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Abstract

Author: Biying Wu
Erasmus School of Economics, Erasmus University Rotterdam

Bachelor thesis Econometrics and Operations Research

This paper introduces three panel data models and their estimation methods that take het-

erogeneous structural breaks in the slope coefficients into consideration. Despite the fact

that many empirical studies in various domains suggest the effects of certain factors may be

unstable and different across clusters, not many studies have considered the development of

such techniques in panel data analysis. Thus, this paper seeks to fill this gap. We model the

heterogeneities through a latent group structure and consider both the case of a static group

pattern and the case when the group pattern changes after each break. For the static group

case, we introduce the grouped adaptive group fused lasso (GAGFL) algorithm with a penalized

least squares (PLS) method to estimate the exogenous model, and propose the incorporation

with a penalized GMM (PGMM) method to estimate the endogenous model. To deal with the

dynamic group pattern, we propose the dynamically grouped heterogeneous structural breaks

(DGHB) estimation method. Through two sets of Monte Carlo simulations, we demonstrate that

our methods give high accuracy in classifications, breaks detections and coefficients estimations.

We further apply our GAGFL with PGMM method to investigate the effect of foreign direct

investment (FDI) inflow on economic growth. The new evidence we obtained in this application

confirms the usefulness of our methods in empirical studies.

Keywords: Panel data, heterogeneous slope coefficients, structural breaks, grouped fixed-

effects, dynamic group pattern, penalized least squares, penalized GMM
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1 Introduction

Panel data analysis is a crucial technique as it enables the analysis on both cross-sectional and

time dimensions. When analyze panel data, it is important to consider heterogeneous structural

breaks in the slope coefficients through a group pattern. Abundant evidence from various do-

mains has shown that certain factors may cause different effects among individuals in different

clusters, and the effects are usually unstable over time due to certain political events, financial

crisis, technology breakthroughs or preference changes. For example, Owyang and Wall (2005)

conduct a study by regions and find that the effect of monetary policy experienced a dramatic

break at the beginning of the Volcker-Greenspan era and this effect differs significantly across

different regions in the U.S. Okui and Wang (2017) find that the effects of several typical de-

terminants on savings rate are different for countries with different economic status and these

effects contain structural breaks. Nonetheless, traditional panel data models tend to ignore the

existence of such grouped heterogeneous structural breaks, which can lead to inconsistent esti-

mates and erroneous conclusions. To address this problem, this paper focuses on the modelings

and estimations of heterogeneous structural breaks in panel data under different situations.

Specifically, we consider three panel data models that consider the heterogeneous structural

breaks in the slope coefficients through an unobserved group pattern. In these models, indi-

viduals in the same group share the same slope coefficients every time while the coefficients

may differ across different groups. Allowing the occurrence of structural breaks means the slope

coefficients can change in disjoint time intervals. We use an exogenous linear model introduced

by Okui and Wang (2017) as our benchmark model and adopt their grouped adaptive group

fused lasso (GAGFL) algorithm for estimation. Although Okui and Wang (2017)’s GAGFL al-

gorithm works well for exogenous case, they do not consider the endogenous case in their study.

However, endogeneity issues widely occur in empirical studies, and treat them the same way as

the exogenous case results in inconsistent estimates. Thus, taking this endogeneity into consid-

eration, we construct our second model, the fixed effects endogenous model. To estimate this

model, we extend the GAGFL algorithm by employing a penalized GMM estimation (PGMM)

introduced by Qian and Su (2016). Another issue previous studies do not consider is a changing

group pattern. As also mentioned by Okui and Wang (2017), allowing the group pattern to

change is advisable because significant events such as financial crisis may severely change the

relationships between variables and shift the group pattern. In this research we also attempt to

address this problem. Thus, we construct a dynamic group pattern model which allows part of

the group memberships (i.e. the groups each individuals belong to) to change after each break.

To estimate this model, we propose the dynamically grouped heterogeneous structural breaks

(DGHB) estimation method.

In this paper, we aim to investigate if our estimation methods for the three models can

correctly cluster individuals in to different groups, detect the true structural break dates and

give consistent slope coefficient estimates. Therefore, we first conduct several Monte Carlo

simulations to test the finite sample performances of these estimation methods. We start with

a replication of Okui and Wang (2017)’s simulation tests to check the ability of GAGFL with

1



PLS method. After that, we apply the same tests to check our GAGFL with PGMM for

the endogenous model and DGHB for the dynamic group pattern model. Through simulation

studies, we find that when the the data are not very noisy, both GAGFL algorithm with PLS

and PGMM methods give accurate classifications, break date detections and consistent slope

coefficient estimates. As for the dynamic group pattern case, we find our DGHB method gives

perfect estimation of the break date even when the noise in the data is substantial. Moreover,

DGHB also gives accurate clusterings and good slope coefficient estimates.

Apart from the simulation studies, we also examine the performance of our GAGFL with

PGMM method in empirical study. In particular, we apply our fixed effects endogenous model

and GAGFL with PGMM estimation method to investigate the effect of foreign direct investment

(FDI) inflow on economic growth, which researches have been studying for decades but fail to

give clear conclusions with the use of traditional panel data method (e.g. GMM). With our

approach, we find that there are indeed heterogeneous structural breaks in the effect of FDI

on growth. Given the optimal number of groups, countries are mainly categorized through the

status of their developments, and the estimation method detects break points that correspond

to policy changes and crisis. This new evidence we find takes us one step closer towards solving

this puzzle and proves the usefulness of our model and methods in reality.

Our main findings in this research support two main contributions of this research. Firstly,

the GAGFL with PGMM method gives accurate estimates of heterogeneous structural breaks

and has the potential to become an influential tool in various empirical studies. Secondly, the

DGHB estimation method proves to be a good alternative to GAGFL with PLS method when

the group patten is dynamic.

The rest of this paper is as follows. Section 2 gives a review of the related literature. Section

3 presents the benchmark model and GAGFL with PLS method. Section 4 introduces the fixed

effects endogenous model and GAGFL with PGMM method. Section 5 gives the dynamic group

pattern model and proposes the DGHB method. In section 6, we conduct the Monte Carlo

simulation. Section 7 illustrates the GAGFL with PGMM method through an application.

Finally, section 8 concludes.

2 Literature review

The study of modeling heterogeneous slope coefficients in panel data through a latent group

pattern dates back to Sun (2005) who constructs a finite mixture model with unknown group

memberships and proposes a maximum likelihood estimator. Later, Lin and Ng (2012) intro-

duce the use of k-means clustering and Su, Shi, and Phillips (2016) introduce the classifier-lasso

clustering. A recent research by Bonhomme and Manresa (2015) elaborates previous works by

modeling time-varying grouped fixed-effects (GFE) and introducing the GFE estimator. Their

study provides us a good foundation to develop estimation methods for estimating multiple

models with heterogeneous structural breaks in the coefficients. Specifically, the GAGFL algo-

rithms we use in this research incorporates a GFE-type of estimator to give preliminary group

membership estimates. In addition, our DGHB method uses the GFE estimator in the final step
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to give slope coefficient estimates.

Apart from the development of modeling heterogeneous slope coefficients, recent studies also

focus on modeling structural breaks in the slope coefficients in panel data regressions. One

distinctive study by Qian and Su (2016) extends Qian and Su (2014)’s Lasso-type shrinkage

approach for time series regressions and develops the use of adaptive group fussed lasso (AGFL)

penalty to detect an unknown number of homogeneous structural breaks in slope coefficients for

panel data models. The proposed penalized least squares (PLS) estimation for exogenous regres-

sions and the penalized GMM (PGMM) estimation for endogenous regressions give consistent

estimates of both the break dates and slope coefficients. In our study, we employ their PLS and

PGMM methods to detect the structural breaks and coefficients in each group for static group

pattern models.

Although literatures on heterogeneous coefficients and homogeneous structural breaks are

abundant, not many studies have considered heterogeneous structural breaks in coefficients. In

the latest study, Okui and Wang (2017) construct a model concerning both of these two issues.

To estimate their model, they propose a grouped AGFL (GAGFL) method which is a hybrid

procedure that uses a GFE-type of estimation to give the group pattern and PLS estimation

to explicitly detect structural break regimes and slope coefficients in each group. Their model

improves the estimation efficiency through the parsimonious group pattern and give consistent

estimates. Thus, it provides us an important cornerstone. Based on their model, we extend it to

endogenous case and propose a similar estimation method, the GAGFL with PGMM estimation.

