
The Multi-Compartment Multi-Vehicle Routing Problem

Martijn Nieuwenhuis 348488

February 14, 2018

Supervisor: T.A.B. Dollevoet Second Assessor: T. Breugem

Erasmus University Rotterdam
Erasmus School of Economics

Bachelor Thesis Econometrics and Operational Research

Abstract

The multi-compartment vehicle routing problem (MCVRP) frequently arises in practical
applications where different products need to be handled or kept differently. Where the MCVRP
uses a fleet of identical vehicles, this research uses a non-homogeneous fleet of vehicles. This
extends the MCVRP to the multi-compartment multi-vehicle routing problem (MCMVRP).
We get solutions for both the MCVRP and the MCMVRP by means of an iterated tabu search
algorithm proposed by Silvestrin and Ritt (2017). We find that in general the non-homogeneous
fleet composition does not find better solutions than a fleet of identical vehicles.

Contents

1 Introduction 1

2 Problem Description 2
2.1 Mathematical Model . 3
2.2 Fleet composition . 4

3 Methodology 5
3.1 The iterated tabu search algorithm . 5

3.1.1 The tabu search algorithm . 6

4 Results 8
4.1 Instances description . 8
4.2 Experiment results . 9

5 Conclusions 11

References 12

1 Introduction

This research is based on the article ’An iterated tabu search for the multi-compartment vehicle
routing problem’ by Silvestrin and Ritt (2017). Since this paper only considers identical vehicles,
this research will look into the possibility to use different type of vehicles. Therefore, the following
question is the base of the research:

Can the solution of the multi-compartment vehicle routing problem be improved by using a non-
homogeneous fleet of vehicles?

The problem that needs to be solved is a variation of the well known vehicle routing problem (VRP),
where a fleet of identical vehicles with a certain capacity is used to serve a set of customers that each
have a different demand for a certain product, while minimizing the number of vehicles used or the
total time needed to serve all customers. This variation involves the availability of different types
of products, that each need to be handled differently. Therefore, the vehicles must have different
compartments to separate the products, which expands the VRP to the multi-compartment vehicle
routing problem (MCVRP). We see a lot of different applications of this problem in practice. For
instance, when some of the transported products need to be refrigerated, the vehicles must have
some sort of cooling compartment. Another example where different compartments are considered
is in livestock transportation, to separate animals of different species or characteristics.

The fleet of the MCVRP consists of identical vehicles with a predetermined capacity for each type
of product. This research however expands the fleet to multiple vehicle types such that the fleet
is non-homogeneous. The resulting problem is called the multi-compartment multi-vehicle routing
problem (MCMVRP). The use of vehicles with different divisions of the compartments could be
preferred to the use of identical vehicles when there is for instance large variation in the demand
of the products per region. In case of the livestock problem, one region might have farms with
more chicken than pigs, where this ratio is vice versa in another region. Then the vehicles which
are preferred to be used in these regions also represent this ratio in their compartment division.
Therefore the use of different type of vehicles will probably be preferred compared to using identical
vehicles.

Silvestrin and Ritt (2017) showed that their iterated tabu search (ITS) generally outperformed
previously suggested algorithms for the MCVRP in solution quality and in computation time.
This research therefore also implements their ITS algorithm, although slight adjustments are made
to extend the MCVRP to the MCMVRP to account for the change of the fleet.

The research uses some of the instances provided by Christofides et al. (1979). These CMT
instances contain locations and the demand of 50 to 120 customers. Since these instances are
generated for the VRP, the given demand of each customer is divided such that it has a demand
for each of the available products.

In the next section, we describe the MCMVRP formally, present the mathematical model and
explain the fleet composition. The research methodology is discussed in section 3 where we discuss
the details of the ITS. In section 4 the instances are described and we summarize the results of
the ITS on both the MCVRP as the MCMVRP. Finally we give the conclusions of this research in
section 5.

