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Abstract

Bitcoin and cryptocurrencies are relatively new financial asset and
have gotten more attention in the worldwide media. This paper performs a
volatility analysis of Bitcoin and compares the volatility process of Bitcoin
with the S&P-500 and the EUR/USD exchange rate. The goodness-of-fit
and forecast ability are examined for the GARCH(p,q), TGARCH(1,1),
EGARCH(1,1) and APARCH(1,1) models. The goodness-of-fit and fore-
cast ability are evaluated with the use of Akaike/Bayesian information cri-
teria and the Mincer-Zarnowitz regression, respectively. The EGARCH(1,1)
model fitted the volatility best for Bitcoin and the S&P-500, the APARCH(1,1)
fitted the volatility best for the EUR/USD exchange rate. Only the
EGARCH(1,1) model with a student’s t distribution with 5 degrees of
freedom seemed to have fairly accurate forecast power for Bitcoin. The
APARCH(1,1) model predicts the conditional variance for the EUR/USD
exchange rate relative well. The EGARCH(1,1) did not succeed in per-
forming unbiased predictions for the S&P-500. From a volatility point of
view, the analysis performed in this paper shows that Bitcoin is closer to
a security than a true currency.
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1 Introduction

The first introduction of Bitcoin was in late 2008 in the white paper: ”Bitcoin: A
Peer-to-Peer Electronic Cash System” of a pseudo anonymous writer called Satoshi
Nakamoto (Nakamoto, 2008). Recently Bitcoin and other cryptocurrencies have gotten
more and more attention in the worldwide media because of their enormous market
capitalization growth (see Figure 1). Different government agencies are researching
the possibilities for fitted regulation. This makes the long run outlook for Bitcoin
and other cryptocurrencies uncertain, which is an important reason why just a few
institution investors are holding Bitcoin or other cryptocurrencies in their investment
portfolio.

At this stage, the amount of research that has been done on Bitcoin and other cryp-
tocurrencies is still in short supply. Brire, Oosterlinck and Szafarz investigated Bitcoin
as a method to further diversify a investment portfolio with traditional assets. There
research showed that Bitcoin has a remarkably low correlation with traditional assets
and that Bitcoin offers significant diversification methods (Brière, Oosterlinck, and
Szafarz, 2015). Dyhrberg explored the financial asset capabilities of Bitcoin with ref-
erence to the dollar and gold using GARCH models. The conclusion of his analysis
points out that Bitcoin deserves a place on the financial markets and in portfolio man-
agement as it can be classified as a asset class between gold and the dollar (Dyhrberg,
2016). Pitch and Kaizoij modeled the volatility of BTC using the day-to-day distri-
bution of logarithmic return and realized volatility (sum of the squared logarithmic
returns on 5-min basis). They found that the Heterogeneous Autoregressive model for
realized volatility fits reasonably well for there BTCUSD dataset (Pichl and Kaizoji,
2017). Another study analyzed 12 different GARCH-type models not just for Bitcoin,
but for the seven most popular cryptocurrencies. The results of their work shows that
the IGARCH and GJRGARCH models provide the best fits, in terms of modeling the
volatility (Chan, Chu, Nadarajah, and Osterrieder, 2017). Katsiampa found that the
CGARCH model with a AR transformation fitted the data best, which emphasis the
significance of including both the short and long run component of the conditional
variance (Katsiampa, 2017).

The question for regulators remains: ’Are Bitcoin and other cryptocurrencies, cur-
rencies or a securities?’. According to The European Central Bank (ECB) the main
motivation why Bitcoin is not a true currency is the volatility aspect of the new asset
class (ECB, 2015). In this paper the volatility aspect of Bitcoin will be researched and
compared with the volatility of currencies (EUR/USD exchange rate) and of securities
(S&P-500).
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The structure of this research is divided into five sections. First, the data will be
described in Section 2. Second, the method and the different GARCH-type models
that are used for the volatility predictions of Bitcoin, S&P-500 and the EUR/USD
exchange rate are described in Section 3. Subsection 3.2 includes the selection criteria
and measurements of forecast ability. The results will be discussed in Section 4 of this
paper. Section 5 concludes with a brief overview, discussion and suggestions for future
research.