Another study that models the heterogeneous structural breaks in slope coefficients is done

by Baltagi, Feng, and Kao (2016). This study is more restrictive than Okui and Wang (2017) as

it allows the coefficients to differ among individuals but assumes all the individuals have the same

break dates. The fact that this method permits individual-specific coefficients provides as an

ideal tool to develop our DGHB estimation method which is a hybrid algorithm that uses Baltagi

et al. (2016)’s method to detect the common break date and Bonhomme and Manresa (2015)’s

GFE method to estimate the group pattern and slope coefficients between each consecutive

breaks.

3 Benchmark model

In the first part of this section, we present our benchmark model. To estimate this model, we

introduce the GAGFL with PLS estimation method proposed by Okui and Wang (2017) in the

second part and assume the total number of groups is given. In the third part, we discuss the

choice of the tunning parameter for this method.

3.1 Model setup

The benchmark model capture the heterogeneous structural break through a static group pat-

tern. Suppose {{yit, xit}Tt=1}Ni=1 is a panel data set with t = 1, ..., T time periods and n = 1, ..., N

cross-sectional individuals. xit denotes a vector containing k explanatory variables and yit de-

notes the dependent variable. To model the group pattern, let G = {1, ..., G} be the set contain-
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ing all the group numbers and let gi ∈ G be the group number of the ith individual. Furthermore,

let βg,t denote the slope coefficient of group g at time period t. Then, our benchmark model

takes the folowing form:

yit = x′itβgi,t + εit, i = 1, ..., N, t = 1, ..., T, (1)

where εit is the error term. To model the structural breaks through the time-varying slope

coefficients {βg,1, ..., βg,T } with g ∈ G, we introduce the following notations. Let mg be the

number of breaks in group g and let Tmg ,g = {Tg,1, ..., Tg,mg} be the set of break dates. We allow

structural breaks to occur at any disjoint time intervals and let the coefficients βg,t be a constant

between two consecutive break dates and only change after each break. We also introduce αg,j

with j = 1, ...,mg to be the value of the coefficients between the j − 1th and jth break point.

In addition, let αg,mg+1 be the value of the coefficient after the last break of group g and define

Tg,0 = 1 and Tg,mg+1 = T + 1. Therefore, we have the following relation:

βg,t = αg,j , if Tg,j−1 ≤ t < Tg,j . (2)

According to Okui and Wang (2017), this benchmark model is, on the one hand, parsimo-

nious, and on the other hand, general and flexible as it does not post any restrictions on the

number of breaks and group pattern. Moreover, it permits the identification of the number of

breaks. For this reason, we set this model as our benchmark and elaborate based on it.

3.2 GAGFL with penalized least squares (PLS) estimation

Before presenting the method, we first clarify some extra notations to use hereafter. Suppose the

total number of groups is G. Let k be the number of explanatory variables in the regression, and

let B ⊂ Rk be the parameter space for each βgt. We introduce β = (β′1,1, ..., β
′
1,T , β

′
2,1, ..., β

′
G,T )

to be a vector that stacks all βgt. Thus, the parameter space for β is BGT . In addition, we

denote the group memberships for all the individuals by an N-dimensional vector γ, withγ =

{g1, ..., gN}. Then, GN is the parameter space for γ. Furthermore, define each period t for

which β̂g,t− β̂g,t−1 6= 0 as a break date, and let T̂g = {t ∈ {2, ..., T}|β̂g,t− β̂g,t−1 6= 0}. Thus, the

estimated number of breaks for group g is equal to the cardinality of T̂g.
Given the total number of groups G, we need to estimate the group memberships for each

individual and the slope coefficients for each group. To do this, we follow Okui and Wang

(2017) and use the GAGFL algorithm with PLS method. The GAGFL algorithm is an iterative

procedure to update the optimal coefficient parameters and group memberships.

As a starting point, GAGFL uses the GFE-type of estimation introduced by Bonhomme and

Manresa (2015). To give a consistent result, we adjust the standard GFE estimation method of

Bonhomme and Manresa (2015) by allowing the slope coefficients to be time variant. Starting

from this initial group assignment, we then conduct the iterative updates.

In each iteration, we first update the coefficient estimates β using the group assignment

of the previous iteration. We do this by applying the AGFL method with PLS estimation

introduced by Qian and Su (2016) in each group, and minimize the following penalized least
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squares objective function:

(β̂, γ̂) = arg min
(β,γ)∈BGT×GN

1

NT

N∑
i=1

T∑
t=1

(yit − x′itβgi,t)2 + λ
∑
g∈G

T∑
t=2

ẇg,t
∥∥βg,t − βg,t−1

∥∥ , (3)

where

ẇg,t =
∥∥∥β̇g,t − β̇g,t−1

∥∥∥−κ (4)

with κ a user-specified constant and β̇ the preliminary GFE-type of estimates obtained by

(β̇, γ̇) = arg min
(β,γ)∈BGT×GN

N∑
i=1

T∑
t=1

(yi,t − x′itβgi,t)2. (5)

The second term of (3) is a lasso-type of penalty term that has a sparse property. The λ

in the expression is a tunning parameter and ẇg,t is an adaptive weight. This penalization

heavily penalize the minimization problem when β̇g,t− β̇g,t−1 closes to zero and βg,t−βg,t−1 = 0.

As noticed by Qian and Su (2016) and Okui and Wang (2017), this penalty method can give

consistent estimations of the break dates.

After updating the slope coefficients, we next update the group memberships by minimizing

the sum of squared errors for each individual. To do this, we use the estimated slope coefficients

in the current iteration and assign individual i to the group whose coefficients give individual

i the smallest sum of squared residuals. We repeat this iterative procedure until it meets some

numerical convergence criterion specified by the user. Algorithm 1 shows the pseudo code of

this GAGFL with PLS method.

Algorithm 1: GAGFL algorithm with PLS method

Initialization: initial GFE group assignment γ̂(0) given by 5, s = 0
1 while not numerical convergence do

2 Step 1: For the given γ̂(s), compute

β̂(s) = arg min
β∈BGT

1

NT

N∑
i=1

T∑
t=1

(yit − x′itβ
(s)
gi,t

)2 + λ
∑
g∈G

T∑
t=2

ẇg,t
∥∥βg,t − βg,t−1

∥∥ (6)

where we obtain ẇg,t by (4) and (5).
3 Step 2: For all i ∈ {1, ..., N}, compute:

ĝi
(s+1) = arg min

g∈G

T∑
t=1

(yi,tx
′
i,t − β̂

(s)
g,t )

2 (7)

4 Step 3: Set s = s+ 1.

5 end

3.3 Choice of the tunning parameter

To choose the optimal tunning parameter λ for the lasso penalty in (3) and (6) in each iteration,

we follow Qian and Su (2016) and Okui and Wang (2017) and minimize the following information
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criterion:

IC(λ) =
1

NT

m+1∑
j=1

Tj∑
t=Tj−1+1

N∑
i=1

(yit − x′itα̂gi,j)2 + ρNT k(m̂λ + 1), (8)

where α̂gi,j is the post-lasso estimate for group g in the period between the jth and j − 1th

break, m̂λ is the estimated number of breaks corresponding to the tuning parameter λ, and

ρNT = cln(NT )/
√
NT with c = 0.05, which decides the penalization level on the number of

breaks.

4 Extension 1: Fixed effects endogenous model

In this section, we present our first extension. In the first part, we introduce our fixed effects

endogenous model. In the second part of this section, we propose an extension of Okui and

Wang (2017)’s GAGFL algorithm and employ the PGMM estimation introduced by Qian and

Su (2016) to tackle the endogeneity issues.

4.1 Model setup

The fixed effects endogenous model differs to the benchmark model in two aspects. First, this

model contains an additional time-invariant individual fixed effect. Second, this model allows

endogeneity issues which may be caused by for example, measurement errors, omitted variables

or simultaneity problems. Let µi denote the fixed effect of individual i. Then, our model takes

the form of the following expression:

yit = µi + x′itβgi,t + εit, i = 1, ..., N, t = 1, ..., T. (9)

Here we do not post any restrictions on µi and allow µi to be correlated with the regressors xit.

Compared to the benchmark model, this model is even less restrictive and can be of signif-

icance use in practice. Firstly, as mentioned by Bonhomme and Manresa (2015), fixed effects

are desirable because they allow the correlations between unobserved effects and covariates.