1

2 Problem Description

The MCMVRP problem is a slight variation of the MCVRP problem proposed by Silvestrin &
Ritt (2017) which uses a fleet of identical vehicles with multiple compartments. The fleet of the
MCMVRP however is non-homogeneous, in the sense that the fleet consists of different type of
vehicles with varying capacity for each product.

A set of locations is given by V = {V0}∪V+, where V0 is the depot and V+ is the set of n customers.
The travel time between each pair of locations i, j ∈ V is given by dij . Since this travel time is
equal to the euclidean distance between the locations, we assume symmetric travel time: dij = dji.
The set of available products is given by P = [m], where we use notation [m] = {1, ...,m}. Each
customer i ∈ V+ has a demand for each product p ∈ P given as cip. The fleet of vehicles F = [f]
consist of f vehicles with capacity Ckp , where k ∈ F, p ∈ P . The division of the capacity of the vehi-
cles will be explained in section 2.3. A valid route of a vehicle starts at the depot, visits a number
of customers, and returns to the depot. Each time a vehicle stops at a customer site, it satisfies at
least one of its demands. Therefore, a customer may be on different routes. A visit v is defined as
a pair of a customer V (v) and a set of products P (v) delivered at this visit: v = (V (v), P (v)). A
route is represented by an ordered subset R = {v1, ..., vl(R)}, with l(R) equal to the total number of
visits in the route. The set of visited customers in a route is then given by V (R) = {V (v)|v ∈ R}
and the set of attended customer-demand pairs P (R) = {(Vi, p)|Vi ∈ v, p ∈ P, (Vi, p) ∈ R}. The
total time d(R) and demand c(R) of a route are calculated as

d(R) = dV0,V (v1) +
∑

1≤i<l(R)

dV (vi),V (vi+1) + dV (vl(R)),V0

c(R) =
∑
p∈P

c(R)p

c(R)p =
∑

1≤i≤l(R)|p∈P (vi)

cV (vi),p

We want to find a set of valid routes S = {R1, ..., Rf} such that a customer-demand pair is only on
one route, while satisfying all demand, without exceeding the capacity constraints for which the
total time is minimized.

2

2.1 Mathematical Model

The MCMVRP can be modeled as an integer linear problem the same way as the mathematical
model of the MCVRP by Silvestrin and Ritt (2017) where we adjust the capacity constraints, such
that different types of vehicles are allowed. We introduce the following binary decision variables:

xijk := vehicle k visits arc (i, j),
yjkp := the demand of client j for product p is attended by vehicle k,

min.
∑
i,j∈V

∑
k∈F

dijxijk (1)

s.t.
∑
i∈V

xijk ≤ 1, ∀j ∈ V+,∀k ∈ F, (2)∑
i∈V

xijk =
∑
i∈V

xjik, ∀j ∈ V,∀k ∈ F, (3)∑
ij∈S

xijk ≤ |S| − 1, ∀S ⊆ V+, |S| ≥ 2,∀k ∈ F, (4)

yjkp ≤
∑
i∈V

xijk, ∀j ∈ V+,∀k ∈ F,∀p ∈ P, (5)∑
k∈F

yjkp = 1, ∀j ∈ V+, ∀p ∈ P, (6)∑
j∈V+

cjpyjkp ≤ Ckp ∀k ∈ F,∀p ∈ P, (7)

xijk ∈ {0, 1} ∀i, j ∈ V,∀k ∈ F, (8)

yjkp ∈ {0, 1} ∀i, j ∈ V+, ∀k ∈ F,∀p ∈ P, (9)

The total traveled time is minimized in (1). Constraint (2) makes sure that a customer is visited at
most once on a route. The next constraint (3) ensures route flow conversation. There are no sub
routes allowed due to constraint (4), and constraint (5) links the decision variables to each other.
Constraints (6) realize that the demand of a customer for a product is attended by one visit. The
capacity constraints are given by (7).