Figure 1: Market capitalization Bitcoin

2 Data

The data that is going to be applied in this paper are the historical daily closing
prices for Bitcoin, S&P500-index and the EUR/USD exchange rate. The one-day
returns for the Bitcoin, S&P500-index and the EUR/USD exchange rate are calcu-
lated from the daily closing prices (Pt) where the return for day t is calculated as:

Returnt =
Pt − Pt−1

Pt−1
(1)

To use the most accurate Bitcoin prices, the average closing prices on the basis of
volume are used in the paper, as performed in (Chan, Chu, Nadarajah, and Osterrieder,
2017). The average closing prices are obtained from Coinmarketcap (Coinmarketcap,
2018). Daily closing prices of the S&P500-index are sourced from the Datastream
database and the closing prices of the EUR/USD exchange rate are obtained from
Investing (Investing, 2018). The dataset contains prices starting at 01-05-2013 up to
01-03-2018, with 1804 observations for Bitcoin, 1217 for the S&P-500 and 1252 for the
EUR/USD exchange rate. From Table 1 we see that the average return for Bitcoin
is 0.32%, 0.04% for the S&P-500 and almost 0% for the EUR/USD exchange rate.
Bitcoin highest one-day return is 42.97% and the lowest one-day return is -23.37% The
high kurtosis value (12.90) suggest that Bitcoin is a relative risky assets compared to
the S&P-500 (6.36) and the EUR/USD exchange rate (5.88). This can also be seen in
the relatively high standard deviation of the returns of Bitcoin compared to the other
two assets. From the skewness values we can conclude that Bitcoin is moderately
right skewed, the S&P-500 moderately left skewed and the USD/EUR exchange rate
is approximately symmetric (Bulmer, 1979).
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Table 1: Data descriptives

Bitcoin S&P-500 EUR/USD
Observations 1804 1217 1252
Mean 0.318 0.045 -0.004
Standard dev. 4.524 0.773 0.526
Minimum -23.371 -4.098 -2.293
Maximum 42.968 3.903 3.161
Skeweness 0.511 -0.524 0.264
Kurtosis 12.897 6.357 5.881

Mean, Standard dev., Minimum, and the Maximum are in percentage points

3 Method

In this paper several Generalized Autoregressive Conditionally Heteroskedasticity (GARCH)-
type models are used to predict the one-day ahead volatility (conditional variance) for
the three asset classes. But first, a short introduction is provided for the four GARCH-
type models: GARCH(p,q), Exponential(E)-GARCH(1,1), Threshold (T)ARCH(1,1)
and Asymmetric(A)-Power(P)ARCH(1,1). After the introduction, the criteria will be
described that will be used to choose and evaluate the forecasting models.

3.1 Models

The main reason why different GARCH-type models are investigated in this paper is
because of a assumption from the Classical Linear Regression Model (CRLM). One of
the assumptions of CLRM states that that the variance of the errors is constant, also
known as homoscedasticity (var(rt) = σ2). If the variance of the errors are not con-
stant, this would be know as heteroscedasticity. If the errors are heteroscedastic, but
assumed homoscedastic, an implication would be that the standard errors estimates
could be wrong. It is unlikely in the context of financial time series that the variance
of the errors will be constant over time (Brooks, 2014). See Appendix A for the vari-
ance of the returns for the three different assets. Another important feature of many
series of financial assets returns that provides a motivation of for the ARCH/GARCH
class of models, is known as ’volatility clustering’. Volatility clustering describes the
tendency of large changes in asset prices to follow large changes and small changes to
follow small changes. In other words the level of volatility in period t1 tends to be
positively correlated with the level of volatility in period t−1 (Brooks, 2014).