Secondly, consider endogeneity issues is important since it can be hard to construct strictly

exogenous regressions in reality.

4.2 GAGFL with penalized GMM (PGMM) estimation

To estimate our fixed effects endogenous model, we need to consider two problems. Firstly, the

individual fixed effect can be correlated with the regressors. Thus, we cannot directly apply

the standard GAGFL algorithm to estimate this model. To address this problem, we use the

first-differencing technique to eliminate the individual fixed effects following Okui and Wang

(2017)’s extension. After the first-differencing, we get the following equation:

∆yit = x′itβgi,t − x′i,t−1βgi,t−1 + ∆εit. (10)

Secondly, we assume there are endogeneity issues in this model which cannot be completely

removed by first-differencing. In such situation, applying the GAGFL with PLS estimation is
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not consistent. Therefore, we propose to replace the PLS estimation by the PGMM estimation.

We introduce an additional notation zit to be a vector including q instrumental variables and

assume q ≥ k.

After the first-differencing and the introduction of the instrumental variables, the procedure

of this method is similar to the standard GAGFL algorithm given by Algorithm 1. But one main

difference is that instead of minimizing the objective function given by equation (6), we use the

following equation corresponding to the PGMM estimation with the first-differenced data:

β̂(s) = arg min
β∈BGT

1

T

T∑
t=2

{
1

N

N∑
t=1

ρgi,t

}′
Wg,t

{
1

N

N∑
t=1

ρgi,t

}
+ λ2

T∑
t=2

ẅg,t
∥∥βg,t − βg,t−1

∥∥ (11)

where ρgi,t = zit(∆yit−β′g,txit+β′g,t−1xi,t−1), and Wg,t is a q×q symmetric weight matrix which

is positive-definite when the sample size is large. To employ this PGMM estimation, we need to

choose the weight matrix for each group in each time period. For the choice of this matrix, we

follow the study of Qian and Su (2016) and use their two-step strategy.

Similar as the GAGFL with PLS estimation, the second term of equation (11) is also a lasso-

type of penalty, with λ2 a tunning parameter. In this method, we also impose an adaptive weight

given by ẅg,t =
∥∥∥β̈g,t − β̈g,t−1

∥∥∥−κ2 , where κ2 is a user-specified constant and β̈ is the preliminary

GFE estimate obtained by applying the extended GFE method to the first-differenced data.

That is, we obtain the preliminary GFE estimates by

(β̈, γ̈) = arg min
(β,γ)∈BGT×GN

N∑
i=1

T∑
t=1

(∆yit − β′g,txit + β′g,t−1xi,t−1)2. (12)

Here, we rely on the ability of the GFE estimation to give consistent group assignments on the

first-differenced data. In addition, as noticed by Bonhomme and Manresa (2015), the GFE-type

of group assignment estimator is consistent even when the regressors are not strictly exogenous.

Thus, our approach here is adequate.

4.3 Choice of the tunning parameter

Following Qian and Su (2016), we use a similar criterion as the one in GAGFL with PLS

estimation to decide the tunning parameter λ2 for the GAGFL with PGMM estimation. But

one difference is that we calculate the information criterion use the first-differenced data and

consider the use of the instrumental variables. Thus, we minimize the following expression:

IC2(λ) =
1

T − 1

m+1∑
j=1

[
1

N

Tj−1∑
t=Tj−1+1

N∑
i=1

ρ̂gi,t

]′
Wg,j

[
1

N

Tj−1∑
t=Tj−1+1

N∑
i=1

ρ̂gi,t

]
+

m∑
j=1

[
1

N

N∑
i=1

ρ̂1gi,Tj

]′
Wg,Tj

[
1

N

N∑
i=1

ρ̂1gi,Tj

]
+ ρNT k(m̂λ2

+ 1)

(13)

where ρ̂gi,t = zit(∆yit− α̂′gi,j∆xit) and ρ̂1gi,Tj = ziTj (∆yiTj − α̂′gi,j+1xiTj + α̂′gi,jxi,Tj−1) with α̂gi,j

the post-lasso estimates. Same as Wg,t, Wg,j is also a q × q symmetric weight matrix that we

need to determine. For the choice of this weight matrix, we also adopt the two-step strategy by

Qian and Su (2016). The third term of equation (13) is the same as equation (8).
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5 Extension 2: Dynamic group pattern model

Our second extension to the benchmark model is a dynamic group pattern model which allows

the group membership of each individual to change after every structural breaks. Same as the

benchmark model and fixed effects endogenous model, we assume the total number of groups is

known for now. In addition, as few previous study has considered such dynamic group pattern, in

this research we only provide a preliminary methodology to take the changing group pattern into

consideration. Thus, we consider a basic dynamic group model where a part of the individuals

have one structural break in the slope coefficients during the estimation period and some of the

individuals change their group memberships after the break. In this section, we first present the

dynamic group pattern model. After that, we propose a new algorithm to estimate this model.

5.1 Model setup

In this model, we consider the case of linear regression with strictly exogenous regressors and

adopt the same notations used in section 3.2. To model this dynamic group pattern, we add a

time subscription to the group number and let git denotes the group membership of individual

i in time period t, with git ∈ G and G = 1, ..., G. Thus, our model takes the following form

yit = x′itβgit,t + εit, i = 1, ..., N, t = 1, ..., T. (14)

Modeling dynamic group pattern directly using this model instead of using the benchmark

model and increasing the total number of groups has two main advantages. First, allowing group

memberships to change enables us to use more observations to estimate the parameters in each

stable time periods, which can give higher estimation accuracy. Second, tracing the changes of

the group memberships can give us more insight to explain phenomenon in empirical studies.

5.2 Dynamically grouped heterogeneous structural breaks (DGHB) estima-

tion

To estimate our dynamic group pattern model with one common break date, we propose the

DGHB algorithm. In this algorithm, the first step is to detect the single break date. Baltagi et

al. (2016) introduce an estimation method in their study to detect a common structural break in

the slope coefficients for part of the explanatory variables. In our case, we use the same method

for break date detection but consider a simplified case when the slope coefficients for all the

explanatory variables change at the same time.

Let Yi = (yi1, yi2, ..., yiT )′, Xi = (xi1, xi2, ..., xiT )′ and εi = (εi1, εi2, ..., εiT )′ be the vectors

that include all the observations and errors for an individual i. In addition, suppose b0 + 1 is

the true common break date, then we need to estimate the following model for each individual

i, for i = 1, ..., N , :

yit =

x
′
itβ1i + εit t = 1, ..., b0

x′itβ2i + εit t = b0 + 1, ..., T,
(15)
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where β1i is the slope coefficient before the break and β2i is the slope coefficient after the break

for individual i.

To estimate this model, we first define some auxiliary variables. For all the possible break

point b = 1, ..., T −1, we define auxiliary matrices X1i(b) = (xi1, ..., xib, ..., 0, ..., 0)′ and X2i(b) =

(0, ..., 0, ..., xi,b+1, ..., xiT )′. Thus, when b is the true break point b0, we have X0
1i = X1i(b

0) and

X0
2i = X2i(b

0). Let Xi(b) = (X1i(b), X2i(b)), then we can rewrite the piecewise model (15) as

Yi = X1i(b
0)β1i +X2i(b

0)β2i + εi = X0
iBi + εi, i = 1, ..., N, (16)

where Bi = [β1i, β2i]
′. Therefore, given any possible break point b = 1, ..., T −1, we can estimate

Bi use the ordinary least squares estimation,

B̂i(b) =

β̂1i

β̂2i

 = [Xi(b)′Xi(b)]−1Xi(b)′Yi, i = 1, ..., N. (17)

After obtaining the slope coefficient estimates for all the possible break dates for each individual,

we can determine the common break date based on the total model fitness. Specifically, we set

the estimate b̂ to the one that gives the smallest sum of squared residuals. That is

b̂ = arg min
1≤b≤T−1

N∑
i=1

SSRi(b), (18)

where SSRi is the sum-of-squared residuals for individual i if the break date is b. Given there is

only one common break date, according to Baltagi et al. (2016), this kind of estimation method

is consistent.

Given the consistent common break date estimate b̂ + 1, our next step is to determine the

group memberships before and after the break as well as the slope coefficients. To do this, we

first separate the observations before and after this break date. If the break date estimate is

consistently estimated, then there should not be any structural breaks in the pre-break and post-

break datasets after the separation. Thus, we use the standard GFE estimation introduced by

Bonhomme and Manresa (2015) to estimate the stable slope coefficients and group memberships

for the pre and post-break periods separately. The pseudo code shown at the beginning of the

next page summarizes the whole process of this algorithm.