In order to gain more insight in constraint (4), where sub routing is prevented, we look at a set of
clients U ⊆ V +, where the clients are on the same route. If we want to create the largest possible
sub route, we would need |U | arcs (thus the left hand side of constraint (4) equals to |U |). In this
case the creation of this largest sub route in set U is prevented since constraint (4) (with S = U)
allows only routes with at most |U | − 1 arcs. If we make a smaller sub route of the clients in set
|U |, for example between the clients in set W ⊂ U , then it is seen that this sub route is allowed in
constraint (4) (with S = U) since |W | ≤ |U | − 1. Although, constraint (4) (with S = W) prevents
the creation of the sub route of set W in the same way that is showed for set U . Therefore, since
constraint (4) applies for all combinations of set S ⊆ V +, all constraints (4) combined prevent the
creation of sub routes.

3

2.2 Fleet composition

Fleet of the MCVRP

Before explaining the iterated tabu search, we first describe the composition of the fleet of vehicles.
As mentioned before, the MCVRP uses a fleet of identical vehicles with m compartments. There-
fore, Cip = Cjp for all i, j ∈ F, p ∈ P . We only consider two different products, p ∈ {1, 2}, thus the
capacity of each compartment of the MCVRP vehicles is decided as follows:

Ckp = C ∗ Dp

D1+D2
, for p ∈ P, k ∈ F,

where Dp is the average demand of product p and C is the total capacity of a vehicle. This ensures
that the ratio between the average of the different products is also represented in the vehicle’s
capacity.

Fleet of the MCMVRP

The fleet of the MCMVRP on the other hand is non-homogeneous, where we use two different types
of vehicles. We therefore introduce two new sets, T1 ⊂ F and T2 ⊂ F , representing the vehicles
of type 1 and type 2 respectively. Obviously, a vehicle can only be of one type: T1 ∩ T2 = ∅.
The first type has slightly more capacity for the first product than the vehicles in the MCVRP,
but less capacity for the second product. The capacity of the second type differs the other way
around: more capacity for the second product, but less capacity for the first product. We choose

β ∈[0,minp∈P
Dp

D1+D2
], as the wanted deviation in the vehicles’ capacity opposed to the average

demand proportion. If β is chosen as minp∈P
Dp

D1+D2
we get that either of the two compartments

of one of the vehicles is empty, and therefore β cannot exceed this. We get the following vehicle
capacities:

Ci1 = C ∗ (D1

D1+D2
+ β) for i ∈ T1,

Ci2 = C ∗ (D2

D1+D2
− β) for i ∈ T1,

Cj1 = C ∗ (D1

D1+D2
− β) for j ∈ T2,

Cj2 = C ∗ (D2

D1+D2
+ β) for j ∈ T2,

Note that the fleet reduces to the identical vehicles of the MCVRP for β = 0.

Finally, we want the fleet to represent the ratio in the demand as closely as possible, and therefore
we let the fleet of vehicles consist of the same number of vehicles of either type: |T1| = |T2|. If the
number of vehicles is odd, then we choose that vehicle type Tp consists of one more vehicle if the
average demand of product p is higher than is theoretically expected. In section 4.1, the devision
of the demand for each customer is explained from which we can calculate the expected average
demand.

4

3 Methodology

3.1 The iterated tabu search algorithm

The iterated tabu search (ITS) proposed to solve the MCMVRP closely resembles the ITS of Sil-
vestrin and Ritt (2017) for the MCVRP, which performed very well compared to earlier proposed
heuristics.

Algorithm 1 Iterated tabu search.

1: procedure IteratedTabuSearch()
2: s← initialSolution()
3: s← tabuSearch(s)
4: for i = 1,...,I iterations do
5: s′ ← perturb(s)
6: s← tabuSearch(s′, i)
7: if F (s) < F (s∗) then
8: s∗ ← s
9: with probability (i/I)2: s← s∗

10: return s∗

The details of the ITS are shown in Algorithm 1. After constructing an initial solution, it applies
the tabu search which will be explained in section 3.1.1. In each iteration of the ITS, the current
solution is perturbed, and the tabu search is performed on this perturbation. The next iteration
continues with the current found solution s with probability 1− (i/I)2. Otherwise it continues the
search from the current best solution s∗. The acceptance criterion was chosen such that the search
is diversified at the start while it is intensified around the best found solution at the end.

