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ABSTRACT We develop a model based segmentation approach that accommodates and exploits heterogeneous data. A finite mixture

regression model is extended with variable selection abilities through likelihood penalization. This approach merges simultaneous estimation of

a finite mixture model based on the EM algorithm with continuous variable selection into a single feasible procedure. The result is a flexible

and powerful modeling algorithm that is able to deal with todays complexity and high-dimensionality of datasets. The model combines the

value of mixture modeling and continuous feature selection resulting in a synergy of their advantages. The flexibility allows for finding groups

of related observations while selecting the optimal subset of variables within these groups independently. First, the model is applied on a

heterogeneous population of individuals. We succeed in identifying four segments containing customers with varying desirable characteristics

and behavior making them valuable for the company. Two segments with less desirable properties are revealed. The results provide a foundation

for a more efficient targeted marketing approach in comparison to treating the population as a whole. Second, we use a simulation to study

performance and to display the advantages of this approach. The results indicate that extending a finite mixture model with variable selection

abilities yields a powerful tool. Good performance is observed in terms of selecting the correct subset of variables to include while accurately

estimating the effects of these variables. The model excels in high-dimensional settings where a relatively large amount of variables are of interest.

KEYWORDS finite mixture model; variable selection; penalization; elastic net; model based clustering; segmentation

1 INTRODUCTION

C urrently, data is accumulated at unprecedented
rates. Access to detailed information of cus-

tomers and their behavior is not an exception. As a
result, the concept of customer relationship manage-
ment has evolved into an important part of business
strategies. This allows companies to optimize the way

1email: marnixkoops@gmail.com, student ID: 432409

they analyse and target their customers. Acquiring
and retaining high valued customers should be a top
priority for any firm. It is often the case that retaining
is more attractive than acquiring new customers in
financial terms. The relationship with a customer can
be seen as a capital asset which requires appropriate
management. Increasing attention is given to an
individual specific approach to develop and maintain
long-term relationships that are beneficial for both
the company and the customer. This view differs
from a more traditional approach, which looks at
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single transactions and emphasizes short-term profit.
Ultimately, the goal of marketing is understanding
customer needs and to provide appropriate services
but not all customers are identical. Comprehension
of the customer-base is essential to support choices
in differentiation across customers. This research
provides data-driven support to justify decisions for a
targeted marketing approach.

We employ the data of medium-sized health
insurance company in the Netherlands but the
principles in this work hold for any company with
sufficient data regarding their customer-base. Proper
relationship management is of great importance and
targeted marketing can be a valuable tool to improve
business. This is especially true in the field of health
insurance. If a customer is satisfied with the services
offered by their provider, it is not unusual that he or
she remains a loyal customer for a long period of time.
One may argue that every customer is of potential
worth and should receive the best treatment possible
in any case. However, like in almost any market or
population, a vast number of heterogeneity is present.
For one thing, a numerous number of customer
characteristics are involved. Secondly, the behavior of
these respective customers can vary significantly. For
example in terms of claim frequency and monetary
amount. Thirdly, the health insurance system itself is
also a cause of variation in individuals. This is due to
the possibility of many product combinations with
multiple options and coverages.

The Dutch health insurance system has been
relatively stable over the last decade. The basic
insurance covers common medical care and can
be extended by countless additional modules and
options such as extra coverage for dental treatments
or foreign countries. This allows for many unique
combinations of packages and modules. The system
can be summarized as follows. Every Dutch citizen is
required by law to have a basic level health insurance.
Correspondingly, companies are not allowed to
refuse anyone requesting a basic level insurance as
of January 2006. However, the obligation to insure
anyone does not hold for additional packages and
modules that extend insurance beyond the basic level.

A combination of the three above-mentioned
sources of heterogeneity implicate that customers are
not all identical. Meaning they can be structurally

different. Accordingly, they should also not be
viewed or managed equally. Customers are diverse
which implies it is not efficient to regard the entire
population as an aggregate (Allenby and Rossi, 1998).
To clarify, customers may have different service needs
and wishes or could be more attractive than others
from the viewpoint of the company. For instance, it
can be argued that a loyal individual with a positive
financial balance is a more desirable customer than
an individual with a negative monetary value.
In addition, targeted marketing is a costly and
sometimes complex venture while an individual can
switch health insurance provider hassle-free at the
end of each year. Therefore, spreading resources
and attention evenly across the customer-base is not
an efficient strategy. It seems desirable and smart
to differentiate the resources allocated to specific
customers accordingly. Especially considering the cur-
rent information environment where a large number
of data on customer characteristics and behavior is
available on an individual level. In order to support
or justify these differentiations, we first need to gain
understanding in our customers and their behavior.
For that reason, the main focus of this research is
capturing customer heterogeneity by modeling the
structure of our population. The heterogeneity in
our data is addressed by means of a a segmentation
approach. Consequently, a segmented structure can
be used to adequately create distinction between
customers and a corresponding targeted marketing
approach. Comprehension of the customer base
can provide support to perform targeted marketing
actions on specific segments. A more individual
specific approach will most likely improve services
and lead to higher customer satisfaction levels and
loyalty. Another opportunity is using this information
to develop strategic marketing campaigns to obtain
an optimal future customer base. This can be
achieved by shifting the focus towards attracting
new customers that fit into an identified desirable
profile. To gain insight and achieve distinction in our
population we will exploit the differences and similar-
ities in our customer data by means of a segmentation.

A segmentation addresses heterogeneity by as-
signing observations into groups. The goal is to
find a solution where observations are relatively
similar within a group but different across groups.
A segmentation can be interpreted as a conceptual
model of how one wishes to view a market (Wedel
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and Kamakura, 2012). Insight into an underlying
structure allows to differentiate between customers
and possibly identify groups with higher value or
desirability for the company. Numerous customer
valuation approaches exist but the majority of them
predominantly focus on financial transactions. In
case of a non-contractual setting the lifetime or churn
rate of a customer can also be taken into account,
an example is the Customer Lifetime Value (CLV)
model (Berger and Nasr, 1998). However, in this
research multiple other characteristics which are not
easily expressed in a monetary value are of interest.
Moreover, we are dealing with a contractual setting
in which active customers do not need to be identified.

To summarize, a segmentation of the customer base
can identify subgroups present in the data. Market
segmentation is an essential part of both marketing
theory and application (Wedel and Kamakura, 2012).
This information gives support to adjusts resource
allocation across customers accordingly. Insight in the
customers allows for targeted marketing actions and
paves the way for an optimal customer relationship
management approach. Some interesting possibilities
are

• Targeted marketing programs to focus on retain-
ing customers in desirable segments
• Invest more in relationships with valued existing

customers
• Reveal desirable customer profiles or types to

develop strategic marketing campaigns for new
customer acquisition

The central research question is formulated as

• Can we utilize the heterogeneity in our data
to reveal and identify distinguishable customer
groups?

The rest of this paper is structured in the following
manner: Section 2 shortly introduces the data that is
used and provides some summary statistics. In Sec-
tion 3 the employed methodology is described. First,
we review theory and cover the fundamentals of mod-
eling heterogeneity. Secondly, we introduce a method
to perform simultaneous estimation with continuous
feature selection in a single algorithm. Consequently,
the results are interpreted and discussed in section 4.
Next, we study performance of the developed mod-
eling approach by means of a simulation study in
Section 5. Lastly, Section 6 concludes with the main
findings of this research.

2 DATA
This section serves to introduce the data and shortly
covers the preparation steps to allow for modeling. In
this research we employ the data of a health insurance
company. Table 1 gives an overview and summary
statistics of the variables in the dataset.

2.1 DATA PREPARATION
In order to collect the data full access is granted to
the server of the company containing a detailed SQL
database consisting of over 30 tables. The majority
of these tables contain dozens of variables and well
over millions of observations. The variables are mixed
meaning both numerical covariates as categorical fac-
tors are present. Numerous tables provide informa-
tion on an individual-specific level regarding roughly
500,000 customers. Naturally, not all the available
data is relevant or useful for our research goal. The
potentially meaningful data ranges from demographic
details such as age, gender and location to detailed
information on the composition of insurance packages
and modules.

Furthermore, numerous events and behaviors are
extensively logged in the database such as singular
transactions for prescriptions, hospital procedures
like surgeries and other claims made by customers.
These event databases are very extensive and can
be used to construct important variables on an
individual specific level such as claim amounts and
frequencies. For instance, a single claim is often
represented by multiple observations in the the table
logging multiple steps and various information of the
process. As a result, it is no exception these tables
contain over tens of millions of observations. Hence,
careful processing and aggregation is needed to
correctly summarize the information in these tables
and explicitly assign events and behavior to specific
individual customers.

The structure of the SQL database is well organized,
allowing for information from different tables to be
linked or matched. Again, care is needed in this
process as the tables have varying levels of detail,
for example in terms of time-frames. Hence, not all
data can be linked as given and correct preprocessing
such as aggregation is required. Many of the final
variables included in the dataset were not present in
the database as is but required feature engineering
to be constructed based on the available information.
For example, the number of people on a single
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insurance policy, N_ON_POLICY is not a variable
currently present in the database but can be extracted
from the data.

Alternative to the SQL database, several other
data sources were available within the company.
For instance, logs regarding the details of customer
complaints and corresponding processing of these
complaints. Another example is behavior on the
website of the company such as log-in frequencies

Table 1 Overview and summary statistics of the variables
included in the dataset

Variable Description Type Min Mean Median Max St. Dev.

RELAT ION_NR unique customer id Categoric

BALANCE balance of individual in euro Numeric -1,014,638 1744 2710 23102 5648

AGE age of customer Numeric 1 41.11 46 105 22.70

SEX gender of customer Categoric M

N_Y EARS number of years insured Numeric 0 7.97 11 11 3.66

MAIN indicator of main insurance Categoric 0 1 1

ADDIT IONAL additional insurances Categoric 0 1 2

MODULE extra modules, such as tooth Categoric 0 0 1

FOREIGN indicator of foreign coverage Categoric 0 0 1

BRAND brand of insurance package Categoric Brand 1

TAKER indicator of insurance taker Categoric 0 0.49 0 1

N_ON_POLICY number of people on the policy Numeric 1 2.77 3 13 1.45

VOL_EXCESS voluntary deductible excess Numeric 0 62 0 900 159

N_ON_COLLECT number of people on collectivity Numeric 1 8033 987 35933 9207

IND_COLLECT indicator of individual collectivity Numeric 0 1 1

REGIONGGZ mental care settlement region Categoric 0 5 10 2.98

REGIONVV nurse and care settlement region Categoric 0 0 5 1.93

PROV ISION payment provision amount Numeric 0 29.61 22.56 1278 36.4

PAY MENT_T ERM payment term in months Numeric 1 3.8 1.00 12 4.62

N_CLAIMS number of claims made Numeric 0 17.01 15.00 118 9.55

N_LENIANCES numbers of leniences received Numeric 0 0 0 9 0.05

N_MONT HS number of different months with claims Numeric 0 8.98 9.00 12 2.38

N_CAT EGORIES number of different care categories Numeric 0 3.89 4.00 13 1.76

N_CLAIM_MAX max number of claims in one category Numeric 0 8.59 8.00 36 3.06

N_NEGLECT number of payment neglects Numeric 0 0.09 0 27.00 0.77
Fields without interpretation are blank

and requests. This information is collected with
less consistency and lower standards. Further
investigation of these alternative sources concludes
that this data is currently of insufficient quality to
include on an individual-specific level in this research.

In short; extensive data preparation steps were per-
formed to collect, clean, analyse, pre-process and join
relevant information from all available sources within
the company. The preparation consisted of manip-
ulation and merging with SQL queries and further
processing in R (R Development Core Team, 2008).
The resulting dataset has a structure consisting of ob-
servations belonging to individual customers.
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3 METHODOLOGY
The following section introduces and describes the
methods used in this work. First, the t-Distributed
Stochastic Neighbor Embedding (t-SNE) algorithm is
discussed which we apply for a quick exploratory data
analysis. Second, the response variable is defined and
its transformation is explained. Third, we cover the-
ory concerned with modeling heterogeneity. For this
purpose we introduce finite mixture modeling and
discuss the estimation of these models. Fourth, we re-
view approaches to determine the number of groups
present in the data and options to perform model se-
lection. Next, a selection of interesting developments
in the area of feature selection is reviewed. Lastly, we
introduce a model that combines mixture estimation
and variable selection. The goal is to overcome com-
mon encountered difficulties regarding mixture mod-
eling and feature selection. This procedure merges
simultaneous estimation and continuous variable se-
lection into a single powerful and flexible algorithm.

3.1 EXPLORATORY DATA ANALYSIS
Our interest lies in modeling the structural differences
in our customers. Ideally, the heterogeneity in the
dataset can be exploited to reveal a grouping or
clustering structure. Consequently, this structure
can be used to segment the population and assign
customers to specific groups. As numerous vari-
ables are involved the patterns to be discovered
can be complex. As a result, the structure in a
multi-dimensional dataset is a rather abstract notion
and difficult to grasp. To improve comprehension of
high-dimensional datasets a multiple of techniques
are available. One of the most popular multivari-
ate statistical techniques is Principal Component
Analysis (PCA) invented by Pearson (1901). PCA
is also known as eigenvalue decomposition in the
field of linear algebra. The modern application was
formalized by Hotelling (1936). This procedure aims
to reduce dimensionality by describing the dominant
pattern of multiple dependent variables with a new
set of orthogonal variables (Abdi and Williams, 2010).
An attractive consequence is that multi-dimensional
data can be visualized in a two-dimensional space
based on the vectors with the highest eigenvectors.
These two dimensions describe the largest amount of
variation in the data.

Another dimensionality reduction technique is
Multi-Dimensional Scaling (MDS). MDS aims to rep-

resent the dissimilarity between pairs of observations
as distances in a low-dimensional space (Groenen
et al., 2005). Similar observations are represented
by a smaller distance while dissimilar observations
are represented by a larger distance. This distance
is commonly referred to as proximity. Hence, t-SNE
and MDS are somewhat related. However, MDS is
based on a dissimilarity matrix of the data in contrast
to the original data itself such as in t-SNE and PCA.
The goal is to achieve a representation of the data
that depicts the similarity of observations by their
proximity as good as possible. Both PCA and MDS
focus on a preserving the global structure of the data
by a faithful representation of the distanced between
relatively separated points. Moreover, PCA and MDS
are both restricted to linear relationships between the
observations.

This limitation is overcome by a more recent
technique by Maaten and Hinton called t-Distributed
Stochastic Neighbor Embedding (t-SNE). Another
option would be nonlinear PCA. T-SNE can often
reduce dimensionality more effectively in a non-linear
manner (Maaten and Hinton, 2008). The power of this
algorithm is creating a two- or three-dimensional map
from hundreds of thousands of variables to reveal
a global pattern while retaining the local structure
of the data. It has been shown that t-SNE yields
better results in terms of visual interpretation on
many different data sets compared to other popular
non-parametric visualization techniques such as
Sammon mapping, Isomapping and Locally Linear
Embedding (Maaten and Hinton, 2008).

As t-SNE is less well known than PCA and MDS we
cover the theory behind this technique. T-SNE is well
suited to explore the structure in high-dimensional
datasets. The main goal is to visualize a complex
structure with different scales by a single faithful
representation in lower-dimensional space. It is not a
clustering algorithm as input features get lost in the
process. Hence, it is mainly a tool for visualization
and data exploration. However, the output can
be used as input for classification or clustering
algorithms. In this case, t-SNE could function as a
preliminary data transformation comparable to an
application with Principal Components Analysis. The
core principle can be summarized as assigning each
datapoint to a location in a two- or three-dimensional
map (Maaten and Hinton, 2008).
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The technique is based on Stochastic Neighbor
Embedding (SNE) by Hinton and Roweis (2003)
but t-SNE alleviates two issues in SNE. For one
thing, a problem known as the crowding problem.
Secondly, it overcomes the difficulty of optimizing
the cost function in SNE. The crowding problem
can be explained as the inability to simultaneously
accommodate both nearby and moderately nearby
datapoints in a faithful representation in the available
area of a two-dimensional map. In this case nearby
refers to observations that contain similar information.
Meaning if observations that are close to observation
i are accurately mapped, the moderately far away
points from i are drawn together in the map. Hence,
this crowds observations together and prevents form-
ing of separated clusters. T-SNE alleviates both issues.
Firstly, t-SNE uses a symmetric cost function which is
easier to optimize (Cook et al., 2007). Secondly, the
similarity of datapoints in low-dimensional space is
computed with a Student-t distribution instead of a
Gaussian distribution (Maaten and Hinton, 2008).