6 Monte Carlo simulation

In this section, we conduct two sets of Monte Carlo simulation experiments to investigate the

performances of our three methods in estimating the proposed models in finite samples. The

first set of experiments consider the case of static group pattern. In this set of the experiments,

we examine the abilities of the methods to correctly classify units, detect break dates and give

accurate slope coefficients. The second set of experiments is for the case of dynamic group

pattern which aims to examine if our method can give correct estimates of the common break

date, changing group memberships and the slope coefficients.

9



Algorithm 2: DGHB algorithm

1 Step 1: Estimate the break date b̂ use equation 17 and equation 18.
2 Step 2: Separate the observations from the pre-break period and the post-break period.
3 Step 3: Estimate the slope coefficients and group memberships:

(β̂pre, γ̂pre) = arg min
(β,γ)∈BGT×GN

N∑
i=1

b̂∑
t=1

(yi,t − x′itβpregi
)2. (19)

where β̂pre and γ̂pre denote the stacked coefficients and group memberships for the pre-break period.

(β̂post, γ̂post) = arg min
(β,γ)∈BGT×GN

N∑
i=1

T∑
t=b̂

(yi,t − x′itβpostgi
)2. (20)

where β̂post and γ̂post denote the stacked coefficients and group memberships for the post-break period.

Under each case, we present the data generation process, evaluation criteria and the results.

For the static group pattern tests, we have an additional section for the tunning parameter selec-

tions. To test how our methods perform in different situations, we design two data generation

processes for each method and consider different levels of the noise in the data and different

number of available observations. In addition, we set the total number of groups G = 3 for

all the generation processes. We report the results based on 200 replications to get a fairly

reliable conclusion. All the experiments are conducted in MATLAB. For the GFE part of each

algorithm, we base our code on the code by Bonhomme and Manresa (2015). For the parts of

PLS and PGMM estimations, we borrow the code from Qian and Su (2016).

6.1 The case of static group pattern

We first present the Monte Carlo experiments for our models and methods that deal with the

case of a static group pattern.

6.1.1 Data generation process

In this section, we design DGP 1 and DGP 2 to generate the data for the tests using the

benchmark model and design DGP3 and DGP 4 for the tests using the fixed effects endogenous

model.

Benchmark model

DGP 1: In DGP 1, we generate the data follow the benchmark model given by:

yit = x′itβgi,t + εit, i = 1, ..., N, t = 1, ..., T,

where xit∼ i.i.d. N(0, 1), εit∼ i.i.d. N(0, σ2
ε ) and σε = {0.5, 0.75}. For the sample size, we

consider N = {50, 100} and T = {10, 20, 40}. Let Ng with g = 1, 2, 3, denote the number of

individuals in group g, and we set N1 : N2 : N3 = 0.3 : 0.3 : 0.4. The slope coefficients βg,t for
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the three groups are given by:

β1,t =


1 if1 ≤ t < bT/2c

2 ifbT/2c ≤ t < b5T/6c

3 ifb5T/6c ≤ t ≤ T

, β2,t =


3 if1 ≤ t < bT/3c

4 ifbT/3c ≤ t < b5T/6c

5 ifb5T/6c ≤ t ≤ T

,

and

β3,t = 1.5, for 1 ≤ t ≤ T.

where b·c means taking the integer part of the number inside this sign.

DGP 2: DGP 2 is the same as DGP 1 except that we let the error term εit follows an

AR(1) process. For each individual i we set εit = 0.5εi,t−1 + uit, where uit∼ i.i.d. N(0, σ2
u)

and σu = {0.5, 0.75}.

Fixed effects endogenous model

DGP 3: We generate DGP 3 use the fixed effects endogenous model and set the individual

fixed effect to be the average of the explanatory variable over the estimation period:

yit = µi + x′itβgi,t + σεεit, i = 1, ..., N, t = 1, ..., T,

where µi = T−1
∑T

t=1 xit and εit∼ i.i.d. N(0, 1). We generate the endogenous explanatory vari-

able xit through xit =
√

2/3δit +
√

1/3εit where δit∼ i.i.d. N(0, 1) and independent of εit. To

generate the instrumental variable, we use zit =
√

2/3δit +
√

1/3uit, where uit∼ i.i.d. N(0, 1)

and is independent of εit. Considering the complexity of the fixed effects endogenous model, we

first consider a lower level of noise in the data for the simulation experiments. Thus, we use

σε = (0.2, 0.4). For the same reason, we choose larger sample sizes and set N = {200, 400}.
We use the same time period lengths as the benchmark case, that is T = {10, 20, 40}. For the

coefficients βgi,t and the break dates in each group, we use the same settings as DGP 1.

DGP 4: DGP 4 is the same as DGP 3 except that δit follows an AR(1) process. For each

individual i, we set δit = 0.5δi,t−1 + uit with uit∼ i.i.d. N(0, 0.75).

6.1.2 Evaluation criteria

To evaluate the performances of GAGFL with PLS and GAGFL with PGMM algorithms, we

propose four evaluation criteria following Okui and Wang (2017).

Firstly, to test the abilities of our algorithms to classify individuals into the right groups, we

look at the misclassification frequency (MF). Let g0
i be the true group membership for individual

i, and let I(·) be the indicator function. Then, we define

MF =
1

N

N∑
i=1

I(ĝi 6= g0i ). (21)

Secondly, to examine whether our algorithms can give reliable perditions of the number of

breaks, we count the percentage of times GAGFL algorithms correctly estimate the true number
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of breaks in each group. We also calculate the average of the estimated number of breaks in

each group over the 200 replications and compare it with the true number of breaks. The fourth

criterion tests the accuracy of the break dates estimates. To do this, we follow Qian and Su

(2016) and Okui and Wang (2017) and calculate the Hausdorff distance (HD) defined by

HD(T̂ 0
g,m̂, T

0
g,m0) ≡ max{D(T̂ 0

g,m̂, T
0
g,m0),D(T 0

g,m0 , T̂ 0
g,m̂)} (22)

whereD(A,B) ≡ supb∈Binfa∈A|a− b| for any setA andB. We also report 100×HD(T̂ 0
g,m̂, T

0
g,m0)/T .

Finally, to evaluate the accuracy of the coefficient estimates, we use the root mean squared

error (RMSE) and the coverage probability (CP) of the two-sided nominal 95% confidence

interval. We compute RMSE use the following formula

RMSE(β̂it) =

√√√√ 1

NT

N∑
i=1

T∑
t=1

(β̂it − βit)2, (23)

and we use the following expression to calculate the coverage probability

CP (β̂it) =
1

NT

N∑
i=1

T∑
t=1

I(β̂it − 1.96σ̂β,it ≤ βit ≤ β̂it + 1.96σ̂β,it). (24)

6.1.3 Tunning parameter selections

Before discussing the results, we first present some practical choices for the experiments. Firstly,

both GAGFL with PLS and GAGFL with PGMM methods require a preliminary group mem-

bership estimates through the GFE type of estimation. To obtain a good preliminary group

assignment as the starting point, we choose to perform the GFE estimation 10 times and set the

preliminary result as the one that gives the smallest sum of squared errors. Secondly, we need to

select the value for the tunning parameters λ and λ2 in the PLS step and PGMM step. For both

PLS and PGMM, we follow Okui and Wang (2017) and Qian and Su (2016) to search the optimal

tunning parameter that gives the lowest information criterion from a 40-evenly-distributed log-

arithmic grids in the interval [0.01, 100]. The lower bound leads to frequent breaks whereas the

upper bound results in no break. Moreover, we set the user-specified constants κ and κ2 equal

to 2. Lastly, we choose to stop the algorithm when the norm difference between the estimated

slope coefficients in the consecutive iterations is zero.

6.1.4 Results

In this section, we discuss the results for the static group pattern models. The result statistics

are shown in A.1 and A.2.

Classification accuracy

Table 1 reports the average misclassification frequencies for the benchmark model. In general,

the results confirm that GAGFL with PLS method can accurately detect the group pattern given

sufficient number of observations or when there are little noise in the data. For both DGP 1 and

DGP 2, the misclassification frequencies are within 0.1 except for the case of N = 50, T = 10 and

σε = 0.75. In addition, the clustering accuracy increases significantly when T increases but does

not necessarily increase with N , although on average the accuracy for N = 100 is higher than
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N = 50. The above findings are consistent with Okui and Wang (2017). However, compared to

their study, our results are more sensitive to the changes of σε. One possible explanation is that

we only conduct 200 replications while Okui and Wang (2017) conduct 1000 replications. It is

possible that the method shows a higher level of robustness if we run more replications.

