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Abstract

Author: Biying Wu
Erasmus School of Economics, Erasmus University Rotterdam

Bachelor thesis Econometrics and Operations Research

his paper introduces three panel data models and their estimation methods that take het-

erogeneous structural breaks in the slope coefficients into consideration. Despite the fact
that many empirical studies in various domains suggest the effects of certain factors may be
unstable and different across clusters, not many studies have considered the development of
such techniques in panel data analysis. Thus, this paper seeks to fill this gap. We model the
heterogeneities through a latent group structure and consider both the case of a static group
pattern and the case when the group pattern changes after each break. For the static group
case, we introduce the grouped adaptive group fused lasso (GAGFL) algorithm with a penalized
least squares (PLS) method to estimate the exogenous model, and propose the incorporation
with a penalized GMM (PGMM) method to estimate the endogenous model. To deal with the
dynamic group pattern, we propose the dynamically grouped heterogeneous structural breaks
(DGHB) estimation method. Through two sets of Monte Carlo simulations, we demonstrate that
our methods give high accuracy in classifications, breaks detections and coefficients estimations.
We further apply our GAGFL with PGMM method to investigate the effect of foreign direct
investment (FDI) inflow on economic growth. The new evidence we obtained in this application

confirms the usefulness of our methods in empirical studies.

Keywords: Panel data, heterogeneous slope coefficients, structural breaks, grouped fixed-

effects, dynamic group pattern, penalized least squares, penalized GMM
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1 Introduction

Panel data analysis is a crucial technique as it enables the analysis on both cross-sectional and
time dimensions. When analyze panel data, it is important to consider heterogeneous structural
breaks in the slope coefficients through a group pattern. Abundant evidence from various do-
mains has shown that certain factors may cause different effects among individuals in different
clusters, and the effects are usually unstable over time due to certain political events, financial
crisis, technology breakthroughs or preference changes. For example, Owyang and Wall| (2005)
conduct a study by regions and find that the effect of monetary policy experienced a dramatic
break at the beginning of the Volcker-Greenspan era and this effect differs significantly across
different regions in the U.S. |Okui and Wang| (2017) find that the effects of several typical de-
terminants on savings rate are different for countries with different economic status and these
effects contain structural breaks. Nonetheless, traditional panel data models tend to ignore the
existence of such grouped heterogeneous structural breaks, which can lead to inconsistent esti-
mates and erroneous conclusions. To address this problem, this paper focuses on the modelings
and estimations of heterogeneous structural breaks in panel data under different situations.

Specifically, we consider three panel data models that consider the heterogeneous structural
breaks in the slope coefficients through an unobserved group pattern. In these models, indi-
viduals in the same group share the same slope coefficients every time while the coefficients
may differ across different groups. Allowing the occurrence of structural breaks means the slope
coefficients can change in disjoint time intervals. We use an exogenous linear model introduced
by |Okui and Wang| (2017) as our benchmark model and adopt their grouped adaptive group
fused lasso (GAGFL) algorithm for estimation. Although Okui and Wang| (2017)’s GAGFL al-
gorithm works well for exogenous case, they do not consider the endogenous case in their study.
However, endogeneity issues widely occur in empirical studies, and treat them the same way as
the exogenous case results in inconsistent estimates. Thus, taking this endogeneity into consid-
eration, we construct our second model, the fixed effects endogenous model. To estimate this
model, we extend the GAGFL algorithm by employing a penalized GMM estimation (PGMM)
introduced by (Qian and Su/ (2016). Another issue previous studies do not consider is a changing
group pattern. As also mentioned by |Okui and Wang| (2017, allowing the group pattern to
change is advisable because significant events such as financial crisis may severely change the
relationships between variables and shift the group pattern. In this research we also attempt to
address this problem. Thus, we construct a dynamic group pattern model which allows part of
the group memberships (i.e. the groups each individuals belong to) to change after each break.
To estimate this model, we propose the dynamically grouped heterogeneous structural breaks
(DGHB) estimation method.

In this paper, we aim to investigate if our estimation methods for the three models can
correctly cluster individuals in to different groups, detect the true structural break dates and
give consistent slope coefficient estimates. Therefore, we first conduct several Monte Carlo
simulations to test the finite sample performances of these estimation methods. We start with
a replication of |Okui and Wang| (2017)’s simulation tests to check the ability of GAGFL with



PLS method. After that, we apply the same tests to check our GAGFL with PGMM for
the endogenous model and DGHB for the dynamic group pattern model. Through simulation
studies, we find that when the the data are not very noisy, both GAGFL algorithm with PLS
and PGMM methods give accurate classifications, break date detections and consistent slope
coefficient estimates. As for the dynamic group pattern case, we find our DGHB method gives
perfect estimation of the break date even when the noise in the data is substantial. Moreover,
DGHB also gives accurate clusterings and good slope coefficient estimates.

Apart from the simulation studies, we also examine the performance of our GAGFL with
PGMM method in empirical study. In particular, we apply our fixed effects endogenous model
and GAGFL with PGMM estimation method to investigate the effect of foreign direct investment
(FDI) inflow on economic growth, which researches have been studying for decades but fail to
give clear conclusions with the use of traditional panel data method (e.g. GMM). With our
approach, we find that there are indeed heterogeneous structural breaks in the effect of FDI
on growth. Given the optimal number of groups, countries are mainly categorized through the
status of their developments, and the estimation method detects break points that correspond
to policy changes and crisis. This new evidence we find takes us one step closer towards solving
this puzzle and proves the usefulness of our model and methods in reality.

Our main findings in this research support two main contributions of this research. Firstly,
the GAGFL with PGMM method gives accurate estimates of heterogeneous structural breaks
and has the potential to become an influential tool in various empirical studies. Secondly, the
DGHB estimation method proves to be a good alternative to GAGFL with PLS method when
the group patten is dynamic.

The rest of this paper is as follows. Section [2| gives a review of the related literature. Section
presents the benchmark model and GAGFL with PLS method. Section {] introduces the fixed
effects endogenous model and GAGFL with PGMM method. Section [5]gives the dynamic group
pattern model and proposes the DGHB method. In section [6], we conduct the Monte Carlo
simulation. Section [7] illustrates the GAGFL with PGMM method through an application.

Finally, section [8] concludes.

2 Literature review

The study of modeling heterogeneous slope coefficients in panel data through a latent group
pattern dates back to Sun (2005) who constructs a finite mixture model with unknown group
memberships and proposes a maximum likelihood estimator. Later, Lin and Ng (2012) intro-
duce the use of k-means clustering and [Su, Shi, and Phillips| (2016) introduce the classifier-lasso
clustering. A recent research by |Bonhomme and Manresa (2015)) elaborates previous works by
modeling time-varying grouped fixed-effects (GFE) and introducing the GFE estimator. Their
study provides us a good foundation to develop estimation methods for estimating multiple
models with heterogeneous structural breaks in the coefficients. Specifically, the GAGFL algo-
rithms we use in this research incorporates a GFE-type of estimator to give preliminary group

membership estimates. In addition, our DGHB method uses the GFE estimator in the final step



to give slope coeflicient estimates.

Apart from the development of modeling heterogeneous slope coefficients, recent studies also
focus on modeling structural breaks in the slope coefficients in panel data regressions. One
distinctive study by |Qian and Su (2016) extends |Qian and Su (2014)’s Lasso-type shrinkage
approach for time series regressions and develops the use of adaptive group fussed lasso (AGFL)
penalty to detect an unknown number of homogeneous structural breaks in slope coefficients for
panel data models. The proposed penalized least squares (PLS) estimation for exogenous regres-
sions and the penalized GMM (PGMM) estimation for endogenous regressions give consistent
estimates of both the break dates and slope coefficients. In our study, we employ their PLS and
PGMM methods to detect the structural breaks and coeflicients in each group for static group
pattern models.

Although literatures on heterogeneous coefficients and homogeneous structural breaks are
abundant, not many studies have considered heterogeneous structural breaks in coefficients. In
the latest study, (Okui and Wang) (2017)) construct a model concerning both of these two issues.
To estimate their model, they propose a grouped AGFL (GAGFL) method which is a hybrid
procedure that uses a GFE-type of estimation to give the group pattern and PLS estimation
to explicitly detect structural break regimes and slope coefficients in each group. Their model
improves the estimation efficiency through the parsimonious group pattern and give consistent
estimates. Thus, it provides us an important cornerstone. Based on their model, we extend it to
endogenous case and propose a similar estimation method, the GAGFL with PGMM estimation.