The first step is equal in SNE and t-SNE. It consists
of converting high-dimensional Euclidean distances
into probabilities pi j that represent pairwise similarity
of observations xi and xk in high-dimensional space
pi j given by

pi j =
exp

(
−‖xi − x j‖2/2σ2

i
)

∑k 6=l exp
(
−‖xk − xl‖2/2σ2

i

) (1)

where σi is the variance of the Gaussian located in
datapoint xi. In general, the optimal value of σi differs
per datapoint as the density of the data varies. The
probability pii is zero as we are looking at pairwise dis-
tance and for similar observations xi and x j the value
of pi j is high whereas more differing points result in
a low pi j. Now, instead of using a Gaussian distri-
bution in the low-dimensional map, t-SNE employs
a student t-distribution with one degree of freedom,
also known as a Cauchy distribution. This means that
the low-dimensional similarity of datapoint in t-SNE
is represented by

qi j =

(
1 + ‖yi − y j‖2)−1

∑k 6=l (1 + ‖yk − yl‖2)−1 (2)

while SNE uses

ui j =
exp

(
−‖yi − y j‖2)

∑k 6=l exp (−‖yk − yl‖2)
. (3)

This difference in distribution for the low-dimensional
probability is motivated by the fact that a t-
distribution with a single degree of freedom has
much heavier tails than a Gaussian distribution. As
a result, this counters the crowding problem since
moderately close datapoints can now be represented
with a larger distance in the low-dimensional space
compared to the SNE solution. Hence, moderately
dissimilar datapoints are less clustered together,
allowing for gaps to form between clusters of points.
A more in depth discussion of the crowding problem
is given in the work of Maaten and Hinton (2008).
The choice of a t-distribution is motivated by the
fact that it equals an infinite mixture of Gaussians
with different variances. Hence, the two distributions
are closely related. Another advantage is seen when
comparing Equation 2 and 3. The evaluation of qi j

does not involve exponential terms in contrast to ui j.
As a result, t-SNE is computationally easier to solve
then SNE.

If the transformation of the similarity between xi

and x j in high-dimensional space to yi and y j in low-
dimensional space is correct we have pi j = qi j. Hence,
the algorithm minimizes the difference between pi j

and qi j. This is achieved by employing the Kullback-
Leibler (KL) divergence which is further discussed
in Section 3.6 as the KL divergence is used again at
a later point in this research. The KL divergence can
be used as a measure of dissimilarity of two distribu-
tions. The sum of the Kullback-Leibler divergences
over all datapoints i is minimized by the following
cost function

C = ∑
i

KL(Pi‖Qi) = ∑
i

∑
i

pi j log
pi j

qi j
(4)

where Pi is the distribution of conditional probabilities
over all datapoints given observation xi and Qi is the
distribution of conditional probabilities over all other
map points given observation yi. The KL measure
is further elaborated on in Equation 30. The second
difference between t-SNE and other techniques
such as SNE is the fact that it uses a symmetric
cost function. Meaning that pi j = p ji and qi j = q ji

for ∀i, j. The symmetric cost function results in a
simpler gradient form which is faster to compute.
This overcomes the difficulty of optimizing the cost
function in SNE.

Next, to determine the optimal value for σi we look
at the corresponding probability distribution Pi over
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all other data points. This distribution has an entropy
which increases with σi. A binary search is performed
to select the sigma that results in a fixed perplexity
which is defined as

Perplexity (Pi) = 2H(Pi) (5)

where H (Pi) represents the Shannon entropy of Pi

given by

H (Pi) = −∑
j

p( j|i) · log2 p( j|i). (6)

The perplexity can be interpreted as a measure of
information just like the Shannon entropy. Perplex-
ity controls the effective number of neighboring
observations. A straightforward explanation from
Maaten and Hinton is that a fair die with k sides
has a perplexity of k. The value is similar to the k
nearest neighbors variable used in other algorithms.
The actual value is determined by the user and
several options can be used to test performance.
An usual range is 5 to 50 where a more complex
dataset requires a higher perplexity value (Maaten
and Hinton, 2008).

An important note is that t-SNE does not provide
an interpretation of relative cluster sizes in terms of
standard deviation. The algorithm adapts to expand
dense groups while shrinking sparse clusters resulting
in an equalized visualization of the spread (Watten-
berg et al., 2016). This also holds for the interpretation
of distances between separated clusters. This is an
important difference with the interpretation of other
dimensionality reduction techniques such as PCA and
MDS. As mentioned, PCA and MDS focus on retain-
ing a global structure by faithfully representing the
distances between relatively separated observations
in the data. In contrast, t-SNE focuses on the local
structure by preserving the distances between simi-
lar observations in the data. The main advantage of
this difference is that t-SNE manages to yield a more
faithful representation in terms of visualization when
applied on curved manifolds in contrast to linear tech-
niques (Maaten and Hinton, 2008).

3.2 RESPONSE VARIABLE
Two main factors which are naturally expressed in a
monetary value are present in the data. Namely, the
premium that a customer pays for his or her health
insurance and the amount of money that the customer
claims from the provider. These two covariates are
used to form the basis of a response variable. In
addition, a third factor needs to be taken into account
which is based on a nationwide health insurance
regulation. This regulation is shortly explained below.
All Dutch health insurance companies have two
channels of income, the first one is already mentioned,
which is the premium payed by individual customers.
The second one is through a contribution from the
’Zorgverzekeringsfonds’ which is health insurance
fund that controls and divides governmental contri-
butions to all Dutch health insurance providers. This
flexible contribution is calculated depended on the
customer base of a provider and can be subdivided
into two parts. The contribution can be positive
or negative for an individual as it balances out
nation-wide. The first part is the number of customers
having basic-level insurance. Insuring more people
results in a higher contribution. The second part is
more complex as it is a result of individual conditions.
It can be generalized as follows. If a provider insures
customers that are more likely to have high expenses,
a higher contribution from the fund is given to this
respective provider for insuring this individual.
The regulation can be interpreted as a type of risk
settlement for insuring this individual. A result of
this construction is that people in need of expensive
health care or medication are somewhat protected.
As mentioned, health insurance companies are
prohibited to deny customers requesting basic-level
insurance but this does not hold for any additional
coverage. Hence, the settlement or contribution pre-
vents that no provider wants to offer any additional
health insurance coverages to higher risk individuals.

To recap, three variables are used to construct a mon-
etary balance. First, the premium a customer pays for
his insurance. Second, the number a customer claims
and third, a settlement for every individual. Now that
we have defined the three parts we can formulate a
response variable for each individual customer as

yi =
V

∑
v=1

Pvi −Ci + Si for i = 1, . . . , N (7)

where yi represents the balance for individual i, Pvi
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is the premium payed for insurance package v by
individual i, Ci are the claims made by individual i
and Si is the settlement received for individual i. Si

can be positive as well as negative.

The resulting continuous response variable vector
y contains balances for each individual i which can
take a positive, negative or sometimes zero value. Fur-
ther inspection reveals the response variable is heavy-
tailed. A normal, or Gaussian, distribution is often
preferred as this distribution is assumed in many sta-
tistical tests and applications. Several transformations
exist to increase normality such as the well known
Box-Cox transformation (Box and Cox, 1964). The
Box-Cox power family is given by

ψ
BC(y, λ ) =

{
log(y) λ = 0
yλ−1

λ
λ 6= 0.

(8)

where y is the value to be transformed and λ is a
transformation parameter.
This transformation is only valid for positive values
of y. Our response variable is defined on the entire
real line. As consequence, a Box-Cox transformation
as given in Equation 8 is not defined due to the
presence of zero and negative values. Naturally, the
same holds for the simpler log-transformation.

Yeo and Johnson have introduced a new family of
power transformations that share the desirable char-
acteristics of the Box-Cox transformation without im-
posing restrictions on y (Yeo and Johnson, 2000). Zero
and negative values can also be accommodated. This
transformation aims to reduce excess skewness and
kurtosis. In order to achieve more normality we ap-
ply this transformation on the response variable. This
also decreases the large difference between the values
of the response variable and the regression variables.
The Yeo-Johnson power transformation family is de-
fined as

ψ
YJ(y, λ ) =


log(y + 1) λ = 0, y ≥ 0
(y+1)λ−1

λ
λ 6= 0, y ≥ 0

− log(−y + 1) λ = 2, y < 0
−[(−y+1)2−λ−1]

2−λ
λ 6= 2, y < 0.

(9)

If the value to be transformed is strictly positive, the
Yeo-Johnson transformation is equal to the Box-Cox
transformation of y + 1. For strictly negative values
the transformation is equal to the Box-Cox transforma-
tion of −y + 1 with transformation parameter 2− λ .

In our case we have both positive and negative values.
As result, the transformation is a combination of these
two (Weisberg, 2001). In addition the response vari-
able is scaled by division with the standard error of
y. We refrain from centering by subtracting the mean
in this transformation. This preserves the sign of y
which is desirable since the sign holds meaning in
this case. To be more exact, positive balances remain
positive and negative balances remain negative after
transforming. Table 2 reports the skewness and kurto-
sis of the response variable before and after applying
the transformation.

Table 2 Result of transformation on y

Measure Original Transformed

Min -1014639 -29.42

Max 23102 17.10

Mean 1744 1.30

Median 2710 1.460

Skewness 2,690 0.163

Kurtosis -27.39 10.36
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3.3 FINITE MIXTURE MODELS

We will now discuss possibilities to model hetero-
geneous data. Heterogeneity is often considered by
grouping similar observations into groups. When
dealing with data of individuals this can be seen as
a segmentation of the customer-base. This concept
emerged in the late 1950s. In the early days, segmen-
tations were often based on simple and common
characteristics such as gender or age. Although the
idea of segmentation appears simple, it is one of
the most researched topics in marketing science in
terms of scientific development and methodology
(Wedel and Kamakura, 2012). A segmentation can be
achieved by means of a finite mixture model, which
is simply put a combination of several distributions.
The first influential analysis based on a mixture model
originates from 1894 where the biometrician Pearson
fitted a two component mixture of normal densities
(Pearson, 1894). Since then major advances have been
made to accommodate the need for methods that can
handle large and complex datasets.

Meanwhile, a surge in popularity of machine
learning approaches also increased the application of
cluster analysis techniques. These clustering methods
used for segmentation are often heuristic in nature.
A prime disadvantage of such methods is the lack
of a sufficient statistical basis. These algorithms
are in general based on some arbitrary measure of
distance to determine the similarity of observations
(Tuma and Decker, 2013). The specific choice of
distance measure significantly impacts the results of
the analysis. This is especially true when categorical
variables are included in the analysis. In this case a
preliminary transformation of the data is required to
allow application, such as Gower’s distance (Gower,
1966). Inference based on these heuristic approaches
have lead to much discussion in terms of validity.

Finite mixture models alleviate some of the
common issues associated with heuristic methods.
They provide a model based approach for segmen-
tation (Wedel and Kamakura, 2012). In order to
exploit differences in the customers we require a
flexible model combined with an inference method
to interpret the results (Allenby and Rossi, 1998).
Finite mixture models have been expanded in the
1990s with practices composed of linear regression
models and generalized linear models (Wedel and
DeSarbo, 1995). The practical application, potential

and theoretical attention of mixture models has
grown considerably since 1995 (McLachlan and
Peel, 2004). This growth can be explained by the
immense flexibility to model unknown distributions
in a convenient manner and secondly by advances
in computational power. In addition, finite mixture
models are particularly useful to capture and describe
some type of grouping structure present within a
complex dataset. These models have seen utility in
various fields such as astronomy, biology, genetics,
medicine, economics, engineering and marketing
(McLachlan and Peel, 2004). Mixture models can
also be combined with machine learning algorithms.
An interesting present-day application is the speech
of Siri on Apple devices. The technology behind
Siri’s voice is called a deep mixture density network
(MDN) which combines deep neural networks with
Gaussian mixture models (Apple, 2017). In short,
finite mixtures can be seen as a more elegant approach
compared to heuristic methods and have obtained an
important position in modern market segmentation
applications (Wedel and Kamakura, 2012; McLachlan
and Peel, 2004).

Whether the data is simple or complex, the principle
of segmentation is similar. The fundamental idea is
that a single distribution or model fails to sufficiently
describe a collection of data due to the presence of
heterogeneity. A finite mixture model is based on
a mixture of multiple parametric distributions to
describe the underlying structure of some data. In our
case, we assume the entire population of customers
contains unidentified subgroups. This heterogeneity
is called latent, meaning it is unobserved. The groups
within the population can be interpreted as a finite
number of latent classes also referred to as segments
or components (Muthén and Shedden, 1999). Failure
to recognize the presence of subpopulations and
account for heterogeneity results in misleading or
incorrect inference. Finite mixture models provide an
effective method to consort population heterogeneity
and provide a flexible and powerful way to model
univariate or multivariate data. Specifying the
parametric distribution of the latent structure in the
data is not required to perform estimation. This
is a highly attractive feature as it prevents bias in
parameter estimation as a result from potential
misspecification. An interesting fact is that normal
mixture models can be used to test the performance
of estimators with their ability to capture deviation
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from normality (McLachlan and Peel, 2004). Normal
mixtures have helped in the development of robust
estimators. For example the contaminated normal
distribution proposed by Tukey where the density
of a point is interpreted as a mixture of two normal
distributions with different variances (Tukey, 1960).
A more general incomplete contamination form is
considered in the work of M-estimators by Huber
et al. (1964). Finite mixtures are often labeled as a
semi-parametric approach. Jordan and Xu describes
them as an interesting niche between parametric
and non-parametric. A parametric formulation
of the mixture is determined whereas the number
of components is allowed to vary which can be
interpreted as non-parametric (Jordan and Xu, 1995).
This description can be used to explain why a
mixture model possesses the flexible properties of
non-parametric approaches while retaining attractive
analytical advantages of parametric approaches
(McLachlan and Basford, 1988).

Finite mixture models can model the joint dis-
tribution of multiple variables, in contrast to
non-parametric algorithms such as K-means or
K-nearest neighbors. Although non-parametric
methods are often fast and require no assumptions
on the distribution of the data, there are some
drawbacks associated with these methods. One
cause of discussion is the fact that similarity between
observations is based on a chosen distance measure.
A finite mixture is based on a statistical model
which requires to choose distribution. Yet, a result is
that mixture models offer more extensive inference
and interpretation possibilities. Uncertainty in the
classification can be taken into account in contrast
to non-parametric methods which result in hard
grouping or classification. This means observations
are assigned to components as if no certainty is
involved in this membership. Often, this is a rough
assumption as group memberships are in reality not
fully certain. Moreover, the uncertainty in grouping
may even be meaningful for interpretation of the
cluster results. Furthermore, mixture models have
the capability to handle groups with different sizes,
correlation structures and overlapping of segments in
contrast to many other techniques. On the contrary,
non-parametric clustering techniques prefer groups
of equal size and are not suited to handle overlapping
segments due to hard classification. If an observation
shares properties of multiple subgroups, this mem-

bership information is lost by hard clustering.

In this research we are interested in relating the
response variable y with a set of explanatory features.
DeSarbo and Cron introduced a methodology for
cluster-wise linear regressions giving rise to finite
mixture regression modeling (1988). Finite mixture
regression models provides a flexible method to
simultaneously estimate both group membership and
separate regression functions to explain the response
variable within each segment (Wedel and Kamakura,
2012). It has been proven that any continuous
distribution can be estimate arbitrarily well by a
finite mixture of Gaussian distributions (McLachlan
and Peel, 2004; Lindsay, 1995). Consequently, a
Gaussian or normal mixture regression constitutes
the foundation of our model.

The density function of a general S-component finite
mixture model can be formulated as

f (y|x, Θ) =
S

∑
s=1

πs · f (y|x, θs), (10)

where y is a vector of response variables as defined in
Equation 7, x is a vector of regression variables given
in Table 1, πs is the prior probability of belonging to
component s, each θs is a vector with component spe-
cific parameters for density f , and Θ = {θ1, . . . , θp} is
a vector containing all parameters to specify the mix-
ture. The prior probability πs is also referred to as the
mixing coefficient. The restrictions on the parameters
are as follows. πs is a probability, thus satisfying the
follow conditions

S

∑
s=1

πs = 1,

0 < πs ≤ 1 ∀s = 1, . . . , S.

(11)

For the component specific parameter vectors we have

θs 6= θk ∀s 6= k with s, k ∈ {1, . . . , S} . (12)

Next, the group membership is the conditional proba-
bility of an observation belonging to segment s. This
is also referred to as the posterior probability. We can
compute this probability using Bayes’ theorem as

zis = P(s|yi, xi, Θ) =
πs · f (yi|xi, θs)

∑S
k=1 πk · f (yi|xi, θk)

. (13)
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The corresponding log-likelihood function of the S-
component mixture model is computed as

L(Θ) = log f (y|x, Θ) = log
N

∏
i=1

f (yi|xi, Θ)

=
N

∑
i=1

log
S

∑
s=1

πs· f (yi|xi, θs)

(14)
with corresponding maximum likelihood (ML) esti-
mate

Θ̂ML = arg max
Θ

L(Θ)

= arg max
Θ

[log f (y|x, Θ)]

= arg max
Θ

[
N

∑
i=1

log
S

∑
s=1

πs· f (yi|xi, θs)

]
.

(15)

In this work we use a finite mixture regression model
with Gaussian distributed components such that

f (yi|xi, Θ) =
S

∑
s=1

πs ·
1√

2πσs
exp

(
(yi − xT

i βs)2

2σ2
s

)
(16)

where every component s has an independent vector
of regression coefficients βs and variance σ2

s .