Table 5 under A.2 shows the average misclassification frequencies for the fixed effects en-

dogenous model use our GAGFL with PGMM method. All the misclassification frequencies in

this case are within 5%, which confirms that our proposal to deal with the fixed effects and en-

dogenous regressors with first difference are very reliable for detecting the group pattern. Same

as the exogenous case, the clustering accuracy increases with T but not N .

Break detection ability

Next, we talk about the abilities of the proposed methods to detect the break dates. Table 2

shows the average statistics of the number of breaks estimates for the benchmark model use

GAGFL with PLS method. According to the average frequencies of correct estimation of the

number of breaks, our results are consistent with Okui and Wang (2017) for the case when the

errors are not very noisy (σε = 0.5), and the method can give 100% accuracies in some cases.

Besides, our results also show that the break detection accuracy increases with the increase of

both N and T . However, for both DGP 1 and DGP 2, the average frequencies for the correct

estimation of number of breaks are low when σε = 0.75. In the worst case of DGP 1, when

N = 50 and T = 10, the correct frequency is only around 25% for the first Group. But a good

point is that, the results become better quickly when N and T become larger. For example,

when N = 100 and T = 40, the accuracies for the third group reach 98% and 100% for DGP 1

and DGP 2 respectively. Table 2 also presents the average estimated number of breaks. From

these statistics, we find that the PLS step of the algorithm has a tendency to overestimate the

break numbers for all the three groups. To investigate the accuracy of the break date estimates,

table 3 reports the Hausdorff errors between the estimated break dates and the true break dates.

However, we find that even in the case of N = 50, T = 10 and σε = 0.75 for DGP 1 when the

number of breaks is the most severely overestimated, the Hausdorff error is still in an acceptable

region (0.1355). Thus, we conclude that this method has a issue of overestimating the break

numbers but does not ignore the true break dates.

Table 6 presents the statistics of the break numbers estimates for the fixed effects endogenous

model use GAGFL with PGMM method. Overall, we find this method gives perfect estimation

of the number of breaks since most of the frequencies of correct estimation of breaks for all

the cases are above 90%. When T = 20 or T = 40, the correct frequencies are most of the

time 100% for both DGP 3 and DGP 4, which means the GAGFL with PGMM method almost

estimates the true number of breaks every time. From the average estimated number of breaks

in the same table, we find GAGFL with PGMM also tends to slightly overestimate the number

of breaks. However, the overestimation level is very low and the estimated number of breaks is

very closed to the true break numbers of each group. Table 7 reports the Hausdorff errors of the

break date estimates for this model. Most of the Hausdorff errors shown are within 0.01, which

means GAGFL with PGMM method gives very accurate break date estimates. From the above

discussed results, we conclude that incorporating the PGMM method with GAGFL algorithm
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keeps PGMM’s superior ability of structural breaks detection. Moreover, our results also prove

that our method with the first-differencing step gives highly accurate break estimates even with

the presence of individual fixed effects. This is in contrast with the result of Okui and Wang

(2017) who add the individual fixed effects to the exogenous model and cannot get good break

estimates use GAGFL with PLS and the first-differenced data.

Slope coefficient estimation accuracy

Table 4 reports the average RMSEs and the coverage probabilities of the coefficient estimates

for the benchmark model. The results are again consistent with Okui and Wang (2017), and

we conclude that GAGFL with PLS gives good coefficient estimates in general. On average,

the values of RMSE are small, which verifies Okui and Wang (2017)’s conclusion that the slope

coefficients are accurate even the break numbers are overestimated because of the consistency

of the reliable group pattern estimates. The coverage probabilities for this model are closed to

95% but tends to be slightly bigger than 95% especially when N is small, which means the 95%

nominal confidence interval is conservative. This suggests the estimator is not very efficient for

small N but we also expect the results can become better if we run more replications.

Shown in table 8 are the average RMSEs and the coverage probabilities for the fixed effects

endogenous model. The results show that given a good instrument variable, our GAGFL with

PGMM method gives very high accuracy of the slope coefficient estimates even with the presence

of individual fixed effects and endogenous issues. For both DGP 3 and DGP 4, the RMSEs are

within 0.1 for different levels of noise in the data, and the RMSE decreases with both T and

N . The coverage probabilities are slightly lower than 95% especially for DGP 4. However,

the coverage probability increases when N and T become larger. In the best case of DGP 4

when N = 400, T = 40 and σε = 0.2, the coverage probability reaches 94.50%. Because the

classification and break estimates also have very high accuracy for this model, we conclude the

high coefficient estimates accuracy for this model relies on both the GAGFL with PGMM’s high

classification ability and its high break dates detection ability.

6.2 The case of dynamic group pattern

Finally in this section, we present the Monte Carlo experiments for the dynamic group pattern

model with the use of our DGHB estimation algorithm.

6.2.1 Data generation process

DGP 5: DGP 5 generates the data with a changing group pattern follows the dynamic group

pattern model:

yit = x′itβgit,t + εit, i = 1, ..., N, t = 1, ..., T,

where xit∼ i.i.d. N(0, 1), εit∼ i.i.d. N(0, σ2
ε ) and σε = (0.5, 0.75). We choose N = {50, 100}

and T = {10, 20, 40}. For the single structural break, we set the break date at bT/2c. Let Ng1,g2

for g1 = 1, 2, 3 and g2 = 1, 2, 3 denote the number of individuals who are in group g1 before the

break and in group g2 after the break. We fix the proportions of the number of individuals with

different group memberships to be N1,1 : N1,2 : N2,2 : N2,3 : N3,3 : N3,1 = 0.2 : 0.1 : 0.2 : 0.2 :
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0.1 : 0.3 : 0.1. For the slope coefficients of each group, we use the following equations:

β1,t =

5 if1 ≤ t < bT/2c

3 ifbT/2c ≤ t ≤ T
, β2,t =

3 if1 ≤ t < bT/2c

8 ifbT/2c ≤ t ≤ T
.

and

β3,t = 1.5, for 1 ≤ t ≤ T.

By doing this, we design a data generation process that considers a complex scenario in the sense

that there are individuals who change their group memberships and also individuals whose mem-

berships do not change. Moreover, we have groups that have structural breaks but also group

who has no break.

DGP 6: DGP 6 is the same as DGP 5 except that the error term εit follows an AR(1) process,

same as the error term in DGP 2.

6.2.2 Evaluation Criteria

To examine the performance of our DGHB algorithm, we investigate whether DGHB can give

the correct estimate of the one single break date, identify the correct group memberships for

each individuals in all periods and give consistent estimation of the slope coefficients.

To check the break date detection ability, we count the frequencies that DGHB does not

estimate correctly the one single break date over the 200 replications. Suppose the true break

date is b0 + 1 and the estimated break date is b̂ + 1, then the mis-estimation frequency of the

break date is given by

MB =
1

200

200∑
j=1

I(b̂j 6= b0) (25)

where I(·) again denotes the indicator function.

For testing the ability of DGHB to give accurate individual classifications, we calculate the

misclassification frequency use the same formula as the static group pattern models given by

equation 21. However, here we calculate and report the misclassification frequencies both before

and after the estimated break date. Lastly, to evaluate the accuracy of the coefficient estimates

of DGHB, we calculate the RMSE and the coverage probability use the same formulas given by

equation 23 and equation 24.

6.2.3 Results

In this section, we discuss the simulation results for the dynamic group pattern model use our

DGHB method. Firstly, table 9 shows the mis-estimation frequencies of the single break date

over 200 replications. The results verify that our DGHB method can perfectly detects the correct

break date because DGHB almost always gives the correct break date even when the noise in

the data is large (σε = 0.75).

Secondly, from the results shown in table 10, the misclassification frequencies for both the

pre and post-break periods are within 10% for all cases and reaches to zero when N and T

are large. This suggests our DGHB estimation gives highly accurate clusterings. On average,

the classification accuracies are higher for the post-break period than the pre-break period. A
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potential explanation for this is that in our DGP 5 and DGP 6, the pre-break coefficients are

set to 5, 3, and 1.5 for the three groups while the post-break coefficients are set to 3, 8, and 1.5.