All the GARCH-type models that are used in this analysis have the same structure.
Let rt represent the daily returns of the three different asset classes. Then the basic
structure of a GARCH model can be denoted by:

rt = µt + σtzt = µt + εt (2)

Where µt represents the conditional mean, σt represents the volatility process and
zt the residuals of the volatility. In this paper the Gaussian (normal) distribution,
student’s t distribution with 5 degrees of freedom and student’s t distribution with 7
degrees of freedom will be fitted as the distribution of the zt. The average return of
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Bitcoin is relative far from zero compared to the other two classes, as visible in Table
1. For this reason the GARCH-structure with a autoregressive (AR) process for the
return is also tested for Bitcoin. The AR process is denoted by the yt−1 term and
represents the return for the previous day. The representation of the AR process can
be denoted as:

rt = yt + σtzt, where yt = µ+ φyt−1 (3)

GARCH(p,q)

The ARCH model was introduced by (Engle, 1982) in a study of inflation rates and
there has since been a barrage of proposed parametric and nonparametric specifications
of autoregressive conditional heteroscedasticity (Stata, 2018). The ARCH model has a
specification of the conditional mean and variance, where the variance is a function of
the σ2

t in (4). Bollerslev added a lagged term of the conditional variance to the ARCH
model of Engle, what is now known as a GARCH model (Bollerslev, 1986). The basic
GARCH(p,q) model as described in Bollerslev, 1986 can be specified as:

σ2
t = α0 +

p∑
i=1

α1ε
2
t−i +

q∑
j=1

βσ2
t−j (4)

For α0 > 0, α1 > 0 and β > 0. In his study of inflation rates, Engle, 1982 assumed
that the error term followed a Gaussian distribution (εt ∼ N(0, σ2

t ). Nevertheless,
like Mandelbrot, 1997 and many others pointed out, is that the extreme stock returns
are more frequent than would be expected by the Gaussian distribution. In other
words, the tails of the distribution of the error terms are much fatter than the normal
distribution would expect. In a wide range of papers the use of other distributions
are suggested (e.g. student’s t distribution). The student’s t distribution has fatter
tails than the normal distribution. Where the degrees of freedom of the student’s
t distribution approaches infinity, the student’s t distribution converges to a normal
distribution (Stata, 2018).

A range of GARCH(p,q) models with different p and q values and different dis-
tributions of the error terms will be evaluated on the basis of the evaluation criterion
that will be discussed in the end of this section.

E-GARCH

The Exponential GARCH (EGARCH) model is proposed in 1991 by (Nelson, 1991).
There are various ways to express the EGARCH equation, the specification as in
(Brooks, 2014) is:

ln(σ2
t ) = ω + β ln(σ2

t−1) + γ
ut−1√
σ2
t−1

+ α[
|ut−1|√
σ2
t−1

−
√ 2

π
] (5)

The model has several advantages over the GARCH model specified in (4). First
of all, the ln(σ2

t ) is modeled, so even if the parameters are negative, σ2
t will be posi-

tive. So there is no need for artificially impose non-negative constraints on the model
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parameters. Second, asymmetries are allowed in the EGARCH specification, since if
the relationship between volatility and returns is negatively, γ will be negative. The
EGARCH model will be tested with the following distributions: Gaussian (normal),
student’s t with 5 and student’s t with 7 degrees of freedom.

TGARCH

A major registrations of the ARCH and GARCH models is that they both have a
symmetric specification. By this we mean that the variance estimation is based on the
absolute value of the innovation because of the squared residuals. In other words large
positive shocks have the same effect as large negative effects in the ARCH/GARCH
models. However, for financial time-series and especially equities it has been observed
that negative shocks have more impact than negative shocks with the same attitude.
This problem is addressed by work of (Zakoian, 1994) with the Threshold GARCH
model. The main purpose of the TGARCH model is the asymmetric specification in
the sign of the returns (Asteriou and Hall, 2015). The specification of a TGARCH(1,1)
model:

σt = α0 + αε2t−1 − γε2t−1nt−1 + βσt−1 (6)

Where nt takes the value 1 for a negative value of ε, and 0 otherwise. Which
means that the impact of negative shocks is higher (α+γ) than the impact of positive
shocks (α), with the same magnitude. If γ > 0 we observe asymmetry, if γ = 0 than
we can conclude symmetry in shocks (Asteriou and Hall, 2015)

A-PARCH

(Ding, Granger, and Engle, 1993) investigated the so called ’long memory’ property of
stock returns. Their findings shows that not only the absolute returns have a higher
correlation compared to the normal returns, but the power transformation of the ab-
solute returns ( |rt|d ) results in high autocorrelation for long lags as well. The ARCH
type specifications are based upon squared returns, however Ding et al.(1993) con-
cluded that the autocorrelation function for a fixed lag has a unique maximal point
for d = 1. What makes the linear relationship among absolute returns neither a neces-
sary nor efficient property of the ARCH specification. For this reason Ding et al.(1993)
proposed a new class ARCH models named: Asymmetric(A)-Power(P)GARCH model.