3.4 ESTIMATION
As the parameters of the mixture in Equation are
unknown they need to be estimated from the data.
Estimation options include method of moments,
maximum likelihood (ML) and Bayesian approaches
(McLachlan and Peel, 2004). ML estimation can
be done with numerical methods such as Newton-
Raphson’s algorithm. However, the likelihood
function as given in Equation 15 can be difficult
to solve and generally contains multiple local
maxima. Numerical optimization methods often
do not perform smoothly. Alternatively, a Bayesian
approach based on Markov Chain Monte Carlo
(MCMC) sampling can be used to estimate the
parameters (Diebolt and Robert, 1994). The likelihood
function can also be solved with the Expectation-
Maximization (EM) algorithm by Dempster et al.
(1977). The EM algorithm is an iterative hill-climbing
procedure to estimate the parameters that maxi-
mize the log-likelihood function. It is a prevalent
approach for problems associated with incomplete
data caused by missing variables or unobserved
heterogeneity (Dempster et al., 1977). Usefulness of
the EM algorithm in finite mixture models is reported

by McLachlan and Basford among many others (1988).

Solving Equation 15 to obtain the maximum likeli-
hood estimates is a difficult problem. This problem
can be approached by assuming that we are dealing
with incomplete observations that originate from non-
observed complete data. In other words, we assume
that our observations originate from a finite number
of groups. However, the group membership variable
is not part of the available data. In order to estimate
the parameters in the mixture we augment our in-
complete data with a group membership variable Z
yielding the complete data. This approach allows to
define a complete data log-likelihood function as

Lc(Θ) = log f (y, Z|x, Θ)

=
N

∑
i=1

S

∑
s=1

zis · log [πs · f (yi|xi, θs)] .
(17)

where the vector Z = {zi, . . . , zN} contains labels
indicating group membership for every observation i.
The complete likelihood function is also referred to as
the classification likelihood in some cases.

Next, the EM algorithm is used to estimate the pa-
rameters by treating zis as missing data. The algorithm
can be subdivided into two steps. The Expectation-
step and the Maximization-step. Every iteration pro-
vides updated parameter estimates Θ̂. The procedure
is stopped if a predefined convergence criterion is met.
The E-step computes the expectation of the complete
data log-likelihood conditional on the data and the
current estimates Θ̂(t) as

E [Lc(Θ)] = E
[
log f (y, Z|x, Θ̂(t))

]
. (18)

In this step the group memberships, also called poste-
rior probabilities, are calculated based on the current
parameter values using Equation 13 such that

zis =
π
(t)
s · f (yi|x(t)i , θ

(t)
s )

∑S
k=1 π

(t)
k · f (yi|x(t)i , θ

(t)
k )

. (19)

Consequently, the M-step maximizes the expected
value seen in Equation 18 with respect to Θ

Θ̂(t+1) = arg max
Θ

E
[
Lc(Θ̂(t))

]
= arg max

Θ
E
[
log f (y, Z|x, Θ̂(t))

]
= arg max

Θ

N

∑
i=1

S

∑
s=1

zis · log
[
πs · f (yi|xi, θ

(t)
s )
]

.

(20)
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The estimation procedure described above can
be summarized as follows. First, we formulate our
problem as a missing data setup. Second, we itera-
tively estimate the parameters with the EM algorithm.

Data Setup

• Observed data: the observations as available
(yi, xi)
• Missing data: the group membership information

of each observation zis

• Complete data: the observations supplemented
with the group memberships

Following this setup allows the likelihood function to
be maximized with the following algorithm.

Algorithm 1 EM Algorithm for a Finite Mixture Regression

1. Determine a set of initial parameter estimates Θini

that define the mixture to start the algorithm.

2. E-step: Estimate the posterior probabilities based
on the current set of parameter estimates

zis =
πs · f (yi|xi, θs)

∑S
k=1 πk · f (yi|xi, θk)

. (21)

Derive the prior class probabilities as

πs =
1
N

N

∑
i=1

zis. (22)

3. M-step: Update the parameter estimates using
the current posterior probabilities

arg max
Θ

N

∑
i=1

S

∑
s=1

zis · log [πs · f (yi|xi, θs)] . (23)

4. Evaluate the complete log-likelihood function

Lc(Θ) =
N

∑
i=1

S

∑
s=1

zis · log [πs · f (yi|xi, θs)] . (24)

5. Repeat steps 2 to 4 until a defined convergence
criterion is met.

A potential issue of finite mixture models is identi-
fiability. For consistent estimation of the parameters
identifiability is a necessary condition (Hennig, 2000).
In some cases different sets of parameter estimates
can describe the same density function. The model
is identifiable if one unique set of parameters is able
to define the distribution. In terms of the model as
introduced in Equation 10 we need that for any two
parameters Θ and Θ∗

f (y|x, Θ) = f (y|x∗, Θ∗)
S

∑
s=1

πs · f (y|x, θs) =
S∗

∑
s=1

π
∗
s · f (y∗|x∗, θ

∗
s )

(25)

implies Θ = Θ∗ and S = S∗. It has been proven
that given some mild conditions many finite mixture
models are identifiable, including Guassian types (Tit-
terington et al., 1985).

3.5 COMPONENT SELECTION
A fundamental challenge in model selection is
determining the number of components S used in
the mixture. This problem is also referred to as
order selection. In practice, the number is usually
unknown beforehand and needs to be extracted
from the data itself. Care is needed in selecting
the number of components, too many groups may
lead to over-fitting while too few may result in
failure to capture the underlying structure of the
data (Huang et al., 2013). Conventional tests based
on the likelihood ratio do not apply as comparing
nested models is not possible due to unknown S. For
example the χ2-statistic is not valid due to violation
of regularity conditions (Titterington et al., 1985). Still,
a wide range of options is available to perform model
selection.

The following strategy is employed to determine
the number of groups in our data. We fit the mixture
model in a step-wise manner with an increasing num-
ber of components S. In addition, we consider the
prior probability πs to control the minimum number
of observations in a group. A restriction on the prior
allows for deletion of small components in the estima-
tion process. In case the size of a group falls below the
threshold the component can be removed from the
model. This restriction conveniently counters over-
fitting while simultaneously avoiding problems in
estimation. Components with little observations can
lead to numerical instabilities in the EM algorithm.
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Multivariate Gaussian mixture models are especially
prone for this latter problem due to the estimation
of full variance-covariance matrices for each compo-
nent. A minimum sample size of 30 observations per
component is shown to be sufficient (Garver et al.,
2008) Consequently, the resulting fit of the models
with varying group sizes are compared. Information
criteria can be used to decide the optimal number
of segments needed to describe the data. Many tradi-
tional information criteria can be generally formulated
as

− 2L(Θ̂) + λ‖Θ̂‖0 = −2L(Θ̂) + λ

p

∑
j=1
|Θ̂|0 (26)

where L(Θ̂) is the log-likelihood function, ‖Θ̂‖0

represents the `0 "norm" which equals the number of
non-zero variables in Θ̂ and λ is a constant tuning
parameter. λ controls the overall strength of the
penalty and has restriction λ ≥ 0. Strictly speaking
the `0 "norm" is not an actual norm. In order for a
function f to be a norm we need that f (αx) = |α | f (x).
Yet, this relation is not satisfied by the `0 "norm" since
||αX ||0 6= |α | ||X ||0.

Equation 26 can be used to derive some well known
model selection criteria. The Akaike Information
Criterion (AIC) is obtained by setting λ = 2. A modi-
fied AIC with an increased penalty on the number of
variables called AIC-3 is the result of setting λ = 3
(Akaike, 1998). The Bayesian Information Criterion
(BIC) by Schwartz is obtained by setting λ = log(N)
(Schwarz et al., 1978). When the log-likelihood
function L(Θ̂) is replaced by the regular likelihood
function in Equation 26 the result is penalized least
squares (Fan and Lv, 2010).

These criteria are all based on the likelihood of a
model combined with a penalty for model complexity.
However there are some subtle differences, BIC yields
a higher penalty for complex models compared to AIC
as we often have log(N) > 2. Generally stated, AIC
favors more complex models that might over-fit while
BIC is more prone to select models that under-fit. Ler-
oux et al. find both AIC and BIC do not underestimate
the true number of components in a mixture, which
is further covered in the simulation study later in this
report 1992. Additionally, multiple simulation studies
conclude AIC-3 performs well as a criterion in the
general context of many model specifications and con-
figurations including finite mixture regression mod-

els (Tuma and Decker, 2013). Alternative measures
based on the classification likelihood function also
exist such as the normalized entropy criterion (NEC)
(Celeux and Soromenho, 1996) and the integrated clas-
sification likelihood criterion (ICL) (Biernacki et al.,
2000).

An alternative to the deterministic methods dis-
cussed above is a stochastic approach such as Markov
chain Monte Carlo (MCMC). We will not consider
this approach as the computational load of MCMC
is often too heavy for many applications such as
pattern recognition (Figueiredo and Jain, 2002). In this
work we report BIC, AIC, AIC-3 and ICL metrics to
compare and evaluate models. However, our ultimate
goal is to obtain a parsimonious and actionable
segmentation while capturing and describing the
structure sufficiently well. For this reason emphasis is
put on the BIC value which in general favors a more
parsimonious solution then the other used metrics.

In order to determine the number of components
required to model the data we estimate models with a
varying number of groups S. The selection is done in
two stages to decrease computational intensity. First,
we obtain results for 5 up to 30 components with a
step-size of 5 after which the models are compared
based on the introduced measures. This results in
a rough indication of the number of components
needed. In the second stage the information given
by the first stage is used. We narrow the search
grid and decrease the step-size to one to find the
optimal number of groups. The estimation of every
model specification is repeated 10 times to ensure
stability, this holds for both stages. Following this
approach yields a large number of models. The
optimal solution of each repetition is kept as solution
for that respective specification.

To further explore the structure of the determined
components after estimation we consider two ap-
proaches. First, the ratio of the prior probability and
the number of observations having a posterior proba-
bility larger than ε . Epsilon is set to a small number
larger than zero such that ε > 0 and is interpreted as
follows. When a probability is smaller than epsilon it
is considered as zero as many observations are given
a very small probability of belonging to a segment.
This ratio can be interpreted as a measure of how well
a component is separated from the other components
based on the posterior probabilities. We formulate
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this ratio as
ratio =

size
# {post > ε} (27)

where size represents the number of observations as-
signed to this component based on the posterior prob-
abilities. Third, # {post > ε} represents the number of
observations with a posterior probability of belonging
to this component larger than epsilon. This measure
is bounded between 0 and 1. A value of 1 means
perfect separation is achieved for the respective com-
ponent. In contrast, a value closer to 0 indicates a
larger amount of overlap in segments. Second, we use
the Kullback-Leibler (KL) divergence measure which
is introduced in the next section.

3.6 KULLBACK-LEIBLER DIVERGENCE
Kullback-Leibler divergence originates from 1951 and
has its roots in the field of information theory Kullback
and Leibler. This concept is sometimes also referred
to as information gain or relative entropy (Kullback,
1997). Simply stated, the Kullback-Leibler divergence
can be used as a measure of dissimilarity of two dis-
tributions. As starting point we take a fundamental
concept in information theory called entropy. Entropy
aims to quantify the amount of information present
in a collection of data. The entropy H for a discrete
probability distribution p(x) is given by

H = −
N

∑
i=1

p(x) · log p(x). (28)

The continuous version of H is known as differential
entropy (Cover and Thomas, 2012) defined as

h(P) = −
∫

P(x) · log P(x). (29)

A small modification to Equation 29 yields the
Kullback-Leibler divergence (Kullback, 1997). For two
continuous probability distributions P and Q the KL
divergence from Q to P is

DKL(P‖Q) =
∫

P(x) · (log P(x)− log Q(x))

=
∫

P(x) · log
(

P(x)
Q(x)

)
.

(30)

This measure is also used in the t-SNE algorithm in
Section 3.1 where it’s purpose is to to preserve a local
high-dimensional structure between two data-points
while mapping them into a lower dimensional space.
A divergence of zero would indicate the distributions

are equal. KL divergence is often interpreted as a dis-
tance metric out of convenience. Theoretically this is
incorrect as it is does not satisfy the triangle inequal-
ity and is asymmetric. Formulated in a more exact
manner, this means for two distributions P and Q we
can have

DKL(P‖Q) 6= DKL(Q‖P). (31)

In case of two Gaussian distributions P and Q, such
as two components of our finite mixture model, the
KL divergence can be formulated as

DKL(P‖Q) =
1
2

[
log
|ΣQ|
|ΣP|

+ Tr
[
Σ−1

Q ΣP

]
− d

+ (µp − µq)
T Σ−1

Q (µp − µq)

] (32)

where µ denotes the mean and Σ denotes the vari-
ance of the Gaussian distribution of the respective
component (Hershey and Olsen, 2007). This expres-
sion is insightful for our results as the ratio defined in
Equation 27 is merely a global indication of overlap.
The ratio does not provide information on which spe-
cific components are well separated or overlapping
in contrast to the KL divergence measure. Therefore,
we consider Kullback-Leibler divergence as a mea-
sure to explore the pairwise relationships between the
components in our mixture model after estimation.

3.7 INITIALIZATION STRATEGY
Well known issues of the EM algorithm are slow
convergence and high sensitivity to initial value
specification Θ̂(0). Different starting strategies
and stopping criteria can lead to a range of pa-
rameter estimates as final solution (Seidel et al.,
2000). Although convergence is ensured, the EM
algorithm is greedy. Hence, the solution can be a
local optimum yielding a sub-optimal maximum
of the log-likelihood. Straightforward approaches
are based on multiple random starts after which
the best solution is kept to avoid ending in a local
optimum. However, more sophisticated strategies
have been proposed to overcome initialization
problems which often outperform random starting
(Biernacki et al., 2003). For example the split and
merge EM (SMEM) algorithm designed to escape
local maxima in mixture models (Ueda et al., 1999) or
the deterministic annealing EM (DAEM) algorithm
designed to recover from a poor initialization based
on entropy measure (Ueda and Nakano, 1998).
Another option is to first run a variant of the EM
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algorithm such as the classification EM (CEM) or
stochastic EM (SEM) (Celeux and Govaert, 1992).
Both CEM and SEM have faster convergence than the
EM algorithm and the optimal solution can be used
to initialize the EM algorithm. CEM yields a starting
solution which is comparable to a K-means type
algorithm as a result of hard classification but does
not provide ML estimates as it employs the complete
likelihood. SEM also classifies observations into
a single component but does so in a stochastic manner.

Instead of utilizing an EM variant for initialization
it is also possible to perform multiple short runs of the
EM algorithm itself. Again, the best solution is then
used to initialize a longer run. In this case, the length
of the run is controlled by a hyper-parameter in the
EM algorithm. A convergence tolerance is defined to
stop the estimation when the relative change in log-
likelihood is small enough. Such strategies all aim to
overcome slow convergence and avoid ending in a
local maximum by obtaining more sensible starting
positions compared to a multiple of longer runs with
random starts. In addition, computational intensity
can be immensely decreased. The strategy consisting
of shorter EM runs followed by a longer run has been
shown to yield good results on both simulated and
real life data in a various situations without assuming
a particular form of the mixture (Biernacki et al., 2003).
Therefore, we use this approach for the initialization
of our model.

3.8 VARIABLE SELECTION

Like in almost any model, feature selection is an
important aspect. Feature or variable selection has
been given increasing attention in statistical research.
The current era of high-dimensional problems require
adequate techniques to deal with a large number
of variables. Therefore, it is desirable to exclude
irrelevant information from the model considering
the goal of a parsimonious solution. In addition
to increasing the goodness of fit, variable selection
has the potential to improve the interpretability
of our model (James et al., 2013). First we cover
traditional approaches. Second, we review some
developments in the field of feature selection based
on regularization. Thereafter, we describe how to
merge variable selection and simultaneous estimation
of parameters with the EM algorithm into a single
feasible mixture modeling procedure.

As introduced in Equation 26, `0 penalization is
fundamental in various model selection methods.
This penalization provides a clear interpretation for
subset selection while having convenient sampling
properties (Barron et al., 1999). Common feature
selection methods are stepwise procedures where
variables are iteratively added or removed to find the
best subset of features. Often applied examples are
stepwise selection, forward selection and backward
elimination. The resulting models are compared
based on goodness-of-fit measures such as AIC or
BIC. However, due to increasing data complexity
and size, these stepwise procedures quickly explode
to the point of computational infeasibility. Even
when a mixture consists of a moderate number of
components and variables, classical subset selection
approaches are intensive (Khalili and Chen, 2007).
In addition, these algorithms are greedy and do not
provide any guarantee in finding the optimal subset
of variables. Moreover, subset selection approaches
are shown to be unstable and further limitations are
evident (Breiman, 1995).

As consequence, recent advances have given rise to
multiple new forms of penalized likelihood methods
with the ability to perform feature selection. The
purpose of these methods is to control the number
of variables included in the model while taking
parsimony and therewith computational intensity
into account (Fan and Lv, 2010). Some of these
developments are sparked by ultra-high dimension
problems where the number of variables p is larger
than the number of observations N such that p > N.
This situation is currently no exception in various
fields such as genomics, web analysis, health sciences,
finance, economics and machine learning (Fan and
Lv, 2010). Hence, it is no surprise that regularization
techniques have obtained an important place in
modern statistical research and applications.