Initial solution

The initial solution is found by a variation of the sweep algorithm of Gillett and Miller (1974). The
customers are ordered in non-decreasing order by their angle in polar coordinates. Then, in this
order, the demands of the customers are inserted into the current route until one of the capacity
constraints is violated. If a capacity constraint is violated, we insert this customer in a new route.
We continue this progress until all customers are assigned to a route. After this clustering, the
routes need not to be in an optimal order. Therefore, the order of each route is decided by the
nearest neighbor algorithm. We start this algorithm by taking all customers out of the route except
the first two customers. The current route then consist of 3 locations: the depot and the two first
customers. Then we insert back the next customer in the route, between two locations in the
current route, for which the route distance is increased the least. We continue until all customers
are again on the route.

5

Perturbing a solution

At the beginning of each iteration in the ITS, the current solution is perturbed. A random client
is selected on a randomly chosen route, and removed from it together with its π neighbors, where
π is also randomly chosen in [0, d

√
ne]. If a client is to be removed from the current solution, it is

removed from all the routes it is on. The removed clients are in a random order inserted back into
the solution in the route which minimizes the insertion cost, where we check all possible insertions
between two locations in every route.

3.1.1 The tabu search algorithm

The tabu search allows non-improving moves and avoids cycling between solutions to escape a
current local minimum. The algorithm used, again from Silvestrin and Ritt (2017), is detailed in
Algorithm 2.

Algorithm 2 Tabu search.

1: procedure TabuSearch(s, i)
2: α← 1
3: Choose γ ∈ [0, 1] randomly
4: while the incumbent improved in the last

√
I − i iterations do

5: s← bestShiftMove(s)
6: Every nr iterations: s← refinement(s)
7: updatePenalties(α, γ)
8: updateTabuList()

9: return s∗

The tabu search starts from a current solution, and makes the best non-tabu move, e.g. the
move which reduces the objective value the most. The current solution may exceed the capacity
constraints, where the capacity excess is defined as C+(s) =

∑
k∈F

max{maxp∈P∆ckp, 0}, where

∆ckp = c(Rk)p − Ckp . The objective value of solution s is then

F (s) = d(s) + αC+(s)

where α is the penalty for each unit of capacity excess. Initially, we set α = 1, and it is updated
after a move has been made. If the current solution exceeds the capacity constraints, α is raised
by a factor 1+γ. Otherwise, α is decreased by the same factor. The value of γ is at the start
of each tabu search randomly chosen in [0,1]. Every nr iterations, a route refinement is applied
to each route, which removes and reinserts the visit which leads to the largest reduction of the
route length. The search continues until the incumbent s∗ has not been improved the last

√
I − i

iterations, in which case it returns s∗. This stopping criterion has been chosen such that the ITS
is given relatively more time in the beginning of the search to improve the incumbent compared to
the end of the search.

6

Making the best move

This section explains the main part of the tabu search: making the best move to the current so-
lution. A move is defined as moving a non-empty subset of demands of a visit to another route.
Formally, a move M = (r, d, v, q), where r is the source route, d is the destination route, v ∈ r is
a visit in the source route, and q ⊆ P (v) is a non-empty subset of the demands attended by visit
v. If the subset q contains all demands of visit v, the visit is removed entirely from the source
route r. Then simply the two neighbors of v are connected to each other. Otherwise, the demands
of P (v) \ q remain in v in the source route, which does not change the order of the route. The
remaining demands q are inserted into the destination route d. Again, if client V (v) is already a
part of the destination route d, the demands q are simply added to the existing visit. Otherwise,
a new visit (v(V), q) has to be created into the destination route, where we make the least cost
insertion between two locations. To reduce to number of available moves, a list of nearest routes is
maintained for each client. The nearest route to a client i can be found by first selecting a client
j which is closest to client i. Then the route of client j is added to the list only if client j is not
on the same route as client i and it is not on the list already. This process is continued until we
have found 3 closest routes for each client. The demands of client i are only possibly moved to the
routes on this list.