σδt = α0 +

p∑
i=1

αi(|εt−i| − γiεt−i)δ +

q∑
j=1

βjσ
δ
t−i, where (7)

α0 > 0, δ ≥ 0,
αi ≥ 0, i = 1, ..., p,

−1 < γi < 1, i = 1, ..., p,
βj ≥ 0, j = 1, ..., q,

Ding et al.(1993) estimated the power δ in (7) for the S&P-500 returns and found
a value of 1.43. The 1.43 is significantly different from the 1 and 2 that is used in the
TGARCH (6) and GARCH models (4), respectively.
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3.2 Selection & Evaluation

All the GARCH-type models are estimated based on the Maximum Likelihood. To
compare the models on goodness of fit the following two criteria have been used:

• Akaike information criterion, as described by (Akaike, 1974)

• Bayesian information criterion, as described by (Schwarz et al., 1978)

The model with the lowest AIC/BIC score is assumed to be the model with the best fit.

The models with the lowest AIC and BIC scores within there distributions will be used
as forecasting model. The main purpose of these models is to forecast the one-day
ahead conditional variance (volatility). The coefficients of the GARCH-type models
will be estimated using a rolling-window. Which means that the parameters estimates
are updated for every one-day ahead forecast. In this paper the rolling window length
will be equal to 500 observations. In other words the last 500 observations will be pre-
dicted with the use of a rolling window where the estimated parameters are updated
for every prediction. For example take Bitcoin, [t1; t1304] will be used to estimate the
parameters that will be used to predict the conditional variance for t1305. [t2; t1305]
will be used to calculate the parameters for t1305, so on so fourth. If the parameters
are constant, this will also result in constant parameters over the sample. When the
parameters are constant over the sample, the parameters for the rolling window with
length h should not be very different compared to a fixed window with the same length
h. But if the parameters change over the sample period, then the rolling window es-
timates of the parameters would capture this instability (Zivot and Wang, 2006).

The Mincer-Zarnowitz regression is used to evaluate the accuracy of the predictions
of the selected model. The first introduction of the Mincer-Zarnowitz regression was
in 1969 in the The evaluation of economic forecasts (Mincer and Zarnowitz, 1969).
The Mincer-Zarnowitz regression can be denoted by:

σ̃2
t = α0 + α1σ̂2

t + et (8)

Where σ̃2
t is a proxy for the ex-post volatility which is not observable and suppose

we can calculate one day out-of-sample predictions of the variance ˆ(σ2
t ) using model

(3) for the periods t = 1, ...n. A forecast is deemed ”efficient” if α0 = 0 and α1 = 1.
Efficiency is tested by the application of ordinary least squares to the available sample
(Granger and Newbold, 2014). The following hypothesis are formulated and tested
with the use of a Wald test:

H0 : α0 = 0 ∩ α1 = 1
H1 : α0 6= 0 ∪ α1 6= 1

In earlier work researchers used daily squared returns (r2t ) as proxy for the ex-post
volatility in. As visible in Table 1 the conditional mean of the daily returns of Bitcoin
is practically not zero which gives rise to a alternative proxy. It was not possible to
retrieve and compute realized variance on a basis of 15-min returns, which seems to
be a relative good proxy (Patton, 2011). For this reason, the squared residuals of the

returns will be used as proxy for the ex-post volatility for Bitcoin, i.e. σ̂2
t = e2t in (8).