Another study that models the heterogeneous structural breaks in slope coefficients is done
by Baltagi, Feng, and Kao| (2016). This study is more restrictive than |(Okui and Wang| (2017) as
it allows the coefficients to differ among individuals but assumes all the individuals have the same
break dates. The fact that this method permits individual-specific coefficients provides as an
ideal tool to develop our DGHB estimation method which is a hybrid algorithm that uses|Baltagi
et al. (2016)’s method to detect the common break date and |[Bonhomme and Manresa, (2015)’s
GFE method to estimate the group pattern and slope coeflicients between each consecutive

breaks.

3 Benchmark model

In the first part of this section, we present our benchmark model. To estimate this model, we
introduce the GAGFL with PLS estimation method proposed by Okui and Wang| (2017) in the
second part and assume the total number of groups is given. In the third part, we discuss the

choice of the tunning parameter for this method.

3.1 Model setup

The benchmark model capture the heterogeneous structural break through a static group pat-
tern. Suppose {{yit, Tit }1—1 1Y, is a panel data set with ¢ = 1,...,T time periods and n = 1, ..., N
cross-sectional individuals. x;; denotes a vector containing k explanatory variables and y;; de-

notes the dependent variable. To model the group pattern, let G = {1,..., G} be the set contain-



ing all the group numbers and let g; € G be the group number of the ;; individual. Furthermore,
let B4+ denote the slope coefficient of group g at time period ¢. Then, our benchmark model

takes the folowing form:
Yit :l';tﬁgi,t'i_eit, 1=1,...N, t=1,...,T, (1)

where €;; is the error term. To model the structural breaks through the time-varying slope
coefficients {Bg,1, ..., Bgr} with g € G, we introduce the following notations. Let my be the
number of breaks in group g and let 7y, 4 = {71, ..., Tym, } be the set of break dates. We allow
structural breaks to occur at any disjoint time intervals and let the coefficients 3, ; be a constant
between two consecutive break dates and only change after each break. We also introduce ay ;
with j = 1,...,m4 to be the value of the coefficients between the j — 1, and jy, break point.
In addition, let oy m,,, be the value of the coefficient after the last break of group g and define

Tyo=1and T}, =T + 1. Therefore, we have the following relation:

Mg+1
ﬁgzt = agvj’ Zf Tgajfl S t < Tgvj (2)

According to |Okui and Wang] (2017)), this benchmark model is, on the one hand, parsimo-
nious, and on the other hand, general and flexible as it does not post any restrictions on the
number of breaks and group pattern. Moreover, it permits the identification of the number of

breaks. For this reason, we set this model as our benchmark and elaborate based on it.

3.2 GAGFL with penalized least squares (PLS) estimation

Before presenting the method, we first clarify some extra notations to use hereafter. Suppose the
total number of groups is G. Let k& be the number of explanatory variables in the regression, and
let B C R¥ be the parameter space for each By. We introduce 8 = (B11s ...,,Bi’T,ﬁéJ, ...,,B’G’T)
to be a vector that stacks all B4. Thus, the parameter space for § is BT, In addition, we
denote the group memberships for all the individuals by an N-dimensional vector v, withy =
{g1,...,gn}. Then, GV is the parameter space for 7. Furthermore, define each period ¢ for
which Bg,t — Bg,t,l # 0 as a break date, and let 7; ={te{2,.., T}|Bg’t — Bg7t,1 # 0}. Thus, the
estimated number of breaks for group g is equal to the cardinality of 7;.

Given the total number of groups G, we need to estimate the group memberships for each
individual and the slope coefficients for each group. To do this, we follow Okui and Wang
(2017) and use the GAGFL algorithm with PLS method. The GAGFL algorithm is an iterative
procedure to update the optimal coefficient parameters and group memberships.

As a starting point, GAGFL uses the GFE-type of estimation introduced by |Bonhomme and
Manresa| (2015]). To give a consistent result, we adjust the standard GFE estimation method of
Bonhomme and Manresa (2015) by allowing the slope coefficients to be time variant. Starting
from this initial group assignment, we then conduct the iterative updates.

In each iteration, we first update the coefficient estimates [ using the group assignment
of the previous iteration. We do this by applying the AGFL method with PLS estimation

introduced by |Qian and Su| (2016)) in each group, and minimize the following penalized least



squares objective function:
X 1 T T
(B.4) = argmin  —— 3" (g — 2By 0)? + A D> tbgul|Bgs — Baual . (3)

(Baﬁ/)eBGTXGN NT =1 t=1 gEG t=2

where
—K

(4)

with x a user-specified constant and A the preliminary GFE-type of estimates obtained by

N T
(B,4) = argmin 3 % (yie — 2i1fg,.0)* (5)

(BMEBETXGN {27 41
The second term of is a lasso-type of penalty term that has a sparse property. The A
in the expression is a tunning parameter and w,; is an adaptive weight. This penalization
heavily penalize the minimization problem when Bg,t — Bg,t_l closes to zero and 8y ; — Bg,t—1 = 0.
As noticed by |Qian and Su (2016) and |[Okui and Wang| (2017)), this penalty method can give

consistent estimations of the break dates.

After updating the slope coefficients, we next update the group memberships by minimizing
the sum of squared errors for each individual. To do this, we use the estimated slope coefficients
in the current iteration and assign individual ¢ to the group whose coefficients give individual
i the smallest sum of squared residuals. We repeat this iterative procedure until it meets some

numerical convergence criterion specified by the user. Algorithm 1 shows the pseudo code of
this GAGFL with PLS method.

Algorithm 1: GAGFL algorithm with PLS method

Initialization: initial GFE group assignment 4(%) given by s=0
1 while not numerical convergence do

2 Step 1: For the given '?(5)7 compute
T T
B =argmin S0 S e — aluB0)” + A S0 S byllBo = o ©)
BeBCGT i=1t=1 g€G t=2

where we obtain wg,: by and .
3 Step 2: For all i € {1,..., N}, compute:

T

66D = argmin Y (yi el , — B2 (7)
ge€G =1

Step 3: Set s = s+ 1.
5 end

3.3 Choice of the tunning parameter

To choose the optimal tunning parameter A for the lasso penalty in and @ in each iteration,
we follow Qian and Sul (2016)) and Okui and Wang] (2017)) and minimize the following information



criterion:
m+1 T_]

N
160 = 55> S S (e~ aheds)? + pwrk(i + 1) (®)

j=1 t=T;_1+1 i=1
where dg, ; is the post-lasso estimate for group g in the period between the ji, and j — 1,
break, m) is the estimated number of breaks corresponding to the tuning parameter A\, and
pnT = cn(NT)/v/NT with ¢ = 0.05, which decides the penalization level on the number of
breaks.

4 Extension 1: Fixed effects endogenous model

In this section, we present our first extension. In the first part, we introduce our fixed effects
endogenous model. In the second part of this section, we propose an extension of |[Okui and
Wang (2017)’s GAGFL algorithm and employ the PGMM estimation introduced by Qian and
Su/ (2016) to tackle the endogeneity issues.

4.1 Model setup

The fixed effects endogenous model differs to the benchmark model in two aspects. First, this
model contains an additional time-invariant individual fixed effect. Second, this model allows
endogeneity issues which may be caused by for example, measurement errors, omitted variables
or simultaneity problems. Let u; denote the fixed effect of individual ¢. Then, our model takes

the form of the following expression:
yz‘t:,ui—f-ﬂi';-tﬁgi,t—’-@t, 1= 1,...,N, t= 1,...,T. (9)

Here we do not post any restrictions on p; and allow p; to be correlated with the regressors xy;.

Compared to the benchmark model, this model is even less restrictive and can be of signif-
icance use in practice. Firstly, as mentioned by Bonhomme and Manresa| (2015)), fixed effects
are desirable because they allow the correlations between unobserved effects and covariates.
Secondly, consider endogeneity issues is important since it can be hard to construct strictly

exogenous regressions in reality.