After evaluating every possible move, the move is executed which reduces the objective value
F (s) the most. If a move is applied to the current solution, all new moves which involve visit
v in source route r are declared tabu for the next τ iterations. At the beginning of each tabu
search τ is randomly chosen in [1,

√
nr], where r is the number of routes in the initial solution.

Declaring moves tabu makes sure cycling between solutions is prevented. If there is no improvement
possible, no move will be made. After the penalties are updated, the search for an improving move
restarts.

7

4 Results

4.1 Instances description

The instances we use for the computational experiments are proposed by Christofides, Mingozzi
and Toth (1979). While these CMT instances vary in size from 50 to 200 customers, we only use
the instances with a maximum of 120 customers for our experiments. The instances are displayed
in Table 1, as well as the the shortest known total route length (the best known value, BKV) for
the MCVRP found by the ITS of Silvestrin and Ritt (2017).

Table 1: Instances used for computational experiments
CMT # Customers BKV

1 50 546

2 75 863

3 100 833

6 50 558

7 75 946

8 100 888

11 120 1111

12 100 905

13 120 1544

14 100 934

Since the CMT instances are originally created for the VRP, we need to divide the demand ci for
each customer i such that he has a demand for the two available products. We calculate for each
customer i its demand for the first product as ci1 = ci/k where k ∈ {3, 4, 5} randomly chosen for
each customer. Then the demand for the second product is simply defined as ci2 = ci − ci1.

Through the division of the demand for each customer, we calculate the expected average demand
for the first product is slightly above 26% of total demand. As mentioned in section 2.2, the average
demand is the base in the determination of the capacity devision of the vehicles. As an example,
we expect the vehicles to have capacity division as shown in Table 2. Note that this devision differs
slightly each time, since the demands are divided randomly for each instance.

Table 2: Example of vehicle compartment division for β = 0.03
Average Demand Vehicle Type 1 Vehicle Type 2

Product 1 26% 29% 23%

Product 2 74% 71% 77%

8

4.2 Experiment results

We first present the results of calculating the initial solution for the MCVRP using a variation of
the sweep algorithm of Gillett and Miller (1974), as mentioned in section 3. The initial solution
given in Table 3 is the average of running the instance 100 times, since each time the instance ran
with different random seeds. It is seen that the initial solution is improved by the ITS significantly
for all instances. Figure 1 shows the improvement made in each iteration of the ITS on instance
CMT-1, where iteration 0 equals the initial solution. The largest improvement, about 15%, is made
in the first iteration of the ITS. We get the same result for all other CMT instances: on average,
about 85% of the total improvement made by the ITS is made in the first iteration. Looking at
Figure 1, we do not expect the ITS to improve the found solution significantly if we increase the
number of iterations.

Table 3: Improvement made by applying ITS on the initial solution for the MCVRP
CMT Initial Solution ITS % Improved

1 681 556 18,36

2 1009 886 12,19

3 1006 884 12,13

6 681 571 16,15

7 1008 906 10,12

8 1011 890 11,97

11 1491 1328 10,93

12 1089 961 11,75

13 1516 1310 13,59

14 1095 1002 8,49

Figure 1: Improvement made by applying ITS on the initial solution per iteration for CMT-1

9

In Table 4 the value of ITSβ represents the best found solution of our ITS with β ∈ {0, 0.01, 0.03,
0.05}. For each instance, we ran ITSβ 3 times for 10 iterations. Note that ITS0 is the same as
the ITS in Table 3, since for β = 0, the MCMVRP reduces to the MCVRP. The computation time
of the instances is also given, where the computation time is roughly the same if we run the ITS
with different values of β.

Table 5 states the relative deviation of our ITS for the MCVRP to the BKV of Silvestrin and
Ritt (2017), where a negative number shows an improvement of the best known value. Table 6
shows the relative deviation of the ITS on the MCMVRP, with β ∈ {0.01, 0.03, 0.05} to the ITS
on the MCVRP. Again, a negative number indicates the solution has been improved by using a
non-homogeneous fleet instead of using identical vehicles as in the MCVRP.