For the S$P-500 and the EUR/USD exchange rate the squared returns will be used as

ex-post volatility proxy, i.e. σ̂2
t = r2t in (8).
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In practice the coefficients for σ̂2
t are subject to estimation error, which results in a

standard errors-in-variables problem and a downward bias in the regression coefficient
(α1 in (8)) Andersen and Bollerslev, 1998. Christensen and Prabhala, 1998 concluded
this problem with evaluating volatility forecasts with the use of implied volatility,
established from option prices. However a combination of coefficients from (8), in

other words R2, could provide a relationship between the σ̂2
t and the used ex-post

volatility proxy e2t for Bitcoin and r2t for S&P-500 and the EUR/USD exchange rate).
The R2 is therefore often interpreted as a measurement of the degree of predictability
in the volatility process (Andersen and Bollerslev, 1998).
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4 Results

In this section, first, the AIC and BIC scores for the different GARCH-type models
for the three asset classes will be discussed. Secondly, the rolling window forecasts
for the models with the lowest BIC and AIC values will be evaluated based on the
Mincer-Zarnowitz regression introduced in the method section.

Table 2 shows the AIC and BIC values for the different GARCH models with the
Gaussian (normal) distribution and the student’s t distribution with 5 and 7 degrees of
freedom for Bitcoin. The values in bold are the lowest within there respective distri-
bution. The EGARCH(1,1) in (5) without the AR(1) process results in the lowest AIC
and BIC scores. The EGARCH(1,1) without the AR(1) process is also the model with
the lowest AIC and BIC scores for the student’s t distributions. The lowest average
AIC and BIC scores are visible in the student’s t distribution column with 5 degrees of
freedom. In other words, the student’s t distribution with 5 degrees of freedom fitted
the distribution of the error terms for Bitcoin most accurately. For the EGARCH
with AR process and APARCH without AR process, Stata (statistical software pro-
gram) runs in ’flat likelihood’ errors. Stata represents this output if it struggles with
finding optimal parameters using Maximum Likelihood Estimation (MLE). Ordinary
Least Squares (OLS) can always be computed, when taking covariance of variance.
For MLE it is has to find the maximum values, which is not always possible. However,
a larger dataset could resolve this problem (Quaedvlieg, 2018).

Table 2: AIC and BIC scores Bitcoin

Gaussian t (7df) t (5df)
Models AIC BIC AIC BIC AIC BIC
GARCH(1, 1) 9885.24 9885.24 9517.36 9517.36 9464.68 9486.67
GARCH(1, 1)∗ 9886.17 9913.66 9519.36 9546.84 9466.64 9494.13
GARCH(1, 2) 9872.59 9900.07 9514.67 9542.16 9462.34 9489.83
GARCH(1, 2)∗ 9879.60 9912.59 9516.08 9549.07 9463.65 9496.64
GARCH(2, 1) 9878.20 9905.69 9514.09 9541.58 9461.75 9489.24
GARCH(2, 1)∗ 9873.85 9906.84 9516.67 9549.65 9464.25 9497.24
GARCH(2, 2) 9874.48 9907.46 9516.53 9549.51 9464.32 9497.30
GARCH(2, 2)∗ 9875.69 9914.17 9518.53 9557.01 9466.24 9504.72
TGARCH(1, 1) 9887.21 9914.70 9519.24 9546.72 9466.49 9493.98
TGARCH(1, 1)∗ 9888.15 9921.14 9521.23 9554.22 9468.43 9501.42
EGARCH(1, 1) 9856.80 9884.29 9504.00 9531.49 9452.42 9479.91
EGARCH(1, 1)∗ - - 9505.90 9538.89 9454.07 9487.06
APARCH(1, 1) 9854.15 9892.64 9505.17 9543.66 - -
APARCH(1, 1)∗ 9855.38 9899.36 9507.16 9551.14 9455.86 9499.85

* indicates the GARCH-type model with a AR process for the return. The Gaussian, t(7df)
and the t(5df) columns represents the Gaussian distribution, student’s t distribution with 7
degrees of freedom and the student’s t distribution with 5 degrees of freedom, respectively.
The GARCH model can be found in (4), TGARCH in (5), EGARCH in (6) and APARCH in
(7).
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The AIC and BIC scores for the GARCH-type models regarding the S&P-500 are
visible in Table 3. The EGARCH(1,1) model has the best volatility fit for S&P-500
with all the different distributions tested. The student’s t distribution with 7 degrees
of freedom yields the lowest average AIC and BIC scores. Analyzing this, we can
conclude that the distribution of the error terms for S&P-500 are closer to a normal
distribution compared to the distribution of the error terms for Bitcoin. As the degrees
of freedom approaches infinity, the distribution converges to normal.