4.2 GAGFL with penalized GMM (PGMM) estimation

To estimate our fixed effects endogenous model, we need to consider two problems. Firstly, the
individual fixed effect can be correlated with the regressors. Thus, we cannot directly apply
the standard GAGFL algorithm to estimate this model. To address this problem, we use the
first-differencing technique to eliminate the individual fixed effects following (Okui and Wang

(2017)’s extension. After the first-differencing, we get the following equation:
Ayt = x;tﬂgivt - wg,t—lﬁgi,t—l + Aéjz. (10)

Secondly, we assume there are endogeneity issues in this model which cannot be completely

removed by first-differencing. In such situation, applying the GAGFL with PLS estimation is



not consistent. Therefore, we propose to replace the PLS estimation by the PGMM estimation.
We introduce an additional notation z;; to be a vector including ¢ instrumental variables and
assume q > k.

After the first-differencing and the introduction of the instrumental variables, the procedure
of this method is similar to the standard GAGFL algorithm given by Algorithm 1. But one main
difference is that instead of minimizing the objective function given by equation @, we use the

following equation corresponding to the PGMM estimation with the first-differenced data:

. 1 T 1 N / 1 N T
B®) = argmin T Z {N Z pgi,t} Wg,t{N Zpgi,t} + A2 Z gt Bt — Bga—1| (11)
t=1 t=1 =2

BeBET t=2

where pg, 1 = 2it(Ayi — Bé,tiﬂit +ﬁ;,t_1l‘i,t—1), and Wy ; is a ¢ X ¢ symmetric weight matrix which

is positive-definite when the sample size is large. To employ this PGMM estimation, we need to
choose the weight matrix for each group in each time period. For the choice of this matrix, we
follow the study of |Qian and Su (2016) and use their two-step strategy.

Similar as the GAGFL with PLS estimation, the second term of equation is also a lasso-
type of penalty, with A9 a tunning parameter. In this method, we also impose an adaptive weight
Bt = Boa|
GFE estimate obtained by applying the extended GFE method to the first-differenced data.
That is, we obtain the preliminary GFE estimates by

given by 1wy = , where ko is a user-specified constant and B is the preliminary

N T
(B.%) = argmin > > (Ayi — By i + By, 1 wie-1)’ (12)

(BMEBITXGN 27 11
Here, we rely on the ability of the GFE estimation to give consistent group assignments on the
first-differenced data. In addition, as noticed by [Bonhomme and Manresa, (2015), the GFE-type
of group assignment estimator is consistent even when the regressors are not strictly exogenous.

Thus, our approach here is adequate.

4.3 Choice of the tunning parameter

Following Qian and Su| (2016), we use a similar criterion as the one in GAGFL with PLS
estimation to decide the tunning parameter Ao for the GAGFL with PGMM estimation. But
one difference is that we calculate the information criterion use the first-differenced data and
consider the use of the instrumental variables. Thus, we minimize the following expression:

1 m-1 1 T;—1 N ! 1 T;—1 N
16N = 77— > [N > Zﬁgi,t] W, [N DD g

t=Tj_1+1 i=1 t=Tj_141 i=1

+

(13)

+ pnTk(my, +1)

m [y ! 1 &
Z [N Zlalgi,Tj‘| Wy, lN Z Pig;,T;
; i=1

A e . . —_ /\, . A _— . . —_ /\/ . /\, . 1 A .
where Pgit = Zzt(Ayzt Oégi,ijzt) and P1g;,T; = ZiT; (Aszj Qg i+1%iT; +Oégi7sz,Tj71) with Qg;.j

the post-lasso estimates. Same as W, ;, Wy ; is also a ¢ X ¢ symmetric weight matrix that we
need to determine. For the choice of this weight matrix, we also adopt the two-step strategy by
Qian and Su/ (2016)). The third term of equation is the same as equation .

7



5 Extension 2: Dynamic group pattern model

Our second extension to the benchmark model is a dynamic group pattern model which allows
the group membership of each individual to change after every structural breaks. Same as the
benchmark model and fixed effects endogenous model, we assume the total number of groups is
known for now. In addition, as few previous study has considered such dynamic group pattern, in
this research we only provide a preliminary methodology to take the changing group pattern into
consideration. Thus, we consider a basic dynamic group model where a part of the individuals
have one structural break in the slope coefficients during the estimation period and some of the
individuals change their group memberships after the break. In this section, we first present the

dynamic group pattern model. After that, we propose a new algorithm to estimate this model.

5.1 Model setup

In this model, we consider the case of linear regression with strictly exogenous regressors and
adopt the same notations used in section To model this dynamic group pattern, we add a
time subscription to the group number and let g;; denotes the group membership of individual

7 in time period t, with g;; € G and G = 1, ..., G. Thus, our model takes the following form
Yit = TPyt +€it, 1=1,.,N, t=1.,T. (14)

Modeling dynamic group pattern directly using this model instead of using the benchmark
model and increasing the total number of groups has two main advantages. First, allowing group
memberships to change enables us to use more observations to estimate the parameters in each
stable time periods, which can give higher estimation accuracy. Second, tracing the changes of

the group memberships can give us more insight to explain phenomenon in empirical studies.

5.2 Dynamically grouped heterogeneous structural breaks (DGHB) estima-

tion

To estimate our dynamic group pattern model with one common break date, we propose the
DGHB algorithm. In this algorithm, the first step is to detect the single break date. [Baltagi et
al. (2016) introduce an estimation method in their study to detect a common structural break in
the slope coefficients for part of the explanatory variables. In our case, we use the same method
for break date detection but consider a simplified case when the slope coefficients for all the
explanatory variables change at the same time.

Let Y; = (ya, vi2, - yir), Xi = (wi1, Tig, .., z7) and € = (€1, €2, ..., €7)" be the vectors
that include all the observations and errors for an individual 7. In addition, suppose 8° + 1 is
the true common break date, then we need to estimate the following model for each individual
i, fori=1,...,N,:

xétﬁu +e¢ t=1, ...,bo

aBai+ e t=0"4+1,.,T,



where (31; is the slope coeflicient before the break and Ss; is the slope coefficient after the break
for individual 1.

To estimate this model, we first define some auxiliary variables. For all the possible break
point b =1,...,T — 1, we define auxiliary matrices X1;(b) = (zi1, ..., Tip, .-, 0, ..., 0)" and Xy;(b) =
(0,..,0, e, Tj py1, -, zi7)'. Thus, when b is the true break point 8", we have X7, = X1;(b°) and
X9 = Xo;(0Y). Let X;(b) = (X1i(b), X2i(b)), then we can rewrite the piecewise model as

Y = X1;(0%) Bri + Xoi(b°)Boi + € = XIB; + €, i=1,..,N, (16)

where B; = [f1;, f2i]’. Therefore, given any possible break point b =1,...,7 — 1, we can estimate
B, use the ordinary least squares estimation,
- Bui . .
Bi(b) = | = X)X 0] X0)Y;, i=1,..,N. (17)
Bai
After obtaining the slope coefficient estimates for all the possible break dates for each individual,

we can determine the common break date based on the total model fitness. Specifically, we set

the estimate b to the one that gives the smallest sum of squared residuals. That is

N
b= argmin Z SSR;(b), (18)
1<b<T—1%—
where SSR; is the sum-of-squared residuals for individual 7 if the break date is b. Given there is
only one common break date, according to Baltagi et al.| (2016), this kind of estimation method
is consistent.

Given the consistent common break date estimate b + 1, our next step is to determine the
group memberships before and after the break as well as the slope coefficients. To do this, we
first separate the observations before and after this break date. If the break date estimate is
consistently estimated, then there should not be any structural breaks in the pre-break and post-
break datasets after the separation. Thus, we use the standard GFE estimation introduced by
Bonhomme and Manresa, (2015)) to estimate the stable slope coefficients and group memberships
for the pre and post-break periods separately. The pseudo code shown at the beginning of the

next page summarizes the whole process of this algorithm.