Thus, the post-break period has more distinctive slope coefficients across different groups which

makes the GFE estimation easier to detect the correct group pattern.

Lastly, table 11 gives the average RMSEs and the coverage probabilities of the coefficient

estimates for the dynamic group pattern model. The RMSEs are in an acceptable small level

but slightly larger than the results for the benchmark model. This may stem from the fact that

this method estimates the pre and post-break coefficients separately which reduces the number

of observations considered in each estimation. The coverage probabilities tend to be larger than

95% but the gaps are not very big.

In general, these results imply that our DGHB method can be a good alternative to the

GAGFL with PLS method in the presence of a changing group pattern. However, this method

requires a sufficient number of time observations in each estimation periods. But from our case,

we conclude five time observations is already a sufficient length.

7 Application: FDI and growth – new evidence from fixed effects endogenous model

In this section, we illustrate our GAGFL with PGMM estimation method through an empirical

application. Specifically, we revisit Qian and Su (2016)’s application about the effect of foreign

direct investment (FDI) inflow on economic growth.

7.1 Data and setup

In this application, we borrow the panel dataset from Qian and Su (2016), which includes the

data of 88 countries over the time period from 1972 to 2012. For the economic growth measure-

ment, we use the five-year average growth of logarithmic GDP per capita and denote this variable

by growthi,t for country i in time period t. We use the ratio of net FDI inflow to total GDP as

the proxy of FDI level, denoted by FDIi,t. Besides, we include the lagged term growthi,t−1 in the

regression. Finally, to control the initial income level, we include the logarithmic GDP per capita

Y 0
i,t. For the instrumental variables, we use zi,t = (growthi,t−1, FDIi,t, FDIi, t− 1, Y 0

i,t, Y
0
i,t−1)′.

In our study, we include the country-specific fixed effects µi in the model. Moreover, we consider

the case that the slope coefficients have the same structural breaks dates for all variables and

the breaks are heterogeneous across groups. Thus, our model is given by:

growthi,t = µi + β1,gi,tgrowthi,t−1 + β2,gi,tFDIi,t + β3,gi,tY
0
i,t + εi,t.

To implement GAGFL with PGMM, we specify the parameter κ2 = 2 and select the optimal

tunning parameter λ2 from 200 evenly-distributed logarithmic girds on the interval [0.5, 100],

where 0.5 results in many breaks and 100 leads to almost zero break. For the selection of this

tunning parameter, we use the information criterion introduced in section 5 given by equation

13. To get the best initial group assignment, we run the GFE-type of estimation 1000 times.

Furthermore, in this application, we need to select the optimal total number of groups. To
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do this, we adopt the method of Okui and Wang (2017) and Bonhomme and Manresa (2015) to

select the total number of groups G by minimizing the following Bayesian information criterion

(BIC):

BIC(G) =
1

NT

m+1∑
j=1

Tj∑
t=Tj−1+1

N∑
i=1

(yit − x′itα̂gi,j)2 + σ̂2np(G) +N

NT
lnNT (26)

where α̂gi,j is the post lasso estimate, σ2 is the variance of ε̂2i,t when G = 1, and np(G) is the

number of estimated coefficients corresponds to G. In this study, we set the candidate number

of groups to be {1, 2, 3, 4, 5}.

7.2 Results

According to our results, the BIC criterion selects the total number of groups G = 3 as the

optimal group number. Thus, we first analyze the result given G = 3. However, as noted by

Okui and Wang (2017), the BIC may not correctly select the true number of groups when the

dataset has a short time dimension. For this reason, we also discuss the results given G = 5

after discussion of G = 3 to investigate how our results change given a larger number of groups.

Analysis under the optimal number of groups, G = 3

With G = 3, our GAGFL with PGMM method gives one group with two structural breaks in

the early periods, one group with only one structural break occurs at the end of the sample

period, and the last group with six structural breaks occur at any disjoint time periods. Figure

1 shows the estimated group pattern given three groups through a world map, and table 12 lists

the country names with their income levels according to their estimated group memberships.

Table 13 presents the estimated coefficients and their stand errors as well as the break regimes

of each group. Figure 2 illustrates the trends of the effects of FDI inflow on economic growth.

The first group contains two structural breaks in the early stage of the whole sample period

(1983-1987 and 1988-1992), and we refer this group to the “early transitions” group. From table

12, most of the countries in this group are middle income countries. After a further examination,

we find that a lot of these countries are classified as the top-performing emerging economies by

the International Monetary Found (IMF). Shown in the figure 1, this includes several typical

emerging countries in Asia, South America and Africa. For example, China, Mexico and South

Africa. From table 13, the three explanatory variables are all insignificant before the second

structural break at 1988-1992. Starting from the period of 1988-1992, both the AR(1) coeffi-

cient of the growth and the FDI inflow coefficient becomes significant at 1% significance level.

Specifically, the effect of FDI inflow becomes positive with a moderate magnitude (0.7358) and

remains stable till the end of the sample period. This result provides some interesting insights.

Firstly, the break point reveals the influences of certain policy changes on the relation between

FDI and growth. Several countries in this group experienced an unprecedented economic boom

in the early 1990s followed by the liberalizations of economic policies and social structures. For

instance, this includes China and India’s increase of trade openness and South Africa’s ending

of Apartheid. These liberalizations help attract substantial foreign investment and enhance the

local financial market thus explains why the effect of FDI on economic growth turns signifi-
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cantly positive from 1988 onwards. Secondly, we note that several countries in this group are

labor-intensive countries (e.g. China, India and Brazil) and their education levels increase dra-

matically since the 1990s which may also be the reason that turns effect of FDI relevant and

positive to economic growth. This finding is consistent with Borensztein, De Gregorio, and Lee

(1998)’s study, which states FDI has positive effect on developing countries where there is a

sufficient stock of human capital.

In the second group, the effect of FDI on growth is not significant over the estimation periods

and its estimated coefficients are closed to zero. Thus, we name this group the “no significant

effect” group. Presented in table 12 and figure 1, this group includes mostly the high-income

countries located in Europe, North America, Australia and a small part of south-east Asia. This

result confirms the intuitive statement that the positive spillover effect of FDI inflow on economic

growth does not apply to the developed countries since these counties are already at the leading

positions in various industries. However, one surprising point is that several middle-income

countries and two low-income countries Togo and Uganda are also classified into this group. A

possible explanation for this is that the economic growths of these countries do not count on FDI

inflows or they are lack of the ability to attract sufficient foreign investments, which causes the

effect of FDI irrelevant to growth. However, the initial income level of this group has significant

negative coefficients. In addition, the relevance becomes stronger and the magnitude becomes

larger after the break. This finding is in line with the famous idea of convergence in economic

growth. Moreover, the structural break point for this coincides with the global financial crisis

of 2007-2008 which severely harmed the economies of the developed countries in this group.

Finally, the third group has six structural breaks in the coefficient estimates, and we refer it

to the “highly unstable” group. According to table 12 and figure 1, the members of this group

seems to be counter-intuitive in the sense that it contains almost the even numbers of countries

from the three different income classes, and the countries are located across different continents.

From table 13, the effect of FDI inflow in this group is significantly positive at 1% confidence

level for all the estimation periods except the period of 1983-1987. Figure 2 shows that this effect

starts with a large positive value then experienced a dramatic drop and finally fluctuates till the

end of the estimation period. As the impact of FDI on economic growth may be correlated with

a large amount of different factors, we cannot explicitly explain why the effect of FDI on growth

for the countries in this group is that volatile. But one important fact we notice is that some

of the countries in this group have highly unrest political status in recent decades, for instance,

Iran and Zimbabwe, which may be the cause for an unstable effect of FDI inflow on growth.

Apart from that, we also notice that countries such as South Korea and Japan in this group are

among the highly-innovative countries. The fast change in technology and new ideas in these

countries may have similar impacts as the changes of political situations which can lead to an

unstable effect of FDI. Thus, we conclude the classification of this group is mainly characterized

by the fluctuations of the effect of FDI. Apart from FDI, the effect of initial income in this group

is significantly negative, which again is in line with the economic convergence theory.
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Analysis under G = 5

We now present the results given G = 5. Similar as the case of G = 3, figure 3 and table 14

shows the estimated group memberships while table 15 and figure 4 summarize the coefficient

and regime estimates. According to table 14 and figure 3, increasing the total number of groups

to five basically further separates the countries to different groups according to their income

levels. Besides, after the separation, the effect of FDI on growth becomes more significant in

each group and from figure 4, the effects become more unrest for some groups.