Table 3: AIC and BIC scores S&P-500

Gaussian t (7df) t (5df)
Models AIC BIC AIC BIC AIC BIC
GARCH(1, 1) 2549.79 2570.21 2473.96 2494.38 2470.10 2490.51
GARCH(1, 2) 2551.04 2576.56 2475.96 2501.48 2472.09 2497.61
GARCH(2, 1) 2551.32 2576.84 2475.96 2501.48 2472.09 2497.61
GARCH(2, 2) 2553.54 2584.17 2468.57 2499.20 2473.80 2504.42
TGARCH(1, 1) 2491.79 2517.31 2417.93 2443.45 2418.13 2443.65
EGARCH(1, 1) 2462.01 2487.53 2404.90 2430.42 2406.89 2432.41
APARCH(1, 1) 2495.39 2531.12 2421.21 2456.94 2421.11 2456.84

The Gaussian, t(7df) and the t(5df) columns represents the Gaussian distribution, student’s
t distribution with 7 degrees of freedom and the student’s t distribution with 5 degrees of
freedom, respectively. The GARCH model can be found in (4), TGARCH in (5), EGARCH
in (6) and APARCH in (7).

Table 4 shows the AIC and BIC values for the EUR/USD exchange rate. Looking
at Table 4 we can see that the Threshold(T) GARCH (1,1) model gives the lowest AIC
and BIC values for all three different distributions for the EUR/USD exchange rate.
The student’s t distribution with 7 degrees of freedom yields the lowest AIC and BIC
values, similar to S&P-500. The AIC and BIC values for the EGARCH(1,1) model
and the APGARCH (1,1) with a normal distribution could not be calculated because
of the problem with the MLE described earlier in the interpretation of the AIC and
BIC values for Bitcoin.

Table 4: AIC and BIC scores EUR/USD exchange rate

Gaussian t (7df) t (5df)
Models AIC BIC AIC BIC AIC BIC
GARCH(1, 1) 1801.91 1822.44 1732.74 1753.27 1735.42 1755.95
GARCH(1, 2) 1803.70 1829.36 1734.46 1760.12 1737.14 1762.80
GARCH(2, 1) 1803.80 1829.46 1734.42 1760.08 1737.06 1762.72
GARCH(2, 2) 1802.18 1832.97 1736.69 1767.48 1739.03 1769.83
TGARCH(1, 1) 1785.53 1811.20 1728.98 1754.64 1732.81 1758.47
EGARCH(1, 1) - - - - - -
APARCH(1, 1) - - 1732.25 1768.17 1734.22 1765.02

The Gaussian, t(7df) and the t(5df) columns represents the Gaussian distribution, student’s
t distribution with 7 degrees of freedom and the student’s t distribution with 5 degrees of
freedom, respectively. The GARCH model can be found in (4), TGARCH in (5), EGARCH
in (6) and APARCH in (7).
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The one-day ahead rolling window forecasts for Bitcoin, S&P-500 and the EUR/USD
exchange rate are visible in Figure 2, 3 and 4, respectively. Figure 2 reflects the con-
ditional variance predications for Bitcoin based on the EGARCH(1,1) model with a
5 degrees of freedom student’s t distribution. In Figure 3 the conditional variance
predictions are shown for the S&P-500, with a EGARCH(1,1) model and a 7 degrees
of freedom student’s t distribution. Last, the variance predictions for the EUR/USD
exchange rate are based on the TGARCH(1,1) model with a student’s t distribution
including 7 degrees of freedom and are visible in Figure 4. The conditional variances
predictions for the EUR/USD exchange rate is relatively constant compared to the
predictions for Bitcoin and the S&P-500. Looking at the the figures it shows that the
spikes are better captured for the S&P-500 when comparing the predictions to Bitcoin.
In order to make any conclusions about the forecast ability, we need to interpret the
Mincer-Zarnowitz regression first.