6 Monte Carlo simulation

In this section, we conduct two sets of Monte Carlo simulation experiments to investigate the
performances of our three methods in estimating the proposed models in finite samples. The
first set of experiments consider the case of static group pattern. In this set of the experiments,
we examine the abilities of the methods to correctly classify units, detect break dates and give
accurate slope coefficients. The second set of experiments is for the case of dynamic group
pattern which aims to examine if our method can give correct estimates of the common break

date, changing group memberships and the slope coefficients.



Algorithm 2: DGHB algorithm

1 Step 1: Estimate the break date b use equation and equation
2 Step 2: Separate the observations from the pre-break period and the post-break period.
3 Step 3: Estimate the slope coefficients and group memberships:

N

b
A= s 2= @
> 1=1t=1

where Bm‘e and 4P"¢ denote the stacked coefficients and group memberships for the pre-break period.
N T

(Brost qPosty = argmin Y > (yiy — 5,820°)2. (20)

(B,7)eBET xGN ;=1 S

where BPOSt and 4P°%t denote the stacked coefficients and group memberships for the post-break period.

Under each case, we present the data generation process, evaluation criteria and the results.
For the static group pattern tests, we have an additional section for the tunning parameter selec-
tions. To test how our methods perform in different situations, we design two data generation
processes for each method and consider different levels of the noise in the data and different
number of available observations. In addition, we set the total number of groups G = 3 for
all the generation processes. We report the results based on 200 replications to get a fairly
reliable conclusion. All the experiments are conducted in MATLAB. For the GFE part of each
algorithm, we base our code on the code by Bonhomme and Manresal (2015)). For the parts of
PLS and PGMM estimations, we borrow the code from |Qian and Su/ (2016]).

6.1 The case of static group pattern

We first present the Monte Carlo experiments for our models and methods that deal with the

case of a static group pattern.

6.1.1 Data generation process

In this section, we design DGP 1 and DGP 2 to generate the data for the tests using the
benchmark model and design DGP3 and DGP 4 for the tests using the fixed effects endogenous

model.

Benchmark model

DGP 1: In DGP 1, we generate the data follow the benchmark model given by:
yit:x;tﬁgi7t+eit, 7= 1,...,N, t= 1,...7T,

where z;~ iid. N(0,1), e~ iid. N(0,02) and o. = {0.5,0.75}. For the sample size, we
consider N = {50,100} and 7" = {10,20,40}. Let N, with g = 1,2,3, denote the number of
individuals in group g, and we set Ny : Ny : N3 = 0.3 : 0.3 : 0.4. The slope coefficients 3, ; for
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the three groups are given by:

1 ifl<t<|T/2] 3 ifl<t<|T/3]
Bip=1S2 if|T/2] <t<|[5T/6], P2r=144 if|T/3]<t<|[5T/6],
3 if|5T/6] <t<T 5 if|pT/6] <t<T

and
Bas =15, for 1<t<T.

where |-] means taking the integer part of the number inside this sign.

DGP 2: DGP 2 is the same as DGP 1 except that we let the error term ¢; follows an
AR(1) process. For each individual i we set € = 0.5¢; -1 + wi, where u;~ i.i.d. N(0,02)
and o, = {0.5,0.75}.

Fixed effects endogenous model

DGP 3: We generate DGP 3 use the fixed effects endogenous model and set the individual

fixed effect to be the average of the explanatory variable over the estimation period:
yit:ﬂi+$§tﬁgi7t+066it, 7= 1,...,N, t = 1,...,T,

where p; = T71 Zthl xi and €~ 1.i.d. N(0,1). We generate the endogenous explanatory vari-
able x;; through x;; = m5it + M% where d;;~ i.i.d. N(0,1) and independent of €;. To
generate the instrumental variable, we use z; = m&t + \/Wuit, where u;~ ii.d. N(0,1)
and is independent of ¢;;. Considering the complexity of the fixed effects endogenous model, we
first consider a lower level of noise in the data for the simulation experiments. Thus, we use
oc = (0.2,0.4). For the same reason, we choose larger sample sizes and set N = {200,400}.
We use the same time period lengths as the benchmark case, that is 7 = {10,20,40}. For the

coefficients 3, ; and the break dates in each group, we use the same settings as DGP 1.

DGP 4: DGP 4 is the same as DGP 3 except that J;; follows an AR(1) process. For each
individual i, we set 0 = 0.50; 4—1 + ui with u;~ i.i.d. N(0,0.75).

6.1.2 Evaluation criteria

To evaluate the performances of GAGFL with PLS and GAGFL with PGMM algorithms, we
propose four evaluation criteria following Okui and Wang| (2017)).

Firstly, to test the abilities of our algorithms to classify individuals into the right groups, we
look at the misclassification frequency (MF). Let g? be the true group membership for individual

i, and let I(-) be the indicator function. Then, we define

N
MF == 310G # of). (21)
1=1

Secondly, to examine whether our algorithms can give reliable perditions of the number of

breaks, we count the percentage of times GAGFL algorithms correctly estimate the true number
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of breaks in each group. We also calculate the average of the estimated number of breaks in
each group over the 200 replications and compare it with the true number of breaks. The fourth
criterion tests the accuracy of the break dates estimates. To do this, we follow |Qian and Su
(2016)) and |Okui and Wang (2017) and calculate the Hausdorff distance (HD) defined by

T°

HD(TQ0 gomo) = max{D(T? ., T°

g, + gm0 />

s ), DTy o Ty )} (22)

where D(A, B) = suppepinfqea|a — b| for any set A and B. We also report 100><I:ID(1A1?77%7 T;mo)/T.
Finally, to evaluate the accuracy of the coefficient estimates, we use the root mean squared
error (RMSE) and the coverage probability (CP) of the two-sided nominal 95% confidence

interval. We compute RMSE use the following formula

T
1
RMSE(By) = $ NT ; ; Bit = Bir)? (23)
and we use the following expression to calculate the coverage probability
4 1 L. R
Bit) = 5o D D 1B = 1.9655,10 < Bir < Biv +1.965,30). (24)

=1 t=1
6.1.3 Tunning parameter selections

Before discussing the results, we first present some practical choices for the experiments. Firstly,
both GAGFL with PLS and GAGFL with PGMM methods require a preliminary group mem-
bership estimates through the GFE type of estimation. To obtain a good preliminary group
assignment as the starting point, we choose to perform the GFE estimation 10 times and set the
preliminary result as the one that gives the smallest sum of squared errors. Secondly, we need to
select the value for the tunning parameters A and A9 in the PLS step and PGMM step. For both
PLS and PGMM, we follow |Okui and Wang (2017)) and Qian and Sul (2016) to search the optimal
tunning parameter that gives the lowest information criterion from a 40-evenly-distributed log-
arithmic grids in the interval [0.01, 100]. The lower bound leads to frequent breaks whereas the
upper bound results in no break. Moreover, we set the user-specified constants k and ko equal
to 2. Lastly, we choose to stop the algorithm when the norm difference between the estimated

slope coefficients in the consecutive iterations is zero.

6.1.4 Results

In this section, we discuss the results for the static group pattern models. The result statistics

are shown in [A.]] and

Classification accuracy

Table [I| reports the average misclassification frequencies for the benchmark model. In general,
the results confirm that GAGFL with PLS method can accurately detect the group pattern given
sufficient number of observations or when there are little noise in the data. For both DGP 1 and
DGP 2, the misclassification frequencies are within 0.1 except for the case of N = 50, T' = 10 and
oe = 0.75. In addition, the clustering accuracy increases significantly when 7" increases but does

not necessarily increase with N, although on average the accuracy for NV = 100 is higher than
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N = 50. The above findings are consistent with |Okui and Wang] (2017)). However, compared to
their study, our results are more sensitive to the changes of o.. One possible explanation is that
we only conduct 200 replications while |Okui and Wang] (2017)) conduct 1000 replications. It is
possible that the method shows a higher level of robustness if we run more replications.

Table [b| under shows the average misclassification frequencies for the fixed effects en-
dogenous model use our GAGFL with PGMM method. All the misclassification frequencies in
this case are within 5%, which confirms that our proposal to deal with the fixed effects and en-
dogenous regressors with first difference are very reliable for detecting the group pattern. Same

as the exogenous case, the clustering accuracy increases with 7" but not V.