We are not facing such a high-dimensional problem
with more variables than observations. However,
we do have numerous variables of which not all
may be of equal importance. It is ideal to obtain a
parsimonious and well interpretable model while
capturing the structure of our data in a satisfactory
manner. Naturally, this is very often the goal. This
trade-off accounts to finding a good balance in
the amount of information needed to explain the
structure of the data. Hence, our goal is to estimate
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variable effects while simultaneously selecting the
important ones by excluding irrelevant variables
from the model. This is a complicated optimization
problem as we are iteratively estimating a mixture
of models instead of a single model. As explained,
we assume the data originates from multiple sub-
populations. A key consequence stems from this
assumption. Namely, the presence of subgroups
implies that variables may also vary across compo-
nents. In turn, this gives rise to a particular interest
in selecting the optimal subset of features within
each separate segment while correctly estimating
the effects of these variables. The variation in
features across components can surface in two ways.
Firstly, through a difference in the optimal subset of
variables and secondly, through a varying importance
of the selected variables within a component. In
order to achieve this high amount of flexibility, we
need to combine estimation of our model with a
continuous variable selection algorithm that has the
freedom to operate independently across components.

We now introduce several forms of penalization
methods from the starting point of Ordinary Least
Squares (OLS). Thereafter, we formulate an approach
that combines a finite mixture model with penaliza-
tion. OLS minimizes the residual sum of squares (RSS)
formulated as

βOLS = min
β

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxi j

)2

︸ ︷︷ ︸
RSS

. (33)

In order to obtain an estimation method that can per-
form feature selection we extend the model with pe-
nalization. The principle of `0 penalization was in-
troduced in Equation 26. It can be seen as part of
the general families of `q penalties, also referred to
as bridge functions (Frank and Friedman, 1993). This
form of penalties is given by

λ

p

∑
j=1
|β j|q (34)

where 0 < q ≤ 1 in order to achieve variable selection
abilities. For q = 0 we obtain the AIC or BIC penalty
depending on λ as described in Equation 26. This
function of families can be used to introduce penaliza-
tion methods starting with ridge regression by Hoerl
and Kennard (1970). Ridge regression has lead to
more recent advances such as the lasso by Tibshirani

(1996) and the elastic net by Zou and Hastie (2005).
The lasso and elastic net both posses the ability to per-
form continuous variable selection which is further
discussed in the next sections.

3.8.1 RIDGE REGRESSION
Ridge regression is the foundation of many modern
penalization methods (Hoerl and Kennard, 1970). It
is also known as Tikhonov regularization (Tikhonov
et al., 1977) or as weight decay in neural networks in
the field of machine learning (Friedman et al., 2001).
Instead of `0 penalization it is based on the `2 norm
(Hoerl and Kennard, 1970). This form of penalization
is obtained by setting q = 2 in Equation 34 resulting
in the following objective function

βRDG = min
β

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxi j

)2

︸ ︷︷ ︸
RSS

+ λ

p

∑
j=1
|β j|2︸ ︷︷ ︸

Penalty

.

(35)
Ridge regression has the property to decrease the ef-
fect of non-important variables, this is referred to as
shrinking. The amount of shrinkage is controlled by
the λ parameter (Friedman et al., 2001). In addition,
the variance of the coefficient estimates can be signif-
icantly decreased as result of shrinking (James et al.,
2013). Although the effect of a variable can be de-
creased with ridge regression, it cannot be nullified.
In other words, ridge regression cannot perform fea-
ture selection to obtain a more parsimonious model
(Zou and Hastie, 2005). Yet, shrinking to exactly zero
is highly desirable when the goal is to select the most
important variables in the model. A similar proce-
dure that does possess the ability to perform feature
selection is the least absolute shrinkage and selection
operator (lasso) introduced by Tibshirani (1996).

3.8.2 LASSO
In contrast to ridge regression the lasso is based on `1
instead of `0 penalization. This is achieved by setting
q = 1 in Equation 34 yielding the following objective
function

βLAS = min
β

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxi j

)
︸ ︷︷ ︸

RSS

+ λ

p

∑
j=1
|β j|︸ ︷︷ ︸

Penalty

.

(36)
The lasso can be described as a continuous subset
selection algorithm with the ability to shrink the effect
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of unimportant variables similar to ridge regression
(Tibshirani, 1996). The algorithm constrains the
total magnitude of the coefficients resulting in the
scaling of a variables effect based on importance.
In contrast to ridge regression, the lasso possesses
variable selection properties. This is achieved by the
ability to shrink the effect of a certain variable all
the way down to zero. This can be interpreted as
exclusion of this respective variable from the model.
A numerical advantage of the lasso is a convex
penalty function. This is very convenient from a
computational viewpoint.

The concept of the lasso is influenced by Breiman’s
non-negative garrotte (Breiman, 1995). A drawback
of the non-negative garrotte is that it is not defined
when a problem involves more parameters p than
observations N which is not uncommon present-day.
The lasso is still valid in this case but shrinkage of
the non-zero coefficient causes non-ignorable bias
towards zero yielding inconsistent estimates (Fan and
Li, 2001). The bias can be reduced by a modification
of the penalty function such that large coefficients are
shrunken less (Fan et al., 2004). This idea is used in
another variable selection algorithm known as the
smoothly clipped absolute deviation (SCAD) (Fan
et al., 2004).

Alternatively, the lasso can be extended by includ-
ing data-dependent weights which is known as the
adaptive lasso (Zou, 2006). Now, the strength of penal-
ization is allowed to vary across different coefficients
due to adding adaptive weights in the penalty giving
the following objective function

βALS = min
β

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxi j

)
︸ ︷︷ ︸

RSS

+ λ

p

∑
j=1

ŵ j|β j|︸ ︷︷ ︸
Penalty

.

(37)
where ŵ j are the coefficient dependent weights with
the power to control penalty strength per coefficient.
This weighting vector is determined by

ŵ j =
1

| ˆ
β ini

j |γ
(38)

where ˆ
β ini

j are initial estimates of the coefficients
which can be obtained from a consistent estimator
for β̂ j such as OLS or ridge regression. In order for
the adaptive lasso to be consistent ˆ

β ini
j need to be

consistent. Coefficients with lower initial estimates
are penalized more through the weights vector ŵ j. It
has been shown that this extension yields the oracle
property (Zou, 2006; Fan and Li, 2001; Fan et al., 2004).
An estimator has the oracle property if it has the
ability to be consistent in both parameter estimation
as well as variable selection. This is further examined
in the Simulation study in section 5. On the contrary,
the regular lasso does not posses the oracle property
which has been shown to be associated with the bias
problem (Zou, 2006). The adaptive lasso consistently
estimates parameters while retaining the desirable
convexity property (Friedman et al., 2001).

Recent studies have discovered that the lasso is re-
lated to the maximum margin explanation which is
key in support vector machines (SVM) and boosting
algorithms (AdaBoost, XGBoost) in the field of ma-
chine learning (Rosset et al., 2004). The lasso has been
used to explain the success of boosting which can
be interpreted as a high-dimensional lasso without
explicit use of the `1 penalty (Friedman et al., 2004,
2001). However, a drawback of both lasso algorithms
is the performance in presence of multicollinearity.
In practice, variables can be highly correlated espe-
cially when the number of variables is relatively large.
In this situation the lasso has the tendency to select
merely one of these correlated variables in an arbitrary
fashion while ignoring the others. Zou and Hastie
have shown the lasso path to be unstable in case of
multicollinearity yielding unsatisfactory results (2005).
These difficulties are overcome by a more recent reg-
ularization technique called the elastic net (Zou and
Hastie, 2005). For this reason, we select the elastic net
as variable selection algorithm in our model.

3.8.3 ELASTIC NET

A relatively new regularization and variable selec-
tion method is the elastic net (Zou and Hastie, 2005).
This method is closely related to the lasso which has
proven to be a valuable asset in modern model fitting
and covariate selection. Some of the limitations of the
lasso are solved by combining the `1- and `2 norm into
a new penalty function given by

ξNET (β j) = λ

p

∑
j=1

(
α |β j|+

(1− α)

2
|β j|2

)
(39)
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such that the following problem is solved

βNET = min
β

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxi j

)
︸ ︷︷ ︸

RSS

+ λ

p

∑
j=1

(
α |β j|+

(1− α)

2
|β j|2

)
︸ ︷︷ ︸

Penalty

(40)

where α is a parameter that determines the mix of the
penalties. Setting α = 0 results in ridge regression
whereas setting α = 1 results in the lasso. Hence,
this method can be seen as a dynamic blend of ridge
regression and the lasso. The elastic net possesses all
the desirable properties of the lasso, it can perform
automatic variable selection through continuous
shrinkage while overcoming the issues regarding
multicollinearity. The second term in Equation 39
causes variables with high correlation to be averaged,
whereas the first term encourages a parsimonious
solution and stabilizes the solution (Friedman et al.,
2001). Zou and Hastie describes this method as a
stretchable fishing net with the ability to retain all the
big fish (2005). It has been shown that elastic net often
yields better results than the lasso in simulations
and real world data (Zou and Hastie, 2005). To
implement the elastic net we make use of the glmnet
algorithm developed by (Friedman et al., 2009) which
is specifically designed for speed and dealing with
relatively large datasets.

3.8.4 HYPERPARAMETER SELECTION
The choice of mixing parameter α depends on
preference and the problem at hand. Commonly,
some experimentation is done with different values
using cross-validation. Sometimes α is merely used to
obtain a more stable application of the lasso. This can
be done by setting α = 1− ε with some small value
ε > 0. This approach increases numerical stability by
negating undesirable behavior of the lasso caused by
high correlations in the data. Another common choice
is α = 0.5 which gives an evenly divided mix of the
ridge and lasso penalty term. As consequence, groups
of correlated variables are selected to be included or
excluded together. We test three values for the mixing
parameter α = {0.5, 0.7, 0.9}. These values tend more
towards the lasso than ridge regression as we prefer a
parsimonious solution. We exclude the lasso to avoid

problems associated with multicollinearity. Since we
are fitting a finite mixture model, an alternative is to
select α per component based on the smallest error.
This results in a different penalization method per
group. Some components will tend towards a smaller
value for α . This is not desired in our application,
hence we select the same penalization method for
all groups. In general, penalization towards ridge
regression is good for prediction purposes but yields
a less interpretable solution. This approach would be
more appropriate if the main focus were to accurately
predict the balance of individuals. For the sake of
parsimony and further interpretation we are trying
find a small subset of the most important variables
per component.

For all three penalization methods introduced
above, the strength of the penalty parameter λ can not
be estimated directly due to identifiability problems.
To solve this issue we use 10-fold cross-validation to
obtain a sequence of models with different penalty
strengths over the grid of α values (Golub et al., 1979).
The regularization path is fitted based on a range
of 100 different values of λ . The minimum value
in the range is 0. This equals no penalization such
that all variables are included. The maximum value
for λ is set to the value for which all coefficients are
zero. This means that at this value for λ all variables
are excluded from the regression. The strength
of the penalty in each component is estimated
independently. In general, a higher penalty value
leads to more severe shrinkage of parameters and
a smaller selection of variables. Simultaneously,
exclusion of variables increases the error. Hence, the
purpose of this cross-validation is to find a balanced
trade-off between error and parsimony. If the relative
improvement falls below the threshold of 10−5 the
computation is stopped. The results allow to select
an appropriate value for λ . Generally one of the
following options is used for λ . First, the value which
minimizes the mean cross-validation error (MSE)
denoted by λmin. Second, the value which results in
the most regularized model within one standard error
of λmin, denoted by λ1se. Both options are supported
by literature and used in applications. The restriction
λ1se > λmin holds in all cases. For our model we select
λ1se as this value encourages a more parsimonious
solution in comparison with λmin. The selection of α

and λ is further discussed in the results section.
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3.9 EXTENDED FINITE MIXTURE MODEL (MIXNET)
We have first discussed the fundamentals regarding
the formulation and estimation of finite mixture
models. Second, we introduced penalized estimation
methods. The methodology is now expanded by
merging these two principles into a single estimation
and variable selection algorithm. This approach
is inspired by Khalili and Chen who makes use of
the lasso to perform variable selection in mixture
models (2007). Khalili and Chen have shown that
this procedure is consistent and yields equal or better
performance than traditional methods such as BIC
in terms of model selection whilst greatly reducing
computational burden.

We now introduce a model which combines a finite
mixture model with the elastic net algorithm. We
refer to this model as MIXNET in short. MIXNET
combines the power of statistical based finite mix-
ture modeling with the convenience of automatic
variable selection. The result is a highly feasible and
relatively fast procedure in terms of computational
intensity. Variable selection is achieved by shrinkage
of parameters through the elastic net algorithm.
As consequence, all desirable properties of the
elastic net are adopted. MIXNET has the ability
to deal with a large number of variables while
simultaneously performing continuous selection of
the relevant ones. We would like to emphasize the
power of this algorithm as it possesses the ability to
operate independently within components. Hence,
both estimation and variable selection is done in a
component specific manner. This increases both the
flexibility and potential interpretability of groups
in comparison to a variable selection procedure
that takes the entire population into account as a
whole. Moreover, in case the problem contains
more variables than observations, such that p > N,
MIXNET can still be applied in contrast to a regular
likelihood approach.

We now cover the mathematical formulation of this
model. To obtain the ability to perform feature se-
lection through shrinkage we take the log-likelihood
function as given in Equation 14 and extend it with
a penalty term such that we have a penalized log-
likelihood function defined as

L̃(Θ) = L(Θ)− Penalty(Θ). (41)

To obtain the MIXNET model we employ the elastic
net penalty as given in Equation 39

ξNET (Θ) =
S

∑
s=1

λs

p

∑
j=1

(
α |βs j|+

(1− α)

2
|βs j|2

)
(42)

resulting in a penalized log-likelihood function

L̃(Θ) =
N

∑
i=1

log
S

∑
s=1

πs· f (yi|θs)︸ ︷︷ ︸
Log-Likelihood

−
S

∑
s=1

λs

p

∑
j=1

(
α |β j|+

(1− α)

2
|β j|2

)
︸ ︷︷ ︸

Penalty

.
(43)

The corresponding maximum likelihood (ML) is then
computed by

Θ̂ML = arg max
Θ

L̃(Θ)

= arg max
Θ

[log f (y|Θ)− ξNET (Θ)]

= arg max
Θ

[
N

∑
i=1

log
S

∑
s=1

πs· f (yi|θs)

−
S

∑
s=1

λs

p

∑
j=1

(
α |β j|+

(1− α)

2
|β j|2

)]
.

(44)

Lastly, the complete data log-likelihood function is
defined as

L̃c(Θ) = log f (y, Z|Θ)− ξNET (Θ)

=
N

∑
i=1

S

∑
s=1

zis · log [πs · f (yi|θs)]− ξNET (Θ).

(45)
To obtain estimates of the parameters Θ̂ the EM al-
gorithm as described in Algorithm 1 is used. The
algorithm can be subdivided into two separate steps,
the Expectation-step and the Maximization-step. Ev-
ery iteration provides new parameter estimates Θ̂.
The E-step computes the expectation of the complete
data log-likelihood conditional on y and the current
estimate Θ̂(t). The E-step is given by

E
[
L̃c(Θ)

]
= E

[
log f (y, Z|Θ̂(t))− ξNET (Θ̂(t))

]
(46)

Consequently, the M-step maximizes the expected
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value in Equation 46 with respect to Θ such that

Θ̂(t+1) = arg max
Θ

E
[
L̃c(Θ̂(t))

]
= arg max

Θ
E
[
log f (y, Z|Θ̂(t))− ξNET (Θ̂(t))

]
(47)

yielding updated parameter estimates Θ̂(t+1). The
two steps are repeated until convergence is met re-
sulting in a final solution. The log-likelihood function
can be extended with the different penalties intro-
duced above in a similar manner. For instance, to ob-
tain a log-likelihood function with the adaptive lasso
penalty.

4 RESULTS
We now report the results obtained by following
the estimation and simultaneous variable selection
procedure referred to as MIXNET. The results
are organized in the following manner. We start
with a exploratory data visualization. Second, the
component selection procedure is reported. Third, we
discuss the grouping structure. Next, the coefficient
estimates are reported and interpreted. Lastly, we
conclude with segment-level results by discussing the
most important properties of the components. Our
goal is to achieve a clear and concise interpretation of
the segments which can be used to improve business.

4.1 EXPLORATORY DATA ANALYSIS
In order to visually explore our dataset and poten-
tially reveal some structure we apply both PCA and
the t-SNE algorithm. Consequently, the results are
mapped into two-dimensional space. For optimal
results in the PCA we first center and scale the data
such that each variable has a mean equal to zero and
variance equal to one. Figure 1 displays the results
of plotting the first two principal components of
the PCA. The first component describes 16% of the
variability in the data while the second describes 9%.
Together the first two principal components capture
25% of the total variation in the data. Figure 2 shows
the data mapped into two-dimensional space by the
t-SNE algorithm. In both figures the observations
are colored by age. We find PCA manages to find
some structure in the data based on the first two
principal components. Clearly, younger customers
are in the bottom part of the point cloud whereas
older individuals are seen in the top part. Yet, no

clear separated grouping structure is found in the
data by plotting the first two dimensions.

