056504	-1.77	0.077	394894	.0205575
loglowinc	1136891	.0996829	-1.14	0.255	3096818	.0823035
loginactivepop	.0682573	.0451684	1.51	0.132	020551	.1570655
logtoteduc	0120736	.0082528	-1.46	0.144	0282998	.0041527
logincsec	0273226	.00901	-3.03	0.003	0450377	0096076
logsocwork	.0121426	.0084232	1.44	0.150	0044188	.028704
logchildcare	0055358	.0077949	-0.71	0.478	0208619	.0097902
logsochouse	0065233	.0040621	-1.61	0.109	01451	.0014634
logyouth	0006876	.0053689	-0.13	0.898	0112438	.0098686
logadmin	.0168463	.0113749	1.48	0.139	0055185	.0392111
logtottransport	002893	.0039488	-0.73	0.464	010657	.0048711
logacqperc	0038038	.0069485	-0.55	0.584	0174655	.009858
logtradperc	.0404322	.0169754	2.38	0.018	.0070558	.0738085
logmodperc	.0166671	.0092552	1.80	0.073	0015301	.0348642
logbusservperc	.0328214	.0283054	1.16	0.247	0228315	.0884742
logdistperc	.0087267	.0249637	0.35	0.727	0403559	.0578093
logoservperc	3346286	.0395839	-8.45	0.000	412457	2568002
loggovtperc	0119968	.0391959	-0.31	0.760	0890623	.0650687
logherfindahl	.2863002	.080131	3.57	0.000	.1287498	.4438505
_cons	6.159587	1.167535	5.28	0.000	3.864026	8.455148
sigma_u	.71525344					
sigma_e	.04216649					
rho	.99653656	(fraction	of varia	nce due t	o u_i)	

F test that all $u_i=0$: F(46, 384) = 142.55 Prob > F = 0.0000

. sktest residuals

Skewness/Kurtosis tests for Normality

					j	oint
Variable	=	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	5	459	0.0000	0.2312	17.96	0.0001

Employment Random Effects

Random-effects GLS regression	Number of obs	=	459
Group variable: id	Number of groups	=	47
R-sq:	Obs per group:		
within $= 0.3439$	min	=	7
between = 0.9289	avg	=	9.8
overal1 = 0.9271	max	=	10
	Wald chi2(28)	=	1518.67
$corr(u_i, X) = 0$ (assumed)	Prob > chi2	=	0.0000

logtotemp	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
logtotecon	011781	.0060786	-1.94	0.053	0236948	.0001328
logempart	.0183619	.0050748	3.62	0.000	.0084154	.0283083
logpop1524	1970143	.0887746	-2.22	0.026	3710095	0230192
logpop4564	.2205507	.1275422	1.73	0.084	0294275	.4705289
logpopdens	.0978489	.0391569	2.50	0.012	.0211028	.174595
logwest	0830633	.0391126	-2.12	0.034	1597227	0064039
lognwest	.0116423	.026377	0.44	0.659	0400557	.0633403
lognwesto	0746799	.020004	-3.73	0.000	1138871	0354728
logpop	.9504571	.0454052	20.93	0.000	.8614645	1.03945
loghhchild	5189531	.1116414	-4.65	0.000	7377662	30014
loglowinc	.0136669	.1139181	0.12	0.905	2096085	.2369424
loginactivepop	.0433048	.0545023	0.79	0.427	0635177	.1501273
logtoteduc	0063357	.010211	-0.62	0.535	026349	.0136775
logincsec	0251679	.011219	-2.24	0.025	0471568	003179
logsocwork	.0210161	.0103169	2.04	0.042	.0007954	.0412368
logchildcare	0065427	.0096495	-0.68	0.498	0254555	.01237
logsochouse	004045	.0049613	-0.82	0.415	0137689	.0056789
logyouth	0019897	.006656	-0.30	0.765	0150353	.0110559
logadmin	.0129906	.0141737	0.92	0.359	0147894	.0407706
logtottransport	.0033549	.0048654	0.69	0.490	0061812	.012891
logacqperc	0026568	.0081022	-0.33	0.743	0185368	.0132232
logtradperc	.0157073	.0195107	0.81	0.421	0225329	.0539476
logmodperc	.0183175	.0110344	1.66	0.097	0033096	.0399446
logbusservperc	.021935	.033204	0.66	0.509	0431435	.0870136
logdistperc	.0143146	.0290276	0.49	0.622	0425784	.0712076
logoservperc	4403096	.0466246	-9.44	0.000	5316921	3489272
loggovtperc	0711378	.0463892	-1.53	0.125	1620589	.0197833
logherfindahl	.2364798	.095144	2.49	0.013	.050001	.4229586
_cons	-2.370068	.6693324	-3.54	0.000	-3.681935	-1.0582
sigma_u	.13472478					_
sigma_e	.04216649					
rho	.91078166	(fraction	of varia	nce due t	o u_i)	

. sktest residuals

Skewness/Kurtosis tests for Normality

					joint
Variable	Obs	Pr(Skewness)	Pr(Kurtosis)	adj chi2(2)	Prob>chi2
residuals	459	0.0000	0.0173	32.96	0.0000

Hausman Test Employment

•	Coeffi			
	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	fe	re	Difference	S.E.
logtotecon	0130418	011781	0012609	•
logempart	.0197294	.0183619	.0013675	•
logpop1524	2426918	1970143	0456775	•
logpop4564	.4794565	.2205507	.2589058	•
logpopdens	.34521	.0978489	.2473611	.0961911
logwest	0525721	0830633	.0304912	•
lognwest	.0051171	.0116423	0065253	•
lognwesto	0589243	0746799	.0157557	•
logpop	.062309	.9504571	888148	.0783725
loghhchild	1871682	5189531	.3317849	•
loglowinc	1136891	.0136669	1273561	•
loginactiv~p	.0682573	.0433048	.0249525	•
logtoteduc	0120736	0063357	0057378	•
logincsec	0273226	0251679	0021548	•
logsocwork	.0121426	.0210161	0088735	•
logchildcare	0055358	0065427	.0010069	•
logsochouse	0065233	004045	0024783	•
logyouth	0006876	0019897	.0013021	•
logadmin	.0168463	.0129906	.0038557	•
logtottran~t	002893	.0033549	0062478	•
logacqperc	0038038	0026568	001147	•
logtradperc	.0404322	.0157073	.0247248	•
logmodperc	.0166671	.0183175	0016504	•
logbusserv~c	.0328214	.021935	.0108863	
logdistperc	.0087267	.0143146	0055879	
logoservperc	3346286	4403096	.1056811	
loggovtperc	0119968	0711378	.059141	
logherfind~l	.2863002	.2364798	.0498204	

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(28) = $(b-B)'[(V_b-V_B)^(-1)](b-B)$ = 109.55Prob>chi2 = 0.0000

(V_b-V_B is not positive definite)