Break detection ability

Next, we talk about the abilities of the proposed methods to detect the break dates. Table
shows the average statistics of the number of breaks estimates for the benchmark model use
GAGFL with PLS method. According to the average frequencies of correct estimation of the
number of breaks, our results are consistent with (Okui and Wang| (2017) for the case when the
errors are not very noisy (o, = 0.5), and the method can give 100% accuracies in some cases.
Besides, our results also show that the break detection accuracy increases with the increase of
both N and T'. However, for both DGP 1 and DGP 2, the average frequencies for the correct
estimation of number of breaks are low when o, = 0.75. In the worst case of DGP 1, when
N =50 and T = 10, the correct frequency is only around 25% for the first Group. But a good
point is that, the results become better quickly when N and T become larger. For example,
when N = 100 and T = 40, the accuracies for the third group reach 98% and 100% for DGP 1
and DGP 2 respectively. Table [2] also presents the average estimated number of breaks. From
these statistics, we find that the PLS step of the algorithm has a tendency to overestimate the
break numbers for all the three groups. To investigate the accuracy of the break date estimates,
table [3| reports the Hausdorff errors between the estimated break dates and the true break dates.
However, we find that even in the case of N = 50, T'= 10 and o, = 0.75 for DGP 1 when the
number of breaks is the most severely overestimated, the Hausdorff error is still in an acceptable
region (0.1355). Thus, we conclude that this method has a issue of overestimating the break
numbers but does not ignore the true break dates.

Table 0] presents the statistics of the break numbers estimates for the fixed effects endogenous
model use GAGFL with PGMM method. Overall, we find this method gives perfect estimation
of the number of breaks since most of the frequencies of correct estimation of breaks for all
the cases are above 90%. When T = 20 or T = 40, the correct frequencies are most of the
time 100% for both DGP 3 and DGP 4, which means the GAGFL with PGMM method almost
estimates the true number of breaks every time. From the average estimated number of breaks
in the same table, we find GAGFL with PGMM also tends to slightly overestimate the number
of breaks. However, the overestimation level is very low and the estimated number of breaks is
very closed to the true break numbers of each group. Table [7|reports the Hausdorff errors of the
break date estimates for this model. Most of the Hausdorff errors shown are within 0.01, which
means GAGFL with PGMM method gives very accurate break date estimates. From the above
discussed results, we conclude that incorporating the PGMM method with GAGFL algorithm
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keeps PGMM’s superior ability of structural breaks detection. Moreover, our results also prove
that our method with the first-differencing step gives highly accurate break estimates even with
the presence of individual fixed effects. This is in contrast with the result of |(Okui and Wang
(2017) who add the individual fixed effects to the exogenous model and cannot get good break
estimates use GAGFL with PLS and the first-differenced data.

Slope coefficient estimation accuracy

Table [4] reports the average RMSEs and the coverage probabilities of the coefficient estimates
for the benchmark model. The results are again consistent with (Okui and Wang] (2017)), and
we conclude that GAGFL with PLS gives good coefficient estimates in general. On average,
the values of RMSE are small, which verifies Okui and Wang (2017))’s conclusion that the slope
coeflicients are accurate even the break numbers are overestimated because of the consistency
of the reliable group pattern estimates. The coverage probabilities for this model are closed to
95% but tends to be slightly bigger than 95% especially when N is small, which means the 95%
nominal confidence interval is conservative. This suggests the estimator is not very efficient for
small N but we also expect the results can become better if we run more replications.

Shown in table |8 are the average RMSEs and the coverage probabilities for the fixed effects
endogenous model. The results show that given a good instrument variable, our GAGFL with
PGMM method gives very high accuracy of the slope coefficient estimates even with the presence
of individual fixed effects and endogenous issues. For both DGP 3 and DGP 4, the RMSEs are
within 0.1 for different levels of noise in the data, and the RMSE decreases with both T" and
N. The coverage probabilities are slightly lower than 95% especially for DGP 4. However,
the coverage probability increases when N and 71" become larger. In the best case of DGP 4
when N = 400, T = 40 and 0. = 0.2, the coverage probability reaches 94.50%. Because the
classification and break estimates also have very high accuracy for this model, we conclude the
high coefficient estimates accuracy for this model relies on both the GAGFL with PGMM’s high
classification ability and its high break dates detection ability.

6.2 The case of dynamic group pattern

Finally in this section, we present the Monte Carlo experiments for the dynamic group pattern

model with the use of our DGHB estimation algorithm.

6.2.1 Data generation process

DGP 5: DGP 5 generates the data with a changing group pattern follows the dynamic group
pattern model:
Yit :x;tﬁgit,t"i_eita i=1,.,N, t=1,...,T,

where zy~ ii.d. N(0,1), €4~ i.i.d. N(0,02) and o. = (0.5,0.75). We choose N = {50,100}
and T' = {10, 20,40}. For the single structural break, we set the break date at |7'/2]. Let Ny, 4,
for g1 = 1,2,3 and g2 = 1, 2,3 denote the number of individuals who are in group g; before the
break and in group g after the break. We fix the proportions of the number of individuals with
different group memberships to be N1 1 : Nig: Noo: Nag: N33z :N3;p =02:01:02:02:
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0.1:0.3:0.1. For the slope coefficients of each group, we use the following equations:

5 ifl<t<|T/2] 3 ifl<t<|T/2]

Bii = ‘ o Pox= . :
3 af[T/2]<t<T 8 if[T/2] <t<T

and
B3y =15, for 1<t<T.

By doing this, we design a data generation process that considers a complex scenario in the sense
that there are individuals who change their group memberships and also individuals whose mem-
berships do not change. Moreover, we have groups that have structural breaks but also group

who has no break.

DGP 6: DGP 6 is the same as DGP 5 except that the error term ¢;; follows an AR(1) process,

same as the error term in DGP 2.

6.2.2 Evaluation Criteria

To examine the performance of our DGHB algorithm, we investigate whether DGHB can give
the correct estimate of the one single break date, identify the correct group memberships for
each individuals in all periods and give consistent estimation of the slope coefficients.

To check the break date detection ability, we count the frequencies that DGHB does not
estimate correctly the one single break date over the 200 replications. Suppose the true break
date is 0 + 1 and the estimated break date is b + 1, then the mis-estimation frequency of the

break date is given by
| 20

MB = o > I(b; #1°) (25)

j=1
where I(-) again denotes the indicator function.

For testing the ability of DGHB to give accurate individual classifications, we calculate the
misclassification frequency use the same formula as the static group pattern models given by
equation However, here we calculate and report the misclassification frequencies both before
and after the estimated break date. Lastly, to evaluate the accuracy of the coefficient estimates
of DGHB, we calculate the RMSE and the coverage probability use the same formulas given by
equation [23| and equation

6.2.3 Results

In this section, we discuss the simulation results for the dynamic group pattern model use our
DGHB method. Firstly, table [9] shows the mis-estimation frequencies of the single break date
over 200 replications. The results verify that our DGHB method can perfectly detects the correct
break date because DGHB almost always gives the correct break date even when the noise in
the data is large (o = 0.75).

Secondly, from the results shown in table the misclassification frequencies for both the
pre and post-break periods are within 10% for all cases and reaches to zero when N and T
are large. This suggests our DGHB estimation gives highly accurate clusterings. On average,

the classification accuracies are higher for the post-break period than the pre-break period. A
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potential explanation for this is that in our DGP 5 and DGP 6, the pre-break coeflicients are
set to 5, 3, and 1.5 for the three groups while the post-break coefficients are set to 3, 8, and 1.5.
Thus, the post-break period has more distinctive slope coefficients across different groups which
makes the GFE estimation easier to detect the correct group pattern.

Lastly, table gives the average RMSEs and the coverage probabilities of the coefficient
estimates for the dynamic group pattern model. The RMSEs are in an acceptable small level
but slightly larger than the results for the benchmark model. This may stem from the fact that
this method estimates the pre and post-break coefficients separately which reduces the number
of observations considered in each estimation. The coverage probabilities tend to be larger than
95% but the gaps are not very big.

In general, these results imply that our DGHB method can be a good alternative to the
GAGFL with PLS method in the presence of a changing group pattern. However, this method
requires a sufficient number of time observations in each estimation periods. But from our case,

we conclude five time observations is already a sufficient length.