In particular, the new Group 1 includes most of the middle income countries from the “early

transitions” group under G = 3 but five of the low income countries are removed. Same as before,

the effects of FDI becomes significantly positive at 1% significance level since the period of 1988-

1992. However, under G = 5, period 2003-2007 and 2008-2012 also exhibit structural breaks,

and the effects of FDI becomes even larger after each break. These two breaks may correspond to

the recent technology breakthroughs diffused globally which enhances the positive FDI influence

on emerging markets.

The second group now mainly contains the highly-developed western countries that previ-

ously in the “no significant effect” group. Contrast to before, the effect of FDI is significantly

positive from the period of 1988-1992 although the magnitude is much smaller than the emerging

market group (Group 1). Again, there is a structural break in the period of 2008-2012, which

corresponds to the post global financial-crisis period. This suggests FDI can also have positive

effects for the big developed countries (e.g. U.S and U.K).

The third group consists of some lower middle-income countries that are previously from the

“no significant effect” group, and the fourth group contains the majority of the countries in the

“highly unstable” group. Both of these groups have significant and high volatile effects of FDI

on growth, and they experience structural breaks in every period which may reflect the unstable

situations of these countries in various aspects.

Lastly, the fifth group mainly contains the mainland European countries previously from the

“no significant effect” group. Apart from that, Japan and South Korea are also categorized into

this group. This group has four continuous structural breaks occur at the second half of the

estimation period. Although the FDI effect is significantly positive in all periods, the estimated

effect reaches a peak at 1993-1997 and has decreasing trend till 2008-2012.

7.3 Discussion

Both our results under the optimal number of groups G = 3 and under the case of more groups

G = 5 verify that there are heterogeneous structural breaks in the effect of FDI inflow on

economic growth.

Compared to other studies in this area, our method provides some new and interesting

evidence. Qian and Su (2016) conduct the same study and assume the effect of FDI on economic

growth is time-variant but homogeneous. Under their homogeneity assumption, they conclude

the effect of FDI is significantly positive at 5% significance level in all periods, provided the

number of breaks is set to the optimum. However, according to our study, their result only holds

true for part of the countries and may not give impeccable conclusions. Carkovic and Levine
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(2005) conduct an influential panel data analysis use the GMM method but fail to find any cross-

country evidence that supports a significant effect of FDI inflow on economic development, which

may be an incomplete conclusion. In general, the new and insightful evidence we find in this

application verifies the importance of modeling heterogeneous structural breaks and confirms

the usefulness of the GAGFL with PGMM method in empirical panel data studies.

8 Conclusion

In this paper, we introduce three heterogeneous structural breaks models and their corresponding

estimation methods for panel data analysis. We set Okui and Wang (2017)’s exogenous model

with a static group pattern as our benchmark model. We first replicate their simulation work

to investigate the performance of their GAGFL with PLS method. Our finding is in line with

Okui and Wang (2017), which confirms that the GAGFL with PLS method can consistently

estimate the unobserved group structure, the dates of structural breaks and the slope coefficients

in each group. The estimation accuracy of GAGFL with PLS is especially high when the

data contain a low level of noise. After that, we extend the benchmark model by adding

individual fixed effects and release the exogeneity assumption. To estimate this model, we

work on the first-differenced data and propose the GAGFL with PGMM estimation method.

Our simulation results for this model show that despite the complexity of this model, GAGFL

with PGMM gives ideal estimation of the group pattern, break dates and the regression slope

coefficients. We further demonstrates the usefulness of this fixed effects endogenous model and

the GAGFL with PGMM method through an application. Taking heterogeneous structural

breaks into consideration through a group pattern, we find new evidence about the effect of

FDI on economic growth that traditional panel data studies on this topic has not discovered.

Finally, in this paper we also consider a model that allows the group pattern to change after each

structural break which has not been considered by previous literature. We propose the DGHB

algorithm for estimation which, from our simulation results, gives high-accuracy estimations of

the break date and the changing group memberships. The slope coefficient estimates are slightly

less accurate compared to the results of other two methods, but are still sufficiently good. In

general, we conclude that the three models and methods introduced in this paper perform well

in finite samples and can be of significant use in empirical studies.

Future research can extend our methodologies to several interesting topics. First, we assume

the slope coefficients of all the regressors share the same break dates for each individual. In

reality, it is possible that certain events change the effects of some regressors but not all of

them or their structural breaks occur at different points. Thus, it is desirable to model partial

structural breaks in slope coefficients. Second, given the fact that many literature has stressed

the importance of modeling cross-sectional dependence in panel data, future research can con-

sider the existence of such dependence within each group. Third, in the dynamic group pattern

model, we only allow the level of the structural breaks to be heterogeneous but assume all the

units share one common break date. Thus, our methodology can still be elaborated to allow the

occurrence of multiple structural breaks in different dates.
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A Monte Carlo Simulation

A.1 Benchmark model

Table 1: Misclassification frequency

N = 50 N = 100

σε T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP1 0.5 0.0442 0.0041 0.0023 0.0102 0.0015 0.0000

0.75 0.1341 0.0496 0.0017 0.0460 0.0155 0.0015

DGP2 0.5 0.0173 0.0029 0.0002 0.0188 0.0030 0.0001

0.75 0.1261 0.0543 0.0088 0.0841 0.0178 0.0033

Table 1: This table presents the average misclassification frequency for the benchmark
model over 200 replications. Shown in this table are the results for DGP 1 and DGP
2 with total number of individuals N ∈ {50, 100}, time periods T ∈ {10, 20, 40} and
the standard error of the error term σε ∈ {0.5, 0.75}.
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Table 3: Hausdorff error of break date estimates

N = 50 N = 100

Group T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP1

σε = 0.5 G1 (2) 0.0525 0.0195 0.0063 0.0120 0.0015 0.0000

G2 (2) 0.0390 0.0168 0.0085 0.0110 0.0025 0.0000

σε = 0.75 G1 (2) 0.1355 0.1675 0.0954 0.0905 0.0588 0.0241

G2 (2) 0.1130 0.1220 0.0728 0.0730 0.0410 0.0124

DGP2

σε = 0.5 G1 (2) 0.0120 0.0018 0.0000 0.0000 0.0000 0.0000

G2 (2) 0.0090 0.0020 0.0000 0.0015 0.0000 0.0000

σε = 0.75 G1 (2) 0.1055 0.0515 0.0148 0.0425 0.0055 0.0021

G2 (2) 0.0770 0.0368 0.0133 0.0250 0.0058 0.0019

This table presents the average Hausdorff error of break date estimates for the benchmark
model over 200 replications. Shown in this table are the results for DGP 1 and DGP 2 with
total number of individuals N ∈ {50, 100}, time periods T ∈ {10, 20, 40} and the standard
error of the error term σε ∈ {0.5, 0.75}.
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Table 4: Root mean squared error and coverage probability
of coefficient estimates

RMSE CP

σε N T DGP 1 DGP 2 DGP 1 DGP 2

0.5 50 10 0.1345 0.0049 0.9638 0.9547

50 20 0.0095 0.0018 0.9766 0.9551

50 40 0.0071 0.0008 0.9792 0.9583

100 10 0.0038 0.0019 0.9534 0.9423

100 20 0.0014 0.0007 0.9564 0.9461

100 40 0.0006 0.0003 0.9620 0.9509

0.75 50 10 0.5453 0.2962 0.8903 0.9345

50 20 0.2171 0.0712 0.9363 0.9650

50 40 0.0992 0.0239 0.9488 0.9700

100 10 0.3504 0.1275 0.9232 0.9556

100 20 0.1467 0.0022 0.9606 0.9587

100 40 0.0024 0.0009 0.9627 0.9670

This table presents the root mean squared error and cover-
age probability of the coefficient estimates for the benchmark
model over 200 replications. Shown in this table are the re-
sults for DGP 1 and DGP 2 with total number of individuals
N ∈ {50, 100}, time periods T ∈ {10, 20, 40} and the standard
error of the error term σε ∈ {0.5, 0.75}. The column names
RMSE represents root mean squared error and CP represents
coverage probability.
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A.2 Fixed effects endogenous model

Table 5: Misclassification frequency

N = 200 N = 400

σε T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP3 0.2 0.0043 0.0000 0.0000 0.0041 0.0001 0.0000