The Mincer-Zarnowitz regressions for Bitcoin are shown in Table 5. At the sig-
nificance level of 5%, the H0 hypothesis will be rejected for the EGARCH model
including the Gaussian and t distribution with 7 degrees of freedom. This means that
the predictions are suffering from a systematic bias. However, the H0 hypothesis for
the EGARCH model with a t distribution with 5 degrees of freedom is not rejected. In
other words, the EGARCH model with a t distribution of 5 degrees of freedom provides
unbiased predictions for Bitcoin. The EGARCH(1,1) model with student’s t distribu-
tions give higher R2 values than when a normal distribution is assumed. From this we
can conclude that the ex-post volatility proxy (e2t ) is explained more accurately when
the distribution of the errors are assumed to have a student’s t distribution. These
results are parallel to the AIC and BIC values showed earlier.

Table 5: Mincer-Zarnowitz regression Bitcoin

Distribution α0 t α1 t R2 F
Gaussian (normal) -20.560 -2.92 1.884 5.33 0.336 6.52∗

Student’s t (5df) -14.954 -2.34 1.828 5.10 0.340 2.75
Student’s t (7df) -15.834 -2.44 1.969 5.13 0.341 3.21∗

The α0, α1 coefficients, the relevant t-score and R2 are obtained from the Mincer-Zarnowitz
regression (8). The F column represents the F-score for the performed Wald test, where ∗

indicates a rejection of the H0 at a 5% significance level.

Table 6 captures the The Mincer-Zarnowitz regressions for the S&P-500. The con-
stant values in the regressions are remarkable lower compared to the values that are
obtained in the regressions for Bitcoin, due to the difference in size of the conditional
variances. All the null hypothesis for the three EGARCH models are rejected at the
5% significance level, so none of the tested models provide unbiased conditional vari-
ance predictions. The R2 values are higher than reported for Bitcoin. In other words,
the ex-post volatility proxy (r2t ) is better explained for the S&P-500, with the use of
EGARCH(1,1) models.
Last, we see that the highest R2 is obtained when a normal distribution is assumed
for the errors, what is not analogue with the AIC and BIC values in Table 3.

The Mincer-Zarnowitz regressions for the EUR/USD exchange rate are visible in
Table 7. The constant values in the regressions are again remarkable lower compared
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Table 6: Mincer-Zarnowitz regression S&P-500

Distribution α0 t α1 t R2 F
Gaussian (normal) -0.340 -2.44 1.655 4.50 0.518 8.20∗

Student’s t (5df) -0.256 -2.01 1.297 4.23 0.497 15.21∗

Student’s t (7df) -0.267 -2.09 1.434 4.31 0.509 9.48∗

The α0, α1 coefficients, the relevant t-score and R2 are obtained from the Mincer-Zarnowitz
regression (8). The F column represents the F-score for the performed Wald test, where ∗

indicates a rejection of the H0 at a 5% significance level.

to the values observed for Bitcoin and the S&P-500. None of the null hypothesis
for the three TGARCH models are rejected at the 5% significance level, so all the
TGARCH models provide unbiased conditional variance predictions. The R2 values
are substantially lower than reported for Bitcoin and the S&P-500. One explanation
could be that the EUR/USD predictions are constant around the mean, but do not
capture the high and low squared returns well. So the TGARCH models provide un-
biased predictions, it is still questionable if these predictions are also efficient. The R2

values are higher for the t distributions, what is similar to the interpretation of the
AIC and BIC values in Table 4.