7 Application: FDI and growth — new evidence from fixed effects endogenous model

In this section, we illustrate our GAGFL with PGMM estimation method through an empirical
application. Specifically, we revisit |Qian and Sul (2016)’s application about the effect of foreign

direct investment (FDI) inflow on economic growth.

7.1 Data and setup

In this application, we borrow the panel dataset from Qian and Su| (2016|), which includes the
data of 88 countries over the time period from 1972 to 2012. For the economic growth measure-
ment, we use the five-year average growth of logarithmic GDP per capita and denote this variable
by growth;; for country ¢ in time period ¢. We use the ratio of net FDI inflow to total GDP as
the proxy of FDI level, denoted by F'DI; ;. Besides, we include the lagged term growth; ;— in the
regression. Finally, to control the initial income level, we include the logarithmic GDP per capita
V. For the instrumental variables, we use z;; = (growth;s 1, FDI;¢, FDIi,t —1,Y), Y% ).
In our study, we include the country-specific fixed effects p; in the model. Moreover, we consider
the case that the slope coefficients have the same structural breaks dates for all variables and

the breaks are heterogeneous across groups. Thus, our model is given by:
growth; s = p; + B g, tgrowthis—1 + B2, 1 FDI; ¢ + ﬁS,gi,tYi?t + €t

To implement GAGFL with PGMM, we specify the parameter ko = 2 and select the optimal
tunning parameter A2 from 200 evenly-distributed logarithmic girds on the interval [0.5, 100],
where 0.5 results in many breaks and 100 leads to almost zero break. For the selection of this
tunning parameter, we use the information criterion introduced in section [5| given by equation
To get the best initial group assignment, we run the GFE-type of estimation 1000 times.

Furthermore, in this application, we need to select the optimal total number of groups. To
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do this, we adopt the method of |(Okui and Wang| (2017)) and Bonhomme and Manresa/ (2015) to

select the total number of groups G by minimizing the following Bayesian information criterion
(BIC):

1 & - ~oy2 ., a2p(G)+ N

pro@ = 8 5SS s oG

J=1 t=T; 141 i=1

InNT (26)

where &y, ; is the post lasso estimate, o2 is the variance of éit when G = 1, and n,(G) is the
number of estimated coefficients corresponds to G. In this study, we set the candidate number
of groups to be {1, 2, 3, 4, 5}.

7.2 Results

According to our results, the BIC criterion selects the total number of groups G = 3 as the
optimal group number. Thus, we first analyze the result given G = 3. However, as noted by
Okui and Wang| (2017)), the BIC may not correctly select the true number of groups when the
dataset has a short time dimension. For this reason, we also discuss the results given G = 5

after discussion of G = 3 to investigate how our results change given a larger number of groups.

Analysis under the optimal number of groups, G =3

With G = 3, our GAGFL with PGMM method gives one group with two structural breaks in
the early periods, one group with only one structural break occurs at the end of the sample
period, and the last group with six structural breaks occur at any disjoint time periods. Figure
shows the estimated group pattern given three groups through a world map, and table [12flists
the country names with their income levels according to their estimated group memberships.
Table [L3| presents the estimated coefficients and their stand errors as well as the break regimes
of each group. Figure [2]illustrates the trends of the effects of FDI inflow on economic growth.
The first group contains two structural breaks in the early stage of the whole sample period
(1983-1987 and 1988-1992), and we refer this group to the “early transitions” group. From table
most of the countries in this group are middle income countries. After a further examination,
we find that a lot of these countries are classified as the top-performing emerging economies by
the International Monetary Found (IMF). Shown in the figure [1, this includes several typical
emerging countries in Asia, South America and Africa. For example, China, Mexico and South
Africa. From table the three explanatory variables are all insignificant before the second
structural break at 1988-1992. Starting from the period of 1988-1992, both the AR(1) coeffi-
cient of the growth and the FDI inflow coefficient becomes significant at 1% significance level.
Specifically, the effect of FDI inflow becomes positive with a moderate magnitude (0.7358) and
remains stable till the end of the sample period. This result provides some interesting insights.
Firstly, the break point reveals the influences of certain policy changes on the relation between
FDI and growth. Several countries in this group experienced an unprecedented economic boom
in the early 1990s followed by the liberalizations of economic policies and social structures. For
instance, this includes China and India’s increase of trade openness and South Africa’s ending
of Apartheid. These liberalizations help attract substantial foreign investment and enhance the

local financial market thus explains why the effect of FDI on economic growth turns signifi-
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cantly positive from 1988 onwards. Secondly, we note that several countries in this group are
labor-intensive countries (e.g. China, India and Brazil) and their education levels increase dra-
matically since the 1990s which may also be the reason that turns effect of FDI relevant and
positive to economic growth. This finding is consistent with [Borensztein, De Gregorio, and Lee
(1998)’s study, which states FDI has positive effect on developing countries where there is a
sufficient stock of human capital.

In the second group, the effect of FDI on growth is not significant over the estimation periods
and its estimated coefficients are closed to zero. Thus, we name this group the “no significant
effect” group. Presented in table and figure [1] this group includes mostly the high-income
countries located in Europe, North America, Australia and a small part of south-east Asia. This
result confirms the intuitive statement that the positive spillover effect of FDI inflow on economic
growth does not apply to the developed countries since these counties are already at the leading
positions in various industries. However, one surprising point is that several middle-income
countries and two low-income countries Togo and Uganda are also classified into this group. A
possible explanation for this is that the economic growths of these countries do not count on FDI
inflows or they are lack of the ability to attract sufficient foreign investments, which causes the
effect of FDI irrelevant to growth. However, the initial income level of this group has significant
negative coefficients. In addition, the relevance becomes stronger and the magnitude becomes
larger after the break. This finding is in line with the famous idea of convergence in economic
growth. Moreover, the structural break point for this coincides with the global financial crisis
of 2007-2008 which severely harmed the economies of the developed countries in this group.

Finally, the third group has six structural breaks in the coefficient estimates, and we refer it
to the “highly unstable” group. According to table [12| and figure [I} the members of this group
seems to be counter-intuitive in the sense that it contains almost the even numbers of countries
from the three different income classes, and the countries are located across different continents.
From table the effect of FDI inflow in this group is significantly positive at 1% confidence
level for all the estimation periods except the period of 1983-1987. Figure [2]shows that this effect
starts with a large positive value then experienced a dramatic drop and finally fluctuates till the
end of the estimation period. As the impact of FDI on economic growth may be correlated with
a large amount of different factors, we cannot explicitly explain why the effect of FDI on growth
for the countries in this group is that volatile. But one important fact we notice is that some
of the countries in this group have highly unrest political status in recent decades, for instance,
Iran and Zimbabwe, which may be the cause for an unstable effect of FDI inflow on growth.
Apart from that, we also notice that countries such as South Korea and Japan in this group are
among the highly-innovative countries. The fast change in technology and new ideas in these
countries may have similar impacts as the changes of political situations which can lead to an
unstable effect of FDI. Thus, we conclude the classification of this group is mainly characterized
by the fluctuations of the effect of FDI. Apart from FDI, the effect of initial income in this group

is significantly negative, which again is in line with the economic convergence theory.
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Analysis under G =5

We now present the results given G = 5. Similar as the case of G = 3, figure [3] and table
shows the estimated group memberships while table and figure [4] summarize the coefficient
and regime estimates. According to table[I4] and figure [3] increasing the total number of groups
to five basically further separates the countries to different groups according to their income
levels. Besides, after the separation, the effect of FDI on growth becomes more significant in
each group and from figure [4 the effects become more unrest for some groups.

In particular, the new Group 1 includes most of the middle income countries from the “early
transitions” group under G = 3 but five of the low income countries are removed. Same as before,
the effects of FDI becomes significantly positive at 1% significance level since the period of 1988-
1992. However, under G = 5, period 2003-2007 and 2008-2012 also exhibit structural breaks,
and the effects of FDI becomes even larger after each break. These two breaks may correspond to
the recent technology breakthroughs diffused globally which enhances the positive FDI influence
on emerging markets.