The t-SNE solution reveals somewhat separated
groups of observations in comparison with PCA.
Still, many datapoints overlap, especially in the
center part of the figure. Datapoints that are close
together represent similar observations while two
observations in separated point clouds indicate that
the observations are dissimilar. Most noticeable
are the darker colored clusters corresponding to
younger individuals. Further inspection reveals
that many point clouds have a lighter colored edge
corresponding to older individuals.

There is a large amount of overlap in the two-
dimensional visualization of both techniques. The
solutions do not point towards a clear presence of
groups that are easy to separate based on the rela-
tions in our data. This finding can be supported by
the fact that our data contains relatively many ob-
servations and variables. Of the included variables
there are many that do not show a large amount
of variation across the observations. For instance,
the majority of individuals possess a main insurance.
There are merely 2972 observations in the popula-
tion without a main insurance. When two observa-
tions share the same value on a certain variable they
are already somewhat similar. An ideal solution be-
fore applying a finite mixture model would reveal a
clearly separated grouping structure of the observa-
tions. For instance, three dense and separated clusters
of datapoints would implicate observations are easy
to group and the groups easy to separate based on the
high-dimensional patterns of the data. This finding
could support the appropriateness of fitting a three-
component mixture model.
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Figure 1 Visualization of the data structure of the first two principal components of PCA.
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Figure 2 Visualization of the data structure mapped to 2-dimensional space with the t-SNE algorithm.
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4.2 COMPONENT SELECTION
This section summarizes the results of our selection
procedure to determine the optimal number of
components S needed to model the structure of our
data. To control for computation time we impose
two separate stopping criteria on the EM algorithm.
First, a tolerance threshold of 0.01 as described in the
initialization strategy. This means convergence is met
when the relative improvement in the log-likelihood
drops below 1%. Second, we set a maximum number
of iterations. If either of these conditions is met,
the EM algorithm is forced to stop and the current
estimate is taken as solution. In addition, we examine
the size and prior probabilities πs of the components
in the solution. If the size or prior probability of a
component is relatively low compared to the others
we consider the segment as not substantial and
remove it from the solution. Table 3 presents the best
solution of the 10 repetitions for each specification
component size of the first stage. According to the
used criteria, the optimal solution is obtained with
roughly 10 components.

Next, we perform the second stage of our compo-
nent selection procedure based on the information
provided by the first stage. Now we estimate our
model with 6 up to 14 components in a step-size of
1. Table 4 reports the solutions of every step. Based
on this comparison we conclude that a model with
12 components performs the best in terms of describ-
ing the structure of the data based on our diagnostic
measures. However, the solution with 12 segments
contains a component with merely 2157 observations
and corresponding low prior probability of 0.004. The
size of these group is not substantial enough to target
from a business point of view, in addition a smaller
model is preferred. Hence, we decrease the number
of components to 11 and repeat the entire estimation
procedure. Again, the solution contains a small com-
ponent with only 2852 observations. Therefore, we set
S = 10 and obtain a final solution where the smallest
group contains 4158 observations. We accept this solu-
tion in order to not deviate too much from the optimal
number of 12 components which may lead to inability
of capturing structural differences in the data. The
results of this solution are reported in Table 5.

Table 3 Component selection stage 1

S df log-Lik AIC AIC-3 BIC ICL

5 194 -241778 483943 484136 485989 920496

10• 352 -232969 466642 468641 470375• 1251132

15 544 -232556 466200 466744 471969 1426217

20 717 -231448 464329 465045 471921 1579343

25 932 -241636 485135 486066 495006 1854422

30 1114 -243742 489711 490824 501512 2013732

Best solution highlighted in gray
• Decisive measure

Table 4 Component selection stage 2

S df log-Lik AIC AIC-3 BIC ICL

7 155 -237636 475581 475736 477225 1115935

8 174 -236717 473781 473955 475626 1129006

9 191 -236518 473419 473610 475444 1210953

10 213 -236021 472468 472681 474726 1244810

11 232 -234981 470426 470658 472886 1344398

12• 256 -233102 466717 466973 469431• 1324802

13 272 -234090 468724 468996 471608 1340071

14 290 -233798 468176 468466 471251 1400102
Best solution highlighted in gray
• Decisive measure
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4.3 CLUSTERING STRUCTURE

Now that we have determined the number of compo-
nents we employ the initialization strategy consisting
of short EM runs followed by a full estimation run
to obtain a final solution. Consequently, we look at
the obtained grouping structure as reported in Table
5. The following metrics are used to describe the
structure. First, the size of a group represents the
number of observations assigned to this component
based on the posterior probabilities. Second, prior
refers to the prior probability πs of of an observation i
belonging to group s. Third, # {post > ε} represents
the number of observations with a posterior probabil-
ity of belonging to this component larger than epsilon.
We have set ε = 0.05, meaning posterior probabilities
of belonging to a certain component smaller than 5%
are interpreted as zero. Lastly, the ratio as defined in
Equation 27 is given which is an indication of how
well a segment is separated from the others. The
grouping structure obtained by the elastic model is
reported in Table 5. The components are sorted in
ascending order by their prior probability πs. Figure 3
displays a comparison of the size of each component.
We find component 1 is the smallest containing
roughly 0.5% of the sample whereas segment 10 is by
far the largest containing 38% of the population based
on posterior probabilities.

Table 5 Grouping structure of MIXNET result

Component Prior Size #{post > ε} Ratio

1 0.009 4158 13568 0.307

2 0.067 27433 324985 0.084

3 0.083 15199 478109 0.032

4 0.088 54472 435699 0.125

5 0.094 83160 432770 0.192

6 0.094 61723 425107 0.145

7 0.111 143899 345995 0.416

8 0.118 89336 461861 0.193

9 0.135 77158 517791 0.149

10 0.202 344931 673340 0.512
Components are ordered by prior probability πs

The results in Table 5 indicate a large amount of
overlap between the components. This finding is in
agreement with the results of the exploratory data
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Figure 3 Comparison of component sizes.

visualization. Cluster 10 is the most separated fol-
lowed by segment 7 and 1. Segment 3 is the least
separated from other clusters. However, the ratio in
Table 5 does not provide information regarding which
specific pairs of components overlap. For the segment
interpretation we would like to examine if a certain
group is part of a larger group of customers or if the
group can be seen as a distinct market segment. To ob-
tain more detailed information regarding the overlap
and separation in our clustering solution we use the
Kullback-Leibler divergence measure as introduced in
Section 3.6. This measure allows for calculating pair-
wise dissimilarities of the distributions of the clusters.
Table 6 reports the pairwise Kullback-Leibler diver-
gence measures. The values are divided by 100,000
and rounded to whole numbers to increase conve-
nience of interpretation. Naturally, the diagonal is
zero as the distance of a components distribution to its
own distribution is zero. As discussed, KL divergence
is not symmetric. This is evident when comparing the
upper and lower triangle of Table 6. High values are
observed in the row of component 1. This indicates
that the density of 1 has the highest deviation from
the other groups. The maximum value is observed for
the pairwise distance from component 1 to 7.

4.4 HYPERPARAMETER ESTIMATES

We wish to obtain a clear description for the different
groups focusing on the most distinct and important
differences. Hence, we prefer a relatively small subset
of the most important variables per component. For
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the mixing parameter of the penalties we considered
three values, α = [0.5, 0.7, 0.9]. We exclude α = 1
to avoid arbitrary selection within groups of corre-
lated variables and computational issues. For each
α value in the grid cross-validation is done to deter-
mine the optimal penalty strength λ per component.
The resulting final solutions per α are reported in Ta-
ble 7. The results indicate that even when setting α

to a relatively high value for all components, many
of the variables are still included. We find α = 0.9
yields the lowest BIC score and the most parsimo-
nious solution. Hence, this value of α is selected.
Figure 4 displays the result of 10-fold cross validation
for λ with α = 0.9. Two values of lambda are high-
lighted in the plots with a dashed vertical line. The
first line corresponds with the value that minimizes
the mean cross-validated error, λmin. The second line
corresponds with the stronger penalized model within
one standard deviation, λ1se.

Table 6 Pairwise Kullback-Leibler divergence of components

Component

1 2 3 4 5 6 7 8 9 10

1 . 299 1100 2679 2367 1255 2438 1336 117 794

2 15 . 81 194 113 44 253 226 37 769

3 20 23 . 24 29 332 156 46 20 13

4 24 26 10 . 14 27 117 39 20 13

5 24 18 14 15 . 9 150 74 26 20

6 21 12 29 58 16 . 224 116 30 36

7 24 36 75 131 149 118 . 113 23 44

8 21 56 440 80 134 111 21 . 11 18

9 11 100 163 358 425 283 363 81 . 96

10 19 27 18 31 55 55 126 28 16 .
Values are divided by 100,000 and rounded to whole numbers

Table 7 Comparison of α values

α S df log-Lik AIC AIC-3 BIC ICL

0.5 10 170 -677075 1354491 1354661 1356482 3157545

0.7 10 171 -677830 1356003 1356174 1358005 3155693

0.9 10 158 -674553 1349422 1349580 1351272• 3043364
Best solution highlighted in gray
• Decisive measure

We select λ1se as our penalty value which yields the
most parsimonious solution of the two lambda values.
Figure 4 shows that different penalty strengths are
selected within components. The values displayed
on the top vertical axes above each plot represent
the number of non-zero variables at that respective
value of λ . The number of selected variables varies
across the clusters as a results of differing penalty
strengths. For instance, in component 1 we obtain
λ1se ≈ log(2) ≈ 0.3 whereas in component 3 we find
λ1se ≈ log(5) ≈ 0.7. We find the least amount of
penalization is done in component 1 resulting in a
selection of 21 variables while component 3 is most
penalized leading to a selection of merely 9 variables.
The shapes of the lambda estimates look comparable,
however differences can be seen when looking at the
range of the axes. For one thing, the mean squared
error ranges from roughly 10 to 13 in component 1
whereas most other components are below a value of
1. Furthermore, component 7 has a noticeably smaller
error ranging from 0.02 to 0.08.
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Figure 4 Results of cross-validation for λ in each component. Dashed lines indicate λmin and λ1se. Values on the top vertical
axes represent the number of non-zero variables.
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Figure 5 Coefficient paths of each variable. Values on the top vertical axes represent the number of non-zero variables.
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Table 8 Coefficient estimates within each component

Component

Variable 1 2 3 4 5 6 7 8 9 10 Population

INT ERCEPT -1.56 -1.57 -0.56 -1.49 -2.33 -1.92 0.41 -0.28 1.59 -0.75 -0.65

AGE 0.05 0.04 0.04 0.03 0.04 0.04 . 0.02 . 0.02 0.03

N_Y EARS . . . . . . . . -0.01 . .

TAKER -0.2 0.04 -0.28 0.1 . 0.13 0.04 . . 0.09 0.02

N_ON_POLICY -0.07 -0.08 . -0.01 . . . . 0.02 -0.04 -0.01

FOREIGN_IND -2.46 -0.82 -0.54 -0.81 -0.36 -0.97 -0.69 -1.35 -1.52 -1.03 -0.96

PAY MENT_T ERM . . . . . . . . . . .

N_ON_COLLECT IV ITY . . . . . . . . . . .

MAIN_IND 1.82 2.45 0.85 1.92 2.41 1.67 1.5 1.02 0.46 1.52 1.34

ADDIT IONAL 0.31 0.06 0.07 0.11 0.15 0.21 0.23 . 0.13 -0.02 0.09

MODULE -0.02 0.06 . 0.21 0.14 0.08 0.08 0.24 0.25 0.21 0.13

PROV ISION . . . . . . . . . 0.01 .

N_CLAIMS -0.16 . -0.06 -0.04 -0.02 . -0.01 -0.09 -0.05 -0.08 -0.07

N_MONT HS 0.36 . . . . . . . -0.11 0.04 0.02

VOLUNT_EXCESS . . . . . . . . . . .

N_NEGLECT -0.01 . . . . . . . -0.01 . .

N_LENIENCE -0.37 -0.03 . . . -1.14 -0.06 . 0.11 . .

N_HEALT H_CAT S -0.19 -0.06 . . . -0.06 -0.05 . -0.11 0.04 -0.01

MAX_N_CAT S 0.03 . 0.06 0.04 0.01 . . 0.08 0.07 0.06 0.05

COMPARISON_IND -0.11 -0.03 . . . . . . . -0.07 .

SEX -0.28 -0.33 0.28 . . . -0.32 . -0.17 -0.15 -0.08

BRAND2 0.15 -0.03 . -0.13 -0.04 . . -0.14 -0.09 -0.15 -0.02

BRAND3 -0.11 0.04 . . . . . . -0.02 . .

REGIONGGZ 0.04 -0.01 . . . . . . . -0.01 .

REGIONVV -0.11 -0.02 . -0.03 -0.03 . -0.04 -0.03 -0.02 -0.03 -0.02

# of Variables 21 16 9 12 10 10 11 10 19 18 15
Estimates are rounded to two decimal places, excluded features are
marked with a.
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4.5 COEFFICIENT ESTIMATES

The plots in Figure 5 display the coefficient path
versus the penalty strength parameter λ in each
segment. This figure visualizes the shrinkage
behavior of the variable selection procedure. Each
curve corresponds to a single variable, factor levels
are count as separate variables. The values displayed
on the top vertical axes above each plot represent the
number of non-zero variables at that respective value
of λ . In addition, the legend in each plot reports the
three variables with the largest absolute influence
within that component. The results clearly show
different paths due to independent estimation and
variable selection within the segments. A higher
penalty results in more severe shrinkage of the
parameter estimates, which can be observed by
tracing the coefficient paths from left to right in
any given component. Consequently, a stronger λ

means stricter selection resulting in the exclusion
of more variables within the component. The
coefficient estimates within each component are
reported in Table 8. The excluded variables which are
shrunken down to exactly zero are denoted with a dot.

Standard errors are not reported as they can be un-
meaningful or misleading in regularized regressions.
Shrinkage can significantly reduce the variance of the
estimators which is achieved by introducing a bias.
As a result, the introduced bias can form a substantial
part of the mean squared error. Several methods have
been proposed to obtain reliable standard errors in a
penalized setting. For instance, the sandwich formula
by Fan and Li which estimates the covariance of the
estimates and an extension for the adaptive lasso by
Zou and Hastie (Fan and Li, 2001; Zou and Hastie,
2005). However, both methods yield a variance
equal to zero for estimates that are shrunken towards
zero. Alternatively, a bootstrapping approach can be
applied to obtain standard errors (Tibshirani, 1996).
However, bootstrapping can be very intensive com-
putationally. The bootstrapping approach has been
thoroughly studied and performance is argued in this
case. For instance, Knight and Fu report estimation
problems caused by a bias in bridge estimators,
including the lasso, when the true parameter values
are shrunken to or just above zero (2000). Further
issues are discussed by Leeb and Pötscher who
show difficulties in estimating precision of shrinkage
estimators and Beran who prove inconsistencies in
estimation (Leeb and Pötscher, 2006; Beran, 1982).

Thus, obtaining valid standard error estimates with
a bootstrap approach proves to be problematic in
practice. In short, the estimates are inconsistent for
the variables that are shrunken towards or set to
zero (Kyung et al., 2010). If our goal were to find an
optimal model to predict the balance of an individual
then standard errors would be of bigger concern.
In this case, an approach such as a Bayesian lasso
would be more appropriate as this would allow to
produce valid standard errors (Kyung et al., 2010).
However, this is not our purpose here since the main
focus is not prediction of just the financial balance but
describing the structure of the data and finding the
most important relations.

We find the following relations provided by the
coefficient estimates in Table 8. All coefficient are
interpreted as average within the component and
relative across components. Moreover, the discussed
effects are under the assumption of keeping all other
variables fixed (ceteris paribus). Numbers refer to
components to improve readability. For instance, 9
refers to component 9.

First, we look at demographics and general charac-
teristics of customers. For most components being a
male is negatively related to balance with exception
of 3 where the effect is positive. Age appears to
have a relatively small positive effect which seems
counter-intuitive. We expect to find a negative effect
for age. In general, older individuals are less healthy
compared to younger people and require more health
services yielding a less positive balance. This result is
possibly explained by the settlement which is taken
into account in our response variable. The settlement
ensures a higher compensation for older individuals
compared to younger customers. In addition, the
number of packages is positively related to age. This
means older customers have a higher insurance
coverage in general, resulting in a better negation
of health care costs. Next, the number of people on
a policy do not show a meaningful relation with
financial value. This variable can be used as proxy to
distinguish families with children and individually
insured customers or couples. The number of years
a customer is insured has no effect on the monetary
balance of that person, except in component 9 where
it is negative. The number of people on a collectivity
is also not important. Mental health care region is
in general not influential while the nursing and care
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region shows a negative effect. This region is an
ordered variable from 1 to 10 with 10 being the most
expensive, hence this result is as expected.