Table 4: Results of ITS on instances for MCVRP and MCMVRP
CMT BKV ITS0 ITS0.01 ITS0.03 ITS0.05 t(min)

1 546 556 558 578 585 1

2 863 886 893 940 1009 4

3 833 884 888 915 918 8

6 558 571 563 564 576 1

7 946 906 878 916 960 6

8 888 890 887 904 915 8

11 1111 1328 1352 1362 1362 9

12 905 961 1002 1058 1063 6

13 1544 1310 1336 1364 1448 9

14 934 1002 1032 1046 1064 5

Table 5: Comparison of ITS to BKV
CMT BKV ITS0
1 546 1,83

2 863 2,67

3 833 6,12

6 558 2,33

7 946 -4,23

8 888 0,23

11 1111 19,53

12 905 6,19

13 1544 -15,16

14 934 7,28

Table 6: Performance non-homogeneous fleet
CMT ITS0 ITS0.01 ITS0.03 ITS0.05
1 556 0,36 3,96 5,22

2 886 0,79 6,09 13,88

3 884 0,45 3,51 3,85

6 571 -1,40 -1,23 0,88

7 906 -3,09 1,10 5,96

8 890 -0,34 1,57 2,81

11 1328 1,81 2,56 2,56

12 961 4,27 10,09 10,61

13 1310 1,98 4,12 10,53

14 1002 2,99 4,39 6,19

From Table 5 it is found that the best solution of our ITS deviates on average about 3% to that
of Silvestrin and Ritt (2017), where it is even improved with about 4% and 15% for instances
CMT-7 and CMT-13 respectively. Although a slight improvement is possible such as for CMT-7,
it is highly unlikely that it would improve with as much as 15% for CMT-13. It has been validated
however that this solution does not exceed any of the constraints. Since the other instances give
reliable solutions using the same ITS, it is more likely that something is wrong with the dataset
of CMT-13. This remains to be confirmed, since there was no time to thoroughly investigate the
instance data.

10

From Table 6, we can see that the use of a non-homogeneous fleet managed to improve the solution
for some of the instances, with the largest improvement of about 3% for CMT-7 with β = 0.01.
However, using a non-homogeneous fleet with β = 0.01, increases the solution on average with
about 1 %. If we use β = 0.03 or β = 0.05, the solution is even worsened by respectively about
4% and 6%. Also, we observe a general pattern within the use of a non-homogeneous fleet for
each instance: if we increase β, the best solution found by the ITS is also increased. This suggests
that therefore the deviation of the capacity of the vehicles from the average demand should be
minimized to get the best solutions by our ITS.

5 Conclusions

The ITS proposed in this research found on average less good solutions for the MCVRP due to a
few simplifications opposed to the ITS of Silvestrin and Ritt (2017). Furthermore, although the
ITS ran for only 10 iterations, it is expected that an increase in the number of iterations will not
improve the best found solution significantly, since on average about 85 % of the total improvement
in the first 10 iterations is made in the first iteration.

This research mainly aimed to improve the solution of the MCVRP by changing the fleet of vehicles.
The current composition of the non-homogeneous fleet of two different vehicle types could not
improve this solution however for several different vehicle compartment devisions. We conclude
that the compartment devision of the fleet vehicles which resembles the average demand give better
solutions for the used CMT instances.

Further research could be done on the impact of using a non-homogeneous fleet by changing the
number of different vehicles. Possibly the effect of using a non-homogeneous fleet pays off when
handling a large number of different products.

11

References

Christofides, N., Mingozzi, A. & Toth, P. (1979). The vehicle routing problem. Combinatorial
Optimization. Chichester: Wiley, 315-338.

Gillett, B.E. & Miller, L.R. (1974). A heuristic algorithm for the vehicle-dispatch problem. Oper-
ations Research, 22(2), 340–349.

Sivestrin, P.V. & Ritt, M. (2017). An iterated tabu search for the multi-compartment vehicle
routing problem. Computers and Operations Research, 81, 192-202.

12