The second group now mainly contains the highly-developed western countries that previ-
ously in the “no significant effect” group. Contrast to before, the effect of FDI is significantly
positive from the period of 1988-1992 although the magnitude is much smaller than the emerging
market group (Group 1). Again, there is a structural break in the period of 2008-2012, which
corresponds to the post global financial-crisis period. This suggests FDI can also have positive
effects for the big developed countries (e.g. U.S and U.K).

The third group consists of some lower middle-income countries that are previously from the
“no significant effect” group, and the fourth group contains the majority of the countries in the
“highly unstable” group. Both of these groups have significant and high volatile effects of FDI
on growth, and they experience structural breaks in every period which may reflect the unstable
situations of these countries in various aspects.

Lastly, the fifth group mainly contains the mainland European countries previously from the
“no significant effect” group. Apart from that, Japan and South Korea are also categorized into
this group. This group has four continuous structural breaks occur at the second half of the
estimation period. Although the FDI effect is significantly positive in all periods, the estimated
effect reaches a peak at 1993-1997 and has decreasing trend till 2008-2012.

7.3 Discussion

Both our results under the optimal number of groups G = 3 and under the case of more groups
G = 5 verify that there are heterogeneous structural breaks in the effect of FDI inflow on
economic growth.

Compared to other studies in this area, our method provides some new and interesting
evidence. (Qian and Su/ (2016)) conduct the same study and assume the effect of FDI on economic
growth is time-variant but homogeneous. Under their homogeneity assumption, they conclude
the effect of FDI is significantly positive at 5% significance level in all periods, provided the
number of breaks is set to the optimum. However, according to our study, their result only holds

true for part of the countries and may not give impeccable conclusions. [Carkovic and Levine
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(2005) conduct an influential panel data analysis use the GMM method but fail to find any cross-
country evidence that supports a significant effect of FDI inflow on economic development, which
may be an incomplete conclusion. In general, the new and insightful evidence we find in this
application verifies the importance of modeling heterogeneous structural breaks and confirms
the usefulness of the GAGFL with PGMM method in empirical panel data studies.

8 Conclusion

In this paper, we introduce three heterogeneous structural breaks models and their corresponding
estimation methods for panel data analysis. We set |(Okui and Wang| (2017)’s exogenous model
with a static group pattern as our benchmark model. We first replicate their simulation work
to investigate the performance of their GAGFL with PLS method. Our finding is in line with
Okui and Wang| (2017)), which confirms that the GAGFL with PLS method can consistently
estimate the unobserved group structure, the dates of structural breaks and the slope coefficients
in each group. The estimation accuracy of GAGFL with PLS is especially high when the
data contain a low level of noise. After that, we extend the benchmark model by adding
individual fixed effects and release the exogeneity assumption. To estimate this model, we
work on the first-differenced data and propose the GAGFL with PGMM estimation method.
Our simulation results for this model show that despite the complexity of this model, GAGFL
with PGMM gives ideal estimation of the group pattern, break dates and the regression slope
coefficients. We further demonstrates the usefulness of this fixed effects endogenous model and
the GAGFL with PGMM method through an application. Taking heterogeneous structural
breaks into consideration through a group pattern, we find new evidence about the effect of
FDI on economic growth that traditional panel data studies on this topic has not discovered.
Finally, in this paper we also consider a model that allows the group pattern to change after each
structural break which has not been considered by previous literature. We propose the DGHB
algorithm for estimation which, from our simulation results, gives high-accuracy estimations of
the break date and the changing group memberships. The slope coefficient estimates are slightly
less accurate compared to the results of other two methods, but are still sufficiently good. In
general, we conclude that the three models and methods introduced in this paper perform well
in finite samples and can be of significant use in empirical studies.

Future research can extend our methodologies to several interesting topics. First, we assume
the slope coefficients of all the regressors share the same break dates for each individual. In
reality, it is possible that certain events change the effects of some regressors but not all of
them or their structural breaks occur at different points. Thus, it is desirable to model partial
structural breaks in slope coefficients. Second, given the fact that many literature has stressed
the importance of modeling cross-sectional dependence in panel data, future research can con-
sider the existence of such dependence within each group. Third, in the dynamic group pattern
model, we only allow the level of the structural breaks to be heterogeneous but assume all the
units share one common break date. Thus, our methodology can still be elaborated to allow the

occurrence of multiple structural breaks in different dates.
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A Monte Carlo Simulation

A.1 Benchmark model

Table 1: Misclassification frequency

N =50 N =100
oe T=10 T=20 T=40 T=10 T=20 T =40

DGP1 0.5 0.0442 0.0041 0.0023 0.0102  0.0015  0.0000
0.75 0.1341 0.0496 0.0017 0.0460  0.0155  0.0015

DGP2 0.5 0.0173 0.0029  0.0002 0.0188  0.0030  0.0001
0.75 0.1261 0.0543  0.0088 0.0841 0.0178  0.0033

Table 1: This table presents the average misclassification frequency for the benchmark
model over 200 replications. Shown in this table are the results for DGP 1 and DGP

2 with total number of individuals N € {50,100}, time periods T' € {10,20,40} and
the standard error of the error term o, € {0.5,0.75}.
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Table 3: HausdorfI error of break date estimates

N =50 N = 100
Group T=10 T =20 T =40 T=10 T=20 T =40

DGP1
o.=05 GI1(2) 0.0525 0.0195 0.0063 0.0120  0.0015  0.0000
G2 (2) 0.0390 0.0168  0.0085 0.0110  0.0025  0.0000

o =075 GI1(2) 0.1355 0.1675 0.0954 0.0905  0.0588  0.0241
G2 (2) 0.1130 0.1220 0.0728 0.0730  0.0410  0.0124

DGP2
o.=05 GI1(2) 0.0120 0.0018 0.0000 0.0000  0.0000  0.0000
G2 (2) 0.0090 0.0020 0.0000 0.0015  0.0000  0.0000

o.=0.75 G1(2) 0.1055 0.0515 0.0148 0.0425  0.0055  0.0021
G2 (2) 0.0770 0.0368 0.0133 0.0250  0.0058  0.0019

This table presents the average Hausdorff error of break date estimates for the benchmark
model over 200 replications. Shown in this table are the results for DGP 1 and DGP 2 with
total number of individuals N € {50,100}, time periods T € {10,20,40} and the standard
error of the error term o, € {0.5,0.75}.
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Table 4: Root mean squared error and coverage probability
of coefficient estimates

RMSE CPp
Oc N T DGP1 DGP2 DGP1 DGP 2

0.5 50 10 0.1345 0.0049 0.9638  0.9547
50 20 0.0095 0.0018 0.9766  0.9551
50 40 0.0071  0.0008 0.9792  0.9583

100 10 0.0038 0.0019 0.9534 0.9423
100 20 0.0014 0.0007 0.9564 0.9461
100 40 0.0006 0.0003 0.9620  0.9509

0.75 50 10 0.5453 0.2962 0.8903  0.9345
50 20 0.2171 0.0712 0.9363  0.9650
50 40 0.0992 0.0239 0.9488  0.9700

100 10 0.3504 0.1275 0.9232  0.9556
100 20 0.1467 0.0022 0.9606  0.9587
100 40 0.0024 0.0009 0.9627  0.9670

This table presents the root mean squared error and cover-
age probability of the coefficient estimates for the benchmark
model over 200 replications. Shown in this table are the re-
sults for DGP 1 and DGP 2 with total number of individuals
N € {50,100}, time periods T € {10,20,40} and the standard
error of the error term o, € {0.5,0.75}. The column names
RMSE represents root mean squared error and CP represents
coverage probability.
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A.2 Fixed effects endogenous model

Table 5: Misclassification frequency

N = 200 N =400
ce T=10 T=20 T =40 T=10 T=20 T =40

DGP3 0.2 0.0043  0.0000  0.0000 0.0041 0.0001 0.0000
0.4 0.0184 0.0016  0.0000 0.0179  0.0001 0.0000

DGP4 0.2 0.0120  0.0007  0.0000 0.0112  0.0001  0.0000
0.4 0.0349 0.0042  0.0000 0.0328  0.0032  0.0003

This table presents the average misclassification frequency for the fixed effects endoge-

nous model over 200 replications. Shown in this table are the results for DGP 2 and
DGP 3 with total number of individuals N € {200, 500}, time periods T' € {10, 20,40}
and the standard error of the error term o, € {0.2,0.4}.
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Table 7: Hausdorfl error of break date estimates