Second, we interpret insurance package related
variables. Having a main (basic coverage) insurance
package has a strong positive effect in all cases, as
opposed to being insured without main insurance
package. These individuals have concluded main
insurance at another provider as they are obligated
to by law. These customers decide to purchase
additional coverage at an alternative provider. An
explanation is that a comparable coverage at the
provider of their main insurance is less attractive
in terms of features or costs. This implicates that
customers who have a main insurance at a competitor
are less attractive for the company from a monetary
point of view. Next, we find having additional
packages has a positive impact, except in 8 where it
has no effect and segment 10 where the effect negative.
In addition, a more expensive additional insurance
yields a positive effect. Furthermore, having extra
modules such as a dental coverage has a positive
impact in general. In each segment we find having
foreign insurance coverage has a negative effect in
comparison with having no foreign coverage, this is
most notable in 1. Having an insurance of brand two
has a negative impact in general, except in 1. Lastly,
information regarding use of a insurance comparison
site is not useful. Individuals that use such a site
could be labeled as more price sensitive, as they
take effort to find the best suited or least expensive
insurance provider but this is not reflected in the
financial balance

Third, we discuss monetary variables related to
insurance packages. The amount of voluntary excess
is insignificant in all components which is unexpected.
Intuitively, the chosen amount of voluntary excess
would have explanatory power regarding the level
of health care services required by an individual.
Interestingly, this voluntary excess appears to be
unrelated with the resulting balance of a customer.
This result is most likely explained by the fact that
choosing a higher amount of voluntary deductible
excess is compensated by a lower priced insurance.
Therefore, we expect customers with a lower amount
of excess to require more health care services which
is then compensated by a higher premium for their
package. Paying a provisional service fee to a third

party, the term of payment and the number of
payment neglects do not have any effect.

Lastly, we look at the behavior of customers
regarding claims. As expected, the number of
claims has a negative effect on the monetary balance.
However, the number of different months containing
claims does not appear to be of importance in general,
except in 1 where the effect is positive. The number
of leniences provided to customers on their claims
is negatively related with balance in segment 1 and
to a lesser extent in 6. Lenience is provided by the
company in certain situations where the individual is
not (completely) insured for the treatment or service
he is claiming. The number of different health care
categories in which claims are done has a negative
effect in general but not in all groups. Lastly, we find
a positive effect in most segments for the number
of claims in the health category containing the
maximum number of claims (MAX_N_CAT S). If the
number of claims is high in a single specific health
care category this could implicate a more structural
or expected requirement of health services allowing
for insuring against these costs. This is as opposed
to for instance an unpredictable accident resulting in
high cost treatment.

To conclude this section we recap the most impor-
tant findings. Results indicate that age does not have
a negative relation with our response variable. This is
likely explained by the settlement we have taken into
account in our response variable. Second, not having
a main insurance package has a relatively large nega-
tive effect on the monetary balance of an individual.
The same result holds for having insurance packages
with foreign coverage. On the contrary, holding more
packages such as additional insurances and modules
like dental coverage is positively related with ones
balance. These customers have insurances with bet-
ter coverage negating the impact of costly health care
services on their financial balance. Next, the number
of claims is negatively correlated with balance as ex-
pected. In contrast, the number of different months
in which claims are done is not important. We find
segment 1 is an exception in many of the general re-
lations revealed by the model. Correspondingly, we
find the largest number of variables is selected in this
group. This finding is in agreement with the values
observed in the pairwise KL divergence of component
1 to the others in Table 6.
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Table 9 Component wise means and standard deviations

Component

Variable 1 2 3 4 5 6 7 8 9 10 Population

BALANCE
-20727.22

(55022.68)

4950.27

(1508.76)

1943.7

(3645.78)

2262.17

(1724.96)

2617.39

(1584.69)

3287.43

(2250.78)

3089.98

(467.98)

728.68

(4335.05)

-3890.7

(9262.19)

2144.78

(2038.15)

1744.15

(5648.42)

AGE 54 (29) 58 (22) 49 (24) 40 (23) 43 (24) 52 (26) 40 (15) 43 (22) 50 (21) 35 (22) 41 (23)

SEX 0.55 (0.5) 0.46 (0.5) 0.54 (0.5) 0.43 (0.5) 0.49 (0.5) 0.59 (0.49) 0.46 (0.5) 0.45 (0.5) 0.5 (0.5) 0.56 (0.5) 0.51 (0.50)

N_Y EARS 8.51 (3.61) 9.09 (3.1) 8.34 (3.46) 7.98 (3.59) 8.27 (3.58) 8.86 (3.29) 8.03 (3.7) 7.99 (3.71) 8.21 (3.7) 7.55 (3.71) 7.97 (3.66)

MAIN 1 (0.02) 1 (0.01) 0.99 (0.1) 1 (0.07) 1 (0.04) 1 (0.04) 0.99 (0.08) 1 (0.05) 1 (0.04) 1 (0.06) 1.00 (0.06)

FOREIGN_IND 0.01 (0.1) 0 (0.06) 0.02 (0.16) 0.02 (0.13) 0.01 (0.1) 0.01 (0.08) 0.01 (0.08) 0.01 (0.1) 0.01 (0.09) 0.01 (0.07) 0.01 (0.09)

BRAND1 0.78 (0.41) 0.78 (0.41) 0.76 (0.42) 0.79 (0.41) 0.8 (0.4) 0.77 (0.42) 0.77 (0.42) 0.78 (0.42) 0.78 (0.41) 0.75 (0.43) 0.77 (0.42)

BRAND2 0.1 (0.29) 0.11 (0.32) 0.14 (0.34) 0.1 (0.3) 0.1 (0.3) 0.12 (0.32) 0.11 (0.31) 0.12 (0.32) 0.1 (0.3) 0.12 (0.33) 0.11 (0.32)

BRAND3 0.12 (0.33) 0.1 (0.31) 0.1 (0.3) 0.1 (0.31) 0.1 (0.3) 0.11 (0.31) 0.12 (0.33) 0.11 (0.31) 0.12 (0.32) 0.13 (0.33) 0.12 (0.32)

TAKER 0.61 (0.49) 0.66 (0.47) 0.53 (0.5) 0.49 (0.5) 0.47 (0.5) 0.57 (0.5) 0.52 (0.5) 0.52 (0.5) 0.61 (0.49) 0.42 (0.49) 0.49 (0.50)

N_ON_POLICY 2.19 (1.28) 2.14 (1.2) 2.49 (1.41) 2.71 (1.41) 2.73 (1.39) 2.45 (1.31) 2.8 (1.5) 2.62 (1.4) 2.37 (1.34) 3.03 (1.48) 2.77 (1.45)

VOLUNT_EXCESS 22 (96) 23 (100) 47 (142) 63 (160) 55 (151) 28 (108) 86 (183) 76 (175) 42 (133) 64 (162) 62 (159)

PAY MENT_T ERM 3.91 (4.64) 3.7 (4.53) 3.77 (4.61) 3.8 (4.63) 3.78 (4.6) 3.91 (4.65) 3.72 (4.58) 3.92 (4.69) 3.9 (4.67) 3.77 (4.61) 3.80 (4.62)

N_ON_COLLECT
5099

(9232)

4842

(8679)

5013

(8737)

5107

(8980)

4929

(8706)

4942

(8821)

5463

(9505)

4933

(8968)

4938

(9188)

5510

(9414)

5249.13

(9207)

IND_COLLECT 0.26 (0.44) 0.23 (0.42) 0.21 (0.41) 0.23 (0.42) 0.21 (0.41) 0.21 (0.41) 0.19 (0.39) 0.2 (0.4) 0.23 (0.42) 0.16 (0.37) 0.19 (0.39)

REGIONGGZ 5.26 (2.96) 5.35 (2.9) 5.56 (2.99) 5.23 (2.98) 5.5 (2.94) 5.62 (2.88) 5.24 (3.04) 5.36 (2.95) 5.44 (2.97) 5.59 (2.98) 5.46 (2.98)

REGIONVV 1.7 (1.94) 1.62 (1.93) 1.91 (2.03) 1.58 (1.91) 1.59 (1.92) 1.67 (1.94) 1.57 (1.91) 1.66 (1.91) 1.7 (1.92) 1.64 (1.94) 1.63 (1.93)

PROV ISION 39 (65) 36 (37) 35 (43) 29 (40) 25 (38) 28 (36) 34 (33) 35 (44) 41 (42) 25 (31) 30 (36)

N_CLAIMS 23 (14) 20 (8) 23 (15) 17 (10) 17 (9) 18 (8) 14 (7) 20 (11) 22 (11) 15 (9) 17.01 (9.55)

N_LENIENCE 0 (0.06) 0 (0.07) 0.01 (0.12) 0 (0.06) 0 (0.04) 0 (0.04) 0 (0.04) 0 (0.05) 0 (0.06) 0 (0.04) 0.00 (0.05)

RET ND_EXCESS 299 (180) 285 (148) 236 (186) 141 (183) 147 (180) 193 (180) 144 (171) 200 (208) 338 (186) 117 (171) 166 (190)

N_MONT HS 9.84 (2.94) 10.01 (1.91) 9.66 (2.57) 9 (2.36) 9 (2.36) 9.41 (2.21) 8.4 (2.37) 9.62 (2.23) 10.07 (2.04) 8.6 (2.38) 8.98 (2.38)

N_CAT EGORIES 4.49 (1.96) 4.34 (1.42) 4.79 (2.17) 3.88 (1.87) 3.84 (1.69) 3.95 (1.48) 3.47 (1.64) 4.43 (1.87) 4.88 (1.69) 3.62 (1.7) 3.89 (1.76)

MAX_N_CAT S 9.56 (4.06) 9.31 (2.93) 9.45 (3.67) 8.72 (3.12) 8.58 (3) 8.81 (2.98) 8.13 (2.92) 9.05 (3.09) 9.48 (3.16) 8.3 (2.99) 8.59 (3.06)

ADDIT IONAL 1.09 (0.66) 1.08 (0.63) 1.18 (0.66) 1 (0.67) 1.06 (0.61) 1.13 (0.6) 0.89 (0.67) 1.08 (0.64) 1.08 (0.66) 0.98 (0.62) 1.01 (0.64)

MODULE 0.43 (0.49) 0.44 (0.5) 0.42 (0.49) 0.44 (0.5) 0.37 (0.48) 0.34 (0.47) 0.47 (0.5) 0.46 (0.5) 0.5 (0.5) 0.36 (0.48) 0.41 (0.49)

N_NEGLECT 0.11 (0.86) 0.12 (0.87) 0.11 (0.88) 0.08 (0.72) 0.08 (0.73) 0.09 (0.76) 0.1 (0.75) 0.11 (0.83) 0.14 (0.94) 0.08 (0.72) 0.09 (0.77)

Standard deviations are denoted between brackets.
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Figure 6 Comparison of age per component with a boxplot (top), density plot (center) and histogram (bottom). Black dots and
numbers in the boxplot indicate the component averages, horizontal lines mark the medians.
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4.6 SEGMENT INTERPETATION

We now further analyze the segments. First, segment-
level results are reported and interpreted. Emphasis
is put on the captured differences that could provide
support for targeting specific components. The
total combination of information needs to be taken
into account simultaneously in order to sufficiently
create a relative distinction between customers.
Interpretation and judgment of a customer profile
cannot be done based on a shallow combination
of some customer characteristics or without taking
other customers into account. This is an important
consideration when interpreting or assigning value
to a customer segment and exactly the power of
applying a finite mixture modeling approach for
market segmentation. Second, we discuss the qual-
ity of the segmentation based on three general criteria.

Table 9 reports summary statistics of the groups
based on the posterior probabilities of the obser-
vations. The mean of each variable within the
components is given and the standard deviation is
denoted between brackets. This table includes all
variables because an important distinction is taken
into account here. The coefficient estimates reported
in Table 8 are based on the relation with our response
variable, the monetary balance of an individual.
However, certain characteristic of a customer or other
features can be of value regardless of the relation
with the balance of this individual. This value is not
necessarily reflected by means of a direct financial
aspect described by our response variable. For
instance, we do not find the age of a person or the
size of a collectivity to have a meaningful relation
with the monetary balance of a customer. It is of
importance to remember the goal of this research,
which is to support differentiation in groups of
customers. From a business point of view, the age of a
customer holds value regardless. Younger customers
have the highest potential customer lifetime duration,
if they are satisfied with the services of the company
they can remain a loyal customer for many years. In
addition, a specific segment of interesting customers
are children, usually below the age of 18, who are
still on their parents policy. When the time comes
for them to insure their own policy the company
is very interested in retaining them as a customer
instead of losing them to a competitor. Furthermore,
large collectivities can be of more interest than
smaller ones, for example a large company that has a

insurance deal with the provider for their employees.
These interpretations may still hold meaning and
be of use without finding a a direct correlation
with the response variable. Hence, certain variables
that have been excluded by the elastic net in the
mixture regression model can still provide relevant
information. Moreover, processing claims requires
effort and time hence claims are very expensive for
the company. Therefore, customers with a more
extensive claiming behavior are less desirable on top
of the negative effect that claims have on a customers
financial balance.

We will not discuss all of the 24 variables in each
of the 10 segments. Instead, emphasis is put on the
results that provide the most useful information
for differentiating the components. First, we look
at the balance in Table 9. The results indicate that
component 1 is on average the most negative. Figure 8
plots the balance of the different components. Indeed,
a large number of customers with a negative balance
are included in this segment. Yet, a conflicting finding
is that many customers with a relatively high positive
balance are also contained in 1. Further inspection
reveals the median balance is actually the highest
in 1 of all components. This result can also be seen
in the boxplot in Figure 8 where the median of each
component is marked with a horizontal line. The dis-
persion of balance in 1 is clear by looking at the range
of the box which contains half of the observations.
This finding complicates the practical interpretation
of this component as the range of balances is very
wide compared to the other groups. Next, 9 also has
a negative mean and median balance and does not
contain many positive balances. All other segments
have a positive mean and median with 2 having
the highest financial balance. In addition, we find
8 also includes a large number of customers with a
negative balance in comparison with the other groups.
Another interesting observation is the standard
deviation in 7, which is noticeably smaller compared
to other groups and the total population. The largest
difference is observed when comparing the deviation
from 1 to 7 which is in agreement with the highest
pairwise Kullback-Leibler divergence measure found
between this components in Table 6.

We continue with the demographics and general
characteristics of the customers. The results re-
veal that component 2 contains the oldest customers
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Figure 7 Comparison of claim behavior per component. Averages of number of claims (top), months with claims (middle) and
health categories with claims (bottom). Black dots and numbers indicate the component averages, horizontal lines mark the
medians.

whereas 10 comprises many young individuals, this
can also be seen in Figure 6. A majority of families
with young children and young adults are assigned
to this group. The density plot of age per component
shows that 1 and 2 have the most mass in the older
age categories whereas many other groups show a
bimodal density where younger individuals are also
present. However, the bottom histogram plot shows
that in terms of absolute number of customers, com-
ponent 10 contains the majority of young individuals
between the age 0 and 20. This is an important group
of customers for the company.

We also find 10 contains fewer insurance takers than
for example the older segments 1 and 2. This can be

explained by the fact that many customers below the
age of 18, and frequently beyond this age, are included
in the same policy as their parents. In this case one
of the parents is responsible for this insurance policy.
This finding is also reflected in the higher number
of people on the same policy, N_ON_POLICY in this
group compared to others. Component 1 and 2 have
a relatively high number of insurance takers in com-
bination with a relatively low number of individuals
on the same policy, this indicates that 1 and 2 con-
tain more individually insured customers compared
to the population average. This finding is supported
by the high value for IND_COLLECT in 1 and 2, and
a low value in 10. These conclusions are intuitive,
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Figure 8 Comparison of balance per component with a jitter plot (top left) and boxplot (top right) and histogram (bottom). Black
dots and numbers in the top row indicate the component averages, horizontal lines in the boxplot mark the medians.

older aged couples tend to be on a policy together
while younger couples have their children included.
This makes component 10 a very attractive market
segment for targeted campaigns focusing on younger
customers or families with children. Gender is ap-
proximately equally divided in general but 4 contains
more females and 6 contains more males than the
population average.

Third, we discuss monetary variables related to in-
surance packages. The amount of retained volun-
tary deductible excess is the highest in 1 and 9 but
is also high in segment 2. On the contrary, the re-
tained amount is the lowest in 10 followed by 7 and
4. In combination with the amount of voluntary de-
ductible excess, which is set by the customer, we find

that individuals in segment 1 expect to have high costs
as the amount is chosen to be low. On the contrary
we find the amount to be high in 10 as they likely
expect to have low costs. However, this relation is
not reflected in our regression results in Table 8. This
is likely caused by the fact that choosing a higher
amount of voluntary deductible excess is compen-
sated by a lower priced insurance and vice versa.