Table 7: Mincer-Zarnowitz regression EUR/USD exchange rate

Distribution α0 t α1 t R2 F
Gaussian (normal) 0.031 0.32 0.832 1.74 0.017 0.08
Student’s t (5df) -0.097 -0.82 1.333 2.46 0.035 1.72
Student’s t (7df) -0.068 -0.60 1.296 2.31 0.031 0.30

The α0, α1 coefficients, the relevant t-score and R2 are obtained from the Mincer-Zarnowitz
regression (8). The F column represents the F-score for the performed Wald test, where ∗

indicates a rejection of the H0 at a 5% significance level.
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Figure 2: One-day ahead rolling window forecast Bitcoin, with a rolling window length of
500 observations. Orange line represents the forecast, dotted blue line the squared residuals.
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Figure 3: One-day ahead rolling window forecast S&P-500, with a rolling window length of
500 observations. Orange line represents the forecast, dotted blue line the squared returns.
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Figure 4: One-day ahead rolling window forecast EUR/USD exchange rate, with a rolling
window length of 500 observations. Orange line represents the forecast, dotted blue line the
squared returns.
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With the results and interpretations of the Mincer-Zarnowitz regression it is now
possible to make statements about the forecasting ability of the volatility. Comparing
the forecasting abilities, the conclusion can be made that the EUR/USD exchange rate
can be predicted without biasness. However, the TGARCH models do not explain the
volatility very well for the EUR/USD exchange rate. The EGARCH model can be used
to yield unbiased predictions for Bitcoin when a student’s t distribution is assumed
with 5 degrees of freedom. The volatility process is also explained relatively well by
the EGARCH model. The EGARCH model did not succeed in generating unbiased
predictions for the S&P-500 in the setting of this paper. Nevertheless, the EGARCH
model explains the volatility process for the S&P-500 well. The highest R2 is obtained
for the S&P-500 (0.518), (0.035) for the EUR/USD exchange rate and (0.341) for
Bitcoin.

One important remark is the influence of the ex-post volatility proxy. The use of
less accurate measurements of the ex-post volatility proxy (σ̃2

t ) influences the accuracy
of α0 and α1. What makes the Mincer-Zarnowitz regression less precise in the way
it detects deviations from forecast optimality (Patton and Sheppard, 2009). This
emphasis the need for a more detailed analysis on whether the squared residuals (e2t )
is a suited ex-post volatility proxy for Bitcoin.

5 Conclusion

The analysis shows that there are similarities between Bitcoin, S&P-500 and the
EUR/USD rate from a volatility process point of view. Where the EGARCH mod-
els show the best fit for both Bitcoin and the S&P-500. The high volatility aspect
is distinctive for Bitcoin. Ex-post volatility proxies are observed for Bitcoin of over
600, which is 35 times as high as the maximum values observed for the S&P-500 and
almost 200 times as high as observed for the EUR/USD exchange rate. The European
Central Bank has a valid motivation for not labeling Bitcoin as a true currency due
to the high volatility (ECB, 2015). When looking at the volatility aspect, the analysis
performed in this paper shows that Bitcoin is closer to a security than a currency.

It is still questionable why all three EGARCH models are rejected for the S&P-
500 and only two EGARCH models for Bitcoin. One explanation could be that the
asymmetries of the returns are higher for Bitcoin than for the S&P-500 and therefore
capture the tails relatively better. To see if this explanation holds, the process of the
parameters needs to be investigated and compared to each other. The fact that the
student’s t distribution with 5 degrees of freedom is the only error distribution that is
not rejected for Bitcoin shows that relatively high and low returns are observed more
often than a normal distribution assumes.

Lastly, more analysis around choosing the ex-post volatility proxy is needed in
order to make hard conclusions regarding the volatility prediction ability for Bitcoin.
One suggestion for future research is measuring the performance of one-day ahead
conditional variance predictions with the use of high frequency data.
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Appendix A: Returns and ex-post volatility prox-
ies for Bitcoin, S&P-500 and the EUR/USD ex-
change rate
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Figure 5: Visualization of a) the returns and b) the squared residuals (ex-post volatility
proxy for Bitcoin)
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Figure 6: Visualization of a) the returns and b) the squared returns (ex-post volatility proxy)
for S&P-500
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Figure 7: Visualization of a) the returns and b) the squared returns (ex-post volatility proxy)
for EUR/USD exchange rate

19


	Introduction
	Data
	Method
	Models
	Selection & Evaluation

	Results
	Conclusion
	References
	Appendix A: Returns and ex-post volatility proxies