N = 200 N = 400
Group T=10 T=20 T =40 T=10 T=20 T =40

DGP3
o.=02 G1(2) 0.0090 0.0035  0.0000 0.0010  0.0000  0.0000
G2 (2) 0.0130  0.0005  0.0000 0.0040  0.0000  0.0000

o.=04 G1(2) 0.0170 0.0150  0.0320 0.0010  0.0000  0.0023
G2 (2) 0.0160 0.0095  0.0422 0.0060  0.0000  0.0023

DGP4
o.=02 G1(2) 0.0120 0.0140  0.0000 0.0010  0.0000  0.0000
G2 (2) 0.0080  0.0050  0.0000 0.0030  0.0000  0.0000

o.=04 G1(2) 0.0100 0.0160 0.0185 0.0020  0.0000  0.0000
G2 (2) 0.0150  0.0055  0.0105 0.0030  0.0000  0.0000

This table presents the average Hausdorff error of break date estimates for the fixed effects
endogenous model over 200 replications. Shown in this table are the results for DGP 3 and
DGP 4 with total number of individuals N € {50,100}, time periods T' € {10,20,40} and
the standard error of the error term o, € {0.5,0.75}.
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Table 8: Root mean squared error and coverage proba-
bility of coefficient estimates

RMSE CPp
oo N T DGP3 DGP4 DGP 3 DGP 4

0.2 200 10 0.0258 0.0365 0.8703 0.8744
200 20 0.0162 0.0273 0.9109 0.9411
200 40 0.0129 0.0240 0.9447  0.9408

400 10 0.0163 0.0252 0.9233 0.8810
400 20 0.0109 0.0173 0.9483  0.9099
400 40 0.0083 0.0142 0.9528  0.9450

0.4 200 10 0.0548 0.0772 0.8758  0.8267
200 20 0.0372 0.0565 0.9208 0.8916
200 40 0.0271  0.0468 0.9390  0.9030

400 10 0.0334 0.0532 0.9237  0.8850
400 20 0.0221  0.0350 0.9400 0.9083
400 40 0.0166 0.0272 0.9409 0.9132

This table presents the root mean squared error and cover-
age probability of the coefficient estimates for the fixed effects
endogenous model over 200 replications. Shown in this table
are the results for DGP 3 and DGP 4 with total number of
individuals N € {200,400}, time periods T € {10, 20,40} and
the standard error of the error term o, € {0.2,0.4}. The col-
umn names RMSE represents root mean squared error and CP
represents coverage probability.

29



A.3 Dynamic group pattern model

Table 9: Mis-estimation frequency of the break date

N =50 N =100
oce T=10 T=20 T=40 T=10 T=20 T=40
DGP5 0.5 0.0000 0.0000 0.0000 0.0000  0.0000  0.0000
0.75 0.0000  0.0050  0.0000 0.0000  0.0000  0.0000

DGP6 0.5 0.0000 0.0000  0.0000 0.0000  0.0000  0.0000
0.75 0.0150 0.0000  0.0000 0.0000  0.0000  0.0000

This table presents the mis-estimation frequency of the break date for the dynamic
group pattern model over 200 replications. Shown in this table are the results for
DGP 5 and DGP 6 with total number of individuals N € {50,100}, time periods
T € {10,20,40} and the standard error of the error term o, € {0.5,0.75}.

Table 10: Average misclassification frequency before and after the estimated break

N =50 N =100
Period T=10 T=20 T =40 T=10 T=20 T =40

DGP5
oe = 0.5 pre 0.0188  0.0002  0.0000 0.0194  0.0007  0.0000
post 0.0037  0.0030  0.0000 0.0033  0.0003 0.0002

oc = 0.75 pre 0.0611  0.0067  0.0001 0.0599  0.0057  0.0000
post 0.0199 0.0022  0.0015 0.0196  0.0021 0.0001

DGP6
oe = 0.5 pre 0.0285  0.0008  0.0000 0.0277  0.0018 0.0000
post 0.0068  0.0004  0.0000 0.0080  0.0008 0.0001

oc = 0.7 pre 0.0770  0.0129  0.0007 0.0780  0.0120  0.0004
post 0.0291  0.0049  0.0003 0.0284  0.0054  0.0003

This table presents the average misclassification frequency before and after the estimated
break date for the dynamic group pattern model over 200 replications. Shown in this table
are the results for DGP 5 and DGP 6 with total number of individuals N € {50,100}, time
periods T' € {10,20,40} and the standard error of the error term o, € {0.5,0.75}. The
second columns show the period. pre denotes the pre-break period and post denotes the
post-break period.
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Table 11: Root mean squared error and coverage proba-
bility of coefficient estimates

RMSE CPp
Oc N T DGP5 DGP6 DGP 5 DGP 6

0.5 50 10 0.1485 0.2046 0.9706 0.9714
50 20 0.0434 0.0492 0.9664  0.9605
50 40 0.0257  0.0303 0.9490 0.9523

100 10 0.1560 0.1991 0.9707  0.9723
100 20 0.0327 0.0493 0.9503  0.9583
100 40 0.0231 0.0233 0.9664  0.9647

0.75 50 10 0.3164 0.3736 0.9549  0.9459
50 20 0.0993 0.1410 0.9704 0.9737
50 40 0.0437 0.0510 0.9708  0.9535

100 10 0.3136 0.3736 0.9576  0.9467
100 20 0.0887 0.1387 0.9680 0.9718
100 40 0.0295 0.0376 0.9494 0.9473

This table presents the root mean squared error and coverage
probability of the coefficient estimates for the dynamic group
pattern model over 200 replications. Shown in this table are the
results for DGP 5 and DGP 6 with total number of individuals
N € {50,100}, time periods T € {10,20,40} and the standard
error of the error term o, € {0.5,0.75}. The column names
RMSE represents root mean squared error and CP represents
coverage probability.
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B Application

B.1 Analysis under three groups

Figure 1: Estimated group pattern under G = 3

O No data O Early transitions B No significant effect B Highly unstable

Figure 2: Effects of FDI inflow on economic growth under G = 3
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Table 12: List of countries by group, G = 3

Group 1 Income | Group 2 Income Group 3 Income
level level level

(Early transition) (No significant effect) (Highly unstable)
Argentina H Australia H Benin L
Brazil UM Austria H Central African Republic L
Cameroon LM Belgium H Congo L
China UM Bolivia LM Costa Rica UM
Colombia UM Botswana UM Dominican Republic UM
Ecuador UM Canada H Egypt LM
Ghana LM Chile H Guyana UM
Haiti L China, Hong Kong H Iran UM
India LM Cote d’Ivoire LM Japan H
Indonesia LM Cyprus H Jordan UM
Malawi L Denmark H South Korea H
Malaysia UM El Salvador LM Mauritius UM
Mexico UM Fiji UM Nicaragua LM
Morocco LM Finland H Niger L
Paraguay UM France H Norway H
Peru UM Gabon UM Poland H
Philippines LM Greece H Trinidad and Tobago H
Romania UM Guatemala LM Zimbabwe L
Rwanda L Honduras LM
Senegal L Iceland H
Sierra Leone L Ireland H
South Africa UM Israel H
Sri Lanka LM Ttaly H
Turkey UM Jamaica UM
Tanzania L Kenya LM
Uruguay H Mali L
Zambia LM Malta H

Netherlands H

New Zealand H

Pakistan LM

Papua New Guinea LM

Portugal H

Singapore H

Spain H

Sweden H

Switzerland H

Thailand UM

Togo L

Tunisia LM

Uganda L

United Kingdom H

United States H

Venezuela UM

This table lists the name of the countries according to their group memberships given the total number
of groups is three. The second, fourth and sixth columns give the income levels of each country classified
by the world bank. H represents the high income level, UM and LM represent the upper and lower middle
income levels respectively and L indicates the low income level.
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B.2 Analysis under five groups

Figure 3: Estimated group pattern under G =5

O Nodata O Group1 B Group2 O Group3 B Group4 O Group5

Figure 4: Effects of FDI inflow on economic growth under G =5
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