Next, we interpret behavior regarding claims. The
number of claims is high in both segments with a
negative balance, 1 and 9 but the number is also high
in component 3. In contrast, less claims are made in
10 and 7. Interestingly, the number of claims is higher
than the population average in 2 while the monetary
balance is also the highest in this segment. It is
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likely these customers expect structural requirement
of health care services and have chosen insurance
packages accordingly compensating the costs of
their treatments or medicine. Thus, meaning a high
claim frequency and high costs do not necessarily
constitute a less valuable customer than an individual
who requires less health services. This finding
underlines the importance of objectively taking the
entire combination of data into account.

Taking all results into account we conclude that
there are four components with desirable properties.
First, component 2 which is the oldest group and
seem to require structural health care as can be seen
from their claim frequency of 20 times in 10 different
months during a year and low voluntary deductible
excess. Nevertheless, this group of customers sim-
ply has the highest average financial value yielding
the most profit. This group can likely be labeled as
wealthy retirees who are quite aware of their health
cost requirements and have contracted appropriate
insurance coverage. The premium of their insurance
in turn compensates the costs. This component consti-
tutes 3% of the customer base.

Second, component 10 which contains the majority
of young customers and families. The claim frequency
is the lowest in this group after segment 7. The cus-
tomers in this group have a high potential to remain
a long-time customer if they are happy with the ser-
vices provided by company. In addition, many chil-
dren that reach the age of 18 move from their parents
insurance policy to their own. It is desirable to retain
these individuals which can be achieved by perform-
ing targeted campaigns on segment 10. This group is
the most voluminous with 38% of the population.

Third, segment 7. The financial value is slightly
less than 6 but the standard deviation is significantly
lower. Above that, the average customer in this group
is 12 years younger compared to segment 6 with again
the smallest range of all groups. On average these cus-
tomers claim 14 times in 8 different months during a
year. This is the lowest frequency of all segments. In
addition, we observe the highest voluntary deductible
excess which is generally seen as a proxy for not ex-
pecting the requirement of high cost health services.
The standard deviation of the majority examined vari-
ables is very low compared to the other groups. Fur-
thermore, customers in component 7 posses insurance
packages with less additional coverage but more den-
tal coverage in comparison with the population. In

addition, the component forms a substantial part of
the total population as it contains roughly 16 %.

Fourth, segment is 6 which has the second highest
financial value of all groups. With an average age of
52 and median age of 66 it is slightly younger than
segment 2 but considerably older than 7. The average
number of claims is 18 times during a year in 9
months which is just above group 7. Furthermore, we
find this group owns additional insurances with more
coverage but the least amount of dental coverage
compared to the average customer. 6 is also smaller
than 7 as it includes 7% of the observations.

Beside the segments with valuable customers we
identify two components with less desirable proper-
ties. First, segment 9 which contains many negative fi-
nancial valued individuals and has the lowest median
balance and lowest average balance after component
1. These customers claim on average 22 times in 10
different months within 5 different health care cate-
gories during a year. These are the highest number of
months and number of different care categories of the
entire customer base. Segment 9 comprises 9%.

The second less desirable group is segment 8. The
average balance is the lowest after 1 and 9 and the
median balance is the lowest after 9. Figure 8 reveals
the inclusion of a large number of customers with
a negative balance. Furthermore, we find a high
average claim frequency of 20 within 10 months in 4
different health care categories. This group is slightly
larger than 9 containing 10%.

Lastly, component 3, 5 and 6 have not been
discussed yet. These groups are in general average
when comparing their properties to the population.
However, noteworthy diverging results are firstly
the extensive claiming behavior in group 3 which is
costly for the company seen in Figure 7. Secondly, the
high median age of 65 in component 6, seen in Figure
6. Together they constitute approximately 16% of the
total sample. Not all groups are easily interpreted.
We find segment 1 has the most exceptions regarding
the general relations in the regression. Which is
also confirmed by the pairwise KL measures. This
component requires 21 of the 26 variables in order to
explain the variance in the response variable which
is the largest amount. Component 1 is a bit more
complicated to assess due to the very wide range of
balances contained in this group. The majority of very
negative financial valued customers are included
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together with a large number of high financial value
customers. Only 0.5% of the observations are in this
segment and merely 2000 of these customers have a
positive balance. The average balance is by far the
lowest of all components due to the large number
of highly negative balances whereas the median is
actually the highest of all groups. This complication
is not solved by fitting a mixture model with more
components. For example, an 11 and 12-component
solution still included a component with extreme
diverging financial balances. Hence, we conclude
that the data of these individuals must be highly
comparable while their balance is evidently not.

Taking all results into account we conclude that
there are four components with varying desirable
properties. First, segment 2 which is roughly 3% of
the population and has the most attractive financial
balance yielding the highest profit per customer.
Second, segment 7 is the most specific group due
small deviations in it’s properties compared to other
groups. This allows for targeting a specific profile
of customers fitting in this group. Conveniently,
this component has a substantial size of 16% and
very desirable properties such as the lowest number
of claims in the least number of different health
categories. Third, segment 6 which is comparable to
7 but with more deviation, slightly more claims and
smaller as it concerns around 7% of the observations.
Lastly and fourth, segment 10 which contains the
majority of families including young customers and
constitutes 38% of the sample. On the contrary, two
components contain less desirable customers. Both
segment 8 and 9 have a negative financial balance
due to inclusion of many customers that are costly to
insure for the company. In addition, 8 and 9 have the
most extensive claiming behavior. Processing claims
is time consuming ultimately adding to the financial
resources required for insuring these customers.
These components together form approximately
19% of the population. The remaining components
3, 5 and 6 can be labeled as average based on their
properties and constitute roughly 18% of the customer
base.

4.6.1 SEGMENT QUALITY

In this section we try to validate the results from a
more practical point of view. The aim is to evaluate
our segmentation in terms of quality and applicability.

Bluntly stated, does the outcome make sense and is
it useful? Segment quality is a very vague term as it
is highly dependent on the purpose and opinion of
the interpreter. Therefore, in order to allow evalua-
tion of the quality of the obtained segmentation we
consider three rather general criteria: identifiability,
substantially and actionability (Wedel and Kamakura,
2012).

• Identifiability: Does the segmentation reveal sig-
nificant variation across the defined components?

The different components describe an adequate num-
ber of variation to interpret customers assigned to that
group. This does not hold for each included variable
in the data, some features do not show useful distinc-
tion across components. For example, the size of col-
lectivities is relatively stable in each group. However,
a multiple of variables that can be used to interpret the
components do show meaningful variation. A good
example is the age within groups. We find individuals
in component 2 to be old on average while the major-
ity of young customers are included in component 10.
Hence, a sufficient amount of variation is present in
the grouping structure to properly create distinction
between groups and differ targeting to specific seg-
ments as desired. However, we find a large amount of
overlap between the components indicating that the
groups are hard to separate. An ideal solution would
consist of perfectly separated components.

• Substantiality: Are the segments large enough
in size to allow targeting?

Component 1 contains a relative small number of
observations compared to the population size. All
other groups contain at least 15,000 observations. This
seems to be a sufficient amount depending on the spe-
cific marketing action to be taken. In addition, some
marketing campaigns may be applicable for a multi-
ple of segments. For instance, one possibility is to offer
a discount to all segments with a relatively young age
and good financial value in order to increase customer
loyalty. Segment 7, 4 and 5 would all qualify for such
a campaign. In this scenario, the three segments can
easily be pooled to increase the number of targeted
customers as desired.

• Actionability: Is the variation across segments
interpretable and does it provide guidance?

In other words, can insights be acted upon to improve
business? The grouping structure can be employed
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to target a subpopulation of customers. Key drivers
that show variation across the components include
financial balance, age, claim behavior and package
selection. All of which can be used to support a dis-
tinction in resource allocation or targeted marketing
depending on the campaign of choice. These revealed
structural differences in the properties of the segments
can be used to select or target specific groups of cus-
tomers which seem appropriate for the action to be
taken.

5 SIMULATION STUDY
Lastly, we compare the performance of Gaussian mix-
ture regression models with different penalization
methods by means of a simulation study. The in-
cluded modeling approaches are:

• MIXREG: Regular Gaussian mixture model with-
out variable selection
• MIXRDG: Gaussian mixture model combined

with the ridge penalty function
• MIXNET: Gaussian mixture model combined

with the elastic net penalty function
• MIXLAS: Gaussian mixture model combined

with the lasso penalty function
• MIXALS: Gaussian mixture model combined

with the adaptive lasso penalty function

The penalty specifications are given in Equation 35
for ridge, Equation 39 for the elastic net, Equation 36
for the lasso and Equation 37 for the adaptive lasso.
For the elastic net we consider two penalty mixing
proportions, α = 0.5 and α = 0.9. The choice of
alpha is indicated with a subscript. α = 0.9 results
in stricter regularization as it tends more towards the
lasso than the ridge penalty. For completeness we list
the (penalized) log-likelihood function of each tested
modeling approach. In MIXREG we do not add a
penalty term. For MIXALS the coefficient dependent
weights ŵs j are obtained through a preliminary ridge
regression.

• MIXREG:

L(Θ) =
N

∑
i=1

log
S

∑
s=1

πs· f (yi|xi, θs)︸ ︷︷ ︸
Log-Likelihood

.
(48)

• MIXRDG:

L̃(Θ) =
N

∑
i=1

log
S

∑
s=1

πs· f (yi|xi, θs)︸ ︷︷ ︸
Log-Likelihood

−
S

∑
s=1

λs

p

∑
j=1
|βs j|2︸ ︷︷ ︸

Penalty

.
(49)

• MIXNET5:

L̃(Θ) =
N

∑
i=1

log
S

∑
s=1

πs· f (yi|xi, θs)︸ ︷︷ ︸
Log-Likelihood

−
S

∑
s=1

λs

p

∑
j=1

(
0.5|βs j|+ 0.25|βs j|2

)
︸ ︷︷ ︸

Penalty

.
(50)

• MIXNET9:

L̃(Θ) =
N

∑
i=1

log
S

∑
s=1

πs· f (yi|xi, θs)︸ ︷︷ ︸
Log-Likelihood

−
S

∑
s=1

λs

p

∑
j=1

(
0.9|βs j|+ 0.05|βs j|2

)
︸ ︷︷ ︸

Penalty

.
(51)

• MIXLAS:

L̃(Θ) =
N

∑
i=1

log
S

∑
s=1

πs· f (yi|xi, θs)︸ ︷︷ ︸
Log-Likelihood

−
S

∑
s=1

λs

p

∑
j=1
|βs j|︸ ︷︷ ︸

Penalty

.
(52)

• MIXALS:

L̃(Θ) =
N

∑
i=1

log
S

∑
s=1

πs· f (yi|xi, θs)︸ ︷︷ ︸
Log-Likelihood

−
S

∑
s=1

λs j

p

∑
j=1

ŵs j|βs j|︸ ︷︷ ︸
Penalty

.
(53)
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A highly desirable property of regularization al-
gorithms is shrinking the influence of the least
important variables. Or in case of algorithms with
variable selection abilities such as the elastic net,
we wish to select the optimal subset of variables
while excluding the non-influential variables from
the model by shrinking their effect down to zero.
The elastic net and lasso approaches both have
feature selection abilities while the regular and
ridge approach yield non-zero estimates for all
coefficients. Secondly, besides selecting the correct
subset of variables we wish to obtain accurate
estimate of the effects of the non-zero coefficients.
Thirdly, another fundamental challenge in mixture
modeling is determining the optimal amount of
components to describe the data. The number of
components is in general unknown and must be
extracted from the data. Hence, the ability to select
the correct amount of components is also investigated.

In short, we compare performance of the different
modeling approaches with a simulation in which three
aspects are examined:

• Selection of correct subset of variables
• Accuracy of non-zero coefficient estimates
• Recovery of true component amounts

We specify the following general 2-component finite
mixture form to generate a response variable y

π · φ
(

y1; xTβ1, σ
2
)
+ (1− π) · φ

(
y2; xTβ2, σ

2
)

(54)

with σ2 = 1. Three different prior probabilities are
tested, π1 = {0.15, 0.3, 0.6} implying π2 = 1− π1 =
{0.85, 0.7, 0.4}. The covariates x are generated from a
multivariate normal distribution with mean 0, vari-
ance 1 and a correlation structures ρi j such that

x ∼ N
(
µ = 0, σ

2 = 1
)

(55)

with ρi j = cor(xi, x j) = 0.6|i− j|.
Next, we use Equation 54 to define two different

models M1 and M2 to simulate a set of data. The
component specifications of both models are given
in Table 10. The first model, M1, contains p = 10
covariates of which 5 zero coefficients in component
1 and 6 in component 2. The second model, M2,
presents a higher-dimensional and more realistic
variable selection problem and includes p = 25
covariates. Component 1 contains 10 zero coefficients

while component 2 contains 15 zero coefficients.
Hence, in both models component 2 contains more
zero coefficients than component 1. In each case, a
sample size of N = 100 observations is used.

A widely used performance metric is the hit-rate.
Hit-rate is simply the ratio of correct predictions to the
total of observations. Indeed, this is an intuitive and
effective measure when dealing with symmetric data.
However, in case of an unbalanced class distribution
the hit-rate may fail to provide a proper indication of
performance. In order to compare the detection of true
zero coefficients we consider the following metrics;
precision (specificity), recall (sensitivity), and F1 score.
We define precision as the ratio of correctly estimated
zero coefficients (true positives) to the total estimated
number of zero coefficients (true positives and false
positives) such that

Precision =
TP0

TP0 + FP0
. (56)

Next, recall is given by the ratio of correctly estimated
zero coefficients to the true number of zero coefficients
defined as

Recall =
TP0

TP0 + FN0
. (57)

The F1 score (Van Rijsbergen, 1979) is the weighted
average of precision and recall given by

F1 =
2 · (Recall× Precision)
(Recall + Precision)

. (58)

A flawless performance would results in a ratio of
1 for all three metrics. By combining the precision
and recall we can take true and false positives and
negatives into account simultaneously. This allows us
to quickly compare the subset selection performance
of each model and specification with a single metric.
Each scenario is repeated for 100 iterations.

The component-wise results for the detection of zero
coefficients are reported in Table 11. We exclude the
MIXREG and MIXRDG in this part of the simulation
as they both do not have variable selection abilities.
The numbers are rounded to four decimal points. In
case of an unbalanced mix of the component sizes
for π1 = 0.15, the first component contains a small
amount of observations. In general, the performance
drops when the amount of observations in the sec-
ond component decreases. There is no universal best
method. In case of the higher-dimensional variable
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selection problem in M2 MIXREG would fail to obtain
a solution for π1 = 0.15. In this scenario 25 coeffi-
cients are to be estimated based on approximately 15
observations which is not possible with the regular
likelihood approach. All other models have no esti-
mation issues in this scenario when p > N. This is a
very attractive property of the penalized likelihood
approaches.

Table 10 Simulation model specifications M1 and M2.

Parameters Model M1 (p = 10) Model M2 (p = 25)

βs=1 (2, -0.8, 1, 0, 0, 1.2, 0, 0, 1.2, 0) (0, 2, -24, 1, 0, 3, 15, 22, -5, 28, 0, 0, 14, 29, 0, 0, 19, -6, 0, 21, 31, 0, 0, -19, 0)

βs=2 (0, 0, 0, 1, 2, 0, 0, -1.5, 0, 1.2) (-6, 0, 0, 15, 0, 0, 0, 8, 0, 22, 0, -3, 0, 17, 0, 0, 5, 0, 13, 0, 0, -19, 0, 0, 1)

ρi j 0.6|i− j| 0.6|i− j|

π1 0.15, 0.3, 0.6 0.15, 0,3, 0.6

Table 11 Detection of zero coefficients based on 100 simula-
tion repetitions.

Model M1 (p = 10) Model M2 (p = 25)

Component 1 Component 2 Component 1 Component 2

Method Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

π1 = 0.15

MIXNET5 .8202 .9400 .8745 .8333 1.000 .9091 .7271 .8473 .7809 .9487 .9832 .9655

MIXNET9 .8220 .9340 .8714 .8333 1.000 .9091 .7327 .8513 .7861 .9493 .9853 .9668

MIXLAS .8430 .7640 .7846 .8333 1.000 .9091 .7790 .7933 .7829 .9995 .9432 .9697

MIXALS .8163 .9340 .8698 .8290 .9960 .9048 .7315 .8513 .7854 .9483 .9842 .9658

π1 = 0.3

MIXNET5 .8188 .9760 .8898 .8246 .9920 .9004 .7886 .8820 .8307 .9292 .9268 .9256

MIXNET9 .8247 .9740 .8925 .8289 1.000 .9062 .8013 .8900 .8417 .9253 .9347 .9289

MIXLAS .8380 .9040 .8661 .8307 .9980 .9067 .8372 .8020 .8153 .9667 .8489 .9006

MIXALAS .8303 .9820 .8993 .8333 1.000 .9091 .7884 .8740 .8265 .9178 .9053 .9096

π1 = 0.6

MIXNET5 .8217 .9900 .8978 .8293 .982 .8980 .9073 .8826 .8904 .8343 .9067 .8675

MIXNET9 .8217 .9840 .8954 .8259 .994 .9019 .8936 .8605 .8731 .8170 .8967 .8536

MIXLAS .8260 .9880 .8996 .8266 .970 .8912 .9471 .7953 .8610 .8539 .8373 .8427

MIXALS .8213 .9880 .8962 .8292 .986 .9003 .9038 .8868 .8920 .8322 .9153 .8704
Best results per component marked in bold.