0.4 0.0184 0.0016 0.0000 0.0179 0.0001 0.0000

DGP4 0.2 0.0120 0.0007 0.0000 0.0112 0.0001 0.0000

0.4 0.0349 0.0042 0.0000 0.0328 0.0032 0.0003

This table presents the average misclassification frequency for the fixed effects endoge-
nous model over 200 replications. Shown in this table are the results for DGP 2 and
DGP 3 with total number of individuals N ∈ {200, 500}, time periods T ∈ {10, 20, 40}
and the standard error of the error term σε ∈ {0.2, 0.4}.
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Table 7: Hausdorff error of break date estimates

N = 200 N = 400

Group T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP3

σε = 0.2 G1 (2) 0.0090 0.0035 0.0000 0.0010 0.0000 0.0000

G2 (2) 0.0130 0.0005 0.0000 0.0040 0.0000 0.0000

σε = 0.4 G1 (2) 0.0170 0.0150 0.0320 0.0010 0.0000 0.0023

G2 (2) 0.0160 0.0095 0.0422 0.0060 0.0000 0.0023

DGP4

σε = 0.2 G1 (2) 0.0120 0.0140 0.0000 0.0010 0.0000 0.0000

G2 (2) 0.0080 0.0050 0.0000 0.0030 0.0000 0.0000

σε = 0.4 G1 (2) 0.0100 0.0160 0.0185 0.0020 0.0000 0.0000

G2 (2) 0.0150 0.0055 0.0105 0.0030 0.0000 0.0000

This table presents the average Hausdorff error of break date estimates for the fixed effects
endogenous model over 200 replications. Shown in this table are the results for DGP 3 and
DGP 4 with total number of individuals N ∈ {50, 100}, time periods T ∈ {10, 20, 40} and
the standard error of the error term σε ∈ {0.5, 0.75}.
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Table 8: Root mean squared error and coverage proba-
bility of coefficient estimates

RMSE CP

σε N T DGP 3 DGP 4 DGP 3 DGP 4

0.2 200 10 0.0258 0.0365 0.8703 0.8744

200 20 0.0162 0.0273 0.9109 0.9411

200 40 0.0129 0.0240 0.9447 0.9408

400 10 0.0163 0.0252 0.9233 0.8810

400 20 0.0109 0.0173 0.9483 0.9099

400 40 0.0083 0.0142 0.9528 0.9450

0.4 200 10 0.0548 0.0772 0.8758 0.8267

200 20 0.0372 0.0565 0.9208 0.8916

200 40 0.0271 0.0468 0.9390 0.9030

400 10 0.0334 0.0532 0.9237 0.8850

400 20 0.0221 0.0350 0.9400 0.9083

400 40 0.0166 0.0272 0.9409 0.9132

This table presents the root mean squared error and cover-
age probability of the coefficient estimates for the fixed effects
endogenous model over 200 replications. Shown in this table
are the results for DGP 3 and DGP 4 with total number of
individuals N ∈ {200, 400}, time periods T ∈ {10, 20, 40} and
the standard error of the error term σε ∈ {0.2, 0.4}. The col-
umn names RMSE represents root mean squared error and CP
represents coverage probability.
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A.3 Dynamic group pattern model

Table 9: Mis-estimation frequency of the break date

N = 50 N = 100

σε T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP5 0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.75 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000

DGP6 0.5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.75 0.0150 0.0000 0.0000 0.0000 0.0000 0.0000

This table presents the mis-estimation frequency of the break date for the dynamic
group pattern model over 200 replications. Shown in this table are the results for
DGP 5 and DGP 6 with total number of individuals N ∈ {50, 100}, time periods
T ∈ {10, 20, 40} and the standard error of the error term σε ∈ {0.5, 0.75}.

Table 10: Average misclassification frequency before and after the estimated break

N = 50 N = 100

Period T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

DGP5

σε = 0.5 pre 0.0188 0.0002 0.0000 0.0194 0.0007 0.0000

post 0.0037 0.0030 0.0000 0.0033 0.0003 0.0002

σε = 0.75 pre 0.0611 0.0067 0.0001 0.0599 0.0057 0.0000

post 0.0199 0.0022 0.0015 0.0196 0.0021 0.0001

DGP6

σε = 0.5 pre 0.0285 0.0008 0.0000 0.0277 0.0018 0.0000

post 0.0068 0.0004 0.0000 0.0080 0.0008 0.0001

σε = 0.75 pre 0.0770 0.0129 0.0007 0.0780 0.0120 0.0004

post 0.0291 0.0049 0.0003 0.0284 0.0054 0.0003

This table presents the average misclassification frequency before and after the estimated
break date for the dynamic group pattern model over 200 replications. Shown in this table
are the results for DGP 5 and DGP 6 with total number of individuals N ∈ {50, 100}, time
periods T ∈ {10, 20, 40} and the standard error of the error term σε ∈ {0.5, 0.75}. The
second columns show the period. pre denotes the pre-break period and post denotes the
post-break period.
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Table 11: Root mean squared error and coverage proba-
bility of coefficient estimates

RMSE CP

σε N T DGP 5 DGP 6 DGP 5 DGP 6

0.5 50 10 0.1485 0.2046 0.9706 0.9714

50 20 0.0434 0.0492 0.9664 0.9605

50 40 0.0257 0.0303 0.9490 0.9523

100 10 0.1560 0.1991 0.9707 0.9723

100 20 0.0327 0.0493 0.9503 0.9583

100 40 0.0231 0.0233 0.9664 0.9647

0.75 50 10 0.3164 0.3736 0.9549 0.9459

50 20 0.0993 0.1410 0.9704 0.9737

50 40 0.0437 0.0510 0.9708 0.9535

100 10 0.3136 0.3736 0.9576 0.9467

100 20 0.0887 0.1387 0.9680 0.9718

100 40 0.0295 0.0376 0.9494 0.9473

This table presents the root mean squared error and coverage
probability of the coefficient estimates for the dynamic group
pattern model over 200 replications. Shown in this table are the
results for DGP 5 and DGP 6 with total number of individuals
N ∈ {50, 100}, time periods T ∈ {10, 20, 40} and the standard
error of the error term σε ∈ {0.5, 0.75}. The column names
RMSE represents root mean squared error and CP represents
coverage probability.
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B Application

B.1 Analysis under three groups

Figure 1: Estimated group pattern under G = 3

No data Early transitions No significant effect Highly unstable

Figure 2: Effects of FDI inflow on economic growth under G = 3
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Table 12: List of countries by group, G = 3

Group 1 Income
level

Group 2 Income
level

Group 3 Income
level

(Early transition) (No significant effect) (Highly unstable)
Argentina H Australia H Benin L
Brazil UM Austria H Central African Republic L
Cameroon LM Belgium H Congo L
China UM Bolivia LM Costa Rica UM
Colombia UM Botswana UM Dominican Republic UM
Ecuador UM Canada H Egypt LM
Ghana LM Chile H Guyana UM
Haiti L China, Hong Kong H Iran UM
India LM Côte d’Ivoire LM Japan H
Indonesia LM Cyprus H Jordan UM
Malawi L Denmark H South Korea H
Malaysia UM El Salvador LM Mauritius UM
Mexico UM Fiji UM Nicaragua LM
Morocco LM Finland H Niger L
Paraguay UM France H Norway H
Peru UM Gabon UM Poland H
Philippines LM Greece H Trinidad and Tobago H
Romania UM Guatemala LM Zimbabwe L
Rwanda L Honduras LM
Senegal L Iceland H
Sierra Leone L Ireland H
South Africa UM Israel H
Sri Lanka LM Italy H
Turkey UM Jamaica UM
Tanzania L Kenya LM
Uruguay H Mali L
Zambia LM Malta H

Netherlands H
New Zealand H
Pakistan LM
Papua New Guinea LM
Portugal H
Singapore H
Spain H
Sweden H
Switzerland H
Thailand UM
Togo L
Tunisia LM
Uganda L
United Kingdom H
United States H
Venezuela UM

This table lists the name of the countries according to their group memberships given the total number
of groups is three. The second, fourth and sixth columns give the income levels of each country classified
by the world bank. H represents the high income level, UM and LM represent the upper and lower middle
income levels respectively and L indicates the low income level.
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B.2 Analysis under five groups

Figure 3: Estimated group pattern under G = 5

No data Group 1 Group 2 Group 3 Group 4 Group 5

Figure 4: Effects of FDI inflow on economic growth under G = 5
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