There is no indication of a single overall superior
shrinkage algorithm in this part of simulation. In gen-
eral we find that MIXNET performs well when the
amount of observations in component 2 is larger. The
lasso based models perform better when the amount
of observations in component 2 decreases. In the
higher dimensional problem in model M2 MIXALS
is the best method when component 2 contains little
observations. This situation is the most challenging in
terms of selecting the correct subset of variables.
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Next, the same simulation setup is used to study
the accuracy of the non-zero coefficient estimates. In
order to compare the behavior of the tested models we
look at several error metrics. We consider the mean
absolute error (MAE), mean squared error (MSE) and
root mean squared error (RMSE) of the coefficient
estimates. These metrics are calculated based on the
p true coefficient estimates β as reported in Table 10
and the p estimated coefficient estimates β̂ resulting
from the tested models. As reported, we have p =
10 covariates in model M1 and p = 25 covariates in
model M2. The used metrics are formulated as

MAE =
1
p

p

∑
j=1
|β j − β̂ j|,

MSE =
1
p

p

∑
j=1

(
β j − β̂ j

)2
,

RMSE =

√√√√ 1
p

p

∑
j=1

(
β j − β̂ j

)2
.

(59)

Every iteration of the simulation results in an error
value. Hence, for a more convenient comparison of
the models we summarize the metrics by reporting
the mean over the 100 simulation repetitions. This
yields a single value for each used error metric. This
means we report the average of the errors over all
n = 100 iterations such that

MAE =
1
n

n

∑
i=1

MAEi,

MSE =
1
n

n

∑
i=1

MSEi,

RMSE =
1
n

n

∑
i=1

RMSEi.

(60)

The component-wise results for the accuracy of
non-zero coefficient estimates are reported in Table
12. The numbers are rounded to four decimal points.
Figure 9 visualizes the average error and standard
deviation over the iterations for model M1 and Figure
10 for model M2. The standard deviation of each
metric over the repetitions are shown graphically
with an error bar. Note that the scales of the error on
the y-axis differ per component and prior. RDGMIX
is clearly the least accurate method in both simulation
models. MIXREG performs well in estimating the
coefficients in all cases for the easier problem M1.
The penalized likelihood approaches come with the
price of introducing a bias in the estimates which is

reflected in this simulation. The difference between
the performance of MIXREG and the penalized
methods decrease when the problem becomes more
difficult. That is, when the amount of observations
belonging to component 2 decreases. Note that the
range of the error on the y-axis differs per choice of
prior πs. This finding proves even more substantive
when the variable selection problem is complicated
further by increasing the amount of zero- and
non-zero covariates from p = 10 to p = 25 in M2
while still using N = 100 observations. In general, the
deviation of the MIXREG is now considerably larger
than the penalized approaches. In this case we find
that performance of the lasso and elastic net models
approach the MIXREG. Again, MIXALS provides the
most accurate solution in the most difficult case for
π1 = 0.6. This exceptional performance compared to
all other tested models is likely explained by the fact
that the adaptive lasso possesses the oracle property
as discussed in Section 3.8.2 (Zou, 2006).
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Figure 9 Comparison of the MAE, MSE and RMSE of the coefficients estimated per component by each tested mode in simula-
tion model M1. Black error bars indicate the standard deviation.
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Table 12 accuracy of non-zero coefficients based on 100
simulation repetitions.

Model M1 (p = 10) Model M2 (p = 25)

Component 1 Component 2 Component 1 Component 2

Method MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE

π1 = 0.15

MIXREG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2524 2.3295 0.9078 0.0226 0.0814 0.0285

MIXRDG 0.3152 0.1865 0.4205 0.1501 0.0514 0.2256 3.5306 26.8569 4.8393 0.6277 1.0511 1.0186

MIXNET5 0.1114 0.0305 0.1695 0.0342 0.0025 0.0497 1.2665 4.7945 1.9511 0.1779 0.1154 0.3387

MIXNET9 0.1152 0.0332 0.1748 0.0330 0.0023 0.0479 1.2928 5.2074 1.9865 0.1741 0.1143 0.3367

MIXLAS 0.1259 0.0346 0.1807 0.0389 0.0038 0.0611 1.9363 9.1635 2.7603 0.2111 0.1262 0.3542

MIXALS 0.1145 0.0326 0.1737 0.0328 0.0023 0.0477 1.9363 5.1196 1.9652 0.1741 0.1141 0.3370

π1 = 0.3

MIXREG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6190 9.7534 1.3362 0.1701 1.1529 0.2091

MIXRDG 0.2193 0.0995 0.3123 0.1600 0.0581 0.2395 1.9523 8.9116 2.7358 0.6898 1.4105 1.1061

MIXNET5 0.0827 0.0173 0.1298 0.0345 0.0025 0.0501 0.8724 3.8717 1.3509 0.1969 0.2004 0.3742

MIXNET9 0.0845 0.0178 0.1316 0.0331 0.0023 0.0481 0.8888 3.7490 1.3590 0.1964 0.2664 0.3825

MIXLAS 0.0806 0.0163 0.1257 0.0381 0.0037 0.0603 1.0077 2.4079 1.5330 0.2125 0.1292 0.3578

MIXALAS 0.0908 0.0276 0.1388 0.0374 0.0068 0.0541 0.7759 1.5442 1.2197 0.1790 0.1225 0.3483

π1 = 0.6

MIXREG 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8306 14.5471 0.9749 0.5863 5.2478 1.2853

MIXRDG 0.1830 0.0752 0.2708 0.1899 0.0769 0.2760 0.8307 2.8373 1.2989 1.4831 4.9359 2.1207

MIXNET5 0.0371 0.0029 0.0535 0.0741 0.0139 0.1174 0.3936 2.8946 0.6387 0.7319 2.9880 1.1563

MIXNET9 0.0354 0.0027 0.0512 0.0752 0.0141 0.1180 0.2518 1.0416 0.4594 0.6266 1.4171 1.0005

MIXLAS 0.0417 0.0043 0.0653 0.0702 0.0128 0.1123 0.4948 4.0784 0.7244 0.9285 4.2848 1.4632

MIXALS 0.0353 0.0027 0.0511 0.0760 0.0144 0.1191 0.1911 0.1379 0.3691 0.5834 0.8880 0.9342
Best results per component marked in bold.

44



Lastly, we consider the performance of the models
in terms of recovering the true number of components
in the mixture, this is also known as order selection.
We define a S-component Gaussian mixture model
where we can vary the number of components as

S

∑
s=1

πs · φ (ys, xTβs, σ
2), (61)

with σ2 = 1. We generate random priors πs =
{π1, . . . , πS} by splitting the value 1 into S parts based
on a binomial distribution with a restriction on πs

to ensure ∑S
s=1 πs = 1. The p regression coefficients

βs = {βs1, . . . , βsp} per component are drawn from a
uniform distribution such that

βs j ∼ U (−3, 3) ∀s = 1, . . . , S, ∀ j = 1, . . . p. (62)

The covariates x are generated from a multivariate
normal distribution with mean 0, variance 1 and cor-
relation structure ρi j = 0.6|i− j| as described above. In
order to resemble a problem where variable selection
is of importance we set all regression coefficients
with an absolute value smaller than 0.5 to zero. This
results in a varying amount of zero-coefficients per
component, generally zero to three. We use this frame-
work to simulate a mixture with varying component
amounts S = {2, 4, 6, 8, 10, 15} and test each modeling
approach. A stepwise component selection procedure
is used as explained in Section 3.5 of the Methodology.
In short, we fit each model starting with the following
initial amount of components Ŝ = {1, 2, 5, 10, 15} and
select the best solution based on the BIC measure.
To somewhat decrease computational intensity a
limit of 100 iterations is used in the EM algorithm.
If the prior probability of a component falls below
the value of 0.05 it is removed from the solution after
which the EM algorithm continues fitting with Ŝ− 1
components. This allows the algorithms to perform
component selection. Consequently, we compare the
performance of the models in terms of selecting the
true amount of components present based on the
data. Again 100 repetitions are performed. We report
the average amount of determined components
present in the mixture Ŝ = 1

n ∑n
i=1 Ŝ to examine the

solutions over the repetitions. In addition, we look
at the hit-rate of the determined amount and true
amount of present components, Ŝ = S. Lastly, the
ratio of converged solutions over the repetitions is
also reported. A ratio of 1 indicates all solutions over
the n = 100 repetitions converged.

The results of the component selection simulation
are reported in Table 13. The numbers are rounded to
two decimal points. In general we observe accurate
performance when the amount of components in
the mixture is small. When the amount of true
components in the mixture grows, all approaches
prove ineffective in detecting the correct amount. The
performance of all models drop in each step from
S = 6 onwards. This is possibly due to the fact that
the number of observations per component decreases
when S increases. Very noticeable is the accuracy
of the adaptive lasso model in this aspect of the
simulation. MIXLAS yields the most accurate result
when the amount of true components in the mixture
increases. For S = 8, 10 and 15 it is the only method
that manages to approach the true component
amount while all other techniques yield worse results.
Even the adaptive lasso is clearly outperformed by
the normal lasso in this comparison. Again, we find
that MIXRDG does not perform well compared to the
other methods. Interestingly, MIXRDG is the only
model that manages to obtain good convergence over
all simulation repetitions.

Taking all three aspects into account, both the mix-
ture modeling approaches with a penalized likelihood
based on the lasso and the elastic net prove to yield
good performance in comparison with a traditional
mixture model. There is no universally dominant
method in this simulation. The added value of the
extension of feature selection abilities is most evident
when a higher-dimensional variable selection problem
is of interest. In this situation, the extended models
clearly outperform the traditional mixture model. We
find that both approaches based on the lasso yield
good results, closely followed by the models based on
the elastic net. In terms of selecting the correct subset
of variables while also providing an accurate estimate
of non-excluded variables in the mixture component,
MIXALS is the optimal method. Naturally, this is
a golden combination when dealing with a regres-
sion problem where heterogeneity and variable se-
lection are of both of importance which is often the
case. When determining the optimal amount of com-
ponents in larger mixtures we find MIXLAS is the only
model that performs well.
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Table 13 Recovery of true component amounts based on
100 simulation repetitions.

Method Ŝ Hit-rate Converged Method Ŝ Hit-rate Converged Method Ŝ Hit-rate Converged

S = 2 S = 4 S = 6

MIXREG 2.16 0.84 0.98 MIXREG 4.00 1.00 1.00 MIXREG 5.12 0.12 0.64

MIXRDG 2.00 1.00 1.00 MIXRDG 4.00 1.00 1.00 MIXRDG 4.68 0.02 1.00

MIXNET5 2.04 0.96 1.00 MIXNET5 4.00 1.00 0.40 MIXNET5 5.16 0.16 0.34

MIXNET9 2.00 1.00 0.99 MIXNET9 4.00 1.00 0.46 MIXNET9 5.26 0.30 0.36

MIXLAS 2.06 0.96 0.94 MIXLAS 4.50 0.50 0.62 MIXLAS 6.72 0.42 0.28

MIXALS 2.04 0.96 1.00 MIXALS 4.00 1.00 0.50 MIXALS 5.14 0.16 0.38

S = 8 S = 10 S = 15

MIXREG 5.12 0.00 0.38 MIXREG 4.18 0.00 0.32 MIXREG 4.46 0.00 0.34

MIXRDG 4.66 0.00 0.96 MIXRDG 4.56 0.00 1.00 MIXRDG 4.66 0.00 1.00

MIXNET5 5.20 0.00 0.49 MIXNET5 4.64 0.00 0.50 MIXNET5 5.06 0.00 0.57

MIXNET5 5.26 0.00 0.58 MIXNET9 4.62 0.00 0.58 MIXNET9 5.02 0.00 0.52

MIXLAS 8.48 0.30 0.46 MIXLAS 9.36 0.90 0.38 MIXLAS 9.58 0.06 0.38

MIXALS 5.10 0.00 0.37 MIXALS 4.62 0.00 0.66 MIXALS 5.00 0.00 0.65
Best results per scenario marked in bold.

6 CONCLUSION

This research reports the analysis and development
of a finite mixture model. Our purpose was to
model and interpret the structure of a heterogeneous
customer base. In this process we were also interested
in exploring and revealing features that are related
to the financial balance of a customer. In order to
reveal the key features we extend the mixture model
with a regularization algorithm that has the ability
to perform variable selection. The model merges
simultaneous estimation of a finite mixture model
based on the EM algorithm with variable selection
abilities into a single procedure. This approach
provides a flexible and powerful modeling algorithm
which is able to handle todays high-dimensionality
and complexity of datasets.

The results of the feature selection reveal the fol-
lowing relations with the financial value of customers.
We find that age does not have a negative relation
with our response variable. This is likely explained
by the settlement we have taken into account in
our response variable. Second, not having a main
insurance package has a relatively large negative

effect on the monetary balance of an individual. The
same result holds for having insurance packages with
foreign coverage. On the contrary, holding more
packages such as additional insurances and modules
like dental coverage is positively related with ones
balance. Next, the number of claims negatively
influences financial balance as expected. In contrast,
the frequency, or number of different months in
which claims are made is in general not of importance.

Ultimately, the revealed structure is used to de-
scribe and interpret segments of distinct individuals.
We obtain a 10-component solution which can be
used to support differentiation of resources within the
company. Four segments are identified as containing
customers with desirable characteristics and behavior
which making them a valuable asset for the company.
The model provides structure in the heterogeneous
population of customers. The results can be used to
support choices regarding differentiation of segments
with desirable and less desirable properties. The
segmentation provides a solid foundation which
allows for a more efficient business strategy in
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comparison to treating the customer base as a whole.
For instance, more resources can be invested in the
relationship of customers in valuable components.
The results provide a big step towards a more
data-driven business approach within the company.

Moreover, we have performed a simulation study
in which we prove the value of extending mixture
models with the power of variable selection algo-
rithms. Results show that the models that combine
simultaneous fitting of the components and selecting
the most important variables within each component
perform well. In addition, the models provide a
very convenient algorithm by combining fitting and
feature selection into a single procedure while greatly
alleviating the computational burden associated with
traditional subset approaches.

High-dimensional problems are encountered in
many different fields today. We have shown that
especially in these situations the extended mixture
models clearly outperform an approach with normal
likelihood function in terms of selecting the correct
subset of variables while accurately estimating the
corresponding coefficients. Moreover, the extended
mixture models are more accurate in determine the
optimal amount of components present in the data.
In addition, the combination of a mixture model and
feature selection allows for the freedom of selecting
the most important subset of variables within each
component independently. Another major advantage
is that the extended models are able to handle
ultra-dimensional problems with more variables than
observations. Hence, we conclude that the model
proves to be not only a flexible, but also an accurate ap-
proach especially when dealing with many covariates.

All things considered, the results of this research
are very promising. The discussed approach has a
high potential for successfully dealing with regression
problems on heterogeneous data. The model excels
when a large number of variables are of interest and it
is desirable to select the most important ones which is
often the case. To conclude, combining finite mixture
models with simultaneous variable selection abilities
results in a highly relevant technique both for modern
applications on complex datasets as well as further
academic research.

6.1 CONTRIBUTION TO ACADEMICS
The need for techniques that have the ability to
handle large and complex datasets is ever increasing.
This is evident by looking at the surge in popularity
of variable selection algorithms in current scientific
research (Fan and Lv, 2010). Much attention has been
given to algorithms that allow for feature selection
such as the lasso and elastic net among many others
techniques (Tibshirani, 1996; Zou and Hastie, 2005).
Moreover, the assumption of perfectly homogeneous
data is often not realistic. A single regression or
model may fail to adequately capture and describe
the structure of complex data.

An efficient way of dealing with heterogeneity is
by means of a mixture model. Like in any model, the
problem of feature selection is relevant. Moreover,
traditional techniques associated with finite mixture
modeling such as a best subset approach for variable
selection are computationally infeasible when applied
on relatively large datasets. In addition, problems of-
ten include many covariates. Ultra-high-dimensional
problems where the number of parameters is larger
than the number of observations are no exception
today. This situation is becoming more frequent in
various fields such as genomics, web analysis, health
sciences, finance, economics and machine learning.
Hence, efficient and flexible methods that can deal
with heterogeneity and high-dimensionality are
greatly relevant, both in practical applications as well
as academic research. Khalili (2011) provides a broad
overview of variable selection in mixture models and
concludes the story is far from complete. Especially
for high-dimensional problems much research is still
left to be done.

We aim to contribute to this area of research by
showing usefulness in both a real-world data appli-
cation and a simulation study. The performance is
tested by comparing behavior in terms of selecting
the correct subset of variables to include in the model
while accurately providing an accurate estimate of the
effect of these variables. In addition, we study the
issue of order selection in mixture models. We show
that finite mixture models with variable selection can
be a very successful approach in regression problems.
Moreover, we showcase the added value over a tra-
ditional mixture model. The value is most evident
when applied in high-dimensional situations where
the extended models excel.
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